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Synaptic Plasticity, Learning,
and Memory

The brain is a highly plastic organ that undergoes
constant changes in structure and function in re-
sponse to experience. This remarkable plasticity
allows the brain to acquire, store, and retrieve in-
formation via memory, a fundamental aspect of
human cognition. The hippocampus is a brain re-
gion with a key role in spatial learning and declar-
ative memory, as evidenced by the deleterious
effects of hippocampal damage caused by trauma,
aging, or neurodegenerative processes on these re-
sponses (19, 39, 186, 192, 193, 213). Consequently,
identifying the hippocampal neuronal pathways
underlying these cognitive functions is essential to
understand how the brain receives, decodes,
stores, and uses the stored information. Modifica-
tion of the efficacy of synaptic transmission in
response to neuronal activity (the classic definition
of synaptic plasticity) represents a key mechanism
whereby experience-induced neuronal activity
modifies the function of the brain. Whereas the last
decades have generated significant knowledge on
the cellular and molecular mechanisms that pro-
duce synaptic plasticity in the hippocampus, in
this review, we will focus on how cross talk be-
tween activity-dependent signaling mediated by
Ca2� and reactive oxygen species (ROS) impinges
on synaptic plasticity in young and aged hip-
pocampus. Knowledge gained from studies on this
emerging topic is bound to further our current
understanding of the cellular basis of learning and
memory.

Synaptic plasticity, which has been extensively
studied in the last decades using electrophysiolog-
ical methods (27), also entails structural changes in
synapses that cause the structural plasticity re-
sponses exemplified by dendritic spine remodeling
(13, 212). Present evidence supports these two re-
lated forms of plasticity as the biological substrates
for associative learning and long-term memory
processes (14, 15, 20, 26, 44, 60, 65, 68, 75, 92, 110,
112, 132, 143, 145, 151, 164, 207). As stated above,
the hippocampus is essential for spatial learning

and memory formation. Hence, we will concen-
trate on the cellular pathways underlying hip-
pocampal synaptic/structural plasticity, focusing
on the key roles played by Ca2� and ROS signaling,
and on how changes in these signaling pathways
during aging deteriorate synaptic plasticity, result-
ing in defective learning and memory formation.

Long-Term Potentiation and Long-Term
Depression

Activity-dependent changes in synaptic transmis-
sion include long-term potentiation (LTP), mani-
fested by an increase in synaptic efficacy, and long-
term depression (LTD), which represents a
decrease in synaptic efficacy caused by more pro-
longed low-frequency stimulation (21, 41, 147).
Due to the central role played by both LTP and
LTD in cognitive processes, it becomes essential to
identify in detail the molecular and cellular events
responsible for both neuronal responses and to
decipher how these entities progressively fail dur-
ing aging. Calcium signaling has a well established
and central role in both LTP and LTD, as detailed
below. Although there is less information on how
ROS signaling affects these responses, increasing
evidence indicates that neuronal redox state, such
as the increased oxidative tone displayed by neu-
rons during aging, has a significant influence on
neuronal Ca2� signaling. Hence, identifying the
cellular and molecular entities engaged in activity-
dependent cross talk between neuronal Ca2� and
ROS signaling and unraveling their effects on LTP
and LTD is an emerging subject in neuroscience
worthy of consideration and further research.

As described above, a strong correlation exists
between LTP and hippocampus-dependent
learning and memory formation. Therefore, LTP
represents at present a preferential candidate
mechanism for brain information storage. In addi-
tion, increasing evidence supports a role for LTD as
a genuine learning and memory mechanism in
mammalian brain (45, 57, 131). A role for LTD as a
homeostatic mechanism to ensure that hip-
pocampal synapses are not saturated by learn-
ing, or in mediating learning, forgetting, or
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behavioral extinction was proposed some years
ago (46). Different protocols involving trains of
brief bursts of tetanic stimulation induce hip-
pocampal LTP. The two most frequently em-
ployed LTP-inducing protocols include high-
frequency stimulation (HFS) delivered at 100 Hz,
and theta-burst stimulation (TBS) delivered at the
theta frequency of 4 –7 Hz (FIGURE 1A). Of these
two protocols, TBS resembles the type of oscilla-
tory frequency recorded in rodents during explo-
ration tasks (127). Low-frequency stimulation
(FIGURE 1A) and paired-pulse low-frequency stim-
ulation represent widespread protocols to induce
LTD (41).

Here, we will focus mainly on hippocampal N-
methyl-D-aspartate (NMDA) receptor-dependent
LTP/LTD generated at the synapse engaging Schaf-
fer collateral/commissural fibers projecting from

cornus ammonis 3 (CA3) to cornus ammonis 1
(CA1) pyramidal neurons. At these synapses, te-
tanic stimulation of Schaffer collaterals induces
LTP in area CA1 by increasing net Ca2� entry flux
via activation of postsynaptic calcium-permeable
NMDA receptors (26, 43, 149, 159, 160). These re-
ceptors act as molecular coincidence detectors
through the concurrent activity of pre- and post-
synaptic neurons; Ca2� influx through NMDA re-
ceptor channels requires glutamate and glycine or
D-serine binding in addition to the depolarization
produced by glutamate activation of postsynaptic
�-amino-3-hydroxy-5-methyl-4-isoxazole propi-
onate (AMPA) receptors, which displaces Mg2�

from its channel-blocking site (26). Activation of
postsynaptic NMDA receptors can induce either
LTP or LTD (142). As described below, these re-
sponses depend on the magnitude and duration of

