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Abstract: Traumatic, tumoral, and infectious bone defects are common in clinics, and create a
big burden on patient’s families and society. Calcium phosphate (CaP)-based biomaterials have
superior properties and have been widely used for bone defect repair, due to their similarities to
the inorganic components of human bones. The biological performance of CaPs, as a determining
factor for their applications, are dependent on their physicochemical properties. Hydroxyapatite
(HAP) as the most thermally stable crystalline phase of CaP is mostly used in the form of ceramics or
composites scaffolds with polymers. Nanostructured CaPs with large surface areas are suitable for
drug/gene delivery systems. Additionally, CaP scaffolds with hierarchical nano-/microstructures
have demonstrated excellent ability in promoting bone regeneration. This review focuses on the
relationships and interactions between the physicochemical/biological properties of CaP biomaterials
and their species, sizes, and morphologies in bone regeneration, including synthesis strategies,
structure control, biological behavior, and the mechanisms of CaP in promoting osteogenesis. This
review will be helpful for scientists and engineers to further understand CaP-based biomaterials
(CaPs), and be useful in developing new high-performance biomaterials for bone repair.

Keywords: calcium phosphate; bone regeneration; hydroxyapatite; biomineralization; osteogenesis

1. Introduction

Bone as a mineralized tissue has an irreplaceable role in supporting and protecting the
body of human beings. Defects of bone caused by trauma, aging, inflammation, infection,
and tumors seriously affect people’s health and normal life [1]. A critical bone defect,
which refers to a defect greater than 2 cm in length or greater than 50 percent of the
circumference of the defect, cannot completely regenerate by self-growth and requires
the use of biomaterials to guide its repair [2]. Millions of bone grafting operations are
performed every year in the world for the treatment of critical bone defects, resulting in a
huge economic burden to the families of patients and the whole of society [3]. Therefore,
the development of high-performance biomaterials for bone repair is of great scientific
significance and clinical application value.

At present, the most commonly used methods for treating bone defects include bone
transplantation, membrane-guided regeneration, Ilizarov technology, and bone tissue
engineering [4–8]. However, these methods are insufficient in meeting the requirements
for clinical treatment of bone defects. Autologous bone grafting, the clinical gold standard
for treating bone defects, is usually limited by the quantity of available tissue and the
risk of secondary surgery and infection, blood loss and operation time [3]. Allografts and
xenografts are important alternative options of autografts for orthopaedic applications in
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terms of osteogenic, osteoinductive, and osteoconductive properties, and there are two
main categories, including cellular bone matrices (CBM) and peptide enhanced xeno-hybrid
bone grafts developed as commercial products for clinical use. Cellular bone matrices
have four necessary and beneficial elements for bone growth and healing: osteoinduction,
osteoconduction, osteogenic activity and angiogenic activity [9]. However, CBM have
several challenges with respect to intrinsic biological characteristics, such as viable cell
sources, donor age at the time of graft harvest, and cell survival after transplantation,
which may cause differences in expected outcomes due to different batches of the same
product. Xeno-hybrid bone matrices are appealing, innovative, osteoconductive and
osteoinductive bone substitutes to autografts. The compatibility of xeno-hybrid bone
matrices in favoring cellular attachment, osseointegration, bone remodeling and satisfactory
mechanical performance has been attested by numerous clinical studies [9]. However,
further independent clinical studies are required to confirm these promising results and to
promote their application. It is worth mentioning that although there are potential risks of
infection when using allografts, the allografts are procured, processed, and distributed only
by Tissue Banks, which operate under strict guidelines and sterile conditions in Class A
environments, which helps to minimize the abovementioned issues [10]. The technology of
tissue engineering represents an emerging strategy for repair of bone defect [11]. However,
it is still a big challenge to construct functional bone tissue in vitro, due to the proliferation
and differentiation of seeding cells, bioactivity of growth factors and physicochemical
and biological properties of scaffolds [12,13]. Recently, in-situ tissue engineering has been
proposed for autologous tissue regeneration, which is based on tissue-specific scaffolds, by
regulating the microenvironment and in vivo recruiting stem and progenitor cells [14,15].
Therefore, the preparation of functional scaffolds with ideal biocompatibility, bioactivity
and biodegradability is the critical factor that limits the rapid development of in-situ tissue
engineering for bone defect repair.

Synthetic bone scaffolds have been increasingly applied in the field of bone repair.
Compared with the autologous bone grafts, although there are some poor properties of
osteinductive and osteogenic activities, synthetic bone scaffolds with abundant sources
provide a wide variety of choices in structure, chemical/mechanical properties and bio-
logical functions to meet specific requirements in bone regeneration [15]. Considering the
limitations above-mentioned, artificial bone substitutes have attracted tremendous atten-
tion and have been rapidly developed. Among the varied biomaterials used in bone repair,
calcium phosphate (CaP)-based biomaterials occupy a particular position as a result of their
resemblance to the chemical components and structures of natural bone tissue. CaP is not a
specific material but represents a big family of materials that are compounds formed by the
reaction of calcium ions and phosphate ions. The apatite reported by Werner in 1788 was
the earliest discovered member of CaP [16]. By 1926, Jong revealed the relationship between
apatite and the inorganic minerals of bone [17]. Therefore, CaP-based biomaterials (CaPs)
were proposed for use as therapeutic agents for bone regeneration [18]. In 1971, Monroe
was the first to report the use of CaP ceramics, which are white translucent polycrystalline
ceramics that contain hydroxyapatite (HAP) [19]. Since that time, CaP ceramics have been
developed greatly for the application of bone repair [20,21]. A CaP bone cement (CPC)
was created by the hydrolysis of TCP and was used for the first time in the early 1920s as
a treatment for bone repair [18]. Since then, CPC has been prepared with many different
chemical formulas and application as described by Cama [22]. Mineralized collagen with
orderly, organized collagen and HAP is the basic unit of natural bone tissues and is involved
in building complex biomineralized systems with hierarchical structures [23]. Hence, re-
searchers in the field of biomaterials are interested in biomimicking mineralized collagen
for developing bone substitute materials by utilizing the biomimetics strategy [24,25]. In
2003, biomimetic mineralized collagen nanofibrils were designed and prepared by Cui et al.,
which are similar in both composition and structure to natural bone [26]. As of now, various
methods have been developed for preparing mineralized collagen, and these products
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have excellent bioabsorbability and osteoconductive properties, leading to their potential
in promoting bone regeneration [27].

With the advancement of materials science and technology, synthetic CaP materials,
as promising biomaterials that provide similar bone environments for cell attachment,
proliferation, and differentiation for bone regeneration, have attracted more and more
interest and have shown excellent biocompatibility, osteoconductivity and osteoinductivity.
However, synthesis methods, structural regulation and functionalization of CaPs are still
long-term processes that need to be investigated to meet the requirements of different
applications [28]. This review presents an up-to-date overview of advances in CaP bioma-
terials with different crystal phases and structures, strategies for fabricating biomimetic
hierarchical nano-/microstructures and highlights their applications in bone regeneration
(Figure 1 and Table 1). The review will help to further understand the relationships among
the physical, chemical and biological properties of CaP biomaterials, and thus guide the
preparation of the next generation of CaP biomaterials for bone repair.
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Table 1. Summary of advantages and disadvantages of CaPs.

Advantages Disadvantages Reference
Species

HAP Advanced osteoconductivity and osteoinductivity Poor mechanical properties, and biodegradability [29–31]
α-TCP Advanced osteoconductivity and osteoinductivity, easy be resorpoted Poor stability [32,33]
β-TCP Advanced osteoconductivity and osteoinductivity, more stable than α-TCP Lower biodegradability than α-TCP [31,34]

ACP Excellent biodegradability, large specific surface, pH-responsive
degradation Lower surface energy than OCP and HAP, poor stability [35,36]

OCP Acts as the initial deposition site for bone, beenter osteoconductivity and
osteoinductivity than HAP and ACP Unstable, poor mechanical properties [37]

DCPA/DCPD Good biocompatibility, biodegradability and osteoconductivity Poor stability, easy to casue inflammatory response by the degradation
products [38,39]

TTCP Advanced biodegradability, biocompatibility and stability. Cannot be synthesized in aqueous environment, easy to hydrolysis to HA [40]

Size

Microscales Higher surface charge and excellent molecular adsorption properties Lower biodegradability [41]

Nanoscales Improving the sintering ability of ceramics, and mechanical properties of
implants, higher absorbability, easer to penetrate cell membrane. Difficulty in synthesizing nanomaterials of specific sizes [41]

Hierarchical nano/micro
structures

Similarity of nature bone structure, better cell adhesion ability and
bioactivity Difficulty in controlling [42]
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2. Methods

The reports and information were gathered using the bibliographic databases PubMed
and Web of Science. In addition, a search on Bing was performed to supplement the
information. The following term combinations were searched: “calcium phosphate-based
materials name” and (“bone regeneration” or “bone repair” or “bone healing”), “calcium
phosphate-based materials name” including “calcium phosphate”, “CaP”, “hydroxyap-
atite”, “HA”, HAP”, “tricalcium phosphate”, “TCP”, “amorphous calcium phosphate”,
“ACP”, “octacalcium phosphate”, “OCP”, “dicalcium phosphate anhydrous”, “DCPA”,
“dibasic calcium phosphate dihydrate”, “DCPD”, “tetracalcium phosphate”, “TTCP”, “di-
calcium phosphate monohydrate”, “DCPM”, “cement” and “ceramic”. Considering only
innovative reports, the range of the publishing data was set as “2010–2022”. However,
some classical and revolutionary works outside this window were also included. This
study reviews and discusses representative literature.

