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Calcium phosphate cements for bone engineering and

their biological properties

Hockin HK Xu1,2,3,4,*, Ping Wang1,5,*, Lin Wang1,6,*, Chongyun Bao5, Qianming Chen5, Michael D Weir1,
Laurence C Chow7, Liang Zhao1,8, Xuedong Zhou5 and Mark A Reynolds1

Calcium phosphate cements (CPCs) are frequently used to repair bone defects. Since their discovery in the

1980s, extensive research has been conducted to improve their properties, and emerging evidence supports

their increased application in bone tissue engineering. Much effort has been made to enhance the biological

performance of CPCs, including their biocompatibility, osteoconductivity, osteoinductivity, biodegradability,

bioactivity, and interactions with cells. This review article focuses on the major recent developments in CPCs,

including 3D printing, injectability, stem cell delivery, growth factor and drug delivery, and pre-

vascularization of CPC scaffolds via co-culture and tri-culture techniques to enhance angiogenesis and

osteogenesis.
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INTRODUCTION

There has been a continuous and fast-paced emergence

of new synthetic biomaterials developed for bone repair

and regeneration over the past several decades. These

biomaterials include metals, polymers, ceramics, bioactive

glasses, calcium sulfates, calcium carbonates and calcium

phosphates (CaPs). Among them, calcium phosphate

cements (CPCs) are promising for clinical applications

due to their advantageous properties including bioactivity,

osteoconductivity, injectability and moldability. The dis-

covery of the first CPC occurred inadvertently via the

observation of calcium phosphate solubility behavior.1–3

Brown and Chow found that the solubilities of tetracalcium

phosphate [TTCP: Ca4(PO4)2O], dicalcium phosphate

(DCPA: CaHPO4) and dicalcium phosphate dehydrate

(DCPD: CaHPO4 2H2O) were much greater than that of

hydroxyapatite (HA) under neutral pH conditions.4 A slurry

containing appropriate amounts of TTCP and DCPD (or

DCPA) led to HA precipitation as an end product and was

capable of self-setting to form a hard mass.2–3 In the

decade following this first discovery, CPCs were approved

by the Food and Drug Administration (FDA) and were

introduced into clinical practice for the treatment of

craniofacial defects5 and bone fractures.6 Since then,

other CPC formulations have been developed, and a

large amount of research has been conducted.7–18

Currently, CPCs are defined as a combination of one or

more calcium phosphate powders which, upon mixing

with a liquid phase, form a paste able to self-set

and harden in situ in the bone defect site to form a

scaffold.19

One of the most important characteristics of CPCs is

their ability to form in situ through a body-temperature

dissolution-precipitation reaction.19 This feature gives rise
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to other beneficial properties such as molding capability

upon mixing,20 injectability that enables minimally inva-

sive application,21 and the ability to serve as a carrier for

drug and biological molecule delivery.22 Early research

on CPCs primarily focused on improved setting, handling

and mechanical properties of CPCs through the tailoring

of many processing parameters such as cement com-

position, additives, porogens, and particle size.23–28 In

recent years, in addition to the development of new

processing technologies in CPC manufacturing, the

paradigm has shifted toward biological responses by

emphasizing the enhancement of biological interactions

of CPCs with cells and tissues as well as their applications

in bone tissue engineering.29–33 Biological responses of

scaffolds are a key factor in the translational application

of biomaterials and their commercialization for clinic

applications. Several meritorious reviews on CPCs have

described their mechanical properties,34–36 processing

approaches,37–38 drug delivery,19,22,39–40 and functional

enhancement by polymeric additives,41 which will not

be repeated here. The present article reviews the major

new developments in CPC processing technologies in

recent years and focuses on novel biological interactions

of CPCs, particularly in the context of stem cell responses

and delivery as well as in vivo bone regeneration. The

various CPC categories described in this article and their

major biological properties are summarized in the dia-

gram in Figure 1.

PRE-FABRICATED CPC SCAFFOLDS AND 3D PRINTING

Although injectability is one of the advantages of CPCs,

pre-fabricated CPC scaffolds are often prepared for two

reasons: (1) To ensure a complete setting reaction

because only fully set CPCs demonstrate excellent tissue

responses. When CPCs fail to set, they cause inflammatory

reactions.42 Therefore, manufacturing pre-fabricated CPCs

ensures complete setting prior to in vivo application. (2) To

facilitate the creation of interconnected macroporous

structures into CPCs. Self-setting CPC scaffolds without

any modification are microporous but not macroporous

and have limited pore interconnections.43 To promote

tissue in-growth and accelerate the CPC degradation rate

and subsequent replacement by bone, macropores were

incorporated into CPCs via two methods: particle leaching

(the addition of water-soluble particles, such as sodium

bicarbonate, mannitol, salt or glucose, that dissolve or

degrade after setting) and gas-foaming (the formation of

air bubbles during the setting period).37,44 In situ setting with

particle leaching has several disadvantages. First, because

the porogens inside the cement have limited exposure to

body fluids, the degradation or solubility of the particles

may be compromised, which leads to limited porosity.45

Second, the in vivo dissolution of some particles may result

in hyperosmosis.46 Third, some porogens may increase the

paste viscosity and impede the injectability of CPC. The

major drawback of in situ application of the gas-foaming

method is the risk of air emboli or emphysema. Therefore,

pre-fabricated CPC scaffolds have been developed to

Figure 1. Schematic diagram summarizing the various CPC categories described in this article and their major biological properties.
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allow more delicate control of the setting process and

macroporous architecture of the scaffolds before in vivo

implantation.

