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Abstract: In plant–insect interactions, calcium (Ca2+) variations are among the earliest events associ-
ated with the plant perception of biotic stress. Upon herbivory, Ca2+ waves travel long distances to
transmit and convert the local signal to a systemic defense program. Reactive oxygen species (ROS),
Ca2+ and electrical signaling are interlinked to form a network supporting rapid signal transmission,
whereas the Ca2+ message is decoded and relayed by Ca2+-binding proteins (including calmodulin,
Ca2+-dependent protein kinases, annexins and calcineurin B-like proteins). Monitoring the generation
of Ca2+ signals at the whole plant or cell level and their long-distance propagation during biotic
interactions requires innovative imaging techniques based on sensitive sensors and using genetically
encoded indicators. This review summarizes the recent advances in Ca2+ signaling upon herbivory
and reviews the most recent Ca2+ imaging techniques and methods.

Keywords: signal transduction; herbivory; reactive oxygen species; membrane potential; oral secretions;
calcium imaging; MAPK; calmodulin; CPK

1. Introduction

The plant–insect interaction dates back to prehistorical times [1]. The evolution of
plant defense responses against herbivores requires stress response-associated mecha-
nisms, including phytohormones production [2–4], host specificity [5], protease inhibitor
activities [6,7], plant volatile emission [8], phenotypic plasticity [9], cross-species com-
munication [10], morpho-physiological and chemical reprogramming [11], response to
insect-derived elicitors or effectors [12,13], all involving metabolic costs [14].

The recognition and appropriate response to the attacking enemy occur within a few
minutes and require the activation of specific pathways most of which finally lead to
gene activation (the signaling pathway) [15]. Upon insect feeding on plants, rapid early
events eventually lead to the production and release of plant defense molecules [16]. These
signaling events also function in propagation of long-distance signals (calcium, reactive
oxygen species, and electrical signals), which contribute to rapid, systemic induction of
defense responses [17]. Interestingly, the speed of response to biotic damage is proportional
to the speed of feeding. For instance, chewing herbivores induce faster responses that
sucking herbivores, which in turn are faster in inducing plants responses when compared
to microorganisms [18]. However, the term rapid is relative to the communication systems
of plants which by no way is comparable or similar the to highly efficient and rapid nervous
system of animals, as recently clarified [19]. Therefore, biotic stresses induced by herbivores
result in diverse physiological changes in plants.

Generation of Calcium Signals

One of the earliest players in plant–insect interactions is calcium (Ca2+), a universal
second messenger the intracellular variation in concentration of which has been associated
to the plant perception of biotic stress [20,21]. Herbivory-induced cytosolic Ca2+ concentra-
tion ([Ca2+]cyt) elevation involves multiple channels and pathways regulating local and
long-distance [Ca2+]cyt signals [22]. The depolarization of the plasma membrane potential
(Vm) is another early event induced by insect feeding on leaves, and results from both the
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damage caused by the insect and the delivery of oral secretions (OS) [23]. Although this
herbivore-induced Vm depolarization depends on a Ca2+-dependent opening of potassium
ion (K+) channels [24], the attacked leaf remains depolarized for an extended period, which
cannot be explained by the sole action of K+ channels. The plant plasma membrane H+-
ATPase is strongly inhibited by insect OS, and this inhibition contributes to the log-lasting
Vm depolarization [25]. Studies on mechanical and robotic wounding of leaves show that
these treatments do not induce a Ca2+ signaling, whereas significant increase in [Ca2+]cyt
were observed only after herbivory [26].

Herbivore attacks can trigger Ca2+ waves traveling a long distance to transmit and
convert the local signal to a systemic defense program in the whole plant, and recent studies
uncovered Ca2+ channels that orchestrate specific Ca2+ signatures [27]. Electrical signals
can result in systemic Ca2+ and reactive oxygen species (ROS) waves, as demonstrated in
several insect herbivores such as Spodoptera littoralis, Pieris brassicae, Myzus persicae and
Tetranychus urticae feeding of model plants like Arabidopsis thaliana; important crops like
Hordeum vulgare, Phaseolus lunatus, Nicotiana tabacum and Vicia faba; the living fossil plant
Ginkgo biloba and the fern Pteris vittata [18,24,28–32].