FIGURE 1. Synaptic plasticity and activity-induced spine remodeling
A: the left panels indicate the most commonly used stimulation protocols to induce LTP by high-frequency or theta-burst stimulation, and LTD
by low-frequency stimulation. The middle panels show the CA3-CA1 hippocampal circuit and an example of a field excitatory postsynaptic po-
tential (fEPSP) record, indicating its slope; changes in fEPSP slope reflect changes in hippocampal postsynaptic excitatory activity. The right pan-
els show the prototypical LTP and LTD responses, exemplified by increased or decreased fEPSP slopes after stimulation. B: scheme showing
dendritic spine remodeling in response to neuronal activity. Dendritic spines exhibit a variety of shapes and sizes and undergo significant re-
modeling during activity-dependent plasticity. At hippocampal synapses, sustained LTP or LTD both affect spine morphology. The dendritic
spine remodeling induced by LTP entails new spine growth and enlargement of preexisting spines, whereas LTD has been associated with spine
shrinkage and spine elimination.
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postsynaptic Ca2� signals, which represent tran-
sient increases in intracellular free Ca2� concen-
tration ([Ca2�]). The phosphorylation levels (129,
130) and the redistribution (142) of AMPA recep-
tors mediate the early phases of LTP and LTD;
addition or enhanced phosphorylation of AMPA
receptors result in LTP, whereas their removal or
dephosphorylation weaken synaptic strength and
induce LTD. With time, LTP-associated changes
promote the synthesis of new proteins, giving rise
to lasting structural changes.

Since the discovery more than 40 years ago of
HFS-induced LTP in the perforant path/dentate
gyrus synapse of rabbit hippocampus (28), numer-
ous reports have addressed the mechanisms un-
derlying the LTP response, mostly at glutamatergic
excitatory synapses of rodent hippocampus. In
2007, Clarke R. Raymond described different
phases of LTP (179). The short-lasting (30 – 60 min)
LTP phase, also known as short-term potentiation,
depends on posttranslational modifications of
strategic synaptic proteins, is not affected by most
protein kinase inhibitors, and does not require
transcription and translation. The next LTP phase,
which engages Ca2�-dependent activation of pro-
tein kinase C (PKC) and calcium-/calmodulin-
dependent protein kinase II (CaMKII), requires
local protein synthesis but not gene transcription
(179). The following sustained LTP phase can last
for hours and depends on both transcription and
translation (167). Increased AMPA receptor density
and dendritic spine remodeling (see below) repre-
sent widely accepted mechanisms for long-lasting
LTP maintenance (154); yet, as recently pointed
out (20), it has been difficult to reach consensus on
how activation of NMDA receptors results in in-
creased AMPA receptor density and dendritic spine
remodeling. Evidence is emerging in relation to the
signaling mechanisms that link synaptic activation,
sustained LTP, and protein synthesis (36, 90, 114).
As detailed below (see Calcium-Dependent Gene
Expression below), Ca2� signals have a key role in
connecting these processes. Future studies are
bound to provide information on the complete
array of proteins engaged in persistent changes
in synaptic efficacy and on the cellular signaling
pathways, including cross talk between Ca2�

and ROS signaling, underlying activity-mediated
changes in protein synthesis.

Structural Plasticity

Dendritic spines are minute actin-rich dynamic
protrusions present in most neurons that receive
fast excitatory synaptic input in the brain. These
remarkable structures, first described by Ramon y
Cajal more than 100 years ago, have a variety of
shapes and sizes (FIGURE 1B) and undergo signif-
icant remodeling during neuronal development

and activity-dependent plasticity (214). Together
with cytoskeleton remodeling and local protein
synthesis, dendritic spine remodeling plays key
roles in synaptic plasticity processes (42). As de-
tailed in The Key Role of Ca2� Signals in Synaptic
Plasticity, activity-dependent Ca2� signals play an
essential role in hippocampal structural plasticity.

Spatial learning tasks that engage the hippocam-
pus increase spine density in the CA1 region of
trained rats (93, 132, 161, 162). Moreover, at hip-
pocampal synapses, sustained LTP or LTD increase
or decrease spine size, respectively (66, 89, 142,
154, 212, 218). The reported dendritic spine re-
modeling that goes along with LTP encompasses
new spine growth, enlargement of preexisting
spines and of their postsynaptic densities, and gen-
eration of two functional synapses via splitting of
single postsynaptic densities and spines (1, 154,
214). Of note, whereas both spine shrinkage and
LTD engage NMDA receptors and Ca2�-mediated
activation of calcineurin (also known as phospha-
tase 2B), spine shrinkage and LTD maintenance do
not engage the same downstream pathways (218).

The Key Role of Ca2� Signals in
Synaptic Plasticity

Soon after the discovery of LTP, several studies
demonstrated the key role of postsynaptic Ca2�

signals in hippocampal synaptic plasticity (144,
148, 202, 209). Despite the fact that LTP strength-
ens while LTD weakens synaptic transmission, both
responses require the generation of postsynaptic
Ca2� signals. The answer to the intriguing question
of how intracellular [Ca2�] increases generate these
two opposing responses resides in the fact that Ca2�

signals that generate LTP or LTD exhibit different
magnitudes and temporal courses. As illustrated in
FIGURE 2, LTP-inducing tetanic stimulation gener-
ates, via strong depolarization, significant but
short-lasting elevations of postsynaptic [Ca2�]
caused by robust activation of postsynaptic NMDA
receptors (146, 150). In contrast, low-frequency
stimulation produces a more moderate activation
of NMDA receptors; the ensuing longer-lasting but
modest postsynaptic [Ca2�] increases are optimal
for LTD induction (50, 142). Whereas the high-
amplitude Ca2� signals underlying hippocampal
LTP at the CA1 region require Ca2� influx through
postsynaptic NMDA receptors (150), additional
sources, including L-type voltage-gated Ca2�

channels and extrasynaptic NMDA receptors, con-
tribute to the low but more sustained Ca2� in-
crease leading to LTD (153).