Recently, three-dimensional (3D) printing has rapidly

developed to allow the fabrication of pre-set CPC

scaffolds. 3D printing is an additive manufacturing

process in which geometrical data are used to produce

3D structures by depositing materials layer by layer.47 3D-

printed CPC scaffolds are favored over customization to

meet the specific needs of each patient/defect. The

benefits for clinical applications include easy adaptation

and fixation, reduced surgical time, favorable esthetic

results and minimal waste products. There are several

different techniques for 3D printing, including direct 3D

printing (direct ink writing), fused deposition modeling

(FDM), stereolithography (SLA), and selective laser sinter-

ing (SLS). For a detailed description of each technique,

readers are encouraged to read previous review papers

on this topic.48–49 For CPC scaffolds, binder jetting is the

most commonly employed 3D printing technique.50

Briefly, one or several print heads spray a binder solution

(for example, an aqueous solution) precisely onto a bed

layer of CPC powder. The binder locally joins adjacent

powder particles together and hardens the wetted areas

through the dissolution-precipitation reaction. The process

repeats by spreading another layer of powder and

ejecting binders according to a pass designed by the

computer. This continues until the complete 3D structure is

formed.48 The printability of the material is related to many

parameters such as particle size and size distribution,

morphology and surface area of the powder, roughness

and flowability of the powders, the solubility/wettability/

reactivity of the powder with the binder, and binder drop

size.51 A study investigating beta-tricalcium phosphate

powder suggested that 3D printing was not feasible with

particles either too small (with a mean particle size of

7 μm) or too large (with a mean particle size of 51 μm),

while mean particle sizes in the range of 20–35 μm resulted

in good printing accuracy.51 Small particles tend to

agglomerate under the influence of van der Waals forces.

Very fine or porous particles exhibit low flowability and

high surface roughness. Therefore, these factors greatly

affect the smoothness and homogeneity of the powder

bed, resulting in smearing and poor resolution.51 However,

although large particles have better flowability, they tend

to yield layer displacements due to low powder bed

stability and low accuracy because the resolution is at

least twice the particle size.52 Flowability was shown to be

significantly reduced by decreasing the HA granule size.53

To work with small particle sizes to achieve a high

resolution, strategies such as plasma coating51 and

moisture application54 were attempted to stabilize the

top layer surface and allow particle rearrangement and

wetting while avoiding particle ejection out of the

powder bed. Furthermore, by adding reactive minerals

such as calcium sulfates into calcium phosphate, sig-

nificant improvements to 3D printing parameters are

achieved.55 The dimensional accuracy of printed CPC

scaffolds (powder: alfa-TCP; liquid: Na2HPO4) is ~ 200·μm,

which indicates a good degree of fitting to craniofacial

defects in anatomical models.56 A critical step for

powder-based 3D printing is the removal of the loose

powder inside the pores of the printed scaffold after

printing, a process known as depowdering. Depowdering

is especially challenging when the pores and pore

interconnections are small and found in the innermost

parts of the scaffolds with large dimensions. One possible

solution may be the use of depowdering-friendly designs

with large windows and free-to-move fillers.57 In addition,

layer thickness and printing orientations (parallel to the X,

Y and Z directions) are important for depowdering.58

Shear forces at the powder bed increase with reduced

layer thickness, which leads to the deterioration of the

final printed samples upon depowdering. Depowdering is

easier in scaffolds printed in the X and Y directions than

that in scaffolds printed in the Z direction because of the

distortion in samples printed in the Z direction.58 However,

the relationship between 3D printing parameters and

CPC scaffold quality and performance has yet to be

established and warrants further study.

3D plotting (direct ink writing, direct write assembly,

material extrusion) is another common technique for CPC

3D printing.59 This is an extrusion-based printing technology

in which a paste or viscous materials, instead of powders,

are used as the starting form and deposited as strands via

a nozzle in a layer-by-layer fashion based on predesigned

structures.60 For 3D plotting, the printability is dependent on

even dispersion, viscosity, fluidity, extrusion performance,

setting time of the paste, and the shape stability of the

printed strands to withstand the weight of the structure

during assembly. The setting time for CPCs plays an

important role in controlling the printable time period of

the paste. One study reported the printable time of a CPC

(powder: TECP:DCPA=1:1 molar ratio, liquid/binder: poly-

vinyl alcohol) as only 10·min, which makes printing

difficult.61 With the addition of a mesoporous calcium

silicate, the printable time was increased to approximately

120·min.61 Other optimizations of the direct printing ink

formulation have included the addition of gelatin to

introduce an induction time for the onset of the CPC

setting reaction.62 Specifically, this formula includes Targon

1128 as the dispersant, hydroxypropyl methylcellulose

(HPMC) as the thickening agent, polyethylenimine (PEI)

as the jellifying agent,63 and a ready-to-use oil-based CPC

paste that sets only upon contact with water and thus has

no time limit for printing.59
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A critical issue for printing resolution is nozzle diameter