3. Chemical Properties of Calcium Phosphate
3.1. Species of Calcium Phosphate

CaP is not only a family of natural minerals, but also includes biominerals in humans,
which are the main inorganic component of hard tissue (bone and teeth) [31]. In the past
decades, a wide variety of CaP-based biomaterials have been used in bone regeneration
studies and clinical applications. As is well known, CaP biomaterials promote cell adhesion
and growth, which then induces the formation of new bone minerals via their interac-
tion with extracellular matrix proteins [43]. In the application of bone regeneration, the
bioactivity of CaPs is critical and usually varied depending on their species [44]. The
bioactive features of CaPs is related with to the degradation properties of CaP [45]. Due
to different Ca/P ratios, the different species of CaP biomaterials result in variations in
in vitro and in vivo calcium and phosphate ion release. Consequently, the pH of the local
microenvironment of bone is affected by the released calcium and phosphate ions, which
then influence the viability of osteoblasts and osteoclasts [46,47]. Moreover, the increased
concentration of calcium and phosphate ions can promote the formation of bone minerals,
as well as affect the expression of osteogenic differentiation-related genes (e.g., Col-I, ALP,
OPN, OCN, RunX2 and BMPs) of bone cells [31,48].

Calcium exists wildly in natural bone minerals and is a key ion in forming the bone
matrix [49]. Ca2+ is also capable of forming and maturing bone tissue by calcification.
Ca2+ influence the bone cell maturation and bone tissue regeneration by regulating related
cellular signaling pathways [50,51]. For instance, Ca2+ activating ERK1/2 causes path-
way activation of osteoblastic-related bone formation [52]. In addition, an increased life
span of osteoblasts has been observed with the activation of the PI3K/Akt signal axis by
Ca2+ [53]. Meanwhile, phosphate ions degraded from CaP are present in large quantities
in the human body, and can be utilized in various physiological systems, including con-
struction of proteins, nucleic acids, and adenosine triphosphate [54]. Approximately 80%
of phosphate ions in the body occur with calcium ions in the form of CaP in bone, which
affects the development of bone tissue [55]. It is well known that the differentiation and
growth of osteoblasts are regulated by phosphate ions by IGF-1, ERK1/2, BMP, and other
pathways [56,57].

The osteoconductivity and osteoinductivity of CaP materials are closely related to
their physical and chemical characteristics, such as, solubility, stability, and mechanical
strength [31], are determined by the species of the CaP materials, Therefore, the selection
of one kind of CaP biomaterial from their family according its characteristics is important
in preparing biomaterials for the use of bone regeneration. A large number of CaP bio-
materials have been used in bone regeneration and other biological research, including
tricalcium phosphate (TCP), hydroxyapatite (HAP), amorphous calcium phosphate (ACP),
octacalcium phosphate (OCP), dicalcium phosphate anhydrous (DCPA), dibasic calcium
phosphate dihydrate (DCPD), and tetracalcium phosphate (TTCP) [42]. Basic information
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concerning these CaP biomaterials are displayed in the Table 2 [33]. The crystal phases
of calcium phosphate were discovered before the 20th century (amorphous phases were
discovered in the 1950s) and accurately characterized during the 20th century (OCP was de-
fined in 1957 [58]). After that, no new crystal phases (non-doped, non-substituted, only Ca,
P, O, H) have been reported. Dicalcium phosphate monohydrate (CaHPO4·H2O, DCPM)
was obtained by controlling the transformation of a special amorphous calcium phosphate
(CaHPO4·xH2O, ACHP) in a water-deficient environment (water/methanol mixed solvent,
or in humid air) by Lu et al. in 2020 [59]. The discovery of DCPM brought a new member
to the calcium phosphate family. However, applications of DCPM in bone repair, and even
in biomedicine, has not yet been carried out.

Table 2. The basic information of usual calcium phosphate materials.

Name Formula Ca/P Solubility at 25 ◦C (g/L)

HAP Ca10(PO4)6(OH)2 1.67 ~0.0003
α-TCP α-Ca3(PO4)2 1.5 ~0.0025
β-TCP β-Ca3(PO4)2 1.5 ~0.0005
ACP CaxHy(PO4)z·nH2O, n = 3–4.5, 15–20% H2O 1.2–2.0 /
OCP Ca8(HPO4)2(PO4)4·5H2O 1.33 ~0.0081

DCPA CaHPO4 1.0 ~0.048
DCPD CaHPO4·2H2O 1.0 ~0.088
TTCP Ca4(PO4)2O 2.0 ~0.0007

HAP: hydroxyapatite, α-TCP: α-tricalcium phosphate, β-TCP: β-tricalcium phosphate, ACP: amorphous phos-
phate calcium. The solubility date at 25 ◦C of ACP cannot be measured precisely. However, the comparative
solubility in acidic buffer is ACP >> α-TCP >> β-TCP >> HAP.

3.2. Hydroxyapatite

HAP is the most abundant crystal phase of biominerals in human bones, and accounts
for ~70% of the dry weight of bone tissue [60]. Among all CaP materials, HAP is only
inferior to fluorapatite (FAP) in terms of stability and insolubility. The chemical formula
of HAP is Ca5(PO4)3(OH). However, HAP is usually referred to as Ca10(PO4)6(OH)2 to
indicate the hexagonal unit cell of HAP [61]. There are two approaches for the formation of
HAP, including the natural formation process and artificial synthesis. The hexagonal crystal
structure of naturally formed HAP usually has defects, which can be filled by vacancies or
other ions [33]. However, structural defects in synthesized HAP may depend on synthesis
procedures or conditions. Monoclinic and hexagonal crystals are the two crystal phases
of synthesized HAP; the monoclinic crystal phase can change to the hexagonal crystal
phase when the temperature is higher than 250 ◦C. The hexagonal crystal structure of
HAP is the predominant phase found in the biological environment as a result of its high
stability [62]. HAP is considered the most stable phase of CaP and the final mineral phase
in bone, whereas the other CaP phases (e.g., ACP and OCP) in bone are precursors, or
sub-precursors, that transform into HAP under in vivo or aqueous environments with
high pH [31,33]. The phase transformation of several CaPs usually occurs under different
conditions [63]. The equilibrium of phase transformation between various CaP phases is
related to temperature and the ratio of CaO and P2O5. The physicochemical and biological
properties of HAP significantly change with the Ca/P ratios and the replacement of ions
or vacancies in HAP crystal structure. For example, the mechanical properties of HAP are
enhanced with increasing Ca/P ratio, and reach a maximum when the stoichiometric ratio
is 1.67. Interestingly, once the Ca/P ratio exceeds 1.67, the strength of HAP decrease [64].
The defects of HAP crystal structure can be replaced with F−, Cl−, CO3

2−, Mg2+, Sr2+, and
other ions. As a result of Mg2+ replacement, the size and density of HAP nanostructure par-
ticles, which contribute to the specific mechanical properties of bones, may be altered [65].
Furthermore, the crystallization of HAP is inhibited by Mg2+, and results in the formation
of fewer large crystals and a greater number of apatite nuclei. The significance of this is
that nanocrystalline bone apatites are necessary for the proper bone formation–resorption
turnover that occurs via bone cells [66]. The replacement of F− ions can increase stability,
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while Mg2+ enhances biological activity, compared with pure HAP [66]. Several studies
have shown that Mg2+ has the ability to influence bone metabolism, regulate the activity of
osteoblasts and osteoclasts, and to stimulate new bone growth [67,68]. Therefore, artificial
Mg substituted HAP in different forms has been carried out, and has displayed advanced
bioactivity [69,70]. Furthermore, Mg-based CaP materials can result in neuralization and
the synthesis and release of CGRP to promote osteogenesis [71–73].

HAP has been used clinically in bone regeneration since the 1980s, as implants and
coatings of other implants [61,74]. HAP has good biocompatibility, bioactivity, and osteo-
conductive properties. In the presence of Ca2+ and PO4

3− ions, the surface of HAP can
act as a nucleation site for the initiation of biomineralization [75]. Therefore, HAP is used
widely for dental surgery, long bone defects, bone nonunion, vertebral fusion operation
and maxillofacial repair [76]. The biocompatibility, osseointegration, and bioactivity of
metal implants are improved by coating their surfaces with HAP, which enhances the bone
contact area and cell adhesion properties of the implants [30]. Moreover, HAP can promote
the biomineralization of macromolecule-based scaffolds. HAP nanoparticles penetrate into
the demineralized collagen scaffold and serve as mineralization seeds that promote the
occurrence of remineralization of the collagen matrix [77].