Calcium-Dependent Signaling Pathways

The brief Ca2� influx generated by activation of
postsynaptic NMDA receptors produces local
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Ca2� signals, which, depending on their extent
and magnitude, engage a variety of intracellular
pathways. Among other effects, postsynaptic in-
tracellular Ca2� signals promote AMPA receptor
accumulation by decreasing their diffusion and
thus increasing their dwell time at individual syn-
apses (32, 74, 195). Likewise, inhibitory scaffolds
and the GABAA receptor display calcium-depen-
dent changes in synaptic trafficking, both of which
are synaptic activity-modulated (17). Calcium in-
flux via NMDA receptors also promotes the gener-
ation of small-messenger molecules such as
arachidonic acid, cyclic adenosine monophos-
phate (cAMP), cyclic guanosine monophosphate,
and nitric oxide (156, 194), all of which engage
specific neuronal signaling cascades.

Current evidence indicates that Ca2�-dependent
activation of serine/threonine protein kinases and
phosphatases has a central role in the LTP/LTD
responses. As stated above, postsynaptic Ca2� in-
flux via NMDA receptors is critical for LTP induc-
tion (179). The Ca2� binding protein calmodulin
(CaM) senses postsynaptic Ca2� signals generated
via activation of NMDA receptors or L-type volt-
age-dependent Ca2� channels. The resultant
Ca2�/CaM complex initiates a chain of signaling
events, including activation of Ca2�-/CaM-depen-
dent kinase II (CaMKII), which facilitates LTP. In
contrast, calcium-dependent activation of phos-
phatases such as calcineurin (175) facilitates LTD.
Biophysical models indicate that the higher

frequencies (shorter durations, higher amplitudes)
used to induce LTP (FIGURE 2) are more efficient
to activate CaMKII, whereas the lower frequencies
(lower amplitude, longer durations) that promote
LTD facilitate phosphatase activation (133).

Both CaMKII and the extracellular signal-
regulated kinases ERK1/2, which belong to the mi-
togen-activated kinase (MAPK) family, have critical
roles in the signaling cascades initiated by Ca2�

influx mediated by activated NMDA receptors. All
CaMKII isoforms undergo activation by the Ca2�/
calmodulin complex; the resulting activated
CaMKII enzyme can sustain its own activity
through autophosphorylation (158). This property
led John Lisman and collaborators to propose that
CaMKII has the potential to function as a local,
self-perpetuating memory molecule (137, 138). In
effect, mice carrying a CaMKII mutation that pre-
vents its autophosphorylation fail to exhibit LTP
induction in the hippocampal CA1 region and ex-
hibit significant deficits in hippocampus-depen-
dent learning and memory tasks (69). Calcium also
plays a central role in NMDA receptor-dependent
activation of the ERK1/2 cascade (84, 102, 122),
whereas ERK1/2 inhibition prevents LTP mainte-
nance and long-term memory formation (9, 29,
35). Presently, ERK1/2 phosphorylation is consid-
ered critical for sustained LTP maintenance and
memory consolidation and storage (114, 176, 199).

The calcium-mediated LTD response engages pro-
tein dephosphorylation by two calcium-responsive

FIGURE 2. Frequency-dependent Ca2� signals, synaptic strength, and post-burst action potentials
in young and aged neurons
A: the amplitude and the time course of activity-generated Ca2� signals vary according to stimulation frequency. B:
frequency-dependent changes in synaptic strength displayed by the CA1 region of hippocampal slices from young
animals. C: frequency-dependent changes in synaptic strength displayed by the hippocampal CA1 region of slices
from aged animals. D: post-burst action potential recorded in CA1 neurons from young rodents (blue trace). Treat-
ment with xanthine/xanthine oxidase (X/XO) increases the slow AHP phase (red trace). E: post-burst action poten-
tial recorded in CA1 neurons from aged rodents (red trace), showing a long-lasting slow AHP phase. The
antioxidant DTT or RyR inhibition with ryanodine drastically decreases this prolonged phase (blue trace).
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phosphatases, calcineurin and protein phosphatase 1
(PP1) (136). As described above, LTD induction
requires a modest [Ca2�] increase that is likely to
activate calcineurin, which has significantly higher
affinity for Ca2� than CaMKII. Albeit current evi-
dence supports the role of calcineurin and PP1 in
LTD, this response is likely to involve other cellular
signaling pathways, including site-specific phos-
phorylation of AMPA receptors (45), and possibly
modulation of calcineurin activity by changes in
cellular redox state, as detailed below. Further-
more, recent findings indicate that LTP and LTD
both require CaMKII activation (47), a further in-
dication of the complexity of the Ca2� signaling
pathways underlying LTP and LTD.