and the stability of the extruded strands.50 3D plotting has

two advantages: (1) it enables easy printing of a

combination of different materials,64 and (2) due to the

mild conditions, it allows simultaneous cell or growth

factor plotting, known as bioprinting.64–65 Using a two-

channel plotting method, a scaffold with the combina-

tion of an oil-based CPC and an alginate-gellan

a b

c d

e f

g h

Figure 2. Highly sophisticated CPC scaffold structures via 3D plotting. Stereomicroscopic images of CPC scaffolds plotted with 15° (a), 45° (b), 60°
(c) and 90° (d) configurations (change in orientation relative to the layer underneath). Design and printing of a CPC-hydrogel biphasic scaffold:
model of biphasic scaffolds with CPC (white) and a growth factor-loaded hydrogel (red) (e); the printed scaffold (f); 3D reconstructions from micro-
CT data of the biphasic scaffold (g, h). CPC is grayish white. Alginate-gellan hydrogel is blue. (Adapted from Ahlfeld et al.64 with permission.)
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hydrogel was fabricated and laden with growth factor

VEGF, involving a highly sophisticated strand arrange-

ment, pore structure and geometry (Figure 2).64 In

another study, a bone morphogenetic protein 2

(BMP2)-loaded mesoporous silica/CPC porous scaffold

was 3D-plotted and tested in in vitro cell culture and in a

rabbit femur defect model.66 The scaffold promoted the

osteogenic differentiation of human bone marrow stro-

mal cells (hBMSCs) and enhanced vascularization and

osteogenesis compared to the CPC control.66 In terms of

cell-containing bioprinting, hydrogels such as alginate,67

collagen,68 synthetic polymers such as PLGA, and PEG69

are primarily used as bioinks due to their resemblance to

the extracellular matrix (ECM) and good printability. In

some cases, calcium phosphates are added to enhance

cell attachment and osteogenic differentiation, thus

favoring the use of bioink for bone tissue engineering

applications.67

In general, due to the incremental addition of materials,

3D printing allows for not only the easy control of scaffold

shape and geometry but also the control of fine features

such as interconnected porosity, pore size and distribution,

and complex spatial heterogeneity, which are not achiev-

able with traditional strategies.50 The possibility of manu-

facturing customized implants with almost no design

limitations makes 3D printing highly valuable in reconstruc-

tive surgery. However, more extensive research is needed

to optimize the key parameters for successful 3D printing of

CPC scaffolds.

INJECTABLE CPC SCAFFOLDS

Traditional bone grafting requires an open surgical

approach to graft application sites and may be asso-

ciated with complications such as a large surgical scar,

increased pain and a longer post-operative recovery. To

overcome these drawbacks, injectable bone graft

substitutes are used for minimally invasive surgery. Two

main obstacles that inhibit CPC injectability are liquid-

solid phase separation during injection70 and paste

disintegration upon contact with blood or body fluids.71

Phase separation leads to not only the presence of non-

extrudable paste left in the syringe but also extravasation

at the injection site and a decrease in the viscosity and

mechanical strength of CPCs. The disintegration of CPCs

in the body causes inflammatory responses and even

severe consequences such as cement embolism and

cardiovascular deterioration by simulating blood

coagulation.72 Therefore, efforts have been made to

improve CPC injectability. These strategies include the

following: (1) increasing the viscosity of the liquid phase

by adding viscous binders such as chitosan,24 gelatin,73

hyaluronic acid,74 methylcellulose,75 and others; (2)

optimizing the CPC powder in terms of the particle size,

particle size distribution, particle shape, and particle-

particle interactions;76 (3) regulating the setting

reaction;77 and (4) modifying the extrusion parameters

such as CPC mixing and the sizes of the syringes and/or

needles.78 All of these factors were discussed in detail in

a recent review on CPC injectability.70

Recently, many studies have applied various injectable

CPC formulations into animal models for bone

regeneration.79–80 Injectable CPCs containing 50% (volume

ratio) microspheres (poly(lactic-co-glycolic acid) (PLGA),

gelatin (GEL) or poly(trimethylene carbonate) (PTMC))

were implanted into rabbit femoral bone defects. CPC/

GEL had a significantly lower score than all other groups at

the cement-bone interface. Both CPC and CPC/PLGA

showed a better response than CPC/PTMC at 4 weeks, but

there were no significant differences among these three

groups at 8 and 12 weeks.79 A recent study applied a

commercially injectable CPC (Calcibon) with platelet

lysates in bilateral calvarial defects in rats.81 The delivery

of the platelet lysate enhanced bone healing with an

injectable CPC at early healing times. In large animal

models, injectable CPCs have also shown promise for bone

regeneration. For example, injectable CPC/PLGA compo-

sites demonstrated biocompatibility and direct bone

contact for sinus floor augmentation procedures in a sheep

model.82 Another study evaluated the efficiency of local

bisphosphonate delivery via injectable CPC in vertebral

bodies of the lumbar spine of an osteoporotic sheep

model where the consequences of osteoporotic fractures

were highly deleterious in patients. The bisphosphonate-

combined cement in vertebral body bone defects had a

beneficial impact on both bone content and the micro-

architectural properties of the trabecular bone surrounding

the implant.83 These animal studies demonstrated the

promise of using injectable CPCs for bone repair and

regeneration.