HAP has high chemical stability, but has weakness in mechanical properties. Stress
along the Z-axis direction of HAP crystals creates brittleness [78]. It is worth mentioning
that wear resistance, the friction coefficient and hardness of dense HAP are similar to
natural those of mineralized tissues [32]. The fatigue resistance of dense HAP is supe-
rior to porous HAP [64]. As a result, HAP is not used as a load-bearing implant due
to its poor mechanical properties, but is usually implanted with granules and porous
scaffolding [29]. It is still a huge challenge to improve the mechanical properties of HAP.
Metal oxides including zirconia, alumina and titania are common reinforcing agents [79].
However, the biocompatibility and biodegradation properties of HAP-based biomaterials
are compromised by the addition of these reinforcing agents, which are bioinert or none-
biodegradable [80]. Constructing composites with a polymer is an effective way to improve
the mechanical properties of HAP. Natural polymers such as chitosan, hyaluronic acid,
silk fibroin and gelatin are common components for fabricating hybrid scaffolds [81]. For
instance, the hydroxy propyl methyl cellulose of chitosan has been crosslinked to fabricate
chitosan/HAP sponge-like scaffolds which have excellent compressive strength, elasticity
and degradability [82]. Considering the importance of mechanical properties for bone
repair, particularly in load-bearing bones, further research is necessary to improve the
mechanical properties of HAP [83,84].

The biological performance of artificial bone implants is extremely important. HAP
is considered to have good biocompatibility and bioactivity in osteoconductivity, but has
poor osteoinductivity [75]. Therefore, it is usual to combine HAP with other materials to
improve its osteoinductivity. Beta-tricalcium phosphate (β-TCP), another common kind
of calcium phosphate used in bone regeneration, has better osteoinductivity than HAP.
This biphasic calcium phosphate (BCP) material has been synthesized by combining HAP
and β-TCP to take advantage of the properties of both and obtain better bioactivity for
bone regeneration [85]. The BCP material possesses superior bioactivity, biodegradability,
osteoinductivity, and mechanical properties than HAP or β-TCP alone, and has greater
ability to stimulate osteogenic differentiation of BMSCs [86]. Hence, bone grafts and dental
materials are commonly prepared with BCP material [87]. Zhu et al. constructed BCP
bioceramics with micro-whiskers and a nanoparticle hybrid structure which may be applied
in research on load-bearing bone tissue regeneration to provide mechanical support [88].

HAP is an advanced material for preparing bone grafts owing to its similarity to
natural minerals and excellent biocompatibility and osteoconductivity. However, the
preparation performance regulation of hydroxyapatite materials for bone regeneration
remains a long-term and challenging endeavor. First of all, basic research on hydroxyapatite
in bone tissue remains largely unexplored. For example, there is a lack of understanding
regarding the factors involved in the formation of hydroxyapatite, including precursors
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and crystal growth regulatory factors, in the process of bone tissue biomineralization. In
addition, the interaction between hydroxyapatite and collagen molecules, particularly how
the regular hydroxyapatite-collagen complex is formed, needs to be further studied. On
the other hand, there are still many technical and scientific problems associated with the
synthesis of hydroxyapatite and the preparation of scaffolds. For instance, the mechanism
of hydroxyapatite crystal growth needs to be further explored to control the scale, and a
controllable fabrication strategy for ordered biomimetic structures must be developed to
fabricate scaffolds with good mechanical properties and controllable porous structures.

3.3. Tricalcium Phosphate

TCP, as one of the most studied calcium phosphate materials, contains two crystalline
phases (α-TCP and β-TCP). There are several phases of CaP materials that have similar
compositions to TCP, and the term TCP here is used for the phase with a chemical composi-
tion of Ca3(PO4)2 and a Ca/P ratio of 1.5. Pure crystalline α-TCP cannot be precipitated
in aqueous solutions since it is very poorly soluble, unlike β-TCP [89,90]. There are three
approaches for synthesizing β-TCP, including solid-state reaction, thermal conversion, and
precipitation. Usually, crystalline β-TCP is prepared at a high temperature of ~800 ◦C such
as by thermal decomposition of calcium deficient hydroxyapatite (CDHA), and the other
is the solid-state interaction between acidic CaP (i.e., DCPA) and alkaline (i.e., CaO) [33].
As well, it has been shown that β-TCP precipitates in organic solutions, such as ethylene
glycol, methanol, tetrahydrofurane, and ethyl propionate [91–93]. Tang et al. synthesized
β-TCP at a relatively low temperature at about 150 ◦C in organic solvents (e.g., ethylene
glycol) [94]. Moreover, β-TCP transforms into the α-TCP at higher temperatures (above
1125 ◦C), so α-TCP may be considered as the high-temperature phase of β-TCP [38].

TCP has excellent stability and can be stored in a dry environment at room temperature
for a long period of time. β-TCP is more stable than α-TCP according to a density functional
study [95]. α-TCP has superior reactivity and specific energy in an aqueous solution than
β-TCP, and is capable of being hydrolyzed to CDHA [33]. In clinical applications, β-TCP
has higher osteoconductivity and osteoinductivity than HAP and is primarily used in
bone cements and bioceramics [34,96], while α-TCP is normally used in cements, since it is
subject to a phase conversion to HAP upon water contact [97,98]. It should be noted that
the rate of resorption of pure α-TCP is higher than new bone formation, which leads an
imbalance between the process of bone formation and implant degradation [38]. Therefore,
α-TCP is usually used as a component in CaP cements with other CaP materials [33]. In
contrast, β-TCP has a relatively lower resorption rate than α-TCP, and has good prospects
for application in bone regeneration [32]. The nano-porous structure of β-TCP allows for
excellent biomineralization and cell adhesion; these properties can stimulate osteoblast and
BMSCs proliferation [99]. In addition, compared to HAP, β-TCP has better biodegradability
and resorption rate, which can increase the biocompatibility of the implants for bone
regeneration [31].

3.4. Amorphous Calcium Phosphates

Amorphous calcium phosphates (ACPs) are a special phase of CaP with various
chemical compositions. ACPs have long-range order but short-range disorder regarding
their crystal properties [33]. Initially, ACPs were discovered during the preparation of
HAP in vitro; therefore, ACPs were considered as precursors of HAP [100]. A study in
1972 found that ACPs were the first phase to form and were transformed into octacalcium
phosphate (OCP) during the synthesis of HAP in vitro; the final phase conversion occurred
from OCP to HAP [101]. Glimcher et al. believed that ACPs may be the precursor stage
of bone formation due to the presence of uniform intra-collagen mineralized particles
found in collagen mineralization in vitro through ACPs [102]. ACPs are classified into two
groups based on their preparation temperature, namely low-temperature ACPs and high-
temperature ACPs [36]. Low-temperature ACPs usually occur as precursors during the
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precipitation process of other CaP compounds. Since the surface energy of ACPs is lower
than that of OCPs and HAPs, ACPs are thought to form at the onset of precipitation [36].

The chemical composition of ACPs depends on pH value and the concentration of
calcium and phosphate ions in aqueous solution. The recrystallization of ACPs occurs
with increased concentration of Ca2+ and PO4

3−. In addition, ACPs may recrystallize
slowly or transform into CaP materials with a higher crystalline degree, such as CDHA,
in a reaction system with a continuous and mild stirring rate, especially when at higher
reaction temperatures [33]. In studies concerning the influence of pH, researchers have
discovered that the Ca/P ratio of ACPs increases from 1.18 to 1.53 as the pH value of the
system changes from 6.6 to 11.7 [103,104]. Up to now, the atomic distribution in ACPs is
still not entirely clear, which is an important research topic in studies of biominerals [36].
Freshly precipitated ACPs usually display spherical-like structures with diameters between
20 and 200 nm as seen by electron microscopy [33]. Some researchers believe that the basic
structural unit of ACPs is thought to be a spherical cluster structure with a diameter of
0.95 nm. The ACP chemical formula is Ca9(PO4)6 [36,105].

ACPs constitute the initial phase of HAP and are essential components in the process of
bone regeneration and bone mineralization due to their particular physical properties and
structure [106]. ACPs possess superior biological properties, such as osteoconductivity and
biodegradability, leading to a variety of applications including CaP bone cements, biological
tissue engineering scaffolds, bone repair biomaterials, and dental implants [107,108]. In
addition, the nano-sized clusters in the ACPs have characteristics of large specific surface
areas and pH-responsive degradation, which makes them ideal drug delivery carriers for
studies relating to drug loading and controlled release [35].

The preparation of ACPs is regulated by small molecules such as ATP, which can
effectively inhibit the phase transformation of ACP [109]. As a result of an ATP-assisted
preparation strategy, the product is an ACP composite nanoparticle containing ATP and
ADP molecules. Furthermore, the compound has good biocompatibility and osteogenic
activity, and can up-regulate the expression of osteogenic genes in BMSCs. An injectable
hydrogel prepared by combining ACP compounds with fibrinogen displayed excellent
promoting effects in in vivo bone regeneration [110].

An ALP-catalyzed hydrolysis reaction was used to generate EACP nanominerals in an
alkalescent aqueous solution similar to mitochondrial surroundings [109]. The mechanism
of EACP promoting bone healing was demonstrated in that the ADP/AMP biomolecules
and Ca2+ ions released from EACP can increase the activation level of AMPK and promote
autophagy and osteogenic differentiation in hBMSCs. Additionally, a number of theories
suggest that ACP plays an important role in the biomineralization process as a precursor
of apatite formation [111–113]. There is also evidence that the biomineralization route
involves the formation of the mineral phase within matrix vesicles that are associated with
small crystals of calcium phosphate mineral [114], which are usually an amorphous phase
involved in the formation of these vesicles [115]. Meanwhile, disordered collagen fibrils
may contribute to the stabilization of ACP, resulting in both amorphous and crystalline bone
mineral [116]. At present, the collagen fibrils as the temptation for bone mineral growth
are attracting a great deal of interest in biomineralization research [117]. However, the
specific mechanisms by which ACP promotes bone regeneration are highly controversial
and require further investigation.