Calcium Release Channels

Whereas the contribution of activity-dependent
Ca2� influx mediated by NMDA receptors to neu-
ronal plasticity processes is widely acknowledged,
the involvement of Ca2� signals generated by Ca2�

release from the endoplasmic reticulum (ER) re-
mains less recognized. Early studies showed that
inhibition with thapsigargin of the sarco-/
endoplasmic reticulum Ca2� (SERCA) pump,
which leads to irreversible Ca2� depletion from the
ER, blocks LTP induction in rat hippocampal slices
but does not affect NMDA receptor-dependent
currents (85) and also prevents LTD induction
(182). Likewise, pre-incubation with dantrolene, an
inhibitor of Ca2� release from the ER mediated by
ryanodine receptor (RyR) channels, significantly
reduces NMDA receptor initiated Ca2� signals
(191), indicating that at least part of the postsyn-
aptic Ca2� rise originates from intracellular release
of Ca2�. Dantrolene also prevents LTP induction
by one train of HFS (170), whereas inhibition of
RyR-mediated Ca2� release with inhibitory con-
centrations of ryanodine prevents LTP induction
by the TBS protocol (180, 181). In contrast, LTP
induction by four trains of HFS does not require
RyR-mediated Ca2� release (141). These combined
results suggest that RyR-mediated Ca2� release
contributes to LTP induction only when moderate
tetanic stimulation protocols are used. Presum-
ably, the more robust protocols represented by
multiple trains of HFS generate postsynaptic Ca2�

signals of sufficient magnitude to stimulate the
Ca2�-dependent signaling cascades responsible
for LTP induction. Sustained LTP induction by four
trains of HFS, however, does require RyR-mediated
Ca2� release, whereas RyR activation converts
early LTP into late LTP (141). These findings
strongly suggest that RyR-mediated Ca2�-induced
Ca2� release (CICR) is essential for triggering the
transcription and translation processes underlying
the sustained LTP phase (167). In contrast, several
reports indicate that type-1 inositol 1,4,5-trisphos-

phate (IP3) receptors negatively regulate the induc-
tion of LTP (reviewed in Ref. 174).

Other studies have implicated Ca2� release from
separate presynaptic and postsynaptic intracellu-
lar stores in the induction of hippocampal LTD in
the CA3-CA1 synapse (182). In particular, Ca2� re-
lease from internal stores has a role in the control
of LTD in the CA3-CA1 synapse (168). Of note,
more recent studies showed that low concentra-
tions of the RyR agonists caffeine and ryanodine
(which at low concentrations acts as a RyR agonist)
do not modify the paired-pulse response in CA3-
CA1 hippocampal synapse but enhance LTP induc-
tion (73), suggesting that RyR-mediated Ca2�

release contributes to postsynaptic rather than
presynaptic responses. In addition, caffeine-in-
duced activation of RyR-mediated Ca2� release
from the ER stimulates dendritic spine remodeling
(120). The spine remodeling induced by brain-
derived neurotrophic factor (BDNF) also requires
RyR-mediated Ca2� release (2). Two recent reviews
(16, 174) present a more detailed description of the
role of Ca2� release from the ER in synaptic plas-
ticity processes.

Calcium-Dependent Gene
Expression

Calcium-dependent changes in gene expression
induced by neuronal activity elicit a wide range of
processes and behaviors, including persistent syn-
aptic plasticity, dendritic structural changes, and
memory consolidation (76, 206). Activity-gener-
ated neuronal Ca2� signals promote gene expres-
sion by stimulating diverse signaling cascades,
including induction of de novo DNA methylation
that, via global chromatin remodeling, modifies
gene transcription (76). In particular, through de-
phosphorylation by calcium-activated calcineurin,
cytoplasmic Ca2� signals stimulate translocation
to the nucleus of calcineurin and nuclear factor of
activated T-cells (NFAT), where it promotes tran-
scription (71, 91).

Nuclear Ca2� Signals

Robust stimulation of hippocampal neurons gen-
erates postsynaptic Ca2� signals that propagate to
the cell nucleus, where they have key roles in the
regulation of gene expression and perform a par-
ticularly important role in activity-dependent tran-
scription (10, 76, 81, 83, 217). Nuclear Ca2�/CaM
signaling has a crucial role in neuronal activity-
induced gene transcription and transcription-de-
pendent LTP and long-term memory (135). In
particular, nuclear Ca2� signals activate protein
kinases, leading to phosphorylation/activation
and/or changes in the localization of a variety of
transcriptional regulators (10). Calcium-activated
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nuclear kinases target diverse transcription factors,
including cyclic AMP response element binding
protein (CREB), ternary complex factor (TCF)/se-
rum response factor (SRF) transcription factor
complex, nuclear factor-�B (NF-�B), and myocyte
enhancer factor 2 (MEF2), among others (12, 48,
72, 211). In addition, nuclear Ca2� signals directly
activate the transcription factor downstream regu-
latory element antagonistic modulator (DREAM)
(40, 128), which exerts a negative control on CREB-
dependent gene transcription, LTP, and transcrip-
tion-dependent long-term memory (4, 61, 134).
Nuclear Ca2� signals stimulate CREB binding pro-
tein (CBP) via phosphorylation by CaMKIV (51, 82,
97), a protein kinase with constitutive nuclear lo-
calization (25, 101, 166). Activation of CaMKIV re-
quires, in turn, binding of nuclear Ca2�/CaM (7,
80), plus phosphorylation by Ca2�-/CaM-depen-
dent protein kinase kinase (CaMKK) (6, 7, 54,
155, 189). Activated CBP, which is a histone
acetyltransferase, promotes transcription via
physical interaction with numerous transcrip-
tion factors, including CREB, and influences
gene transcription by catalyzing histone acetyla-
tion and subsequent chromatin decondensation
(3, 22, 51, 121). Nuclear Ca2� signals also promote
the subcellular redistribution of class II histone
deacetylases (HDACs), which, via chromatin com-
pression, limit the accessibility of transcription fac-
tors to their target binding sequences (51, 200,
201). In addition to Ca2� signals generated via
NMDA receptor activation, voltage-dependent
Ca2� channels contribute to neuronal activity-
dependent regulation of gene expression (72, 103,
177, 180, 181).