Indeed, CPCs have gained clinical acceptance as

valuable bone substitution biomaterials for over 20 years,

and several CPCs are commercially available. Injectable

CPCs were used to repair human periodontal intrabony

defects and showed favorable radiographic results.84

CPCs were also used in young patients for balloon

kyphoplasty instead of polymethylmethacrylate cement.

In most cases, good integration of CPCs in the vertebra

was observed with no radiological signs of osteolysis or

osteonecrosis. Only a few patients showed demineraliza-

tion in follow-up CT scans.85 Several papers reviewing the

properties of injectable CPCs are available for readers who

want additional detail.86–88 The present review focuses on

new developments in CPCs with an emphasis on their

biological interactions and cell delivery as detailed in

subsequent sections.
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BIOLOGICAL REQUIREMENTS AND BIOLOGICAL

RESPONSES OF CPCS

Biocompatibility

Biocompatibility is defined as the property of a material

being compatible with living tissues. Biocompatible

materials do not induce a toxic response when

implanted in the body.89 Biocompatibility is an essential

requirement for tissue-engineered products to support

cellular activities and optimize tissue regeneration with-

out eliciting a cytotoxic effect in those cells or causing

undesirable local or systemic responses in the host. The

end products of the dissolution-precipitation reactions for

CPCs include brushite (DCPD) and apatite (HA or

calcium deficient HA (CDHA)), which are known to be

biocompatible.90 Pre-set CPCs exhibit favorable short-

term and long-term biocompatibility, as evidenced by

many studies evaluating tissue responses in rats,91–92

rabbits,93 dogs,94 sheep,16,32 and goats,95 as well as

various types of cultured cells.24,93,96 However, injectable

CPCs require the completion of the setting reaction to

avoid cytotoxicity, as unset or disintegrated CPCs cause

severe inflammatory responses, blood clotting, and

cement embolism.72,97 Incorporating polymers into CPCs

is a strategy used to improve CPC properties.41 In a

recent study, an injectable macroporous CPC was

prepared by the syringe-foaming method using a hydro-

philic viscous polymeric solution known as silanized-

hydroxypropyl methylcellulose (Si-HPMC).98 Si-HPMC not

only acts as a foaming agent to create macroporous

structures inside CPCs but also endows the CPC paste

with an appealing rheological behavior at the early

stage of setting due to its self-crosslinking properties, thus

improving its injectability and cohesion.98 Indeed, when

this CPC was injected into defective rabbit femurs, no

adverse foreign body reaction was observed at 1 week

and 6 weeks post-implantation.98

Bioactivity

Bioactivity refers to the ability of bone scaffolds to bind

directly to the surrounding bone without the formation of

fibrous tissue.99 Bioactivity is often evaluated by examining

the ability to form apatite on the biomaterial in a simulated

body fluid (SBF) with ion concentrations close to those in

human blood plasma.100 A bioactive material is defined as

one that accelerates apatite crystallization in a solution

supersaturated with respect to hydroxyapatite.100 How-

ever, the validity of using an in vitro SBF test to predict the

in vivo bioactivity of a material has been questioned.101 For

example, Bohner and Lemaitre showed that a bioactivity

test with SBF may not only give false-positive results but also

false-negative results.101 The authors concluded that

“in vitro bioactivity tests in SBF solutions cannot be used

to predict the in vivo bone bonding ability of a material”.

With some improvements to the protocol, these tests may

be used for initial screening. However, the most reliable

evaluation method remains in vivo implantation in a bone

defect.

Bioactivity is one of the most important properties of

CPCs.19 To further enhance CPC bioactivity, bioactive

glass, which is known for its bioactivity, was incorporated

into CPCs.102–103 The bioactive glass acted as a source of

calcium and phosphate ions in the cement setting

reaction. With this addition, increasing apatite formation

was detected on the surface of the CaP compound after

soaking in SBF for 7 days.103 In vivo examination of samples

implanted into rabbit femoral bones indeed showed a

better healing process and more bone growth with the

addition of bioactive glass.103

Osteoconductivity

Osteoconductivity is defined as a biomaterial property that

facilitates the in-growth of new bone into a surface or a

volume in which the biomaterial serves as a scaffold to

guide new bone formation.104 CPCs are osteoconductive

because they permit the attachment, proliferation, migra-

tion and phenotypic expression of bone cells, leading to

the formation of new bone.105–106 Osteoconduction is

related to the architectural geometry of the scaffold.106

Intimate adaptation, fixation and stability of the implant to

the defect site are of critical importance to facilitate the in-

growth of bone tissue. In addition, the scaffold should have

high porosity and interconnectivity with optimal pore sizes

to ensure cell penetration, nutrient exchange and waste

elimination. For bone tissue engineering, an ideal scaffold

should have 60%–80% interconnected porosity with pore

sizes ranging from 150 to 500 μm.107

Osteoconduction also depends on the chemical com-

position of the scaffold. The incorporation of several types

of ions benefit CPC osteoconductivity. For instance, a

silicon CPC (Si-CPC) was developed,108 and the cytocom-

patibility of the Si-doped cement was tested with a human

osteoblast-like cell line (MG-63), which showed enhanced

cell proliferation (up to threefold) over that without Si.