Mutations affecting Ca2+ homeostasis interfere with the plant’s leaf-to-leaf electrical
signaling capacity as shown when Arabidopsis type IIB auto-inhibited Ca2+-ATPases
(ACAs) was used as a candidate gene for a reverse genetic screening [33]. Both root-to-shoot
Ca2+ waves and slow wave potentials (SWPs) are triggered by either root wounding or the
application of glutamate (Glu) to wounded roots. Ca2+ waves and SWPs are dependent
on the activity of glutamate receptor-like proteins (GLRs) and P-type H+-ATPase AHA1.
Inhibition of the H+-ATPase activity due to herbivore OS [25] induces the alkalinization of
the apoplast that depolarizes Vm. The activation of GLRs, along with the release of Glu
from damaged phloem, causes the Vm depolarization in the form of SWPs that together
with the [Ca2+]cyt increase propagates the systemic wound signaling [34,35]. Recently, a
key functional role for the cyclic nucleotide-gated ion channel CNGC19 in Arabidopsis
defense against Spodoptera litura demonstrated the role of Ca2+-mediated defense signaling,
with the modulation of late events like the biosynthesis of phytohormones and secondary
metabolites [36].

Wounding may also induces a drop in hydraulic pressure (turgor pressure, ΨT) and
an increase in apoplastic amino acids (AAapo), including Glu, that are perceived by
plasma-membrane located mechanosensitive ion channels (MSC) that depolarize the plant
Vm [37]. Finally, herbivore’s OS may contain oligosaccharides that interact with specific
plant plasma membrane receptors [24]. For instance, spider mites secrete elicitors (tetranin1
and tetranin2) that trigger [Ca2+]cyt, ROS production and Vm depolarization [12]. In
Arabidopsis, plasma membrane localized NADPH oxidases respiratory burst oxidase
homolog D (RBOHD) functions as an essential regulator of ROS [38]. Herbivore-produced
elicitors like N-linolenoyl-L-glutamine (GLN18:3) induce a RBOHD and RBOHF-dependent
ROS burst in several plant species [13,39].

Figure 1 summarizes the early events upon herbivory where Ca2+ plays a central role
along with Vm depolarization and ROS production.
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Figure 1. Framework of early events induced in responses to herbivory within the first minutes after 
infestation. Herbivory is the combination of tissue damage (wounding) and the delivery of insect 
oral secretions. Both herbivory and mechanical damage induce the emission of volatile organic 
compounds (VOCs), which depolarize the plasma membrane potential (Vm). Wounding induces 
variations in the water potential that affect the turgor pressure (ΨT), which is perceived by plasma-
membrane located mechanosensitive ion channels (MSC) resulting in Vm depolarization. Type IIB 
auto-inhibited Ca2+-ATPases (ACAs) play a role in recovery of excitability after long-term herbivory 
by interfering with both the Vm and [Ca2+]cyt. Mechanical wounding does not exert a direct effect on 
Vm, Ca2+ and K+ channel activity (red crosses). Herbivory delivers oral secretions that exert different 
effects. Upon herbivory receptors activate a plasma-membrane–localized cyclic nucleotide-gated 
ion channel (CNGC) which interacts with the Ca2+-sensor calmodulin (CaM). Oral secretions inhibit 
the H+-ATPase activity by hampering the association between 14-3-3 protein and H+-ATPase 
proteins and cause a reduced phosphohydrolitic activity of the proton pump with a reduced 
extrusion of H+ from the cytosol and an alkalinization of the apoplast (pHAPO), both concurring to 
the Vm depolarization. Elicitors from oral secretions like N-linolenoyl-L-glutamine (GLN18:3) 
induce a RBOHD and RBOHF-dependent ROS burst. Specific oligosaccharides present in the oral 
secretions interact with plasma membrane receptors that also trigger ROS and Ca2+ signaling. 
Extracellular DNA (eDNA), deriving from cell disruption made by herbivory, and extracellular ATP 
(eATP) released by wounding and herbivory increase [Ca2+]cyt. In summary, oral secretions, 
wounding, ΨT reduction, pHAPO alkalinization, an increase in apoplastic amino acids (AAapo) and 
glutamate (Glu) and the activity of the glutamate receptor-like cation channels (GLRs) depolarize 
the Vm. Oral secretions and ROS/NRS activate the Ca2+ channel that in turn opens the inward 
rectifying K+ channel that reduces the cytosolic pH causing Vm depolarization. Connections 
supported by empirical studies in planta are represented by solid lines, hypothetical connections 
are shown in dashed lines. 

