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Abstract

Intracellular free Ca2+ ([Ca2+]i) is a highly versatile second messenger that regulates a wide range

of functions in every type of cell and tissue. To achieve this versatility, the Ca2+ signaling system

operates in a variety of ways to regulate cellular processes that function over a wide dynamic

range. This is particularly well exemplified for Ca2+ signals in the liver, which modulate diverse

and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and

apoptosis. These Ca2+ signals are organized to control distinct cellular processes through tight

spatial and temporal coordination of [Ca2+]i signals, both within and between cells. This article

will review the machinery responsible for the formation of Ca2+ signals in the liver, the types of

subcellular, cellular, and intercellular signals that occur, the physiological role of Ca2+ signaling in

the liver, and the role of Ca2+ signaling in liver disease.

Introduction

Many of the functions of the liver are regulated by increases in intracellular Ca2+ ([Ca2+]i; a

list of abbreviations used in this article is provided in Table 1). This includes vesicular

trafficking and canalicular contraction, which are regulated by cytosolic Ca2+ ([Ca2+]c) and

participate in the control of bile secretion (252, 398, 400, 415); glucose and energy

metabolism, which occur through the modulation of regulatory enzyme activity (35, 109,

200) and through changes in mitochondrial Ca2+ ([Ca2+]m) (154, 326); and control of the

cell cycle, which includes modulation of transcription (157, 314) and anti- and proapoptotic

proteins (17, 221, 258) to regulate cell proliferation and death, and is regulated by

nucleoplasmic Ca2+ ([Ca2+]n) (332). To control, yet discriminate among so many functions

simultaneously, [Ca2+]i signals are highly organized in time (e.g., through the amplitude of

Ca2+ spikes and the frequency of Ca2+ oscillations) and space (e.g., through Ca2+ gradients

and waves). These specialized features of Ca2+ signals are mediated by the PLC/InsP3/

InsP3R cascade, which may be activated by Ca2+ mobilizing hormones or growth factors

and leads to release of Ca2+ stored in the endoplasmic reticulum (ER) (24, 25, 27, 72, 105,

379, 381). The interplay between different organelles in liver cells also determines the

proper spatio-temporal modulation of Ca2+ signals and the execution of specific functions

(310, 326, 343). In addition, Ca2+ signaling patterns are not just organized within individual

cells but are coordinated among cells as well, through a complex communication network
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dependent on signaling through gap junctions (105, 266, 344) and paracrine messengers

(104, 115, 259, 351) that extends across the hepatic lobule. This article describes the basic

components required for the formation of Ca2+ signals in the liver, the mechanisms of

distinct Ca2+ signaling pattern formation, and their involvement in processes related to

health and disease.

General Molecular and Cellular Mechanisms of Ca2+ Signaling

Molecular machinery for Ca2+ signal formation in the cytoplasm

The Ca2+ signaling system contains a wide molecular set of signaling components that act in

synergy to drive Ca2+ signals with unique spatial and temporal properties (25, 28). [Ca2+]c

signals can be derived from the extracellular medium or from internal stores. In the case of

the latter, several intracellular messengers bind to and regulate the activity of specific

intracellular receptors to promote Ca2+ release (25, 41). Inositol-1,4,5-trisphosphate (InsP3)

is one such Ca2+-mobilizing messenger and acts through the InsP3 Receptor (InsP3R).

Similarly, Ca2+ itself and cyclic ADP ribose (cADPR) promote [Ca2+]c signals through their

interaction with ryanodine receptors (RyRs). Additionally, nicotinic acid adenine

dinucleotide phosphate (NAADP) activates two-pore channels (TPCs) (25, 28, 41, 58, 178).

InsP3-mediated Ca2+ release is initiated by the binding of Ca2+ mobilizing hormones or

growth factors to plasma membrane G-protein-coupled receptors (GPCRs) (23, 25, 357) or

receptor tyrosine kinases (RTKs) (23, 25, 220), respectively. GPCRs are composed of seven

hydrophobic, helical, membrane-spanning domains and a cytosolic G-protein binding site.

G-proteins are heterotrimeric and consist of α, β, and γ subunits (357, 414). Each α-subunit

has intrinsic GTPase activity at the guanine nucleotide binding site, and specific binding

sites for effector proteins such as phospholipase C (PLC), adenylate cyclase, or other

hydrolases. Once a ligand binds to its specific GPCR, guanosine diphosphate (GDP) is

rapidly exchanged for GTP, which results in G-protein dissociation from the receptor and α-

subunit dissociation from the β-γ complex. The α and β-γ complex each may then activate

effector proteins in different biochemical pathways. When GTP is hydrolyzed by GTPase,

the heterotrimeric G-protein complex reassociates and can be reactivated (188, 357). Several

GPCRs are expressed and have been particularly well studied in the liver. These include the

V1a vasopressin receptor, the α1B adrenergic receptor, several subtypes of the P2Y class of

purinergic receptors, and the angiotensin receptors (129, 337, 338, 381).

RTKs exhibit ligand-activated protein kinase activity and have only one membrane-

spanning helix, connecting the extracellular ligand-binding domain to the cytoplasmic

protein tyrosine kinase domain. Kinase activity is switched on by receptor dimerization and

transphosphorylation of tyrosine residues within the kinase activation loop in the catalytic

cytoplasmic domain. This in turn leads to the recruitment of a series of adaptor proteins

containing an SH2 (Src homology domain 2), SH3 (Src homology domain 3), or PTB

(phosphotyrosine binding) activating signaling pathways that generally regulate cell

proliferation, migration, and survival. Protein phosphatases may terminate the signal by

dephosphorylating tyrosine residues to disassemble the signaling complexes formed around

the activated receptors (25, 220, 350). Several RTKs are expressed in the liver (40, 64, 170,

331, 363, 373) including the hepatocyte growth factor (HGF) receptor c-Met, the epidermal
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growth factor (EGF) receptor, and the insulin receptor, and their actions are implicated in

glucose and lipid metabolism (254, 358), liver fibrosis (18), regeneration (389), and

hepatocellular carcinogenesis (181, 383, 389).

Once Ca2+-mobilizing hormones or growth factors bind to their specific plasma membrane

receptors, membrane-associated PLC is activated. There are multiple subtypes of PLC (323),

and several isoforms of these subtypes have been identified; in particular, PLCβ1 and

PLCβ2 are activated by GPCRs, while PLCγ is activated by RTKs (25, 323). Activation of

PLC by GPCRs hydrolyzes phospholipid phosphotidylinositol-4-5-bisphosphate (PIP2) in

the plasma membrane, resulting in the formation of diacylglycerol (DAG) and InsP3. DAG

remains at the plasma membrane to activate protein kinase C (PKC), while InsP3 diffuses

into the cytosol to bind to the InsP3R, causing receptor opening and subsequent Ca2+ release

from intracellular stores (25). Activation of PLC by RTKs was initially thought to similarly

act on the plasma membrane pool of PIP2 (25) but evidence suggests it may alternatively

hydrolyze nuclear PIP2 to generate InsP3 and Ca2+ release within the nucleoplasm (137,

331) (Fig. 1). The InsP3R is generally found in the membrane of the ER (367) and the

nuclear envelope (NE) (176, 249) although InsP3Rs have been localized to the plasma

membrane in certain tissues (92), as well as along the nucleoplasmic reticulum (NR) (see

below) (176, 249).