The transcription factor CREB modulates
many functions of the central nervous system,
including synaptic plasticity, memory formation,
and neurogenesis (34, 35, 52, 100, 175). CREB-
mediated transcription requires persistent CREB
phosphorylation, mediated by the Ras/ERK1/2
signaling pathway and CBP activation by nuclear
Ca2� signals (11). Synaptic NMDA receptor activa-
tion induces CREB phosphorylation via the joint
action of nuclear CaMKIV, which mediates rapid
CREB phosphorylation, and the Ras/ERK1/2 path-
way that promotes slower but more long-lasting
CREB phosphorylation (81, 210). Hippocampal
LTP induction promotes calcium-dependent CREB
phosphorylation (55, 99), a requisite step for gene
expression dependent on the cAMP-response ele-
ment (CRE) that underlies sustained LTP (98, 140,
205). Calcium-dependent activation of the nuclear
CREB/CBP complex enhances transcription of
BDNF, a protein with a central role in long-term
synaptic/structural plasticity and hippocampal-
dependent memory processes (37). Activity-
induced BDNF expression in the hippocampus

induces sustained synaptic and structural plasticity
(174), which most likely underlie some forms of
long-term memory.

Induction of calcium-dependent gene transcrip-
tion in the nucleus following synaptic activation
requires that local Ca2� signals reach the nucleus
to modify gene expression. The cellular mecha-
nisms underlying propagation of activity-depen-
dent Ca2� signals to the nucleus from their sites of
generation at postsynaptic spines, dendrites, or the
soma represent an unresolved problem of present-
day neuroscience. The diffusion of Ca2� ions in the
cytoplasm is highly restricted by the presence of
abundant cytoplasmic Ca2� buffers (5). Hence,
neurons must use other mechanisms to propagate
activity-dependent Ca2� signals to the nucleus
(76). Diffusion and/or active transport and subse-
quent nuclear translocation of Ca2�-regulated pro-
teins from their synaptic sites of activation into the
nucleus may give rise to nuclear Ca2� signals (56,
71, 104, 126, 157, 173, 208, 216). Alternatively,
propagation of internal Ca2� release waves medi-
ated by IP3 receptors to the somato-nuclear com-
partment represents a second possible mechanism
(77, 80, 178, 204). A third hypothetical mechanism
of Ca2� signal propagation to the nucleus (23) con-
siders the generation of propagated Ca2� waves via
RyR-mediated CICR. In fact, activity-induced Ca2�

influx via the NMDA receptor in dendritic spines
undergoes significant amplification by RyR-depen-
dent CICR (58, 181). Despite reports showing that
synaptic NMDA receptor-dependent Ca2� signals
remain confined to the spine heads (165, 169, 188,
215), a study showing that stimulation of synaptic
NMDA receptors requires Ca2� release from stores
to generate the nuclear Ca2� signals underlying
CREB-/CBP-mediated transcription supports this
third hypothesis (80).

ROS in Synaptic Plasticity

Current evidence indicates that at physiological
levels ROS act as cellular second messengers by
promoting reversible redox modifications of differ-
ent cellular components, including oxidative mod-
ifications of protein cysteine residues with low pKa
(88, 171). The brain has a very active oxidative
metabolism compared with other organs (79).
Neuronal activity generates considerable ROS lev-
els, and it is becoming increasingly apparent that
this ROS increase plays key roles in the functional
and structural changes that mediate hippocampal
synaptic plasticity and hippocampus-dependent
memory formation (152). In particular, several pro-
tein molecules relevant for LTP and LTD undergo
reversible redox modifications (FIGURE 3), such as
NMDA receptors, Ca2�-activated K� channels, IP3

receptors, RyR channels, the protein phosphatase
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calcineurin (88), and the protein kinase CaMKII
(30), which impinge on their physiological func-
tion. Accordingly, preserving cellular redox bal-
ance is essential for safeguarding synaptic
plasticity, among other neuronal functions. To
avoid oxidative stress and the ensuing damage to
cellular components due to activity-generated ROS
production, neurons maintain their redox balance
by means of antioxidant enzymes that include su-
peroxide dismutase (SOD), catalase, and glutathi-
one (GSH) peroxidases (171).