2. Calcium and ROS Signaling 
The plant shows a consistent number and variability of signaling molecules 

throughout, but three potentially interacting messengers: ROS, Ca2+ and electrical 
signaling are interlinked to form a network supporting rapid signal transmission [40–43]. 

Several plant species produce hydrogen peroxide (H2O2) in response to herbivory. 
The expression of the Ca2+-sensing aequorin system in transgenic soybean (Glycine max) 
suspension cells and the effects of herbivore-wounding in Lima bean (P. lunatus) leaves 
show increasing amounts of H2O2 that correlate with a higher [Ca2+]cyt [44]. The same 
responses were found in the living fossil G. biloba leaves damaged by S. littoralis [30] and 
in the fern P. vittata [29]. Changes of [Ca2+] fluxes and H2O2 were detected in a tobacco 
variety (G140) infested by the tobacco aphid M. persicae. Even in this case, H2O2 

Figure 1. Framework of early events induced in responses to herbivory within the first minutes
after infestation. Herbivory is the combination of tissue damage (wounding) and the delivery of
insect oral secretions. Both herbivory and mechanical damage induce the emission of volatile organic
compounds (VOCs), which depolarize the plasma membrane potential (Vm). Wounding induces
variations in the water potential that affect the turgor pressure (ΨT), which is perceived by plasma-
membrane located mechanosensitive ion channels (MSC) resulting in Vm depolarization. Type IIB
auto-inhibited Ca2+-ATPases (ACAs) play a role in recovery of excitability after long-term herbivory
by interfering with both the Vm and [Ca2+]cyt. Mechanical wounding does not exert a direct effect on
Vm, Ca2+ and K+ channel activity (red crosses). Herbivory delivers oral secretions that exert different
effects. Upon herbivory receptors activate a plasma-membrane–localized cyclic nucleotide-gated ion
channel (CNGC) which interacts with the Ca2+-sensor calmodulin (CaM). Oral secretions inhibit the
H+-ATPase activity by hampering the association between 14-3-3 protein and H+-ATPase proteins
and cause a reduced phosphohydrolitic activity of the proton pump with a reduced extrusion of
H+ from the cytosol and an alkalinization of the apoplast (pHAPO), both concurring to the Vm
depolarization. Elicitors from oral secretions like N-linolenoyl-L-glutamine (GLN18:3) induce a
RBOHD and RBOHF-dependent ROS burst. Specific oligosaccharides present in the oral secretions
interact with plasma membrane receptors that also trigger ROS and Ca2+ signaling. Extracellular DNA
(eDNA), deriving from cell disruption made by herbivory, and extracellular ATP (eATP) released by
wounding and herbivory increase [Ca2+]cyt. In summary, oral secretions, wounding, ΨT reduction,
pHAPO alkalinization, an increase in apoplastic amino acids (AAapo) and glutamate (Glu) and the
activity of the glutamate receptor-like cation channels (GLRs) depolarize the Vm. Oral secretions and
ROS/NRS activate the Ca2+ channel that in turn opens the inward rectifying K+ channel that reduces
the cytosolic pH causing Vm depolarization. Connections supported by empirical studies in planta
are represented by solid lines, hypothetical connections are shown in dashed lines.

2. Calcium and ROS Signaling

The plant shows a consistent number and variability of signaling molecules through-
out, but three potentially interacting messengers: ROS, Ca2+ and electrical signaling are
interlinked to form a network supporting rapid signal transmission [40–43].

Several plant species produce hydrogen peroxide (H2O2) in response to herbivory.
The expression of the Ca2+-sensing aequorin system in transgenic soybean (Glycine max)
suspension cells and the effects of herbivore-wounding in Lima bean (P. lunatus) leaves
show increasing amounts of H2O2 that correlate with a higher [Ca2+]cyt [44]. The same
responses were found in the living fossil G. biloba leaves damaged by S. littoralis [30] and in
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the fern P. vittata [29]. Changes of [Ca2+] fluxes and H2O2 were detected in a tobacco variety
(G140) infested by the tobacco aphid M. persicae. Even in this case, H2O2 accumulation
depended on Ca2+ influx, which were both increased in a long period of aphid feeding [45].