Three isoforms of the InsP3R have been identified and are denoted types I, II, and III (125,

240, 369). KO mice have been generated for each of the three isoforms (126, 248). InsP3R I

deletion causes death of most of these mice in utero and the remaining have ataxia and

tonic-clonic seizures. On the other hand, InsP3R II and InsP3R III double KO animals only

show gross morphological or functional defects after postnatal day 20, when they manifest

weight loss due to digestive system dysfunction (126). The InsP3R sequence contains

approximately 2700 amino acids and its structure has six membrane-spanning domains with

the large C-terminal end directed toward the cytoplasm and the narrower end facing the ER

lumen (180). There are three regions within the InsP3R: an N-terminal InsP3-binding

domain, a Ca2+ channel-forming C-terminal domain, and a regulatory domain flanked by the

InsP3-binding domain and the channel region. Along their amino acid sequence, InsP3Rs

contain several sites for phosphorylation by kinases such as cyclic AMP-dependent protein

kinase (PKA), cyclic GMP-dependent kinase, PKC, Ca2+-calmodulin-dependent protein

kinase II, and Akt kinase (191). Additionally, several protein partners interact with the

regulatory domain to modulate the channel activity and with the C-terminal region to

determine the subcellular localization of the receptor (32, 69). Upon InsP3 binding, the

receptor undergoes a conformational change resulting in opening of the Ca2+ channel, to

allow Ca2+ release from the ER into the cytosol. Each InsP3R isoform acts as an InsP3-

gated Ca2+ channel (33, 151, 317). However, their sensitivity to InsP3 is not uniform, with

type II being the most sensitive, followed by type I and lastly type III (277). Ca2+ release

through the InsP3R requires InsP3 but the concentration of Ca2+ in the cytosol modulates

the open probability of the Ca2+ channel (33, 150, 317). The open probability of Type I

InsP3R exhibits a bell-shaped dependence on [Ca2+]i concentration. Therefore, incremental

increases in [Ca2+]i concentration up to 1 to 2 μmol/L, sustain and amplify Ca2+ release,

while higher concentrations become progressively inhibitory. This biphasic [Ca2+]i
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concentration dependence indicates that high concentrations of Ca2+ can feedback to turn

the channel off, making the activity of the channel self-limiting (33). This property is

responsible for Ca2+ oscillations (33, 88, 114). In contrast, the type III InsP3R exhibits a

sigmoidal dependence on [Ca2+]i, and thus remains open in the presence of high Ca2+

concentrations. In this sense, activation of this isoform results in rapid and complete

emptying of Ca2+ stores (150, 151). Single-channel studies of the type II InsP3R revealed

that, like the type III lnsP3R, this isoform stays open in the presence of high Ca2+

concentrations (317). Unexpectedly, cells expressing only the type II isoform exhibit

sustained [Ca2+]i oscillations, similar to what is observed in cells expressing only the type I

InsP3R (261). This may reflect the fact that modifier proteins can alter the Ca2+ dependence

of these isoforms (256).

The sequences of the InsP3R isoforms are considerably homologous but each subtype is

expressed and regulated in a distinct fashion. There also are isoform-specific differences in

tissue expression and subcellular distribution, suggesting that the various isoforms serve

distinct roles in [Ca2+]i signaling (257). Particularly, hepatocytes express only type I and

type II InsP3R, and type II is the major isoform (165, 409). The type III InsP3R is not

detected in hepatocytes, but is the predominant isoform in the bile duct epithelial cells,

cholangiocytes (163). Moreover, isoforms may be expressed in distinct sub-cellular

locations. The InsP3R II is most concentrated in the apical region of hepatocytes, while

InsP3R I is expressed throughout the cell (165, 267). In contrast, the InsP3R III is most

concentrated in the apical region of cholangiocytes, while InsP3R I and II are dispersed

throughout the cell (163). The apical localization of the type II and III InsP3R in hepatocytes

and cholangiocytes, respectively, represents a specialized region for triggering polarized

Ca2+ waves (see below) (163, 165).

Ca2+ can also be released from the ER through RyRs. These channels are activated by Ca2+

itself through a mechanism known as Ca2+-induced Ca2+ release (CICR), or by interaction

with cADPR (25, 251, 253). Although RyRs seem to be absent from hepatocytes (135, 165),

there is pharmacological evidence for RyR sensitivity, since RyR inhibition reduces the

speed of hormone-induced [Ca2+]i waves (267). In addition, ryanodine binding sites have

been identified in hepatic microsomes (356), and also a truncated RyR has been identified in

hepatocytes, which increases the frequency of InsP3-induced oscillations, although it is not

able to promote Ca2+ release (303). Moreover, there is evidence that CD38 (ADP-ribosyl

cyclase), the enzyme that catalyzes the formation of cADPR from NAD+ is expressed in the

liver (342). In rat hepatocytes, CD38 is mainly expressed in the NE, where it contributes to

nuclear Ca2+ ([Ca2+]n) signaling (133, 192). Despite the different observations suggesting

the presence of RyRs in the liver, their contribution to Ca2+ signaling in hepatocytes is an

aspect that needs further investigation.

In addition to InsP3, Ca2+, and cADPR, NAADP can also promote Ca2+ release into the

cytosol (25, 127). NAADP was originally found in sea urchin eggs (209) and is the most

potent Ca2+ mobilizing messenger yet described (128). This intracellular messenger was

initially shown to interact with lysosome-related acidic compartments (71, 418). Further

evidence has revealed TPCs (7, 178) as the NAADP-activated Ca2+ release channels, with

three differentially distributed isoforms (TPC 1, 2, and 3) (50, 58, 224, 340, 424). TPC2, in
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particular, has predominant lysosomal localization and has been identified in most human

tissues, but with particularly abundant expression in the liver (58). NAADP interacts with

high affinity with TPC2 (58), although recent evidence suggests that NAADP may bind to

an accessory protein within a larger TPC complex (224). This interaction is tightly

controlled by luminal pH and Ca2+ concentration (306). TPC2 mediates [Ca2+]i release after

activation with low nanomolar concentrations of NAADP while micromolar concentrations

desensitize the receptor. Moreover, NAADP-mediated Ca2+ release is subsequently

amplified by CICR from InsP3Rs (58, 424). Therefore, this Ca2+ release from lysosomal

stores may play an important role in shaping [Ca2+]c signals (60, 294). However,

endogenous activators of NAADP and physiological functions of NAADP/TPC2-mediated

Ca2+ release in the liver still remain elusive.

Mitochondrial Ca2+

In addition to the role that mitochondria play in the control of metabolism and respiration,

these specialized organelles also contribute to the tight spatiotemporal control of Ca2+

signals by taking up Ca2+ from or releasing Ca2+ back to the cytosol (310, 343) (Fig. 2). In

fact, mitochondria display an enormous capacity to accumulate Ca2+ in the very rapid time

scale of hundreds of milliseconds (61) thus shaping and maintaining [Ca2+]c at resting

levels.

Ca2+ uptake across the inner mitochondrial membrane (IMM) is mediated by the ruthenium-

red-sensitive [Ca2+]m uniporter (61, 81, 237, 349) and/or the rapid uptake mode, a transport

mechanism that might contribute to [Ca2+]m uptake from fast [Ca2+]c transients in vivo

(147). In addition, the outer mitochondrial membrane voltage-dependent anion channel may

modulate Ca2+ access to the mitochondrial intermembrane space (136). This type of

mitochondrial transport is driven by the potential gradient across the mitochondrial

membrane (146). Ca2+ efflux occurs through the electrogenic Na+-Ca2+ antiporter and

through a Na+-insensitive but H+-sensitive Ca2+ efflux pathway (22, 167). These efflux

mechanisms are active transport systems (146). The molecular identity of these transport

systems has remained largely elusive. However, recent studies have revealed novel

candidate proteins that may mediate Ca2+ transport across the IMM (152). Ca2+ can also be

released from mitochondria through the permeability transition pore (PTP), a voltage-

dependent, high conductance channel that requires a permissive load of matrix Ca2+ for

opening (20, 21, 80). Formation of the PTP results from increases in mitochondrial free

Ca2+, membrane depolarization, and alkaline matrix pH (147, 299), and induces the PT, a

permeability increase of the IMM to ions and solutes with molecular masses up to 1500 Da

(20, 21, 80). Activation of the PTP leads to rapid release of large amounts of [Ca2+]m into

the cytosol (173, 183). The PTP can be inhibited by antioxidants, reducing agents, and the

immunosuppressive peptide cyclosporin A (21, 146, 278). Endogenous inhibitors of PT

include adenosine diphosphate (ADP), Mg2+, and increased mitochondrial membrane

potential (146). Persistent opening of the PTP can induce irreversible cell injury and death

(20, 21, 80, 146, 276). On the other hand, reversible activation of the PTP is observed in

normal mitochondrial function and plays a role in [Ca2+]i signaling (146, 173, 174) (Fig. 2).