3.5. Application of Other CaP Phases

Tetracalcium phosphate (TTCP) is the most basic CaP phase, which is in a metastable
state and gradually hydrolyzed to HAP and Ca(OH)2 in a humid environment or aqueous
solution [38]. TTCP often occurs as a by-product of HAP plasma coating, which is a
mixture of α-TCP, TTCP and CaO from the high temperature phase [40]. The chemical
synthesis process of TTCP can only be carried out in dry air or vacuum environment. It
is synthesized by a solid-phase reaction at over 1300 ◦C. In the presence of water vapor,
TTCP is decomposed into HAP [38]. There are three types of TTCP bone cement: single
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component, multi component, and polymer. In biological applications, TTCP is usually
used as a component for preparing self-curing bone cements, biological composites or
root canal sealants [118–120]. By combining TTCP with DCPA or DCPD (Ca/P = 2.0),
bone cements with the stoichiometry composition of HAP can be produced [40]. A set
cement with the best mechanical properties was obtained using an equimolar mixture
TTCP and DCPA with a particle size (diameter) ratio of approximately 10: 1 [40]. However,
another study found that cement with a diameter ratio (TTCP:DCPA) of 20:1 had the highest
compressive strength [121].

TTCP bone cements show advanced biological performance. Qin et al. fabricated three-
dimensional porous TTCP scaffolds via selective laser sintering technology (SLS) [122].
After immersion in SBF for one day, nanoapatite was produced on the surface of TTCP
scaffolds. The scaffold surface was completely covered with apatite after three days,
indicating good biological activity. Furthermore, the biocompatibility of TTCP scaffolds
was evaluated by cell culture, which confirmed their high biocompatibility. An evaluation
of the histological effects of the TTCP cement applied to the pulp of rat upper incisors
demonstrated great advantages over calcium hydroxide (Ca(OH)2) cement [123]. Tsai et al.
investigated a single component TTCP cement (containing (NH4)2HPO4 as the liquid) in
rabbit femurs for 24 weeks in vivo [124]. Following implantation, histological examination
of the recovered implants demonstrated good cement-bone host bonding, with cement
resorption, new blood vessels, osteoocytes, and osteoblast-like cells identified. At the end
of 24 weeks, only a small amount of residual bone cement was found, and the cortical bone
was almost completely remodeled.

Octacalcium phosphate (OCP), as a precursor to HAP crystal formation, along with
ACP and DCPD, play an important role in bone formation and biomineralization [37,125].
A very similar structure exists between OCP and HAP but OCP is more unstable than
HAP and is hydrolyzed to HAP [37]. The mechanism of hydrolysis of OCP is still not
completely clear. Two hypotheses, dissolution-reprecipitation mechanism [126] and ion
diffusion-crystallization conversion [127], are proposed to explain the hydrolysis of OCP.
Eliminating the HPO4

2− from the OCP water layer has been confirmed as a necessary
step for phase transformation, and is believed to be the rate-determining factor of the
conversion [128]. The transformation of OCP was observed under in vitro and in vivo
conditions. Upon being placed in water with a starting pH of 7.2, the mixture of OCP and
HAP was examined after 1 h, and at 12 h the structural transition was completed [129]. The
OCP was completely hydrolyzed to CDHA within 6 h in deionized water [130]. pH also
affects the transformation rate. For example, Suzuki et al. found that OCP hydrolysis was
postponed at pH 11 compared with pH 7.4 [131]. Interestingly, the hydrolysis of OCP into
HAP is very slow in in vivo conditions. Implanted OCP in a rat calvarial defect hydrolyzed
very slowly after 21 days [132]. In SBF at a temperature of 36.5 ◦C and a pH of 7.25, the
hydrolysis of OCP to HAP took place to a small extent over the course of 28 days [133].
In addition, OCP may be non-stoichiometric, and its structure may be calcium-deficient
(Ca/P = 1.26) or calcium-excessive (Ca/P = 1.48) [134].

OCP has good osteoinductivity and is widely used in bone repair research, including
the coating of metal grafts, the use of CaP bone cement, and the construction of com-
posite bone repair scaffolds [135–137]. OCP/Col composite scaffolds constructed from
OCP particles and collagen have a higher osteoconductivity than OCP alone, and the
osteoconductivity is positively correlated with the dose of OCP [138,139]. By providing
a nuclear structure, OCP acts as an initial deposition site for bone, and its conversion to
HAP plays a significant role in bone formation, which may explain its beneficial effects
on bone growth [132,140,141]. By implanting the precursors of HAP, such as OCP, ACP,
and DCPA, along with HAP particles in the subperiosteal region of the mouse calvaria,
bone tissue appeared with OCP in approximately one week. At about 3 weeks, bone tissue
appeared in ACP and DCPA, and was later found in HAP particles (5 weeks), which further
indicates that OCP has good ability to promote bone formation [140]. Moreover, osteoblasts
that can initiate bone formation were found on the surface of OCP particles in the OCP
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group. Ultrastructural SEM examination confirmed that osteoblasts were directly attached
to OCP to form bone matrix, and that filaments were formed around OCP. There were
many similarities in the composition of the granulated and granular complexes around
with OCP to the bone nodules formed during intramembranous osteogenesis [142].

The application of OCP in bone graft biomaterials and bone regeneration has a promis-
ing future due to its good osteoconductivity and osteoinductivity. It is of paramount
importance to explore and understand the biological mechanism of good osteoinductivity
of OCP, as well as the influence of Ca/P stoichiometry and microstructure on its intrinsic
biological activity [143,144].

Dicalcium phosphate anhydrous (DCPA) and dibasic calcium phosphate dihydrate
(DCPD) are acidic CaP materials. DCPA is an anhydrous crystalline form of DCPD. Since
there are no hydrated molecules, the solubility of DCPA is lower than DCPD. Both can be
precipitated from an aqueous solution at 100 ◦C. The difference between DCPA and DCPD
is that DCPA does not form in vivo, as confirmed by no DCPA being formed in normal or
pathological calcification nodus [33]. DCPA is often mixed with other calcium phosphate
materials to prepare bone cement, and it is also used to provide calcium and phosphorus in
foods and toothpastes [38,145,146].

DCPD is the dihydrate crystalline state of DCPA [38]. By adjusting pH in the range of
3–4 at room temperature, DCPD can be produced by the neutralizing reaction of Ca (OH)2
and H3PO4. Metathesis reactions using calcium-containing phosphates in a slightly acidic
environment can also synthesize DCPD [145]. Due to its biocompatibility, biodegradability,
and osteoconductivity, DCPD is often used as a component of bone cements and toothpaste
to promote bone and tooth mineralization [38,147]. It is worth noting that DCPD was found
to be converted to calcium deficient hydroxyapatite (CDHA) in vivo [148]. This conversion
process released many acidic substances when excessive DCPD was implanted in vivo,
causing a severe inflammatory response [39].

Dicalcium phosphate monohydrate (DCPM) as a crystal phase has a Ca/P ratio of 1:1,
and is a new metastable CaP with structural water without DCPD and DCPA [59]. DCPM is
formed using ethanol and water mixtures that maintain a low level of hydration and inhibit
the formation of DCPD. X-ray powder diffraction (XRPD), was used to determine the
crystal structure of DCPM, conformed with a = 8.0063(4) Å, b = 6.7954(5) Å, c = 7.7904(5) Å,
α = γ = 90◦, β = 91.548(4) Å. In addition, after immersion in water for only one hour, this
new crystalline form of calcium phosphate monohydrate transforms into hydroxyapatite,
which is the stable form of calcium phosphate found in human bones. This represents
a two-fold increase in speed as compared to the dicalcium phosphate dihydrate (DCPD)
phase, which is usually used in bone cements today. Furthermore, DCPM can be stabilized
by organic molecules such as citrate salts, which are abundant in the human body, and can
adsorb a large quantity of small molecules. Consequently, DCPM is an interesting option
to encapsulate and release drugs to enhance bone healing and remineralization. However,
there is still much work to be done on the features and applications of DCPM in bone repair
and biomedicine.

And some commercial products of CaPs were displayed in the Table 3.
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Table 3. The commercial products of CaPs.