Ca2+ and ROS signaling are induced by herbivore-associated molecular patterns
(HAMPs) [46]. As shown in Figure 1, ROS signals could activate the Ca2+ permeable
channels in membranes [47]; ROS and Ca2+ signaling are the consequence of the combined
effect of wounding and the secretion of salivary elicitors from the feeding insect [48–50].
For instance, aphids like Acyrthosiphon pisum produce two types of saliva that mediate their
interactions with plants which are based on Ca2+ signaling-related responses [51]. The
activity of S. littoralis ventral eversible gland contains elicitors able to trigger both Ca2+

signaling and H2O2 production in Arabidopsis [52]. The piercing-sucking planthopper
(Laodelphax striatellus) secretes salivary proteins into its plant host during feeding that
enhance plant resistance to insects by inducing Ca2+ and ROS signaling pathways [53];
whereas the tobacco hornworm caterpillar (Manduca sexta) OS induce Ca2+-dependent ROS
production in tomato (Solanum lycopersicum) protoplasts [54]. Elicitors produced during
the feeding activity of the plant-sucking arthropod herbivore two-spotted spider mite
(T. urticae) were found to trigger the [Ca2+]cyt influx and the generation of ROS in kidney
bean plants (P. vulgaris) [12].

Besides OS direct activity, several HAMPs released upon cell damage trigger cascades
of events, eventually leading to a coordinated response. Among these, extracellular DNA
(eDNA), deriving from cell disruption made by herbivory, induces an increase in [Ca2+]cyt;
this event is associated to the opening of K+ channels, with particular action on ligand-
gated rectified K+ channels, which in turn are correlated to ROS production [55,56]. It
has been suggested that fragmented DNA might play a crucial role as an important and
powerful elicitor involved in early and late responses to biotic stress [56]. Extracellular
ATP (eATP) is a constitutive HAMP that is released by wounding and herbivory. eATP
can increase [Ca2+]cyt, and Arabidopsis loss of function mutants were found to have an
impaired increase in [Ca2+]cyt in response to eATP, thus demonstrating a link between eATP
and Ca2+ signaling [57].

Calcium and ROS signaling are also induced by volatile organic compounds (VOCs) [15].
Plants respond to herbivory by emitting VOCs composed of both green leaf volatiles (GLVs)
and terpenoids, which are released into the surrounding atmosphere and are perceived
by receiving plants [58]. GLVs emitted by herbivore-wounded tomato (including (Z)-3-
hexenyl acetate) were found to induce a strong [Ca2+]cyt increase in receiving plants [59].
The emission of β-ocimene induced by (Z)-3-hexenol, linalool, α-farnesene and (E)-4,8–
dimethyl–1,3,7-nonatriene (DMNT) (which are typical VOCs emitted upon herbivory) were
dependent on Ca2+ signaling [60]. H2O2 and [Ca2+]cyt increased in Arabidopsis mesophyll
cells after being treated with the volatile monoterpene alcohol linalool in the attempt to
increase plant resistance to diamondback moth (Plutella xylostella) [61].

Other interesting effects of plant–insect interactions on Ca2+ and ROS signaling were
found when (Z)-11-hexadecenal, the main component of P. xylostella female sex pheromone,
was tested in Brassica nigra. The sex pheromone induced depolarization of the Vm, an
increase in [Ca2+]cyt and production of H2O2, demonstrating the ability of plants to detect
and respond to volatiles emitted by non-plant organisms [62].

3. Calcium Binding Proteins (CBPs)

To activate the appropriate cell response and in order to become informative, the
Ca2+ message needs to be decoded and relayed. This task is brought by Ca2+-binding
proteins (CBPs) [63]. Most CBPs are characterized by the presence in their sequence of the
canonical Ca2+-binding motif called the EF-hand [64] (see Figure 2). CBPs in the saliva of
herbivorous insects function as effectors to attenuate host plant defenses and thus improve
insect feeding performance [65]. A putative EF-hand Ca2+-binding protein (LsECP1) in the
small brown planthopper Laodelphax striatellus exhibits Ca2+-binding activity. Knocking
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down LsECP1 in L. striatellus prompted a higher level of [Ca2+]cyt in rice fed plants, whereas
overexpression suppressed wound-induced H2O2 accumulation [66].
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helix. EF-hand Ca2+ binding motif contains a 29-residue helix–loop–helix topology, much like the
spread thumb and forefinger of the human hand. Calmodulin is shown with its four calcium sites
(shown as green balls) occupied. Calcium binding proteins are major players in Ca2+ signaling. See
text for more details.