This is possible through several signaling steps; the mitochondrial membrane potential

gradient allows [Ca2+]m uptake through the uniporter; this influx of cations is compensated
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by H+ efflux resulting in increased mitochondrial pH, which in turn activates formation of

the PTP. This alters the membrane potential gradient, allowing Ca2+ to be released from the

mitochondria, triggering [Ca2+]m-induced Ca2+ release (mCICR) (173). mCICR, in regions

where mitochondria are densely distributed, allows Ca2+ waves to propagate across the

cytosol (153, 173). Indeed, mitochondria participate in hepatocyte [Ca2+]i signaling (85,

153). This ability to contribute to the spatiotemporal control of Ca2+ signaling is due to the

close association between mitochondria and [Ca2+]i release sites. This has been confirmed

by the observation that [Ca2+]m can closely parallel the [Ca2+]i increase induced by receptor

activation. Furthermore, the increase in [Ca2+]m following release of Ca2+ from intracellular

stores is faster and larger than the increase that follows influx of extracellular Ca2+ (324).

There is not only close proximity but also dynamic physical interaction between

mitochondria and the ER (84, 348). Additionally, there is functional evidence for

microdomains where mitochondria and InsP3Rs are in close apposition, so that

mitochondria take up a significant fraction of the Ca2+ released by the InsP3R (85, 153, 183,

324). Approximately 30% of the total cellular mitochondrial pool is located in these

microdomains of high [Ca2+]i (367). Of note, sub-cellular regions that contain fewer

mitochondria show greater sensitivity to InsP3 (153). This property of mitochondria can

locally modulate InsP3R sensitivity and thus define the threshold for InsP3 to trigger [Ca2+]i

signals in different subcellular regions (153).

[Ca2+]m uptake affects multiple factors in cell metabolism such as mitochondrial proton

motive force, electron transport and the activity of dehydrogenases associated with the

tricarboxylic acid cycle (154, 326). In isolated hepatocytes, slow or small [Ca2+]i elevations

are not transmitted effectively into mitochondria, and therefore, are unable to activate

mitochondrial metabolism (326). Conversely, [Ca2+]i oscillations trigger [Ca2+]m

oscillations and sustained nicotinamide adenine dinucleotide NAD(P)H formation (311).

Therefore, the frequency rather than the amplitude of [Ca2+]i oscillations regulates

mitochondrial metabolism (154, 311). Indeed, Ca2+ signaling in the cytosol and

mitochondria are closely related, allowing the tight regulation of spatiotemporal Ca2+

signaling and cell metabolism.

Nuclear Ca2+

Most Ca2+ signaling machinery found in the cytoplasm is duplicated in the nucleus, and

there is evidence that [Ca2+]n signals can occur independent of [Ca2+]c signals (106, 215).

The nucleus is bordered by the NE, a specialized region of the ER, which has a double

function as it insulates the nucleoplasm from the cytoplasm and also has the ability to store

and release Ca2+ (207, 249, 279). It is noteworthy that the NE is not simply a smooth-

surfaced outer boundary but is interrupted by invaginations that reach deep within the

nucleoplasm and could even traverse the nucleus completely. The existence of such a

complex branched network of invaginations forming a NR represents an additional

regulatory Ca2+ domain within the nucleus (106, 234). Phosphoinositides (as well as the

enzymes responsible for their synthesis, namely, phosphatidylinositol and

phosphatidylinositol 4-phosphate kinases) have long been known to be present in the

nucleus (176), although their precise localization within the nucleus remains unknown (177).

Furthermore, different PLC isoforms have been identified in the nucleus and may provide in
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situ production of IP3 and DAG (74, 394). Both the NE and NR express InsP3Rs and

numerous lines of evidence support a role for nuclear InsP3Rs in regulating [Ca2+]n release

(57, 160, 171, 215, 238, 362). Of note, InsP3Rs can be found in the outer (ONM) (62, 233,

362) and inner nuclear (241, 249) membranes. Additionally, sarco/ER Ca2+ ATPase

(SERCA) uptake pumps are found in the ONM and have been shown to be identical to those

in the ER (207). Therefore, the nucleus expresses the machinery necessary for local Ca2+

release and reuptake. Such machinery may be activated selectively through tyrosine kinase

pathways (73). Indeed, IGF-1 and integrins cause PIP2 breakdown in the nucleus but not at

the plasma membrane (73), while activation of GPCRs causes breakdown of PIP2 in the

plasma membrane, but not in the nucleus (307). Similarly, activation of the HGF receptor c-

Met or the insulin receptor causes their rapid translocation to the nucleus, to selectively

hydrolyze nuclear PIP2 and generate InsP3-dependent [Ca2+]n signals (137, 331). It also has

been hypothesized that relocation of MAP kinase to the nucleus activates nuclear PLC to

generate InsP3 in the nucleus (347).

[Ca2+]n signaling may also occur by passive transmission of [Ca2+]i signals into the nucleus

through the nuclear pore complexes (NPCs), which are involved in transport of

macromolecules from the cytoplasm to nucleoplasm and vice versa (366). In fact, this

mechanism was originally thought to be the principal one responsible for formation of

[Ca2+]n signals. The ion conductance of NPC is very large and this should allow free solute

and ion diffusion. Then, [Ca2+]c signals should generate identical [Ca2+]n signals (3). It has

been reported, however, that the NPC conductance can be dramatically reduced by

accumulation of Ca2+ inside nuclear cisterna (gating) or by transport of macromolecules

through the NPC (plugging) (365), although this view is controversial (132). Opinions on

the Ca2+ permeability of NPC are also far from uniform. Both reports of free (51, 355) and

restricted (11, 134, 230) permeability of Ca2+ through NPC have been shown. Studies

monitoring diffusion of photoactivatable GFP across the NE suggest that permeability of the

nuclear pore may be regulated by [Ca2+]i rather than by Ca2+ stores within the NE (285). In

either case, since EF-hand Ca2+-binding motifs are present in proteins of the nuclear pore, it

is possible that these function as Ca2+ gating sensors for the pore (347).

Although [Ca2+]n signals can originate inside the nucleus, and the permeability of nuclear

pores to Ca2+ is regulated, there is considerable evidence that [Ca2+]n can passively follow

[Ca2+]i (160, 225). For example, stimulation of hepatocytes with vasopressin results in a

Ca2+ wave that appears to spread from the cytosol into the nucleus (223). Moreover, a

mathematical analysis of Ca2+ waves in hepatocytes stimulated with vasopressin suggests

that [Ca2+]n signals can be described simply by diffusion of Ca2+ inward from the NE (118).

[Ca2+]n can also contribute to Ca2+ signals in the cytosol. For example, Ca2+ puffs, which

are highly transient and localized [Ca2+]i signals that result from the coordinated opening of

small clusters of InsP3Rs, can spread across the cell by diffusing across the nucleus (421).

Puffs can be triggered by a subthreshold concentration of agonist and the resulting [Ca2+]i

signal rapidly dissipates by diffusion in the cytosol and sequestration of Ca2+ into

intracellular stores. However, since the range of diffusion of Ca2+ in the nucleus can be

much greater than in the cytosol (118), Ca2+ puffs generated near the NE can spread into
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and across the nucleus to spread to other, more distant regions of the cytosol (225). Thus, the

nucleus may function as a path that helps distribute Ca2+ to the cytosol.

Ca2+ signaling patterns in individual cells

Ca2+ signals are highly organized in both space and time, from the subcellular to the cellular

to the whole tissue level, to ensure reliability and specificity (24, 72, 105, 381). In the liver,

this organization is achieved in the form of single transient or sustained [Ca2+]i increases,

Ca2+ oscillations and [Ca2+]i waves (105, 381). In hepatocytes, Ca2+ oscillations originate

from the periodic opening of Ca2+ channels located in the membrane of the ER, following

activation of the PLC/InsP3/InsP3R cascade, and their shape and duration depends on the

concentration and the type of agonist in use (413). For example, populations of isolated

hepatocytes respond to agonists such as vasopressin, phenylephrine, or angiotensin with

regular biphasic increases in [Ca2+]i, composed by two main events. The first is a rapid peak

and then fall in [Ca2+]i, which occurs over a period of seconds. This is the result of Ca2+

release from InsP3-sensitive stores and does not depend on extracellular Ca2+, since it can

be observed in Ca2+-free medium (189, 337). The second event is the sustained plateau in

[Ca2+]i, which follows the rapid peak. This occurs only in the presence of extracellular Ca2+

that is necessary to reload depleted intracellular stores (155). In the case of vasopressin,

lower concentrations induce [Ca2+]i oscillations, while higher concentrations induce

sustained increases in [Ca2+]i. In contrast, stimulation of hepatocytes with phenylephrine or

the bile acid ursodeoxycholic acid (UDCA) typically evoke [Ca2+]i oscillations at all

concentrations (30, 337). Additionally, ATP stimulation leads to complex oscillations

corresponding to a large peak, followed by smaller amplitude oscillations superimposed on a

plateau phase (98). In all cases, the information of the agonist-induced Ca2+ increase is

encoded in the rate of Ca2+ events or the amplitude of the Ca2+ rise, a phenomenon known

as frequency encoding (26, 104, 105, 129). The duration of the [Ca2+]i oscillations can also

be determined by the agonist (413). For example, phenylephrine induces shorter [Ca2+]i

spikes than vasopressin or angiotensin (412, 413).