CaP Materials Product Name Producer

HAP

Actifuse ApaTech, UK
ApaPore ApaTech, UK
Bonetite Pentax, Japan

Bone Source Stryker orthopaedics, NJ, USA
Bioroc Depuy-Bioland, France

Cerapatite Ceraver, France
Ostim Heraeus Kulzer, Germany

Synatite SBM, France

β-TCP

adbone® TCP Medbone, Portugal
Biosorb SBM S.A., France

Cerasorb Curasan, Germany
Conduit DePuy Spine, USA
Osferion Olympus Terumo Biomaterials, Japan

SynthoGraft Synthograft, MA, USA
Vitoss Orthovita, PA, USA

HAP + β-TCP

BCP Medtronic, MN, USA
Graftys BCP Graftys, France

MBCP Biomatlante, France
OsSatura BCP Integra Orthobiologics, CA, USA

HAP + α-TCP Skelite Millennium Biologix, ON, Canada

CDHA Osteogen Impladent, NY, USA

ACP + DCPD Biobon (α-BSM) Etex, MA, USA

DCPD + β-TCP ChronOS DePuy Synthes, PA, USA

TTCP + DCPA + saline BoneSource HAC Stryker Instruments, MI, USA

α-TCP + TTCP + CaHPO4 + HAP BIOPEX Taisho Pharmaceutical, Japan

HAP + collagen Healos Fx DePuy Spine, USA

HAP + PLLA SuperFIXSORB30 Takiron, Japan

HAP + Polyethylene HAPEX Gyrus, TN, USA

β-TCP + PMMA Cal-CEMEX Tecres Spa, Italy

4. Effects of Sizes and Structural Characteristics of CaP Materials
4.1. Sizes of CaP Materials

Vertebrates’ bones are composed of multiple levels and sizes of units, ranging from
nanometers to micrometers, with precise yet complex arrangements (Figure 2 [149]). In
terms of microstructure, the trabeculae thickness ranges between 50 and 300 µm, with
their orientation depending on the distribution of load in the bone [150]. Mineralized
collagen fibers form lamellae whose width is approximately 3–7 µm [150]. Mineralized
collagen fibrils with a diameter about 100 nm are formed on the lamellae at the nanoscale
level. These fibrils, 300 nm long and 1.5 nm thick, are the basic building blocks of the bone
material and consist of collagen molecules [33]. Crystals grow with an approximate repeat
distance of 67 nm on the fibrils [151]. This hierarchal structure of biomineralized fibrils and
trabeculae from the nanoscale to the microscale are critical to the isotropic properties in the
bone, and enhance load-bearing capability. Therefore, synthesizing different sizes of CaP
materials, constructing the biomimetic hierarchal grafts, and understanding the biological
performance of various sizes of CaP crystals should improve bone defect treatment.
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Figure 2. Bone (left) is a complex, hierarchically structured biological material in which the building
components are precisely arranged at scales spanning six of orders of magnitude. The image on
the left shows sketches of the structural elements of cortical/compact bone (which comprises the
harder, outer layer of the cross-section of bone, surrounding the softer trabecular/spongy/cancellous
bone) at different scales. The image on the upper right side shows the nanostructure of mineralized
collagen fibers in bone. HAP particles are incorporated within the organic matrix. The image on the
below right displays the fine structure of dental enamel, the hardest substance in the body, which is
composed of an almost pure mineral with elongated HAP nanofibers connected into bundles and
forming equally uniaxially directed enamel rods. Reprinted with permission from Ref. [149]. 2011,
Uskokovic, V.

Over the past decades, many strategies have been developed to control the size of CaP
crystals, including chemical precipitation, sol-gel process, microemulsion, a hydrothermal
method, solution combustion synthesis and an electrospinning method. In addition, mi-
crowave, ultrasonic and gravity precipitation methods, as well as the use of reagents such
as proteins, polymers and chelated reagents, regulates the size of CaP crystals. Synthesis
methods for controlling the size of CaPs are the initial and key steps to understanding
the physiochemical properties and biological performance of different sizes of CaPs. The
specific methods and details of these strategies are described in [152]. Several classical and
effective strategies are introduced below.

The chemical precipitation approach is the simplest method for preparing CaP crystals.
The size of CaP crystals is usually related to the reaction time and temperature [153].
However, the difficulty of precisely obtaining the size of CaP crystals is a big problem using
this method. The microemulsion method is highly effective for regulating the size of CaP
crystals due to the uniform and narrow channels of the microreactors strictly restricting the
nucleation and growth of crystals [154,155]. The surfactants in the microemulsion play a
critical role in modulating the CaP crystal size. When the molar ratio of organic solvents
to surfactants increases, the length of HAP nanorods increases also [156]. In addition,
changing the molar ratio between water and surfactants (W0 = H2O/surfactant) can also
regulate CaP crystal size. HAP products are changed from nanospheres with a diameter
about 25–40 nm to the needle-like crystals with 4–8 nm in diameter and 80–100 nm in length
when the W0 is increased from 5 to 8, and when the increase of W0 was from 5 to 15, the
HAP products were changed to the rod-like crystals (10–17 nm in diameter and 24–50 nm
in length) [157].

The use of chelators is another method for controlling the size of CaPs [152,158].
For instance, HAP nanorods (120 nm in average length and 25 nm in diameter) were
obtained in the presence of citric acid, while nanowires (0.7–1 µm in length and 30–40 nm
in diameter) were produced in the absence of citric acid (Figure 3) [158]. Regulating the
concentrations of precursors can, to a certain degree, tailor the size of CaP crystals via
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precursor transformation routes. Figure 4 shows that the size and aspect ratio of the β-TCP
platelets increases as the concentration of the precursor increases [94,159].
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It is known that the properties of CaPs are closely related to their size, which may
determine their application potential [42,160,161]. The nanoscale CaP particles used for
bioceramics display improved sintering ability in ceramics preparation and prevent mi-
crocracks caused by extreme sintering temperature, owing to high surface energy [29].
Implants made from HAP nanoparticles have superior mechanical properties compared
to micro-sized HAP crystals [156], and offer an effective way to enhance the mechanical
properties of CaP-based grafts. Furthermore, CaP materials with nanoscale crystals have
greater absorbability compared with microscale crystals, and are therefore more suitable
for use in bone tissue regeneration [156]. In addition, nanoscale CaP crystals are usu-
ally used in cell targeting [162], drug/protein/gene delivery systems [163,164] and gene
transfection/silencing [165,166].
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For biological effects, the size of CaP materials plays a critical role in regulating os-
teoblast proliferation, cellular activity, apoptosis, and osteogenic differentiation [31,42,161].
And some in vitro/ vivo experiments of CaPs and their markable outcomes were dis-
played in Table 4. The HAP particles at the nanoscale, particularly those with a diameter
of 20 nm, have been shown to promote cell proliferation and bioactivity, and inhibit
cell apoptosis compared with those at the microscale [41,167]. These positive effects
are probably attributable to the better penetration abilities of smaller HAP nanoparticles
(Figure 5) [41]. The size of CaP materials affects bone regeneration by inducing macrophage
polarization [168]. HAP crystals at the nanoscale induce M2 macrophage polarization [169],
while at the microscale polarize into M1 macrophages [170].

Table 4. In vitro and in vivo experiments of CaPs.

First Author CaPs In Vitro In Vivo Outcomes Reference

Mahon OR HAP nanoparticles hBMSCs, HUVECs Rat Promoting M2 macrophages polarization and
angiogenesis; Specifically enhancing IL-10 production [171]

Ji C β-TCP scaffold rBMSCs, HUVECs,
RAW264.7 Rat

Specifically enhancing the expression of osteoclast
differentiation and extracellular space pathway genes
to promote the process of bone remodeling

[172]

Raymond Y α-TCP scaffold MG-63 Rabbit
Hydrothermal process promising a more favorable
microstructure, nanoporosity, and nanopore size;
significantly enhancing bone formation

[173]

Zhou Z ACP/GelMA
scaffold rBMSCs Rat

Inducting the ALP into the biomimetic strategy to
produce mineralized ACP nanoparticles; enhancing
the proliferation of BMSCs and upregulating the
osteogenic differentiation owing to bioactivity of ALP

[174]

Kurobane T OCP/gelatin
scaffold HUVECs Rat

Stimulating the angiogenesis then enhancing the bone
regeneration. Exploring the relationship between OCP
dose and angiogenesis

[175]

Sheikh Z DCPA cement - Rabbit
Complete resorption and more bone formation than
DCPD cement. Bone formation and resorption in
DCPA cement are site specific

[176]

Ko CL DCPA/DCPD -rich
cement mBMSCs Rabbit

Having higher cell viability, ALP activity, and ALP
quantity. Showing lesser residual implant and higher
new bone formation

[177]

Tsai CH TTCP cement - Rabbit

The new bone formed started at the center of TTCP
cement at 12 weeks. The resorption of grafts, bone
ingrowth and remodeling activities were completed at
24 weeks.

[124]

hBMSCs: human bone mesenchymal stem cells; rBMSCs: rat bone mesenchymal stem cells; mBMSCs: mice bone
mesenchymal stem cells; HUVECs: Human Umbilical Vein Endothelial Cells.
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It is noteworthy that the component sizes, the surface and pore scale levels of the
CaP grafts and hybrid scaffolds are closely related and are important to bone regeneration,
considering that the grafts and scaffolds are the main forms of bone implants. Li et al.
demonstrated that compared to CaP bioceramics fabricated by microcrystalline structures,
bioceramics using nanocrystalline structures have many advantages in the form of unique
surface topography, good bioactivity, excellent osteoinductivity and proper biodegradabil-
ity. Accordingly, the CaP nanoceramics have significantly superior biological performance
in promoting osteogenic differentiation and bone formation (Figure 6) [161,178].

4.2. Pore and Surface Characteristics of CaP

Another key factor influencing the biological response of cells and the effects of bone
repair is the pore size of scaffolds. Macropore and micropore structures exist in CaP
ceramics or scaffolds. The macropore structure is designed to promote osteoinduction [42].
Numerous studies have confirmed the positive effects of macropores on cellular growth
and tissue formation [179–181]. Macropore sizes in range of 300–500 µm are recommended
because this scale ensures the transportation of nutrients and metabolites, osteogenesis and
vascular ingrowth [42,182]. Macropores ranging from 300 to 500 µm may possess optimal
surface tension, which has been demonstrated as an important determinant of cell adhesion
and tissue growth, to the mechanoreceptors of cells [183].