CBPs are also involved in the transmission of devastating viruses into plant phloem.
Viral infection may inhibit CBP expression and this event facilitates filament-mediated viral
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secretion first into salivary cavities and then into plant phloem which in rice causes an
increased [Ca2+]cyt, followed by a substantial H2O2 production [67].

The NlSEF1 protein is a CBP highly expressed in the salivary glands of the brown
planthopper Nilaparvata lugens. It has an EF-hand Ca2+-binding activity and can be secreted
into rice plants when infested by the planthopper. Knocking down NISEF1 in the planthop-
per elicited higher levels of [Ca2+]cyt and H2O2 in rice, indicating that NlSEF1 functions as
an effector and plays important roles in interactions between the planthopper and rice by
mediating the plant’s defense responses [68,69].

3.1. Calmodulin (CaM) and Calmodulin-like (CML)

Calmodulin (CaM) is present in all eukaryotic cells and is the prototype of a CBP [70].
Being involved in the Ca2+ signaling pathway, CaM acts by modifying its interactions with
various CaM-binding proteins [20]. A divergent form of CaMs (CaM-like proteins, CMLs)
is also present in plants [71,72].

The salivary glands of planthoppers N. lugens and Laodelphax striatellus show high
expression of CaMs that are secreted into the rice plants during feeding and CaM-silenced
planthopper nymphs elicited relatively high levels of H2O2 and callose accumulation
in rice plants [73]. The transcriptome of spinach leaves exposed to beet armyworm
(Spodoptera exigua) larvae identified four CAMs (CAM3, CAM5-1, CAM6-1, and CAM6-2)
which were associated with Ca2+ signaling. The genes coding for these CAMs were highly
co-overexpressed with several endoplasmic reticulum-type Ca2+-transporting-ATPase
genes, known to be involved in Ca2+ transport, confirming also the important role of
the Ca2+ signaling cascade in the defense against insect attack [74]. In Arabidopsis, calmod-
ulin 1 (CAM1) cam1 mutants were more resistant to S. littoralis than in the wild-type
Arabidopsis group [75]; whereas, calmodulin 3 (CAM3) participated in Ca2+-ATPase acti-
vation [61]. CAM3 was also found to interact with the N-terminus of Ca2+-ATPase isoform
8 (ACA8), and treatment with the monoterpene linalool of Arabidopsis leaves showed
the enhancement of some JA-related genes and defense genes expressions [61]. cam1 and
wrky53 mutants are more resistant to S. littoralis than the wild-type Arabidopsis. The high
[Ca2+]cyt causes the breaking down of the CAM1-WRKY53 complex, then the detachment
of WRKY53 reduces the JA content by downregulating the LOXs gene expression [75]. CaM
can both positively and negatively regulate cyclic nucleotide-gated channels (CNGCs) [76],
which are involved in jasmonate-induced Ca2+ mobilization [77], a typical response to
herbivore attack [78].

Plants contain unique Ca2+-sensing proteins, the calmodulin-like-proteins (CML),
which are involved in many stresses and developmental responses [72]. In soybean, feed-
ing by S. litura, treatment with signaling compounds and wounding induce the differential
expression patterns of CMLs, indicating their involvement in Ca2+ signaling and plant
defense during herbivory [79]. In defense against herbivory, Arabidopsis CML37 positively
regulates the plants’ defense against S. littoralis [80], whereas CML42 shows a downregu-
lating activity and might play a role as a Ca2+ sensor by displaying diverse functions in
responses to both abiotic stress and insect herbivory [81]. Thus, during herbivory, plants
may use CML37 and CML42 as Ca2+ sensor proteins to maintain equilibrium and adjust
the signaling and downstream responses [82]. S. littoralis feeding induces Arabidopsis
CML9 upon wounding and feeding; however, CML9 loss-of-function mutant lines were
not affected by herbivory and the same occurred in overexpressing Arabidopsis lines. This
indicates that in Arabidopsis CML9 acts more like a specialized rather than a general
regulator of stress responses [78].