Frequency-encoded Ca2+ signals are thought to play an important role in determining the

extent and targeting of [Ca2+]i signals to downstream Ca2+-sensitive proteins, yielding

higher fidelity than other types of [Ca2+]i signals (e.g., amplitude modulated) (379, 381). In

this sense, the frequency of [Ca2+]i spiking has been shown to differentially induce gene

expression through the transcription factors, NFAT, NFKB, and OAP (100, 222, 384), to

modulate Ras and the MAP kinase pathway (384) and to regulate mitochondrial metabolism

(154) with greater efficacy than a single Ca2+ pulse or a persistent increase in [Ca2+]i.

Decoding the information contained in a [Ca2+]i spike is essential to ensure the precise

processing of Ca2+ signals. The activation and inactivation rates of Ca2+/calmodulin-

dependent protein kinase II (87) and the Ca2+-dependent translocation of calmodulin (79),

PKC (16, 304, 393) or the RAS GTPase activating protein, RASAL (397), suggests that

these Ca2+-sensitive proteins can sense the frequency of Ca2+ signals and discretely

modulate enzymatic activity. Mitochondria sense the frequency of oscillatory [Ca2+]i signals

as well (325) by increasing the dehydrogenase NAD(P)H production in a time-averaged

manner, thus modulating mitochondrial oxidative metabolism (326, 327).
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Changes in InsP3 concentration are not the sole determinant of Ca2+ oscillations (246).

Thapsigargin (117), which releases Ca2+ from the ER through an InsP3-independent

mechanism, and nonhydrolyzable InsP3 analogs (396) can trigger [Ca2+]i oscillations. The

bell-shaped dependence of the InsP3R open probability on [Ca2+]i concentration is thought

to be one of the regulatory mechanisms responsible for oscillatory Ca2+ signals (33, 88,

317). Additionally, the maintenance of hormone-induced Ca2+ oscillations requires the

constant replenishment of the ER with Ca2+ entering the cell through Ca2+ entry channels in

the plasma membrane. Although several types of Ca2+ entry channels may be involved in

maintaining proper Ca2+ concentrations in the ER, store-operated Ca2+ channels (SOCs),

which are activated by a decrease in Ca2+ in the ER lumen, play a major role in liver cells

(14, 15, 182). The liver expresses the SOCs Orai1 (a member of the Ca2+ release-activated

channel modulator family of proteins) and transient receptor potential vanilloid 1 (TRPV1),

which are plasma membrane Ca2+ channels, and the ER protein stromal interaction factor 1

(STIM1). It has been shown that these SOCs have a high selectivity for Ca2+ and that the

Orai1 and STIM1 activation mechanism involves Ca2+ release from a putative small

subregion of the ER likely close to the plasma membrane (15). However, the nature of such

an ER subregion, its relationship with the bulk of the ER, and the steps involved in STIM1

interaction with Orai1 and other proteins still need to be determined in liver cells.

Ca2+ signals can also encode information spatially, in the form of [Ca2+]i waves (105, 381).

These are characterized by an initial local increase in Ca2+ concentration, which then

propagates in the whole cell at an approximately constant rate (104). This spatial

organization has been observed in isolated hepatocytes (338, 381) and in individual cells in

the perfused liver (328, 382). In nonpolarized preparations of hepatocytes, vasopressin, and

phenylephrine induce [Ca2+]i waves that begin at a single locus, and this site of origin

remains constant regardless of the agonist (338). The subcellular distribution of the InsP3R

has been implicated in this spatial organization of Ca2+ waves (161). In polarized

hepatocytes, the type II InsP3R (the most abundant isoform) is localized in the

pericanalicular region (267) and this localized expression establishes a trigger zone from

which Ca2+ waves originate (165) (Fig. 3). Additionally, the function of this trigger zone as

an initiation site for Ca2+ waves depends on the integrity of lipid rafts (263). Similarly, the

apical localization of InsP3Rs determines the initiation of Ca2+ signals in other cell systems

(272, 417) including cholangiocytes, which express mostly the type III InsP3R (163). In

these systems, InsP3 is generated by PLC activation near plasma membrane hormone

receptors, which are often on the basolateral membrane, so it would be counterintuitive that

Ca2+ signals instead would begin at the apical membrane. Certain biophysical properties of

the type II (317) and III (150) InsP3Rs may explain why these receptors initiate Ca2+ waves

at the trigger zone, but an alternative explanation is that clustering of InsP3Rs in the apical

region lowers the threshold for Ca2+ release (371, 421). Indeed, the rise time is prolonged

and the Ca2+ wave speed is reduced in hepatocytes with decreased expression or in which

there is redistribution of the type II InsP3R (161).

The mechanism that governs apical-to-basolateral Ca2+ waves in hepatocytes remains

elusive. In pancreatic acinar cells, the basolateral expression of the RyR Ca2+ release

channel (213) may be the lead for Ca2+ wave propagation. RyR is activated by Ca2+ itself,

which results in CICR. Therefore, InsP3 in the trigger zone initiates Ca2+ waves, which
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propagate across the cell by RyR-mediated CICR (172, 212). Cholangiocytes, on the other

hand do not express the RyR but low levels of InsP3Rs are found in the basolateral region

(163). Since Ca2+ can coactivate the InsP3R (33), Ca2+ waves in cholangiocytes likely

propagate by a modified form of CICR in which Ca2+ released from the apical trigger zone

sensitizes basolateral InsP3Rs allowing Ca2+ waves to form. In hepatocytes,

pharmacological evidence using RyR inhibitors suggests that the spread of Ca2+ waves

depends upon serial activation of apical InsP3Rs, and then basolateral RyRs (267), similar to

what occurs in pancreatic acinar cells (212). However, RT-PCR studies suggest that

hepatocytes lack RyRs (165). Conversely, a truncated but functional form of the RyR was

detected in hepatocytes (303). The subcellular distribution of this novel RyR variant and its

role in the formation of Ca2+ waves still needs to be determined. Of note, the speed or

amplitude of [Ca2+]i waves in hepatocytes is not altered in Ca2+-free medium (267), which

suggests that their propagation depends only on release of Ca2+ from intracellular stores.

Furthermore, Ca2+ waves can be induced in hepatocytes by direct introduction of a

nonmetabolizable analog of InsP3 (105) or by treating these cells with agents such as tert-

butyl hydroperoxide or certain bile acids that raise Ca2+ in the cytosol independently of

InsP3 (76, 336). These observations strongly suggest that Ca2+, and not InsP3, plays the

major role in the propagation of the waves. However, a modeling system has suggested

instead that InsP3, and not Ca2+, is necessary for InsP3-induced Ca2+ waves (179).

Intercellular communication: Spread of Ca2+ signals from cell to cell

[Ca2+]i waves are not confined to single cells, but rather a Ca2+ increase in one cell can be

conveyed to neighboring cells giving rise to intercellular Ca2+ waves (129, 339). Ca2+

waves spread between hepatocytes (266), and this communication depends on gap junctions,

which, in fact, are permeable to both Ca2+ and InsP3 (344). Either molecule could act,

therefore, as the diffusible Ca2+-mobilizing second messenger (344). Additionally,

hormone-induced [Ca2+]i signaling is highly coordinated in these cells, which depends upon

gap junction conductance as well (266). Further evidence for a role of gap junctions has

been provided by studies demonstrating blockage of intercellular Ca2+ waves by gap

junction inhibitors (346, 385) or electroporation of antibodies to the gap junction

components, connexins (38). Hepatocytes express two connexin isoforms, connexin 26

(Cx26), and connexin 32 (Cx32) (111), which is the most abundant in the liver (111, 204).