Activation of NMDA receptors in rat hippocam-
pal pyramidal neurons in culture and in brain
slices stimulates superoxide anion production (24),
which in turn promotes ERK1/2 phosphorylation
(111). In mixed hippocampal cultures, Ca2�-influx
induced by glutamate enhances ROS generation in
neurons but not in astrocytes (106). Several
sources, including mitochondria, are responsible
for cellular ROS generation. Among them, the
highly regulated NADPH oxidases (38) are impor-
tant generators of the ROS species involved in sig-
naling cascades because these enzymes exhibit
rapid activation and inactivation kinetics, allowing
transient increases in cellular ROS levels (190). In
particular, enzymatic ROS generation via the NOX2
isoform (a member of the NADPH oxidase family)
causes the activation of ERK1/2 in hippocampal
area CA1 (117). In hippocampal neurons, NOX2 is
present at synaptic locations (196), where it under-
goes activation via stimulation of postsynaptic
neuronal nitric oxide synthase by NMDA receptor-
mediated Ca2� influx (70).

Superoxide anion is a free radical that undergoes
rapid spontaneous or SOD-mediated enzymatic
dismutation to H2O2, a cellular ROS directly re-
sponsible for NMDA receptor-dependent activa-
tion of ERK1/2 in the hippocampus (111). Among
other protein targets, RyR channels are especially

susceptible to redox modifications; reversible oxi-
dation of RyR cysteine residues stimulates RyR-
mediated CICR, whereas their reduction causes the
opposite effects (88). In primary hippocampal cul-
tures, H2O2 enhances RyR-mediated Ca2� release
through RyR redox modifications (115). The ensu-
ing RyR-dependent increase in cytoplasmic [Ca2�]
produced by H2O2 or by iron-generated ROS (163)
stimulates ERK1/2 phosphorylation presumably
via upstream Ras activation (49), resulting in nu-
clear translocation of ERK1/2 (163), increased
CREB phosphorylation (115), and immediate
early gene expression (87). These combined re-
sults suggest that ROS produced by NOX2 in
response to NMDA receptor-mediated Ca2� in-
flux trigger sequential signaling cascades that en-
gage RyR-mediated CICR, ERK1/2 stimulation,
CREB phosphorylation, and activation of early
gene expression. In addition to RyR, IP3 receptors
contain multiple reactive thiols (105). A recent
study performed in nonexcitable cell models
showed that superoxide anion generated from xan-
thine by xanthine oxidase sensitizes IP3-induced
Ca2� release to IP3 via oxidation of the IP3 recep-
tor and promotes cytoplasmic Ca2� oscillations
and mitochondrial Ca2� uptake (18). In neuronal
cells, however, a direct demonstration of activi-
ty-dependent Ca2� release induced by redox
modifications of the IP3 receptor is lacking.

ROS and LTP

Several reports indicate that ROS play key roles in
hippocampal LTP formation and maintenance
(116, 152). Scavenging superoxide with manganese
porphyrin compounds that mimic SOD function
prevents HFS-induced LTP in hippocampal slices
(118), whereas overexpressing in mice the three
different mammalian SOD isoforms affect LTP in
different ways (152). Low hippocampal superoxide

FIGURE 3. Increased ROS generation modifies the activity of key postsynaptic proteins
The scheme illustrates how ROS modify different postsynaptic proteins engaged in LTP/LTD. The blue color indicates
low activity, and the orange and red colors indicate basal or high activity, respectively. Of note, as detailed in the
text, ROS stimulate CaMKII in neurons from young but not aged hippocampus. The proteins colored in gray shades
do not exhibit significant changes in activity by increased cellular ROS levels.
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levels in mice overexpressing extracellular SOD
(EC-SOD) cause impaired NMDA receptor-depen-
dent LTP in the CA1 region (198); increased H2O2

generation produced by superoxide dismutation in
mice overexpressing the cytoplasmic SOD-1 iso-
form has the same effect (109). In contrast, trans-
genic mice that overexpress the mitochondrial
SOD isoform (SOD-2) exhibit normal LTP (94),
strongly suggesting that mitochondria-generated
superoxide anion does not contribute to LTP in-
duction and maintenance. Generation of superox-
ide in vitro via xanthine/xanthine oxidase induces
LTP in hippocampal area CA1 by acting down-
stream of NMDA receptors; superoxide-induced
LTP occludes HFS-induced LTP, suggesting re-
cruitment of the same signaling pathways (119).
LTP induction fails in mutant mice lacking NOX2
subunits, which also display mild deficits in hip-
pocampus-dependent memory tasks (116). Since
ERK activation is required for NMDA receptor-de-
pendent LTP (59), these combined results suggest
that NOX2-generated ROS lead to Ca2�-dependent
ERK1/2 activation during hippocampal LTP.

The second messenger role of hydrogen perox-
ide is emerging (183). Dismutation of superoxide
radicals generates hydrogen peroxide in hip-
pocampal neurons, which affects LTP in complex
ways. In rat hippocampal slices, H2O2 causes initial
augmentation but subsequent long-lasting depres-
sion of field excitatory postsynaptic potentials
(fEPSP); the initial fEPSP increase is not affected
by NMDA receptor inhibition or by iron chela-
tion, indicating that NMDA receptor-dependent
Ca2� influx or hydroxyl radical generation does
not mediate the stimulatory effects of H2O2

(113). A subsequent study showed that low H2O2

concentrations potentiate whereas higher con-
centrations depress HFS-induced LTP (109).
Transgenic mice overexpressing SOD-1, which
maintain high endogenous H2O2 levels and display
impaired hippocampal LTP, exhibit enhanced
TBS-induced LTP at H2O2 concentrations that
block LTP in wild-type mice (108). The authors
concluded that these seemingly paradoxical effects
of H2O2 were specific to H2O2 because in vitro
superoxide generation by X/XO did not mimic
these effects; moreover, they proposed that SOD-1
transgenic mice are less sensitive to activity-in-
duced ROS generation and require higher H2O2

levels (detrimental to wild-type mice) for LTP in-
duction by TBS (109). This suggestion predicts that
neuronal H2O2 levels increase following TBS and
that the ambient H2O2 levels determine the mag-
nitude of this increase by conditioning the activity
of cellular antioxidant systems. In addition to
H2O2, iron-generated ROS also stimulate LTP. Iron
addition to primary hippocampal neurons rapidly
increases the intracellular labile iron pool and

stimulates ROS production; moreover, iron addi-
tion to rodent hippocampal slices facilitates sus-
tained LTP induction (CA3 to CA1) after
suboptimal tetanic stimulation, whereas iron che-
lation decreases basal synaptic transmission and
prevents sustained TBS-induced LTP (163).