3.2. Calcium-Dependent Protein Kinases (CPKs)

In contrast to CaMs and CMLs, Ca2+-dependent protein kinases (CPKs or CDPKs)
are distinctive Ca2+ decoders because of their characteristic of having both downstream
signal propagation capabilities and a Ca2+ sensing component. They comprise a variable N-
terminal part, a kinase domain and an activation domain [83]. The Ca2+ binding of the CaM-
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like domain prompts a conformational change that dislocates the pseudo-substrate from
the kinase; this allows the occurrence of downstream phosphorylation events [84]. Ca2+-
binding sensory proteins such as CPKs are involved in responses to herbivory following
[Ca2+]cyt variations [15,85,86], and the involvement of CPKs in response to herbivore
feeding has been reviewed [87]. Transgenic N. attenuata plants, in which two CPKs were
silenced, when attacked by M. sexta larvae induced high levels of defense metabolites
that slowed the insect growth, demonstrated the critical roles of CPKs in modulating
phytohormone (jasmonic acid) homeostasis and highlighted the complex coupling between
phytohormones (e.g., jasmonate) and MAPK signaling [88]. In apple (Malus × domestica),
30 CPK genes (MdCPK) were identified and correlated to the Ca2+ signaling of resistant
cultivars as compared to susceptible cultivars [89]. In soybean, CPKs’ transcript levels
changed after wounding and exhibited specific expression patterns upon simulated S.
exigua feeding or soybean aphid (Aphis glycines) herbivory, by revealing an interesting role
of CPKs in soybean-insect interactions [90].

3.3. Calcineurin B-like (CBL)

Calcineurin B-like proteins (CBLs) are a family of Ca2+ sensor proteins present in
plants that bind Ca2+ through EF-hand motifs (see Figure 2) [91–93]. The CBL family is
unique as well. CBL-interacting protein kinase (CIPK) are downstream kinases that activate
specific targets and transduce signals [94]. Changes in Ca2+ levels are detected by CBLs
that, upon Ca2+ binding, modify their conformation with the subsequent interaction and
activation of downstream CIPKs and CBL [95]. CBL-CIPKs play a major role in plant
responses to abiotic stress [96] (e.g., salt stress) and are involved in phytohormone-, ion
homeostasis- and sucrose homeostasis-related crosstalks between plant development and
stress adaptation [97]. CBLs are involved also in biotic stress. Cells of N. benthamiana leaves
overexpressing sugarcane CBL genes after inoculation with the tobacco pathogen Ralstonia
solanacearum show that overexpression of CBL genes can effectively promote resistance to
infections in tobacco plants [98]. After exposure to the pathogenic fungus Sclerotinia sclero-
tiorum, CBL1 overexpressing plants display better performance under unfavorable stress
conditions and ectopic expression of CBL1 enhanced biotic stress tolerance by facilitating
scavenging of the Na+ and ROS from the cell [99]. CBL-CIPKs have been demonstrated to
play a role also in plant responses to herbivory [100].

3.4. Annexins (ANNs)

Annexins are proteins widely present in living organisms that bind to membrane phos-
pholipids in a Ca2+-dependent manner and are involved in the regulation of plant growth
and response to environmental stimuli [47]. Evidence has been provided for a contribution
of ANNs in Ca2+ transport [22] and increasing [Ca2+]cyt enhances the binding of annexin to
plasma membrane [101], thus identifying ANNs as Ca2+ sensors or effectors in [Ca2+]cyt-
dependent processes [102]. In pepper (Capsicum annuum) and tomato (Solanum lycopersicum),
the expression of ANNs was found to be induced by biotic stress, including thrip infes-
tation [103]. Resistant pepper plants attacked by the insect herbivore Bemisia tabaci were
characterized by an increased expression of annexin D4-like (ANN4) [104]. In Arabidopsis,
overexpression of ANN1 and ANN4 were found to increase the plant resistance to root
knot nematodes [105], while ANN1 overexpressing plants induced S. littoralis larvae to
gain less weight, confirming the importance of ANN1 in plant–insect interactions with a
specific role in systemic rather than local defense responses [22]. Besides their role as CBP,
ANNs may be able to act as peroxidase [106] with a phosphorylation/dephosphorylation
regulation [107], in agreement with the suggestion that ANNs might provide a molecular
link between ROS and [Ca2+]cyt in the systemic defense-related signaling in plants [22].
Indeed, AtAnn1 mutants have reduced Ca2+ signature upon H2O2 treatment, suggesting
an important role of ANNs in ROS-induced Ca2+ signatures [108].