Expression of both of these isoforms is dramatically reduced and coordination of [Ca2+]i

signals is impaired after bile duct ligation (BDL) (111). Moreover, hepatocytes isolated from

Cx32 KO mice have impaired intercellular propagation of Ca2+ signals (78, 282).

Additionally, transmission of Ca2+ from cell to cell is possible by the expression of Cx32 or

connexin 43 (Cx43) in a liver cell line where intercellular Ca2+ signals are not normally

observed (214). Such findings show that gap junctions allow second-messenger

communication to organize Ca2+ signals in adjacent cells. Furthermore, functional gap

junction channels are essential for the spread of intralobular Ca2+ waves (129).

Other factors are required to support the spread of [Ca2+]i waves. Increases in InsP3 are

necessary in each cell across which a Ca2+ wave spreads (39). Moreover, the presence of

both InsP3 and Ca2+ is required to control the transmission of a [Ca2+]i wave across a

hepatocyte (385). Additionally, Ca2+ waves only propagate if agonist is binding to its
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specific receptor at the surface of each cell. This likely means that the presence of hormone

at each cell ensures that a sufficient level of excitability is achieved in the cytosol through

the generation of the necessary levels of intracellular messengers, to support the propagation

of a [Ca2+]i wave (328, 385). Intercellular Ca2+ waves are further organized by hepatocyte

“pacemaker cells” (214). These cells have increased expression of hormone receptor, which

makes them more sensitive to hormonal stimulation. Therefore, Ca2+ signals occur sooner in

pacemaker cells than in other cells stimulated with the same concentration of hormone, due

to higher InsP3 production that drives [Ca2+]i waves to neighboring cells (77). Of note, this

increased sensitivity does not result from differences in downstream Ca2+ signaling

components such as G-proteins or InsP3R (77, 387). This specialized organization might

explain why vasopressin-induced waves begin in the region of the central venule, where the

vasopressin V1a receptor is most heavily expressed, and then propagate to the portal region,

where it is less heavily expressed (271). Additionally, pacemaker regions have been

observed for other agonists like ATP and phenylephrine. Collectively, Ca2+ wave

organization and propagation depends on several key aspects: InsP3 generation in each cell;

a subset of cells with relatively increased expression of hormone receptor to initiate Ca2+

signals and thus serve as pacemakers for their neighbors; and gap junctions to coordinate the

progression of Ca2+ signals among cells (56, 214).

Ca2+ waves may also be communicated between cells by paracrine signaling, involving the

release of a messenger, its diffusion in the extracellular space, binding of the substance to a

receptor, and activation of a signaling cascade that ultimately increases [Ca2+]c (104). One

such extracellular messenger in the liver is ATP. This agonist is secreted by both

hepatocytes (351) and bile duct cells (115, 259) and stimulates the G-protein-coupled P2Y

receptors that are also expressed in both cell types (196, 250, 269). Therefore, secretion of

ATP by hepatocytes stimulates InsP3-mediated Ca2+ signaling in neighboring hepatocytes,

as well as in bile duct cells (351), creating a paracrine signaling system in which signal

propagation to adjacent cells does not depend on intercellular communication through gap

junctions.

Ca2+ signals also regulate specific functions in other liver cell types. For example, [Ca2+]i

mobilization is implicated in the differentiation (activation) of hepatic stellate cells (HSCs)

and portal (myo)fibroblasts during liver fibrosis (198, 292). HSC and portal fibroblasts

express receptors for several Ca2+-mobilizing agonists, such as endothelin (198, 322),

platelet-derived growth factor (PDGF) (86, 110), vasopressin (305) and ATP (102, 316), and

upregulation of serotonin (5-HT2) receptors may be observed after HSC activation (292).

Liver myofibroblast activation may exhibit different profiles of Ca2+ responses to endothelin

and PDGF (198). Furthermore, CD38-mediated Ca2+ signals (through production of cADPR

and NAADP) contribute to liver fibrosis via HSC activation (194). Moreover, activated

fibroblasts and HSC are contractile due to their expression of motor proteins that can be

regulated by Ca2+-dependent and Ca2+-sensitization mechanism pathways (175, 330, 420).

In addition, InsP3R type 1 is shifted to the nucleus and to cell extensions upon HSC

activation and Ca2+ release in these extensions promotes localized contractions (201).
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Physiological Functions of Ca2+ Signals

Bile secretion

Bile secretion depends on the function of a number of membrane transport systems in

hepatocytes and bile-duct epithelial cells (cholangiocytes) and on the structural and

functional integrity of the bile-secretory apparatus (265). Ca2+ has been implicated in the

regulation of such functions (Fig. 2). Agents that increase [Ca2+]c from either internal or

external sources in isolated hepatocytes inhibit bile secretion in isolated perfused livers,

independently of PKC or hemodynamic effects. Furthermore, inhibition of Ca2+ signals

prevents this inhibition of bile secretion (273). These findings suggest that increased [Ca2+]c

may play an inhibitory role in the regulation of hepatocyte bile production (273).

Possibly, Ca2+ inhibits bile flow by increasing paracellular permeability, which has been

reported in isolated perfused livers and isolated hepatocytes (229), and would allow reflux

of biliary constituents into the sinusoidal space, thereby dissipating the osmotic gradient that

drives bile flow (274). In contrast to the inhibitory effect on net bile secretion, Ca2+ has been

shown to mediate organic anion secretion through the insertion of the transporter Multidrug

resistance-associated protein 2 (MRP2) into the canalicular membrane (83). Additionally,

Ca2+ plays an important role in maintaining bile salt secretion through posttranslational

regulation of the bile salt export pump (BSEP) (202) (Fig. 2). These effects are associated

with pericanalicular Ca2+ release through the type II InsP3Rs that localize to this region in

hepatocytes (165). These roles of Ca2+ in canalicular secretion can be supported by the

observations that subplasmalemmal Ca2+ signals generally are obligatory for exocytosis

(370), and Ca2+ acts as a regulator of exocytosis in the liver, in particular (53), suggesting

that Ca2+ would be necessary for canalicular MRP2 and BSEP insertion. Moreover, the

pericanalicular clustering of type II InsP3Rs creates a “trigger zone” that produces apical-to-

basolateral Ca2+ waves in hepatocytes (165) which might promote bile secretion in a similar

fashion to what has been observed in other polarized epithelia, including pancreatic acinar

cells (187, 275) and cholangiocytes (116). These apparent discrepancies in the effects of

Ca2+ on bile secretion in hepatocytes may be explained by differences in the nature of

choleretic and cholestatic Ca2+ signals. Therefore, it may be important to consider that the

magnitude, timing, and subcellular localization of Ca2+ signals all contribute to their

physiological effects (72).

Canalicular contraction is a crucial step in conducting bile flow through the canalicular

network and into the bile ducts (290, 399). Ca2+ mediates this process, since microinjection

of Ca2+, or stimulation with vasopressin (266, 400) or ATP (398) promotes canalicular

contraction in hepatocytes. Furthermore, [Ca2+]i increases result in the phosphorylation of

myosin light-chain kinase which ultimately generates contractions in the pericanalicular

actin network (415), which are organized within the hepatic lobule to form peristaltic waves

(399). These waves are in turn essential to maintain bile flow (301).