When implanted in a rabbit parietal bone defect model,

significantly greater amounts of new bone were detected

in the 10% Si-CPC group compared to that in the CPC

control group.108 In another study, strontium was incorpo-

rated into CPC (Sr-CPC) to enhance its osteoconductivity

and accelerate its degradation.109 In vitro studies showed

higher osteoblastic cell proliferation rates in Sr-CPC groups.

In vivo studies demonstrated more rapid degradation and

advanced osteoconductivity in the 10% Sr-CPC group

compared to those in the CPC control at 2, 4, 8, 16, and

32 weeks after the operation.109
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Osteoinductivity

Osteoinduction is defined as the recruitment and stimula-

tion of progenitor cells to differentiate toward the osteo-

blastic lineage.104 CPCs are generally osteoconductive but

not osteoinductive.20 However, several CPCs reportedly

have the ability to form bone in nonosseous sites in vivo

without the addition of osteogenic factors.110 Since this

osteoinductive property is observed for some CPCs but not

others, these materials are described as having “intrinsic”

osteoinductivity.111 This inductive phenomenon is likely

attributable to the combined effects of topography,

composition, and micro and macroporosity of the CPC

scaffolds.111 It is likely that the intricate architecture of the

scaffold permits the entrapment and concentration of

circulating growth factors, such as BMPs and osteopro-

genitor cells, in vivo thus conferring osteoinduction cap-

ability upon the CPCs.111 In addition, CPCs serve as

calcium and phosphate ion sources in vivo. Ca2+, PO4
3-

and HPO4
2- ions are released into the surrounding tissues,

regulate osteoblast functions112 and induce localized ion

supersaturation, which causes the reprecipitation of car-

bonated apatite on the scaffold.113–114 A previous study

proposed a new strategy to regulate bone marrow

mesenchymal stem cell (BMSC) adhesion and osteogenic

differentiation by adding magnesium into the CPC, thus

improving its osteoinductivity.115 A CPC containing 5 wt%

and 10 wt% magnesium not only enhanced BMSC

adhesion but also upregulated osteogenic gene and

protein expression in vitro. An in vivo study demonstrated

that CPC with 5 wt% magnesium achieved the greatest

bone volume at 2 and 8 weeks, confirming its beneficial

osteogenesis effects via the addition of magnesium.115 To

gain or enhance CPC osteoinductivity, novel strategies

such as the addition of osteoprogenitor cells,116–117 growth

factors,118–119 bioactive proteins120–121 or peptides122–123

into CPCs have exhibited favorable effects. Therefore,

novel CPC compositions with intrinsic and engineered

osteoinductivity are highly promising to enhance bone

regeneration.

Biodegradability

Ideally, a CPC scaffold should degrade at the same rate

that new bone forms. CPCs biodegrade primarily via two

mechanisms: a passive resorption process via chemical

dissolution and an active resorption through a cell-

mediated process.124 The degradation of CPCs is tailored

by controlling several factors: (1) physical factors such as

the physical form of the CPC (particulate or bulk), porosity,

surface area, and crystallinity (crystal size, crystal perfec-

tion, and grain size), and so on; (2) chemical factors such

as the composition and ionic substitutions; and (3)

biological factors such as the activation of macrophages

or osteoclasts.125 Enhancing CPC degradation is achieved

by adding rapidly degradable porogens such as PLGA to

generate macropores upon PLGA degradation. PLGA

degrades hydrolytically, leading to the production of lactic

and glycolic acid monomers. The acidic nature of the

resulting byproducts is an additional advantage of PLGAs

in combination with poorly degradable CPCs because

CPCs degrade by acid dissolution.126 After being injected

into a rabbit femoral bone defect model, CPC-PLGA

exhibited favorable bone responses with 455% degrada-

tion and 413% bone formation at 6 weeks and 490%

degradation and 440% bone formation at 26 weeks

postoperation.127 Based on this same mechanism, glucono

delta-lactone (GDL), which has a faster degradation rate

than PLGA, was incorporated into CPCs as acid-producing

microparticles to accelerate CPC degradation.128 Indeed,

histomorphometrical evaluation revealed that CPCs con-

taining 10% of GDL degraded more rapidly and were

replaced by more bone tissue (32.8%) than CPC-PLGA at

2 weeks after implantation in a rabbit femoral bone

defect.128

CPC SCAFFOLD CONSTRUCTS FOR BONE TISSUE

ENGINEERING

Cell delivery

Recent advancements in tissue engineering and regen-

erative medicine have indicated that cell-based thera-

peutics achieve robust regeneration with greater efficacy

and better predictability than methods that do not involve

cell seeding.129 These novel approaches employ scaffold

constructs in combination with living cells to generate cell-

driven, functional tissue rather than filling a defect with a

nonliving scaffold. A tissue-engineered construct acts both

as a scaffold to bridge the defect and as a cell delivery

vehicle. The biomaterial-cell interactions of CPCs with

various types of stem cells, such as BMSCs, umbilical cord

mesenchymal stem cells (UCMSCs), embryonic stem cells

(ESCs), induced pluripotent stem cells (iPSCs), were pre-

viously reviewed.130–131 The present article specifically

explores recent advances in strategies for cell delivery,

specifically highlighting the design of CPC-based scaffolds.