Additionally, micropore structure, generally characterized by pores smaller than 50 µm,
is critical for the CaP scaffolds. The micropore structure is thought not only to improve bone
ingrowth, but also to create additional space for bone formation [184,185]. Furthermore, a
larger surface area, attributed to the presence of micropores, can enhance protein adsorption,
ion exchange and mineralization [186]. Moreover, bone tissue regeneration is accelerated
due to the capillary effect induced by micropores, which further improves the homogeneity
of bone distribution in the scaffolds [187]. Interestingly, some studies have found that new
bone tissue formation was observed in HAP ceramics with micropore structures that were
subcutaneously and intramuscularly implanted in dogs, and did not occur in ceramics
without micropores [184,188]. Micropore structure is becoming increasingly important
as research advances. Bohner et al. found mineralized cell/collage-rich tissues only in
scaffolds with micropores having threshold sizes greater than 1–10 µm, and were not related
to macropore size [185]. Regulating micropore size from 1.58 ± 0.65 µm to 0.65 ± 0.25 µm
in TCP ceramics resulted in more abundant bone tissue, which further confirmed the
importance of micropore structure [189].

The surface structures of scaffolds or ceramics at the microscale to nanoscale can influence
cell adhesion, spreading, cytoskeletal distribution, and gene expression (Figure 7) [42,190].
Holthaus et al. [191] found that microgrooves with 60–100 µm widths had more cells
(35–45%) growing than those of with widths of 20–40 µm (16–25%). In contrast, the
opposite phenomenon was observed with respect to cell orientation. The number of
aligned cells along the microgrooves was higher at 20–40 µm (64–79%) widths than at
widths of 60–100 µm (29–47%). According to the study, the size of microgrooves similar
to cell dimensions may be beneficial in guiding cell alignment and adhesion. Notably,
the sensitivity of different cells to microstructure sizes varies. For example, microgrooves
with 8 µm widths responded strongly for cell alignment of both myoblasts and osteoblasts,
while those with the widths of 24 µm only affected myoblasts [192]. The depth of the
microgrooves influences cell adhesion by single cell guidance. The adhesion force of an
individual osteoblast cell to the matrix decreases with increasing depth of the microgroove
from 3 µm to 5.5 µm [193].
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Figure 6. Fluorochrome-labeling analysis of new bone formation and mineralization with different
BCP bioceramics at the microscale (BCP-control: irregular shape; BCP-micro: spherical shape) to
nanoscale (BCP-nano: spherical shape) grain size. And (A) displayed the calcein-labeled newly
formed bone at week 8 (column 1, green), tetracycline at week 10 (column 2, yellow), and merged
images of the two fluorochromes (row 3). (B,C) analysis of the fluorochrome-labeled new bone area
and mineral apposition rate. Reprinted with permission from Ref. [161]. 2022, Li, X.

Nanoscale surface structures of scaffolds and ceramics have been widely applied and
have received much attention since the development of nanofabrication techniques [194,195].
Surface structures of scaffolds/ceramics on the nanoscale may affect the cells’ response
due to the ECM being composed of nanosized collagen fibrils and cellular receptors and
filopodia which are also at the nanoscale [42]. In addition, many studies have been con-
ducted on mechanisms responsible for osteogenic differentiation of BMSCs in response to
surface structures and sizes [196–198]. However, more studies are needed to understand
how nanoscale surface structures at different levels influence cell behavior and responses.
The specific relationships between the mechanisms and the surface scale are not clear but
have been discussed extensively in [42].
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5. Regulating Morphologies of CaP Materials

There is a wide variety of shapes and sizes among the natural CaPs. During bone
mineralization in vivo, the average crystal size of minerals is smallest at the beginning of
formation, and then gradually grows with maturity, leading to various sizes and shapes of
crystals [199]. In the past, CaPs with nanoparticle shapes were believed to have better prop-
erties. However, minerals with needle-shaped and rod-shaped crystals were found in bone
mineralized collagen [200], leading to a controversy regarding the effect of mineral crystal
morphology on its properties. Sphere-shaped HAP nanoparticles are beneficial for the
proliferation and migration of osteoblast compared to the rod-shaped nanoparticles [201].
Therefore, the morphologies of CaPs play an important role in biological responses and
bone tissue regeneration.

With the development of preparation techniques and improved understanding of the
mechanism of CaP formation, various CaPs with different morphologies can be produced
in vitro by controlling the conditions. The commonly used preparation methods of CaP
materials include co-precipitation, emulsion, hydrothermal, microwave-assisted, hydroly-
sis, solution combustion synthesis, and the sol-gel method [202–207]. CaPs with various
morphologies can be prepared by adjusting pH, temperature, organic additives, the Ca/P
ratio, and ion saturation of the reaction system [149,208].

pH affects precipitation and crystallization of HAPs by influencing the balance be-
tween the hydrogen-containing anions and orthophosphates [152]. Generally, based on
temperature, they can be divided into two categories: high temperatures (~800 ◦C) and low
temperatures. For example, TCP is required to be synthesized in a high temperature envi-
ronment, but this high temperature solid-phase reaction method cannot produce uniform
CaP nanoparticles [149]. Figure 8 displays the various shapes of β-TCP particles which
have been prepared at different pH values and temperatures [159].
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Figure 8. SEM images of β-TCP particles obtained at 90 ◦C (a–e) and 150 ◦C (f–j), and pH 4 (a,f),
pH 7 (b,g), pH 8 (c,h), pH 9.5 (d,i) and pH 10 (e,j). Scale bar is 2 µm on all images. Reprinted with
permission from Ref. [159]. 2013, Galea, L.

Organic additives, such as, hexadecyl trimethyl ammonium bromide [209], poly
(acrylic acid) [210] and allylamine hydrochloride [211], affect the morphology of CaP
materials. Organic additives regulate the morphology of CaP by the electrostatic interaction
between the surface of the crystals and additives, and by regulating the zeta potential of
crystals [212,213]. For instance, large HAP nanoparticles with high length-diameter ratios
are obtained when adding poly(L-lysine), while using poly (L-glutamic acid) with higher
charges results in the HAP nanoparticles with a smaller size [214]. On the other hand, the
Ca/P ratio and reaction time are crucial factors in determining the morphology of CaP
materials [208,215]. By varying the Ca/P ratio and reaction time, Zhang et al. prepared
HAP microtubes and HAP nanowires [216].
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Throughout the past decade, CaPs have been reported with a range of morphologies,
including particles, spheres, rods, needles, wires, sheets, flakes, strips, porous structures, and
hollow structures, all with different sizes ranging from the nanoscale to macroscopical [152,217].
These shapes can be classified into four groups according to dimensions [152]; Figure 9
shows different morphologies of CaPs.
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materials. Zero-dimensional-shaped CaPs have wide applications in delivery systems and 
the fabrication of CaP bioceramics and composites [228–231]. One-dimensional (1-D) CaP 
crystals represent structures with a length that is significantly greater than the cross-sec-
tional dimension, e.g., needles, rods, wires and fiber-like structures. Two-dimensional (2-

Figure 9. Different morphologies of CaP materials from 0-D to 3-D. (A–E), 0-D CaP crystals prepared
by a milling method (A) [218], sol-gel method (B,C) [219], and microemulsion method (D,E) [220,221].
(F–J) 1-D shaped CaP crystals show HAP whiskers (F) [222], dicalcium phosphate dihydrate (DCPD)
whiskers (G) [223], HAP nanorods (H,I) [224,225] and HAP nanowires (J) [226]. (K–O) displays
2-D shaped CaP crystals including HAP (K–N) [226–229] and DCPA (O) [230] nanosheets. HAP
microspheres (P) [158] and flowers (Q) [158] obtained by self-assembly with nanorods and mi-
crosheets, respectively. (R,S) [231,232] Typical images of hollow HAP microspheres. (T,U) [233,234]
HAP nanotubes.

Clusters, particles, and quantum dots are typically zero-dimensional (0-D) structured
materials. Zero-dimensional-shaped CaPs have wide applications in delivery systems
and the fabrication of CaP bioceramics and composites [235–238]. One-dimensional (1-D)
CaP crystals represent structures with a length that is significantly greater than the cross-
sectional dimension, e.g., needles, rods, wires and fiber-like structures. Two-dimensional
(2-D) shaped CaP crystals contain sheets, disks, flakes and platelets, which have excellent
molecular adsorption abilities and mechanical properties. It is well known that the physical
properties of inorganic components, including size and morphology, affect the mechanical
properties of the organic-inorganic composites [239,240]. As a result, 1-D and 2-D-shaped
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CaP powders are commonly used as raw components for improving the mechanical prop-
erties of bio-composites, where the latter are usually considered to be the most effective
stiffeners in isotopic composites [241].

In recent years, three-dimensional (3-D) CaP materials have attracted a great deal
of attention owing to their superior biological performance and spectrum of biomedi-
cal applications [152]. Novel 3-D CaP architectures reported in the literature contain
porous and mesoporous spheres, hollow and tube structures, ordered and patterned arrays,
and porous scaffolds [242–245]. To fabricate 3-D CaPs, self-assembly and biomineral-
ization methods are employed. These strategies use nanoparticles, nanorods, nanobelts,
and nanosheets as building blocks to construct three-dimensional materials with various
morphologies [246–248]. Furthermore, amino acids, proteins, and surfactants are com-
monly utilized and are most effective assistance in the technology of self-assembly and
biomineralization for controlling the morphology of 3-D CaP functional materials [152].