Figure 2 shows the Ca2+ binding to EF-hand motif and summarizes the CBPs involved
in Ca2+ signaling.
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4. Mitogen-Activated Protein Kinases (MAPKs)

Elicitor perception that induces Ca2+ influx, ROS and nitrogen reactive species (NRS)
is followed by the activation of other major players in plant–insect interaction: mitogen-
activated protein kinases (MAPKs) [109,110]. In Nicotiana attenuata, MAPKs play cen-
tral roles in modulating herbivory-induced phytohormone and anti-herbivore secondary
metabolites, thus regulating wounding- and herbivory-induced responses [111–113]. Sev-
eral MAPK genes have been identified from chickpea (Cicer arietinum) in response to
infestation by Helicoverpa armigera [114,115]; whereas two MAPKs were identified in soy-
bean (Glycine max) attacked by the green stink bug (Nezara viridula) [116]. The expression
of a MAPK in rice (OsMKK3) was induced by both mechanical wounding and the infesta-
tion of brown planthopper N. lugens [117], whereas RNA-Seq analyses of Balsas teosinte
(Zea mays ssp. parviglumis) attacked by the armyworm (Mythimna separata) revealed up-
regulation of genes markedly enriched in MAPK cascade-mediated signaling pathway [118].
In the date palm (Phoenix dactylifera) infested by the Dubas bug (Ommatissus lybicus), tran-
scriptome analysis revealed the differentially expressed genes mostly belonged to calcium
and MAPKs signaling pathways [119]. However, activation of MAPKs has been demon-
strated also with the sole mechanical wounding [28,120].

5. Calcium Imaging

A breakthrough in the field of Ca2+ imaging was the development of sensitive flu-
orescent Ca2+ indicators, dyes and buffers by Tsien in 1980 [121]. Reporter dyes (small
organic molecule-based sensors) are useful tools to measure Ca2+ levels without the need
to genetically transform plants. This allows Ca2+ imaging also in those plants for which it
is difficult obtaining transgenic lines [122]. In the last paragraph of this review, we focus on
the development of new sensors used for Ca2+ imaging in plant–insect interactions.

The use of synthetic dyes (e.g., Calcium Orange) allowed the study the effect of in-
sect chewing on leaves, allowing to observe that Ca2+ release was localized at the very
edge of the bite (see Figure 3) [28]. Although reporter dyes have been foundational in
developing the field of Ca2+ imaging, the advent of fluorescent protein (FP) technologies,
and the associated possibility of engineering genetically encoded indicators, led to new
interesting results [122,123]. In biology, a myriad of signaling processes is quantified by
the use of fluorescent biosensors, which are fluorescent molecules introduced into an or-
ganism to monitor some parameters of some biological activity [124]. The development
of different fluorescent sensors enabled the single cell, tissue, organ and even whole plant
visualization of Ca2+ signals [125]. In plant studies, the bioluminescent protein aequorin
(derived from the jellyfish Aequorea victoria) was first used in 1967 as a genetically encoded
Ca2+ biosensor [126]. However, despite the use of aequorin to detect Ca2+ changes in
response to various stresses in plants [127], including temperature [128], pathogens [129],
salt stress [127] and wounding [130] was successful, this system it is not well-suited for
real-time imaging due to the extremely low luminescent signal it produces [131]. Anyway,
aequorin-expressing transgenic plants have been used in the study of diverse microbe- or
damage-associated molecular patterns (MAMPs/DAMPs) where comparative analyses
between the elicitors flg22 and elf18 revealed differences in Ca2+ signaling and cellobiose
exposure which generated an intracellular Ca2+ elevation [129]. They have also been instru-
mental to quantify the response to insect OS [28]. Indeed, the study of these Ca2+ elevations
has been largely restricted to the use of elicitors as opposed to living organisms [132].