The biliary tree plays an important role in conditioning the canalicular bile that is secreted

by hepatocytes (265). Cholangiocytes perform this function through the regulation of biliary

bicarbonate secretion (164). The prototypical and most extensively characterized pathway

for bicarbonate secretion is initiated by stimulation of the secretin receptor which leads to
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formation of cAMP and activation of the cystic fibrosis transmembrane conductance

regulator (CFTR). Chloride released into the ductular lumen then is thought to be exchanged

for bicarbonate via a chloride-bicarbonate exchanger (186, 208). An alternative or secondary

secretory pathway is stimulated by neurotransmitters such as acetylcholine (ACh) and

autocrine agents such as ATP, and is mediated by InsP3 and [Ca2+]c (269). The downstream

effect of Ca2+ is to activate Ca2+-dependent chloride channels on the apical plasma

membrane, which in turn release chloride that is exchanged for bicarbonate via a chloride-

bicarbonate exchanger (186, 208). Although these two pathways were initially thought to act

separately, a cross-talk has been suggested by the observation that Ca2+ potentiates adenylyl

cyclase activity and cAMP formation in cholangiocytes via a calcineurin-dependent pathway

(6), which may represent an indirect mechanism for Ca2+-stimulated secretion. However,

further evidence has suggested that cAMP- and CFTR-mediated secretion may have a more

direct association with Ca2+ (259). Increases in cAMP result in apical, CFTR-dependent

secretion of ATP, leading to stimulation of apical P2Y nucleotide receptors and subsequent

activation of apical, type III InsP3Rs. This in turn activates Ca2+-dependent chloride

channels and then bicarbonate secretion (101, 259). These observations suggest that cAMP

acts through an autocrine loop that involves ATP release, activation of P2Y receptors, and

then an increase in [Ca2+]c. Moreover, this might represent a convergence of secretory

pathways in the cholangiocyte at the level of InsP3R-mediated Ca2+ release (259).

Therefore, stimulation of basolateral M3 muscarinic receptors by ACh leads to type I and II

InsP3R-mediated Ca2+ release. This Ca2+ in turn drives apical Ca2+-dependent chloride

channels, resulting in biliary bicarbonate secretion. In contrast, stimulation of basolateral

secretin receptors results in cAMP formation, subsequent activation of CFTR, and ATP-

mediated bicarbonate secretion. Further studies revealed that this purinergic-signaling axis is

present in both small and large cholangiocytes. ATP released from “upstream” small

cholangiocytes lining the small intrahepatic bile ducts can be secreted into the bile, and can

act as a paracrine signal to the large cholangiocytes lining the larger “downstream” bile

ducts, stimulating Ca2+-dependent secretion. Moreover, small cholangiocytes, which do not

express CFTR (120), respond to extracellular nucleotides through Ca2+-activated chloride

efflux, representing an additional driving force for cholangiocyte secretion (411).

Primary cilia, which are sensory organelles expressed in the apical membrane of

cholangiocytes, also relate to Ca2+ signaling and secretion. Primary cilia sense increases in

osmolarity within the bile duct lumen, through the activation of the Ca2+-permeable ion

channel TRPV4. This allows entry of extracellular Ca2+ into the cytoplasm, increases in bile

flow and ATP release and bicarbonate secretion (141). Primary cilia can also sense and

transduce mechanical stimuli from within the bile duct lumen, so that increases in bile flow

activate both cAMP production and Ca2+ release (245).

Glucose metabolism

Glucose metabolism in the liver is controlled through the coordination of glycogen synthesis

and breakdown. Ca2+ plays an important role in these events, modulating the

phosphorylation and dephosphorylation, and hence the activity of the regulatory intracellular

enzymes glycogen synthase and glycogen phosphorylase (35, 109, 200). Several Ca2+-

mobilizing hormones have been implicated in these events. For example, vasopressin,
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angiotensin-II and α-adrenergic agonists stimulate PLC, InsP3 increase, and Ca2+ release

from the ER, leading to the phosphorylation of glycogen phosphorylase, decrease in

glycogen synthase activity, and glycogenolysis (107, 297). Nucleotides promote

glycogenolysis in a similar fashion through the activation of P2Y nucleotide receptors in

both rat and human hepatocytes (96, 97, 190). The bile acids UDCA, lithocholic acid, and

taurolithocholic acid (TLCA) activate phosphorylase in a comparable way to vasopressin

(48, 75), although through a Ca2+-dependent but InsP3-independent manner (48).

Physiological levels of glucagon can evoke Ca2+ increases in the liver (67, 361) by

activation of either InsP3-dependent or cAMP-dependent signaling pathways, resulting in

glycogen phosphorylase activation (361, 395). The glycogenolytic capacity of the liver is

regulated by several factors such as the distribution of gluconeogenic enzymes, which are

localized in the periportal region (184). Perhaps for this reason, ATP and glucagon stimulate

glucose release mostly in the periportal area. On the other hand, vasopressin and

norepinephrine stimulate glucose release in pericentral hepatocytes, which can be explained

by the fact that these cells are more sensitive to such agonists than periportal hepatocytes

(129, 386). This differential sensitivity to glucose-mobilizing hormones is overcome by

intercellular communication, which coordinates the regulation of glucose metabolism across

the whole liver through gap junctions. For example, norepinephrine or glucagon-induced

glucose release is impaired in isolated perfused livers from Cx32-deficient mice (368). In an

analogous way, treatment of isolated perfused livers or isolated rat hepatocyte couplets (107)

with a gap junction blocker decreases vasopressin or glucagon-induced glucose release.

However, gap junction inhibition does not affect glycogen breakdown induced in a receptor-

independent fashion. Moreover, hormone-induced glucose release is also impaired if

hepatocytes are dispersed (107). Collectively, these observations demonstrate that gap

junctions play a very important role in the control of hormone-induced glucose release in the

liver in response to the heterogeneous distribution of hormone receptors. Stress conditions

can challenge this coordination of metabolic function; Cx32-deficient mice become

hypoglycemic in response to fasting, whereas WT animals do not, and endotoxin-induced

hypoglycemia is aggravated in Cx32-deficient mice (78). Because the coordination of

glucose storage and release assures balanced glucose metabolism in the liver, the actions of

these two pathways are complemented by one another to maintain homeostasis. For

example, insulin antagonizes the glycogenolytic activity of glucagon and α1-adrenergic

agonists in the liver (34, 89, 407). It is thought that insulin interferes with glucagon by

reducing elevated levels of cAMP (34, 159, 407), whereas insulin inhibits the effects of α1-

agonists by interfering with their ability to elevate cytosolic free Ca2+ (380).

Cell proliferation

Ca2+ plays an important role in cell proliferation (143, 364) as well and in progression of the

cell cycle (185, 308, 318, 334, 390). Temporal and spatial patterning of Ca2+ signals

determines their specificity, and Ca2+ signaling patterns can vary in different parts of the

cell (28, 72, 157, 215). For example, oscillation frequency, amplitude, and time delay of

cytosolic calcium oscillations are essential kinetic parameters to determine entry into the cell

cycle (403, 404). Furthermore, the proliferative ability of calcium is closely related to the

subcellular compartments where it is released. The heterologous expression of the Ca2+-

binding protein parvalbumin (PV) has been used to study the role of Ca2+ signaling in the
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regulation of the cell cycle. PV variants targeted to the nucleus or the cytoplasm were used

to investigate the relative importance of Ca2+ signals in each of these cellular compartments

for regulation of the cell cycle in the hepatoma cell lines SkHep1 and HepG2. It was found

that nucleoplasmic rather than [Ca2+]c is essential for cellular proliferation, and is necessary,

in particular, for progression through early prophase (332) (Fig. 2). On the other hand, both

cytosolic and nuclear Ca2+ signals were important for proliferation of LX-2 immortalized

human HSCs and primary rat HSCs through CaMK II-mediated regulation of Cdc25C

phosphorylation (359). Additional studies led to the observation that receptors for HGF,

EGF, and insulin, three potent growth factors in the liver, translocate to the nucleus to

generate InsP3-dependent Ca2+ signals (9, 137, 331), suggesting that certain growth factors

may stimulate proliferation of hepatocytes by selectively inducing Ca2+ signals in the

nucleus.

What are the specific targets of Ca2+ signals in the nucleus that are responsible for cell

proliferation? [Ca2+]n signals activate the transcription factors cAMP response element

binding (CREB) (157) and Elk1 (314) and stimulate the intranuclear activity of PKC (106)

and CaMK-IV (90), which would be expected to stimulate cell proliferation (Fig. 2). A

recent study used a rapid subtraction hybridization (RaSH) approach to select genes whose

expression was affected by a small alteration in [Ca2+]n concentration. Legumain (LGMN),

an asparaginyl endopeptidase involved in tumor metastasis was identified in this screen as a

novel specific target for [Ca2+]n signals in SkHep1 cells. [Ca2+]n buffering resulted in

decreased LGMN expression. Furthermore, LGMN gene knockdown resulted in decreased

cell proliferation, suggesting that expression of this protein is associated with increased

[Ca2+]n-dependent proliferation. These findings highlight a new role for LGMN and provide

evidence that [Ca2+]n signals regulate cell proliferation in part through the modulation of

LGMN expression (8).