ROS and LTD

To our knowledge, there is no information regard-
ing redox modulation of hippocampal LTD. Since
superoxide anion inhibits calcineurin activity
(187), which as stated above is a protein phospha-
tase essential for LTD, activity-generated ROS may
have a negative effect on LTD induction. This pre-
diction needs experimental testing, however, be-
cause Ca2� and ROS exert opposite effects on
calcineurin activity. Accordingly, LTD induction
would decrease, provided inhibition of calcineurin
activity by ROS prevailed over Ca2�-induced
stimulation.

Cross Talk Between Calcium and
ROS: Implications for Aged-Related
Defects in Synaptic Plasticity

Growing evidence indicates that there is significant
cross talk between Ca2� and ROS signaling in nu-
merous cellular processes (88). In cultured hip-
pocampal neurons, H2O2 prompts RyR-mediated
Ca2� release that stimulates ERK/CREB phosphor-
ylation (115) and transcription of early genes (87).
In agreement, a later study also reported that H2O2

releases Ca2� from the ER in primary hippocampal
cultures (67). High-frequency field stimulation
(HFFS) of primary hippocampal neurons generates
hydrogen peroxide by stimulating NOX2 via NMDA
receptor-mediated Ca2� entry and RyR-mediated
CICR, and increases type 2 RyR (RyR2) protein
levels, whereas the antioxidant agent N-acetyl
L-cysteine (NAC), a precursor of cellular glutathi-
one generation, prevents these responses (184).
These results suggest that the joint increase in
Ca2� and ROS produced by HFFS promotes RyR2
expression. Furthermore, superoxide anion, in ad-
dition to promoting ERK phosphorylation and po-
tentiation of synaptic transmission in area CA1,
increases [3H]-ryanodine binding in hippocampal
cell extracts, indicating enhanced RyR activity (96).
Superoxide-induced potentiation requires func-
tional L-type Ca2� channels and does not occur in
knockout mice for type 3 RyR (RyR3) channels,
suggesting that this particular form of ROS-in-
duced potentiation requires RyR3-mediated Ca2�

release (96).
As mentioned in previous sections, the increases

in both cytoplasmic Ca2� and ROS levels produced
by neuronal activity play essential roles as signal-
ing elements in hippocampal synaptic plasticity
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(87, 107, 152). Cross talk between Ca2� and ROS is
likely to occur during synaptic plasticity induction
and maintenance, but excessive ROS production
may produce negative effects. In fact, high cellular
ROS levels caused by excessive ROS production, by
less-effective cellular antioxidant systems or by a
combination of both factors, promote oxidative
stress, a key feature of aged-related impairments in
synaptic plasticity and cognitive functions. Antiox-
idant agents may help to restore physiological ROS

levels, albeit animal studies using antioxidant
agents have yielded inconclusive results, presum-
ably caused by their inactivation during intestinal
absorption (78).

Alterations in Ca2� and ROS cross talk most
probably occur during aging, which entails neuro-
nal oxidative stress (174) and dysfunctional neuro-
nal Ca2� signaling (172). During aging, enhanced
ROS generation may contribute to reduce the func-
tion of NMDA receptors and stimulate Ca2� signals

FIGURE 4. LTP responses in young and old rodents
A: LTP responses recorded in acute hippocampal slices from young (blue traces) and aged animals (red traces), before (control) or after treat-
ment with NAC. B: LTP responses recorded in acute hippocampal slices from young (blue traces) or aged animals (red traces) after chronic
treatment with NAC. Figure is modified from Ref. 86 with permission from John Wiley & Sons, Ltd.
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generated by CICR mediated by redox-modified
RyR channels, which occurs in response to Ca2�

entry via L-type voltage-gated Ca2� channels (62,
174). This ROS-enhanced CICR may produce ab-
normal increments of intracellular Ca2� levels that,
if uncontrolled, are bound to promote neuronal
death (53). Treatment with dithiothreitol (DTT) of
hippocampal slices from aged rats enhances
NMDA receptor responses by enhancing CaMKII
activity; however, DTT either had no effect or de-
creased CaMKII activity in CA1 from young ani-
mals (30). Therefore, a shift in intracellular redox
state to more oxidative conditions in aged rodents
may contribute to the decline in NMDA receptor
responses through CaMKII-mediated signaling.