Direct cell seeding onto the porous surfaces of pre-

formed CPC scaffolds is a common approach due to its

simplicity. However, this type of static cell seeding has

limitations, including low seeding efficiency and minimal

cell penetration into the scaffold, leading to non-uniform

cell distribution.132 It is not feasible to directly mix cells into

the CPC paste because the mixing forces, ionic

exchanges and pH fluctuation during CPC setting are

detrimental to cell viability. To address this problem, cell

encapsulation has been proposed to protect cells during

CPC mixing and injection (Figure 3). In a recent study,
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human iPSC-derived MSCs (hiPSC-MSCs) were either pre-

osteoinduced for 2 weeks (OS-hiPSC-MSCs) or transduced

with BMP2 (BMP2-hiPSC-MSCs) to enhance their osteo-

genic capacity.133 The cells were then encapsulated in

rapidly degradable alginate microbeads. The microbeads

were mixed with CPC paste at a ratio of 1:1 and filled into

cranial defects in nude rats.133 The results showed that the

cells maintained good viability inside the microbeads after

injection. Once the CPC set to form a scaffold, the cells

were released as early as 3 days and demonstrated the

up-regulation of osteogenic markers and bone mineral

deposition. Cell-encapsulated groups produced greater

amounts of new bone area in vivo, with 22.5%±7.6%,

38.9%±18.4%, and 44.7%±22.8% for the CPC-hiPSC-MSC,

CPC-OS-hiPSC-MSC, and CPC-BMP2-hiPSC-MSC groups,

respectively, compared to that for the non-cell CPC

g ih
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Figure 3. Methods of cell delivery via CPCs. Live-dead staining of (1) direct cell seeding on CPC surfaces (a–c); (2) cell encapsulation in alginate–
fibrin microbeads (Alg-Fb MB) (d-i); (3) cell encapsulation in alginate–fibrin microfibers (Alg-Fb MaF) (j–o). (Adapted from Wang et al.133 and Song
et al.139 with permission.)
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control group (15.6%±11.2%) at 12 weeks.133 Furthermore,

the incorporation of cells accelerated the resorption of the

CPC scaffold. The amount of residual CPC in the CPC-

BMP2-hiPSC-MSC group was sevenfold less than that in the

CPC control.133

Recently, rapidly degradable hydrogel fibers were

developed for cell encapsulation and delivery.134 Encap-

sulation of cells inside microfibers possesses several advan-

tages over microbeads. (1) Microfibers are easily

fabricated by using a simple needle extrusion/external

gelation method. To generate microbeads, air injection

and electronic injection are needed to break up alginate

droplets to form microbeads in sizes of several hundred

microns.135 The air flow or electrostatic force during

microbead formation may impose harsh shearing forces

on the cells. Furthermore, the air flow forms “tails” on the

microbeads, which may cause an immune response

in vivo.135 (2) Microfibers with diameters of several hundred

microns and millimeter-scale lengths are relatively easy to

handle. (3) Microfibers provide more space for cellular self-

assembly, throughwhich living cells organize into functional

units, allowing cells to grow, migrate and differentiate in

the extracellular matrix.136 (4) Long microfibers form long

macroporous channels with interconnectivity upon algi-

nate degradation inside CPCs, while microbeads only form

spherical pores with limited interconnectivity. These long

channels improve osteoconductivity and nutrient and

waste exchange of the scaffold. (5) Long microfibers
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potentially facilitate the formation of blood vessels in CPCs

for bone engineering via co-seeding of endothelial cells

and osteoblasts.

Recent studies have encapsulated six types of stem

cells, specifically hBMSCs, human dental pulp stem

cells (hDPSCs), hUCMSCs, hESC-MSCs, and hiPSC-MSCs

derived from bone marrow (BM-hiPSC-MSCs) and foreskin

(FS-hiPSC-MSCs), in hydrogel microfibers and then delivered

them inside an injectable CPC.126–127 The CPC paste

encapsulating the stem cells was fully injectable under a

small injection force, and the injection exerted no harmful

effects on cell viability.137 The porosity of the microfiber-

CPC construct was 62%.138 All six types of cells proliferated

well and differentiated down the osteogenic lineage.

hUCMSCs, hESC-MSCs, hDPSCs, BM-hiPSC-MSCs and

hBMSCs exhibited high ALP, RUNX2, COL1A1, and OC
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gene expression. Cell-synthesized bone minerals increased

with time, with no significant differences among hUCMSCs,

hESC-MSCs, hDPSCs, BM-hiPSC-MSCs and hBMSCs, indicat-

ing good bone regeneration potential similar to gold-

standard hBMSCs.137–138 However, FS-hiPSC-MSCs were

inferior in terms of osteogenic differentiation compared to

other cell types (Figure 4).138 In another in vivo study, an

hBMSC-encapsulated microfiber-CPC paste was applied

to repair rat cranial defects,138 and the hBMSC-

encapsulated microfiber-CPC tissue engineering construct

exhibited a robust capacity for bone regeneration. At

12 weeks, an osseous bridge in the rat mandibular defect

was observed in the CPC-microfiber-hBMSCs group with a

new bone area fraction of 42.1%±7.8%, which was

threefold greater than that of the control group

(Figure 5).139 Therefore, these results demonstrate that

injectable hydrogel microfiber-CPC paste is a promising

carrier for cell delivery and greatly enhances bone

regeneration in vivo.