Ca2+ also plays an important role in the proliferation of bile duct cells. The proliferative

activity of large cholangiocytes is regulated by the activation of cAMP-dependent

mechanisms (4, 121, 219). On the other hand, small cholangiocyte proliferation is regulated

by the activation of α1-adrenergic receptors and occurs through Ca2+/calcineurin-dependent

activation of nuclear factor of activated T cells 2 and specificity protein 1. Furthermore,

histamine stimulates small cholangiocyte proliferation through the activation of the H1HR

receptor and InsP3/Ca2+ signaling (120, 122). These findings implicate α1-adrenergic and

histamine receptors (in particular, H1HR) as key factors in the regulation of normal

cholangiocyte proliferation and function. This is also important in pathological ductopenic

conditions associated with damage of large ducts in which Ca2+-dependent small

cholangiocyte proliferation may be a key compensatory mechanism for maintaining

homeostasis and overall bile duct function (219, 239).

Apoptosis

Apoptosis can result from a variety of extracellular or intracellular stimuli, which converge

with activation of caspases to lead directly to cell death (227). Apoptosis generally occurs

through one of two pathways. The extrinsic pathway is initiated by death receptors of the

tumor necrosis factor receptor superfamily (108). The intrinsic pathway involves the
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convergence of intracellular stress signals on mitochondria, resulting in the formation of the

PTP (10, 63). In many cells, the death receptor pathway may act through mitochondria as

well by inducing the cleavage of the proapoptotic molecule Bid and subsequent

mitochondrial permeabilization (231). Therefore, mitochondrial permeabilization is key to

both pathways. Apoptosis is modulated by a number of proteins in part through the InsP3R

or InsP3R-induced Ca2+ release mechanisms (Fig. 2). These in turn mediate effects in

[Ca2+]m, since a subset of mitochondria are in close proximity to InsP3Rs (324), and

mitochondrial and [Ca2+]c signals are interrelated (154, 183). In particular, the

mitochondrial apoptotic pathway is inhibited by members of the Bcl-2 family of proteins,

including Bcl-2, Bcl-xL, and Mcl-1 (1, 144, 243, 321). Bcl-2 inhibits apoptosis in part by

decreasing the size of ER Ca2+ stores (17), whereas Bcl-xL acts in part by inhibiting

expression of the InsP3R (221, 405). Collectively, this reduces Ca2+ release from the ER

into the cytosol and consequently decreases the amount of Ca2+ transmitted to surrounding

mitochondria. Since mitochondria are less likely to become overloaded with Ca2+, the

formation of the PTP is prevented and the overall result is a diminished cellular sensitivity to

apoptotic stimuli (17, 221) (Fig. 2). In fact, overexpression of Bcl-xL provides protection

against apoptotic cell death in rat hepatoma cells (124). On the other hand, neither InsP3R

expression nor ER Ca2+ stores are affected by Mcl-1. Rather, Mcl-1 inhibits Ca2+ signaling

directly within mitochondria (258). In contrast, the proapoptotic Bcl-2 family members Bax

and Bak promote ER Ca2+ overload through the control of InsP3R phosphorylation (287),

which leads to sensitization of mitochondria to calcium-mediated fluxes (284). These

alterations serve as important upstream signals for cytochrome c release (283) (Fig. 2).

Additionally, cytochrome c that has leaked from mitochondria via the PTP binds to the

InsP3R, which facilitates release of toxic amounts of Ca2+ from the ER (36). This is thought

to result in a positive feedback loop that causes further Ca2+ overload of mitochondria and

then further leakage of cytochrome c (36). Inhibition of the interaction between cytochrome

c and the InsP3R inhibits development of apoptosis by blocking this positive feedback loop

(37). Therefore, Bcl-2 family members regulate their pro- or antiapoptotic functions at least

in part through a range of complementary effects on Ca2+ signaling pathways.

Mitochondrial permeabilization and cell death can also be induced by dysregulation of redox

transition, namely, the uncontrolled generation of reactive oxygen species (ROS) (216, 298).

Oxidants increase [Ca2+]i load by stimulating IP3Rs in the ER, while inhibiting SERCA

pumps and Ca2+ extrusion via plasma membrane channels (59). In turn, [Ca2+]m uptake

stimulates oxidative metabolism, resulting in enhanced ATP production, and hence ROS

generation as a byproduct of oxidative phosphorylation (320). Above a certain degree of

[Ca2+]m and ROS rise, a progressive Ca2+ surge prompts a feed-forward loop that induces

prolonged PTP opening and commits cells to death (298) by the combination of a set of

events: IMM depolarization, which causes cessation of oxidative phosphorylation and ROS

production; matrix swelling and cristae unfolding, and the ensuing breaches in the OMM

with release of stored Ca2+ and of apoptogenic proteins (20, 80, 142, 319). In fact, Ca2+-

induced production of ROS has been shown to promote cytochrome c release in rat liver

mitochondria through mitochondrial permeability transition-dependent mechanisms (300).

Furthermore, an analogue of the lipid peroxides formed during oxidative stress, tertbutyl-
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hydroperoxide, prompts NAD(P)H oxidation, increasing mitochondrial free Ca2+ and ROS,

eventually leading to PTP opening and cell death (216).

It is important to note that when PTP induction is transient or limited to a fraction of

mitochondria in a cell, a short burst of ROS production could occur. These ROS could serve

as signaling components to propagate waves of short PTP openings in the surrounding

mitochondria, producing additional ROS with possible functions in the regulation of

chaperones, kinases, and gene expression. Hence, PTP could use Ca2+-dependent and

independent ROS generation to tune many cellular routines unrelated to death induction

(195).

Ca2+ Signals in Liver in Health and Disease

Liver growth: Regeneration versus hepatocellular carcinoma

The role of Ca2+ in cell proliferation assumes special importance in the process of liver

regeneration. Liver regeneration after the loss of hepatic tissue is a fundamental parameter

of the response to liver injury (255). It is induced by acute damage to the organ and is

regulated in a well-orchestrated manner by cytokines, growth factors, hormones, and

neurotransmitters that help promote massive proliferation of hepatocytes, which switch from

a quiescent to a proliferative phenotype. This results in the restoration of liver mass and

function within days after partial tissue loss (112, 377). A number of Ca2+ mobilizing

hormones and growth factors are involved in this process of proliferative signaling. These

include adenosine triphosphate (ATP) (138), arginine vasopressin (AVP) (281),

noradrenaline (82), HGF (12, 260), EGF (260, 373), and insulin (331).

Alterations in components of the Ca2+ signaling machinery, namely, the different InsP3R

isoforms and SERCA pumps, have been reported to occur during liver regeneration (95,

113, 232). Other reports have suggested that the sensitivity of liver cells to Ca2+ mobilizing

agonists (169), as well as agonist-induced calcium signals are modified after partial

hepatectomy (PH) in the rat (197). Another study suggested that these modifications reflect

the remodeling of Ca2+ signals, which is thought to be essential for the initial regenerative

response (280). Thus, Ca2+ signals are thought to adapt to the context of regulated

proliferation induced by PH. Is there a fine regulation mechanism for proliferation during

liver regeneration and does Ca2+ signal compartmentalization influence this process?

Lagoudakis et al. investigated the role of [Ca2+]c during liver regeneration in the rat,

targeting PV to this compartment (206). The study demonstrated in vivo, at the organ level

that hepatocytes require unaltered cytosolic calcium signaling to progress through the cell

cycle after PH, even though liver cell lines do not share this requirement, as discussed above

(332). This may reflect the fact that primary hepatocytes are more sensitive than liver cell

lines to Ca2+ buffering, since buffering of Ca2+ in the nucleus of primary hepatocytes in vivo

leads to widespread apoptosis, liver failure, and death (unpublished observation).