6. Biomimetic Calcium Phosphate Scaffolds for Bone Regeneration

Highly organized arrays of HAP crystallites on the nanoscale level, and intricate bun-
dles of aligned crystallites on the microscale level, are found in human bones and teeth, and
are critical in determining many of the advanced biological and mechanical properties of
bones and teeth [249,250]. Therefore, fabricating CaP biomaterials that mimic the structures
of bones and teeth is a new strategy to improve the performance of biomaterials. Three-
dimensional grafts and scaffolds with nano-/microstructured surfaces exhibited better
biological properties owing to their similarity to human bones and teeth, and provided
promotion of osteointegration and subsequent bone tissue regeneration [251–253].

Traditional methods to fabricate 3-D grafts with nano-/microstructured surfaces
are assisted by organic solvents and reagents for directing structure. HAP columnar
structures were formed elongated in the c-axis on the surfaces of HAP bioceramics and on
the substrates of metals by a molecular template directing biomineralization method in a
SBF system (Figure 10A–C) [254,255]. Active groups and components such as PO4

3−, -NH2,
-COOH and polydopamine have been developed to promote the biomineralization of CaP
crystals because of their excellent ability of capturingCa2+ ions, leading to the formation of
nuclei that can induce CaP crystal growth [244,256].

Mineralization via SBF soaking usually results in low crystallinity [257]. Large
amounts of surfactant and additives, some of which are hazardous to health and the
environment, are need to be added to SBF to assist mineralization [258]. In recent years,
3-D printing technology has allowed fabrication of 3-D grafts with nano-/microstructured
surfaces [253,259]. Wu et al. [260] mimicked the nano-/microstructural hierarchy of natural
wood to fabricate biomimetic hierarchical porous scaffolds by 3D printing technology
(Figure 11). It was found that the first-level macropores of the biomimetic, natural, wood-
like, hierarchical structure scaffolds had good performance in promoting bone tissue
ingrowth, whereas the second-level micro/nanoscale pores performed well in transporting
nutrients and metabolites. These scaffolds with nano-/microstructured surfaces exhibited
excellent features in osteoinductivity and bone tissue regeneration.

Microporous CaPs scaffolds with nano-/microstructured surfaces have an excel-
lent capacity to transport cells, resulting in a high interest in the field of bone tissue
engineering [261]. Three-dimensional microporous HAP bioceramic scaffolds have been
constructed via hydrothermal method by using α-TCP bioceramic scaffolds as precursors
without any assistance from structure-directing reagents and organic solvents [261]. The
3-D ordered scaffolds have highly interconnective macropores and various surface topogra-
phies such as nanosheets, nanorods and microrods that can be tailored by regulating the
reaction medium of the NaH2PO4, Na3PO4 and CaCl2 aqueous solution (Figure 12) [251].
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Figure 10. SEM images of bone grafts with 3-D architecture nano-/microstructured surfaces. (A) HAP
columnar elongated along the c-axis on the HAP disks induced by aspartic acid in SBF; (B) highly
packed and aligned FHAp coating with enamel-like structure on Ti plates via biomimetic growth
in SBF; (C) bioinspired crystallization of continuous HAP films on titanium surface induced by
Langmuir monolayer of zein protein; (D) multilevel hierarchically ordered artificial biomineral HAP
ceramic with macroscopical size more than 1 cm using DCPD precursor transformation method.
Reprinted with permission from Ref. [152]. 2014, Lin, K.
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hBCP (b1–b3), and hβ-TCP (c1–c3). Internal microscopic morphologies of hHA (d1), hBCP (d2), and
hβ-TCP (d3). Smaller images in the upper left of (d1–d3) showing scaffold cross-sections of hHA,
hBCP, and hβ-TCP, respectively. Reprinted with permission from Ref. [260]. 2020, Wu, L.
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surface topographies: (S0) smooth and flat surface, (S1) nanosheet surface, (S2) nanorod surface,
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And the HAP bioceramics with biomimetic nano-/microstructured hybrid scaffolds
demonstrated excellent adhesion, proliferation, and osteogenic differentiation capabilities
of BMSCs. In addition, excellent protein adsorption due to their surface characteristics
contributed to the bioactive performance of the composite scaffolds, which resulted in
enhanced bone regeneration. Furthermore, the mechanism of the biomimetic hybrid
scaffolds with nano-/microstructured surfaces was investigated. It was found that integrins
were activated initially by the attachment of cells to scaffolds, and that the BMP2 signaling
pathway and related Cx43-based cell-cell interactions were activated subsequently, in
addition to an interaction between BMP2 and Cx43 that facilitated osteogenic differentiation
(Figure 13) [198].
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7. Drug Delivery Applications and the Potential of CaPs

CaPs, especially porous nanostructured CaP materials, are widely used as drug deliv-
ery carriers due to their suitable architecture, large surface area and stability in biological
fluids. As well-known, CaPs dissolve at a slightly acidic pH, which makes controlled deliv-
ery of drugs into cells possible [262]. Furthermore, the production of the ionic, non-toxic
constituents Ca2+ and PO4

3− after dissolution of CaPs can prevent particle accumula-
tion and induce the release of drugs into the cells [263]. As a result, CaPs are commonly
used as carriers for the delivery of commercial drugs, bioactive molecules and genetic
materials [264–266].

The drug delivery behavior of CaPs is influenced by characteristics including crystallinity,
microstructural properties, surface area and charge, particle size, and morphology [267].
Higher levels of drug complex loading were observed for HAP nanoparticles with lower
crystallinity and higher surface area when compared to similar nanoparticles with higher
crystallinity [268]. Lower release rates were observed with CaP particles of higher crys-
tallinity, whose solubility is affected by their crystallinity, resulting in a decrease in drug
release rate [269]. Additionally, the morphology of the CaPs results in different surface
areas, resulting in different drug loading efficiency. In a study by Palazzo et al., therapeutic
drugs were absorbed onto plate-like HAP particles approximately 1.3 times more than onto
needle-like particles [270]. In addition, spherical CaP nanoparticles provide more effective
drug loading and release properties than particles with flaky, brick-like, or elongated or-
thogonal morphologies [271]. In terms of particle size, particles with a size of 20 ± 5 nm
are best accepted by osteoblast cell lines [272]. Hence, the CaP nanoparticles are favored in
the drug delivery system.

A number of therapeutic factors have been delivered by CaP nanoparticles, including
antibiotics, anti-inflammatory drugs, and growth factors for bone healing [267]. A CaPs-
based antibiotics delivery system is mainly used for the treatment of bone defects that are
infected or caused by infection. Moreover, by following this approach, high concentrations
of antibiotics are only found at the anatomical sites of interest, thereby minimizing the
toxic effects of antibiotics [273]. In addition, growth factors, including the family of BMPs,
transforming growth factor-beta (TGF-β), platelet-derived growth factor (PDGF) and vas-
cular endothelial growth factor (VEGF), are critical in the processes of bone repair [274].
Hence, the addition of growth factors can further enhance the osteogenic ability of CaPs.
BMP-2 interacts with HAP via the functional groups -OH, -NH2, and -COO [275]. The
continuous releasing period can be delayed to 15 days in vitro when delivered by HAP
nanoparticles [276]. It is important to note that when these growth factors are loaded
onto CaPs, attention must be paid to preventing denaturation of the protein, reducing
its functionality.

Gene delivery participates in the promotion and facilitation of bone regeneration [277].
Furthermore, a new approach to tissue regeneration is being brought about by the most
recent discoveries and advancements in gene delivery [267]. This makes calcium phosphate
nanoparticles an attractive option for bone regeneration.

8. The Mechanism of Calcium Phosphate Promoting Osteogenesis

CaPs have applied to bone tissue regeneration engineering for decades, and show
advanced osteoconductivity, osteoinductivity and bone healing effects. However, the
mechanisms of CaPs in promoting bone regeneration is still a mystery. Many mechanisms
have been proposed and confirmed such as osteogenesis, vascularization, neuralization,
inflammatory and immunology; some classical mechanisms are reviewed in this work.

8.1. Osteogenic Differentiation

The mobilization and recruitment of BMSCs from the bone marrow through the
peripheral circulation play an important role in the repair of bone defects [278]. At the
cellular level, bone tissue regeneration is determined by the induction and promotion
of directed differentiation of BMSCs into osteoblasts following recruitment to the site of
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the bone defect. With the degradation of the CaP material, Ca2+ and PO4
3− are gradually

released, leading to a local ion concentration above the physiological level. As a result of the
increased ion concentration, osteoblast proliferation and differentiation and the subsequent
process of bone formation are significantly affected [279]. As well, Ca2+ is an important
homing signal that facilitates multicellular processes such as bone remodeling and wound
healing by bringing together different types of cells [280]. A high calcium concentration, for
example, has been shown to stimulate the migration of BMSCs [281], pre-osteoblasts [282],
and osteoblasts [283] to the site of bone resorption and their maturation into new bone-
producing cells. Moreover, the influx of Ca2+ increases intracellular Ca2+ levels, thereby
increasing the polarization of the membrane front, which is crucial for determining the
direction of sustained cell migration [284,285].