Drug delivery

The non-exothermic setting reaction and the intrinsic

porosity of CPCs allow the incorporation of drugs and

biologically active molecules with low risk of thermal

denaturalization or loss of activity during preparation or

implantation.19 For drug incorporation into CPCs, the drug is

simply mixed with either the liquid or solid components of

the cement.140 Alternatively, it is added by adsorption onto

the pre-set scaffold141 or incorporated into polymeric

microspheres or microfibers before blending with CPC

paste.142 Several factors influence the loading and release

of therapeutic substances. These include the microstructure,

porosity and surface area of the CPCs, the way in which the

drug is incorporated into the CPCs, and the interaction

between the drug and the CPC matrix.19,143 CPCs have

been used as drug carriers for antibiotics144 as well as anti-

cancer,145 anti-inflammatory,146 and anti-resorptive (anti-

osteoporotic) drugs.147 CPCs have also been used as drug

carriers for therapeutically active proteins or growth factors

that foster local bone generation.148 Recently, ionically

modified CPCs (for example, with Sr2+, SiO4
4− , Zn2+, Mg2+)

with the capability of influencing bone modeling and

remodeling processes were investigated.115,149–150 For addi-

tional details, readers are referred to a review on the use of

CPCs for drug delivery.19 Of note, the incorporation of the

second phase of a degradable carrier into CPCs for drug

delivery is beneficial for a more sustained release than

directly loading the drugs into CPCs.148 For this purpose,

gelatin microspheres,151 PLGA microparticles,152 bioactive

glass,148 and chitosan/dextran sulfate microparticles153

have been used in CPCs to deliver drugs with tailored

degradation rates to control the release profiles.

Vascularized CPC scaffolds

Adequate and rapid vascularization is essential for suc-

cessful bone regeneration. Failure of the bone healing

process, including delayed healing or non-unions, is often

attributable to a lack of adequate vascularization.154

Furthermore, vascularization is critical for the viability of

seeded cells in the scaffold. If the distance between cells

and the nearest capillary network is greater than 100–

200·μm, which exceeds the diffusion or perfusion limits of

nutrients and oxygen, the viability of the seeded cells is

compromised.89

Improvement in CPC vascularization is stimulated by

modifications to thematerial itself. Physical features such as

porosity and pore sizes are known to impact

vascularization.155–156 To this end, a study fabricated a

self-setting CPC composite with gelatin fibers to create

interconnected hollow channels in the CPC after dissolu-

tion of the gelatin fibers.157 In vivo subcutaneous implanta-

tion showed that the resulting channels in CPC indeed

facilitated vascular infiltration into the construct.157 In

addition, different channel sizes induced different vascu-

larization behaviors in vivo. Channels with a 250-μm

diameter increased the expression of the representative

angiogenic factors HIF1α, PLGF and migration factor

CXCR4, which induce the formation of small vessels.

Channels with a larger diameter of 500 μm enhanced

VEGF expression, which induces the development of large

vessels. More HIF1α-positive cells were found in the inter-

connected intersections of several channels, indicating

high levels of sprouting and vasculogenesis potential under

hypoxic conditions.157 While the majority of research has

focused on modifying the physical features of CPCs to

improve vascularization, chemical features, such as the

release of ionic calcium and phosphate, have also been

suggested to play a role in regulating vascularization.158 In

a recent study, CPCs were coated with a graphene oxide-

copper nanocomposite with the rationale that the oxygen-

containing functional groups in graphene oxide would

provide more binding sites for serum proteins and thereby

enhance initial cell adhesion and other bioactivities.159

When incubated with rat BMSCs, CPCs with the novel

graphene oxide-copper nanocomposite coating acti-

vated Hif-1α and further enhanced the expression of VEGF

and BMP-2 via the Erk1/2 signaling pathway. Indeed, an

in vivo study found more blood vessel volume and bone

regeneration in the coated-CPC group.159 However, the

mechanism underlying vascularization and the impact on

bone regeneration efficacy via CPCs require additional

experiments, particularly in vivo studies.

From a biological point of view, angiogenic growth

factors, stem cells and vessel-forming cells are highly

promising approaches to promote vascularization. A

recent study investigated the use of autologous BMSCs in
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combination with autologous platelet-rich plasma (PRP)