We can devise the fluorescence-based genetically encoded indicators into two classes:
(i) intensiometric single-FP biosensors and (ii) ratiometric FRET-based biosensors [125].
Although ratiometric FRET-based sensors are quantitatively accurate [133], intensiomet-
ric Ca2+ indicators, including GCaMP3 [134] and R-GECO1 [135], provide both higher
temporal resolution and ease of use due to their generally brighter Ca2+-responsive sig-
nal and their simpler microscope requirements [122,125]. Comparing the ratiometric
fluorescence-based Ca2+ sensor Yellow Cameleon NES-YC3.6 [136] and the intensity-based
sensor R-GECO1, it has been demonstrated that the latter shows a significantly enhanced
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signal change in response to several stimuli [135]. Examples of the greater sensitivity of
R-GECO1 have been provided int the study of Ca2+ signals in flg22- and chitin-induced
experiments on a cellular scale. Here the use of GECO1 allowed to visualize well defined
[Ca2+]cyt oscillations in both epidermal and guard cells [135].
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Figure 3. Calcium signaling upon herbivore feeding. (A–F) false colors time-course imaging of
Ca2+ release upon feeding with the insect Spodoptera littoralis on a rosette leaf of Arabidopsis thaliana
expressing the biosensor R-GECO1. The rapid fluorescence variation (blue to green) indicates the
increase in the cytosolic Ca2+ concentration following the insect feeding. A wave of Ca2+ is generated
at the site of feeding and rapidly spreads through the vascular system. The acquisitions have been
obtained by a fluorescence stereo microscope Nikon SMZ18 with a SHR PLAN APO 0.5X WD:71.
Excitation light was produced by a fluorescent CoolLED pE-300 ultra at 580 nm. Images were
collected with a Mono Camera Nikon DS-Fi3 camera. Exposure time was set to 1 sec with a resolution
of 8 bit 1440 × 1024. Images were acquired every 5 sec (See also Video S1). (G,H) Confocal laser
scanning micrographs showing the increased [Ca2+]cyt in Lima bean (Phaseolus lunatus) leaves upon
feeding by S. littoralis. The red fluorescence is associated to the chlorophyll present in the chloroplasts,
whereas the green fluorescence indicates the cytosolic localization of Ca2+ by the indicator Calcium
OrangeTM. Scale bars: G = 100 µm; H = 200 µm (Figures (G,H) by Massimo Maffei).

In the last decade, the approach to Ca2+ imaging using genetically encoded indica-
tors had a great impact in the study of Ca2+ signaling, and a good amount of protocols
and review papers described how to perform plant Ca2+ imaging in vitro but especially
in vivo [20,133,134,137–145]. These fluorescent-based genetically encoded probes have
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been successfully used to study Ca2+ signaling in the detection of abiotic stresses [35]. In
fact, the Ca2+ involvement in response to abiotic stimuli such as wounding is well docu-
mented [46], but its role in plant defense strategies to insect herbivory and other pathogen
attacks is less understood [146]. S. littoralis feeding on an Arabidopsis plants expressing
the GCaMP3 fluorescent protein–based [Ca2+]cyt sensor showed a rise in [Ca2+]cyt at the
wounding position within 2 sec [134]. Furthermore, the signal spread to distal leaves
in 1 to 2 min with a more pronounced signature in the vasculature, especially when the
feeding activity was affecting the major vein. The propagation of this [Ca2+]cyt signal
was observed moving from younger to older leaves and vice versa [35]. By following the
protocol of Toyota [35], we observed in Arabidopsis expressing the genetically encoded
R-GECO1 sensor an increase in the [Ca2+]cyt upon S. littoralis feeding on a rosette leaf. The
signal propagates quickly through the vasculature (Figure 3 and Video S1). Thus, it is
possible to investigate the complexity of Ca2+ signaling with the use of reporter dyes and
especially with the more recent genetically encoded Ca2+ indicators, which can be very
helpful to decode both abiotic and biotic responses in plants.

6. Conclusions

Ca2+ variations are among the earliest events during plant–insect interactions. Ca2+

waves arise by the wounded plant to transmit at long distance and to convert local signals
into a systemic defense program. In this review, we showed that the Ca2+ signaling
is accompanied by other important rapid signals, with particular reference to ROS and
electrical signaling. The interdependence of these three networked events is clear in plant-
biotic interactions and have been demonstrated several times in plant–insect interactions.
In order to be decoded and relayed, the Ca2+ message requires proteins able to bind the ion
and trigger the signal transduction pathways that lead to plant responses to biotic attack.
We described the role of calmodulin, calmodulin-like proteins, Ca2+-dependent protein
kinases, annexins and calcineurin B-like proteins in plant–insect interactions. An important
role in the study of Ca2+ signaling is the ability to visualize in real-time the generation of
Ca2+ signals both at the single cell and whole plant level. Innovative imaging techniques
have been developed based on sensitive sensors and using genetically encoded indicators
that open new ways in the deciphering of the Ca2+ signaling in plant–insect interactions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/plants11202689/s1, Video S1: Rapid Ca2+ signals generated when
Spodoptera littoralis feeds on Arabidopsis thaliana expressing the genetically encoded R-GECO1 sensor.
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