Aged animals display hippocampal LTP impair-
ments (19, 123). As illustrated in FIGURE 2C, aged
rodents display decreased LTP but enhanced LTD
compared with young animals. Moreover, com-
pared with the post-burst action potential re-
sponse of young rodents (FIGURE 2D), aged
rodents present an abnormally long-lasting slow
after hyperpolarization (AHP) phase (FIGURE 2E)
that results in decreased excitability of CA1 pyra-
midal neurons (124). This increase in the slow AHP
phase is due to activation of Ca2�-activated K�

channels by stimulation of RyR-mediated Ca2� re-
lease (124), since inhibitory ryanodine suppresses
the prolonged slow AHP phase (FIGURE 2E). In the
context of Ca2�-ROS signaling cross talk, it is worth

highlighting that the reducing agent DTT signifi-
cantly decreases the slow AHP component in CA1
pyramidal neurons of aged rats (FIGURE 2E) but
does not affect the action potential response of
young rats (31). Altogether, these results indicate
that the increased oxidative tone exhibited by neu-
rons during aging promotes RyR-mediated CICR
release in response to post-burst stimulation. The
enhancement of the slow AHP phase produced by
treatment of CA1 pyramidal neurons with the su-
peroxide generating X/XO system illustrated in
FIGURE 2D (31) supports this proposal. In addition,
RyR-mediated Ca2� release from the ER differen-
tially modifies LTP in young and old animals. Thus
RyR inhibition with ryanodine prevents LTP induc-
tion in hippocampal slices from young rats (180)
but facilitates LTP induction in hippocampal slices
from old rats (124).

Loss of the inhibitory effects of FKBP12.6/1b, a
protein that binds and stabilizes the cardiac RyR2
channels in the closed state, results in Ca2� signal-
ing dysregulation in the hippocampus (64). This
finding is relevant for age-related neuronal dys-
function, since leaky neuronal RyR2 channels
seemingly underlie stress-induced cognitive dys-
function (139). Moreover, delivery of a transgene
encoding the FKBP12.6/1b protein to the hip-
pocampus decreases the slow AHP phase displayed
by neurons of aged hippocampus (63). Albeit there
is no information regarding the effects of RyR2

FIGURE 5. Model comparing activity-induced postsynaptic Ca2� signal generation in young and
aged animals
Compared with CA1 neurons of young animals (left), neurons of aged animals (right) have increased postsynaptic
ROS levels, represented by the deeper orange color of their cytoplasm. These increased ROS levels induce RyR oxi-
dative modifications that enhance RyR-mediated Ca2� release in response to activity-induced Ca2� entry. Addition-
ally, CA1 neurons from aged rodents express more L-type and RyR2 Ca2� channels. These combined features lead
to increased activity-generated Ca2� signals in neurons during aging, promoting the stimulation of Ca2�-activated
K� [K(Ca)] channels.
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oxidation on its interaction with the FKBP12.6/1b
protein, oxidation of type 1 RyR channels de-
creases the affinity of FKBP12 binding to these
channels (8).

The aged brain displays an increase in oxidative
damage and a decrease in GSH levels and redox
buffering capacity (174). The oxidative stress con-
ditions associated to the aging process may con-
tribute to impair LTP; in fact, overexpression of
EC-SOD or SOD-1 throughout the lifetime of mice
protects against age-related LTP deficits (95). Aged
hippocampal neurons display higher ROS levels,
which reduce NMDA receptor function (FIGURE 3),
and increased expression of L-type Ca2� channels
(197, 203); these combined factors produce a shift
from NMDA receptor-dependent LTP to LTP that
depends on Ca2� entry via L-type Ca2� channels
(33, 185). Furthermore, RyR channels also contrib-
ute to enhance LTD during aging, since inhibition
of RyR-mediated Ca2� release from the ER pre-
vents LTD induction in aged rats (125).

Of note, as illustrated in (FIGURE 4A), acute
slices from young mice incubated with NAC dis-
play a reduction of sustained LTP induction in the
CA region following stimulation of the Schaffer
collateral pathway, whereas acute slices from aged
mice display reduced LTP induction and mainte-
nance but increased LTP after NAC incubation
(86). In addition, chronic NAC feeding prevents
oxidative damage in the hippocampus of aged rats;
it also produces a significant stimulation of both
LTP induction and maintenance in aged mice
(FIGURE 4B) and reverses the L-type Ca2� channel-
dependent LTP seen in aged animals to NMDA
receptor-dependent LTP (86). Interestingly, H2O2

reverses the LTP impairments displayed by acute
slices from aged mice but reduces LTP in slices
from aged SOD-1 transgenic mice, which in the
absence of H2O2 exhibit enhanced LTP responses
compared with aged wild-type mice (109). These
results indicate a dual role for H2O2 in the regula-
tion of LTP in aged mice, presumably mediated by
differential modulation of the protein phosphatase
calcineurin by the different basal ROS levels of
wild-type and SOD-1 transgenic mice (109).

To sum up the above results, we propose the
model illustrated in FIGURE 5. The increased post-
synaptic ROS levels in CA1 neurons from aged
compared with young rodents, represented by the
deeper orange color of the cytoplasm, induce RyR
oxidative modifications that stimulate RyR-medi-
ated Ca2� release in response to activity-induced
Ca2� entry. Moreover, CA1 neurons from aged ro-
dents express more L-type Ca2� channels (197, 203)
and more type 2 RyR channels (Arias-Cavieres A,
Muñoz P, Hidalgo C, unpublished observations)
than neurons from young animals. These com-
bined features produce increased Ca2� signals in

aged compared with young neurons, leading to the
enhanced slow AHP produced by activation of
Ca2�-activated K� channels, which results in de-
creased neuronal excitability and frequency-de-
coding capacity. �
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