delivered via a macroporous CPC to regenerate large

bone defects in minipigs.160 The CPC-BMSC-PRP group

generated twofold more new bone and twofold higher

blood vessel density compared to those of the macro-

porous CPC control at 12 weeks.160 In addition, recombi-

nant growth factors and cell signaling molecules are

alternatives to autologous growth factors that provide

more flexible and delicate control over the dose and

factors to be incorporated. Several studies have loaded

dual agents, specifically BMPs and VEGF, in a single CPC

scaffold, which demonstrated excellent angiogenic

activity in vitro and in vivo.161–162 In addition to using

growth factors, CPC pre-vascularization in vitro was

investigated.163 In this method, vessel-forming cells

were co-seeded with bone-forming cells on the engi-

neered tissue construct to form microvascular structures

before implantation in vivo. The co-culture of human

osteoblasts and human umbilical vein endothelial cells

(HUVECs) on gas-foaming macroporous CPCs in vitro

successfully generated microcapillary-like structures and

elevated the expression of angiogenic and osteogenic

markers.163 Furthermore, the beneficial effects of co-

culture were amplified by using an Arg–Gly–Asp (RGD)
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Figure 6. Formation of microcapillary-like structures by HUVECs and hiPSC-MSCs co-cultured on CPC scaffolds at 21 days (a-c). HUVECs were
identified by immunostaining with the endothelial marker PECAM1 in green on the cell membrane, and nuclei were stained with DAPI in blue.
hiPSC-MSCs were identified by nuclei counterstained with DAPI in blue but lacking green staining on the cell membrane. Microcapillary-like
structures increased with culture time. d shows the HUVEC monoculture control group, which exhibited no evidence of vascular-like structures.
Representative SEM images of microcapillary-like structures via the co-culture system (e,f). (f) A higher magnification image of the image in e.
(Adapted from Liu et al.165 with permission.)
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modification for the CPC scaffold.164 Similarly, the co-

culture of hiPSC-MSCs and HUVECs on amacroporous CPC

in vitro also generated microcapillary-like structures

(Figure 6).165 In an animal study, HUVECs were co-

cultured with four types of stem cells, specifically hUCMSCs,

hBMSCs, hiPSC-MSCs and hESC-MSCs, on CPCs and then

implanted in an 8-mmcritical cranial bone defect in rats for

12 weeks.166 Microcapillary-like structures were successfully

formed on CPCs in vitro in all four co-culture groups.

New bone formation and the blood vessel densities of the

co-cultured groups in vivo were much greater than that of

the CPC control without cell seeding or the CPC-BMSCs

group without co-culture (Po0.05).166 These results

demonstrated the promise of co-culture and CPC

pre-vascularization to greatly enhance osteogenesis and

angiogenesis in vivo.
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Figure 7. Representative h&e images at 12 weeks after the implantation of CPC scaffolds generated utilizing different pre-vascularization strategies
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For successful bone regeneration, it is important to

establish vascularization in a timely manner, but the

stabilization of such a vascular network is of similar

importance, although it is often neglected. Angiogenesis

without vessel maturation produces abnormal, defective

blood vessels that are prone to regression.167 Perivascular

cells such as pericytes play important roles in the stabiliza-

tion and maturation of blood vessels by guiding the

developing vessels to respond to angiogenic stimuli.168

Enlightened by this fact, further improvement of the pre-

vascularization strategy with the addition of pericytes was

attempted.169 A tri-culture system comprising hiPSC-MSCs,

HUVECs and pericytes was developed to pre-vascularize

the CPC scaffolds.169 Both the bi-culture and tri-culture

groups exhibited the formation of vessel-like structures

in vitro, greatly elevated levels of angiogenic and osteo-

genic markers, and bone matrix mineralization. After

implantation in a rat model with a cranial bone defect

for 12 weeks, the tri-culture group demonstrated much

higher amounts of new bone than the bi-culture and

monoculture groups and the CPC control (Figure 7).169 The

substantial increase in bone formation in the tri-culture

group was likely related to enhanced vascularization and

the stabilization and maturation of blood vessels.

In vivo pre-vascularization is also achieved using a

surgical method involving the implantation of a scaffold

into a well-vascularized and easily accessible body

tissue such as a subcutaneous pocket or a muscle

pouch. Microvascular structures are formed as a result

of invasion and outgrowth of the surrounding host

microvasculature.170–171 After the completion of pre-vas-

cularization, the tissue construct is harvested and grafted

into the defect site, where the preformed microvessels

inside the construct inosculate and anastomose with the

host blood vessels. The disadvantages of this approach are

obvious: the invasive nature of the surgery, higher cost, and

a relatively longer treatment process. Therefore, new tissue

engineering methods utilizing CPC scaffolds with co-culture

and tri-culture represent exciting alternative strategies that

warrant further research for continued improvement to

achieve wide clinical applications.

CONCLUSIONS

Due to their injectability, bioactivity and biocompatibility,

CPCs are highly promising for bone tissue engineering

applications and are used as scaffolds and carriers to

deliver stem cells, drugs and growth factors. CPCs are

either used as pre-set scaffolds or injectable pastes. 3D

printing is a promising technology for fabricating CPC

scaffolds with a high degree of accuracy and is used to

develop intricately detailed biomimetic structures that are

not achievable via traditional manufacturing methods. 3D

printing has the potential to facilitate the next generation

of smart and functional CPCs. Furthermore, with recent

advances in tissue engineering, a new emphasis on “tissue

regeneration by natural tissues” instead of “tissue replace-

ment by biomaterials” has been proposed. Thus, CPCs with

excellent biological interactions, such as osteoconductiv-

ity, osteoinductivity, biodegradability and bioactivity, are

promising to meet this need. CPC composite constructs

and hybrid systems involving the incorporation of cells,

growth factors, bioactive molecules, bioinorganics, poly-

mers, and bioactive glass are likely to yield favorable bone

regenerative outcomes and greatly widen the clinical

applications of CPCs. In addition, the co-culture and tri-

culture of various tailored cell types with CPC scaffolds

offer exciting potential for vascularization in bone tissue

regeneration, which is especially important for treating

large-sized bone defects. Further studies are needed to

realize these promises and understand the underlying

mechanisms to further the development of tissue engineer-

ing and regenerative medicine.
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