Apart from this, extracellular Ca2+ plays an important role in maintaining osteoblast
proliferation and differentiation near the site of bone resorption via calcium/calmodulin
signaling [286]. Addition of elevated Ca2+ levels to osteoblastic cell cultures has been
shown to have an effect on bone cell fate independently of systemic calciotropic factors in a
concentration-dependent manner [287,288]. The presence of Ca2+ also stimulates the ex-
pression of osteogenic growth factors, including parathyroid hormone-related peptide [289],
BMP-2, and BMP-4 [290]. In addition, implants enriched with Ca2+ significantly improve
in vivo osseointegration and bone formation; for example, in a CaP glass, titanium substrate
implanted with Ca2+, a collagen gel exposed to Ca2+, and CaP-coated implants [291–293].
In an encouraging development, Ca2+ has recently been implicated as an important mes-
senger involved in the non-canonical Wnt/calcium signaling pathway for bone formation
independent of the β-catenin pathway [294]. In this pathway, calcium-sensitive enzymes
such as Ca2+-CaMKII, protein kinase C, and calcineurin are activated by an intracellular
release of calcium.

In addition, PO4
3− also contributes to the proliferation and differentiation of osteoblasts.

Several osteogenesis-related biological processes are affected by PO4
3− as an important signaling

molecule, such as osteogenic associated gene expression (e.g., osteopontin) [295] and bone-
related protein secretion (e.g., matrix Gla protein (MGP)) [56]. Furthermore, inorganic
phosphate (Pi) has been shown to play a crucial role in the physiological mineralization of
bone matrix, which is mediated by the enzyme ALP [296]. As well, BMP-2 stimulates Pi
transport by osteogenic cells primarily through sodium-dependent phosphate transporters
to induce bone matrix calcification [297].

It should be noted that the structures of CaP biomaterials also activate biological sig-
nals associated with adhesion, proliferation, and differentiation of cells, such as dimensions,
geometries, porosity/microporosity, grain size, and surface topography. Cell sensor and
adhesion-related signal pathways play a primary and key role in this biological process.
The ERK and p38 MAPK signaling pathways became phosphorylated when BMSCs are
cultured on micro/nano structured HAP scaffolds, and when the signaling pathways
are blocked by inhibitors, osteogenic differentiation is attenuated [251]. In addition, the
MAPK/ERK signaling pathway has been shown to play a significant role in the regulation
of cell functions such as proliferation and differentiation [197]. Consequently, BMSCs
may have sensed micro/nanostructured surfaces through focal adhesion formation and
subsequently activated ERK and p38 signaling pathways, resulting in the upregulation of
relevant genes and the formation of osteoblasts. In addition, the TGF-β/BMP and Wnt sig-
nal axis may contribute to the structure-sensing of BMSCs and the subsequent osteogenesis
as shown in Figure 7 [42].

8.2. Vascularization

For bone regeneration to be successful, adequate and rapid vascularization is necessary.
In addition, vascularization plays an important role in the viability of seeded cells within
the CaP implants. many studies have found that materials can influence the angiogenesis
of CaP in bone formation.
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Firstly, Ca2+ plays an important role in angiogenesis by mediating the angiogenesis-
related signaling pathway [298]. In addition, extracellular calcium has been suggested to
be a key factor in bone marrow progenitor cell angiogenic responses [299]. Furthermore,
the physical characteristics of the CaP material, such as porosity and pore size, are known
to influence vascularization [300]. The size of the channel influences the behavior of
vascularization in vivo. A large porosity (>50 µm) is necessary for cellular infiltration
of bone ingrowth [301]. In a study [300] examining the relationship between pore size
and angiogenesis, a scaffold with a pore size of 150 µm displayed significantly greater
vascularization than scaffolds with 100 µm and 120 µm pores. In addition, the authors
demonstrated that scaffolds with a pore size of 150 µm enhanced the formation of new blood
vessels through the PI3K/Akt pathway. The expression of the representative angiogenic
factors HIF1α, PLGF, and the migration factor CXCR4 were increased in pores with a
250 µm diameter, and by increasing the diameter of the pores to 500 µm, VEGF expression
was enhanced, which led to the development of large vessels [302].

On the other hand, it is known that the CaP can accelerate the BMP2 expression
of BMSCs [303], which may be due to Ca ions subsequently activating the PKC, EK1/2,
and ERK1/2 pathways, and then entering the nucleus to up-regulate BMP-2 expression
through Fos expression and activator protein 1 (AP-1) formation [304]. As well as regulating
osteogenesis, BMPs also play an important role in regulating angiogenesis [305]. Moreover,
endothelial cells and pericytes are responsible for angiogenesis, and they may also be able
to differentiate into osteoblasts when inflammation is present [303]. CaP biomaterials have
recruiting ability for these cells, as demonstrated previously [282]. Furthermore, these
cells are capable of expressing cytokines such as BMP-2 and BMP-7, which are markedly
up-regulated in response to inflammatory stresses [306,307]. In this regard, angiogenesis
induced by CaP materials may affect osteogenesis by a variety of mechanisms. One is
by secreting cytokines, such as BMPs, and MSCs are recruited to undergo osteoblastic
differentiation, and by providing more endothelial cells and pericytes to transform into
MSCs, which are then induced to differentiate into osteoblasts under the influence of
different materials or cytokines [303].

9. Conclusions and Outlook

In summary, calcium phosphate-based materials are commonly and widely used
for bone defect repair based on their unique properties resulting from similarity with
the main inorganic components of human bones and teeth. Numerous studies have
been conducted and have confirmed the excellent characteristics of their physicochemical
properties and biological properties, including mechanical properties, biodegradability,
biocompatibility, bioactivity, osteoinductivity and osteoconductivity. With preparation
technologies developing, the number of CaP materials with varying species, sizes, and
morphologies has mushroomed. Different CaP materials have different properties, which
determine the approaches of application in accelerating bone tissue regeneration. The CaP
materials with different species, sizes and structures have various physico-chemical and
biological properties, including mechanical properties, specific surface areas, roughness,
porosity, bioactivity, biodegradability, and osteoinductivity. To develop better bone repair
materials, it is critical to understand these properties and the biological effects of different
species, sizes, and structures of CaP materials. Applying bone repair materials in different
approaches in accordance with their advantages is effective for bone regeneration. However,
the mechanisms of controlling accurately the species, sizes, and morphologies, as well
as the specific relationships between the species, sizes, and shapes of the CaP materials
and their biological responses, are not well understood currently. Therefore, determining
these relationships will be of great assistance in fabricating artificial CaP bone grafts and in
repairing bone defects.

Considering the existing knowledge and available limitations, future studies may
focus on the following areas.
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(1) CaP materials have a huge potential for bone repair application because of their
unique properties similarity to natural minerals. Various CaP materials and composites
have been studied and developed for bone regeneration using the advanced physiological
properties of CaP such as biocompatibility, osteogenic and osteoinductivity. However,
clinical orthopaedic products of CaPs are still rare. With better understanding of biomimetic
principles, biomimetic CaP materials have received more attentions. Exploration of the
mechanism of biomineralization is important and beneficial for the development and
application of CaP-based biomaterials.

(2) Many strategies have been investigated for fabricating CaP materials with different
sizes and morphologies. However, strategies for precisely controlling the size of CaPs are
still limited. The microfluidic system and microemulsion technologies are novel approaches
which may be useful in regulating CaP material sizes accurately.

(3) Many studies have investigated the microscale of the scaffolds/ceramic surface
structure and how this affects cell behavior, and have suggested that sizes of the surface
microstructure with similarity to cell dimensions might induce the guiding of cell alignment
and adhesion. In the future, biological performance and mechanisms of cells responding to
different surfaces at the nanoscale will be of interest to researchers.

(4) By understanding natural bone structure thoroughly, artificial bone grafts with
biomimetic hierarchical nano-/microstructures have garnered much attention, with promis-
ing results for the repair of bone defects. However, biomimetic construction with properly
oriented structures ranging from the nanoscale to the microscale remains a challenge.
Development of new technologies of mineralization, such as utilizing novel directing
biomolecules and precursors, 3D printing with a more precise printing systems and exploit-
ing new bio-inks may be promising routes to achieve these goals.

(5) Up to now, the mechanisms by which the CaP grafts influence bone regeneration
are not well understood, such as the influence of nano-/microstructured surfaces on cell
behavior. Thus, there is still much work to be done on the mechanisms and relationships
between the sizes/shapes of CaP materials and their biological abilities. Further research
will result in beneficial developments for the design of CaP biomaterials and for accelerating
bone regeneration.

(6) Strategies in improving the physicochemical properties and biological performance
of CaP materials are still emerging. For instance, HAP has good biocompatibility but
poor mechanical properties. The design and preparation of hybrid scaffolds of CaPs
in combination with organic polymers are effective and simple methods. In addition,
metal ions as additives can improve the biological activities of CaP-based biomaterials.
The addition of Mg2+ into CaPs has been shown as an effective strategy to induce the
proliferation of osteoblasts and inhibit the absorption of osteoclasts. Meanwhile, other ions,
such as Cu2+, Fe3+, Ti2+, and Mn2+, may produce unexpected biological responses, which
will require further study.
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