Alternatively, perhaps this is due to the fact that primary hepatocytes and liver cell lines do

not express the same repertoire of intracellular calcium channels in the different cell

compartments (215). Progression through the cell cycle from G0 to G1 and S phases is

triggered presumably by Ca2+ mobilizing agonists that are known to be released in the early

stages of liver regeneration after PH, such as HGF and EGF (260), ATP (138), AVP (281),
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and noradrenaline (82). Furthermore, [Ca2+]c signals may be important for other early

events after PH, such as gene transcription and phosphorylation of ERK and CREB, which

are crucial for hepatocyte progression after PH (341, 352, 372), and which are dependent on

cytosolic and/or nuclear Ca2+ signaling (91, 99, 157, 205). Specific targets of [Ca2+]c

signals during liver regeneration remain unknown.

A recent report has shown that [Ca2+]m signals also play an important role in the

progression of liver regeneration after PH (145). Experiments in SkHep1 cells expressing

PV in the mitochondria revealed that buffering of [Ca2+]m leads to decreased apoptosis

through altered expression of proapoptotic and antiapoptotic proteins. In vivo studies

showed that [Ca2+]m buffering accelerates liver regeneration after PH. Therefore, the

regulation of apoptosis by [Ca2+]m signals is an additional mechanism by which hepatocyte

proliferation and liver regeneration may be modulated. Future advances in this field should

lead to a better understanding of how these various Ca2+ compartments act in an integrated

manner to regulate liver regeneration.

Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults

and the third most common cause of cancer death worldwide (228). Its complex molecular

pathogenesis is regulated by several signaling pathways (391, 392, 406). In particular, the

role of growth factors, which act in part through [Ca2+]i release (28), has been highlighted in

various studies and their signaling pathways are known targets for the discovery of new

therapeutic approaches (391, 392, 406). In particular, HGF and its receptor c-met have been

implicated in tumor invasion in HCC (247). The versatility of MET-mediated biological

responses is modulated by subcellular compartmentalization of MET signaling pathways

(389). In fact, c-met translocates to the nucleus upon HGF stimulation to generate InsP3-

dependent Ca2+ signals there, and this process is thought to regulate cell proliferation (137).

The invasive potential of HCC cells has also been linked to altered store-operated Ca2+ entry

(148), through regulation by βig-h3, an extracellular matrix protein that is implicated in

tumorigenesis and metastasis (374, 378). Selective buffering of nuclear but not [Ca2+]c also

impairs growth of liver tumors in vivo (332) (Fig. 2). Additionally, [Ca2+]n signals mediate

cell proliferation through the regulation of the asparaginyl endopeptidase LGMN (8). The

observations that HGF stimulates increased expression of this protein, and expression also is

increased in tumor cells compared to normal cells in liver specimens from patients with

hepatocellular carcinona (HCC), suggests that LGMN’s positive effects in cell proliferation

may promote carcinogenesis.

Two therapeutic agents, interferon-alpha (IFNα) and 5-fluorouracil (5-FU) are used

experimentally in combination against HCC (264, 295, 345). A recent study revealed that

[Ca2+]i might be a potent upstream proapoptotic messenger acting at the early stage of IFN-

α/5-FU-induced apoptosis through the mitochondrial pathway (422). Furthermore, the novel

squamosamide derivative and potent antioxidant N-(2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-

dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide also known as FLZ, has

been shown to have antitumor activity in HCC cells via modulation of the expression or

activation of cell-cycle regulatory proteins, which are associated with decreased Ca2+/ROS

levels. Therefore, FLZ represents a potential therapeutic agent for the treatment of HCC

(315). Understanding the interplay between Ca2+ signaling and other signaling pathways,
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and how compartmentalized Ca2+ signals may control cell proliferation will reveal new

clues of HCC pathogenesis, with the potential to lead to the discovery of more specific and

effective therapeutic approaches.

Cholestasis

Bile secretion is one of the primary functions of the liver and defects in this process result in

cholestasis. Chronic cholestatic conditions of the liver are among the most serious forms of

liver disease. These conditions often result from diseases of the bile ducts (329, 388).

Secretion in cholangiocytes can be mediated in part by Ca2+ (101, 164). More specifically,

InsP3-mediated Ca2+ signals are important for normal bile secretion as discussed above, and

loss of InsP3R is a common event in cholestasis (312). In particular, apical type III InsP3R

expression is greatly decreased or absent in the bile ducts of patients with a range of

cholestatic disorders including bile duct obstruction resulting from stone disease or

malignancy, biliary atresia, primary biliary cirrhosis and sclerosing cholangitis (354). In

accordance with these observations, animals subjected to common BDL or

lipopolysaccharide (LPS) injection, which are accepted models of cholestasis (329, 354),

had selective loss of InsP3R expression in biliary epithelia (354) (Fig. 4). As a result, Ca2+

signaling and Ca2+-mediated bicarbonate secretion is impaired. However, upstream

components of the Ca2+ signaling pathway are preserved, which suggests that the selective

decrease in InsPRs is the cause of defective Ca2+ signaling. Furthermore, this decrease in

InsP3Rs is thought to interfere also with cAMP-mediated ductular secretion (218, 259). The

loss of InsP3R from bile duct epithelia has been observed in other experimental animal

models of cholestasis (5, 203, 217, 262, 360, 388). These findings may be explained by the

fact that type III is the most abundant InsP3R isoform in cholangiocytes (163), and

contribute to the formation of apical-to-basolateral Ca2+ waves (163, 166, 270, 409), which

are critical for secretion in bile duct cells, due to their role in the transport of fluid and

electrolytes across the apical membrane (116).

Although cholestasis is often associated with defects in the bile ducts (329, 388), genetic or

acquired disorders of hepatocyte transporters can also account for this condition (388).

Recent studies have demonstrated that insertion of the transporter MRP2 in the plasma

membrane is Ca2+ dependent and loss of type II InsP3R results in impaired canalicular

organic anion secretion in hepatocytes (83) (Fig. 2). Moreover, loss of this isoform impairs

the choleretic effect of tau-roursodeoxycholic acid (TUDCA) in cells treated with the

cholestatic bile acid TLCA (83). Similarly, loss of type II InsP3R expression or loss of

pericanalicular expression of the receptor leads to impaired BSEP-dependent secretion in

hepatocytes (Fig. 2), and is observed in animal models of estrogen and endotoxin-induced

cholestasis (202). Indeed, decreased type II InsP3R expression in the liver had been

observed in an earlier study in animals subjected to BDL (103) and mistargeting of

hepatocellular transporters is a common feature of cholestatic disorders (333). Being the

most expressed isoform in this cell type, and localized preferentially to the canalicular

region (267), the type II InsP3R regulates polarized Ca2+ waves (165), which in turn may

regulate secretion in an analogous manner to what takes place is cholangiocytes (259, 354).
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The mechanisms by which the decrease in InsP3R expression occurs remain unknown.

Certain hepatic proteins can have decreased expression in BDL and other cholestatic

conditions through the activation of nuclear hormone receptors like the farnesoid X receptor

(FXR) (94). However, it is not known whether the promoter regions of any of the InsP3R

isoforms contain response elements for FXR. Proinflammatory cytokines released during

cholestasis are known to inhibit fluid secretion in cholangiocytes, so one could question

their contribution to decreased expression of InsP3R. However, it has been shown that

proinflammatory cytokines do not impair Ca2+-mediated secretion in these cells (360).

Consistent with this observation, interleukin 1 increases rather than decreases transcription

of the type I InsP3R gene (49). Perhaps increased degradation rather that decreased

production could cause the observed loss of InsP3R expression. Indeed, InsP3R

ubiquitination and proteasomal degradation are triggered upon secretagogue stimulation in

pancreatic acinar cells (410).

These findings suggest that in canalicular cholestasis, decreased expression and localization

of canalicular transporters results in part from loss of pericanalicular Ca2+ signaling. This

has implications for the treatment of cholestatic disorders. UDCA, the only therapy of

proven benefit for certain types of chronic cholestatic liver disease (296, 309), ameliorates

liver function abnormalities in part by stimulating biliary exocytosis in a Ca2+-dependent

fashion (30, 31). Moreover, these effects are partially mediated by the cooperative action of

Ca2+-dependent conventional PKC alpha (cPKCα), which promotes transporter insertion

into the canalicular membrane (29), and PKA (408), which phosphorylates the type II

InsP3R potentiating InsP3-evoked Ca2+ release (52, 55). Furthermore, the cytoprotective

effects of UDCA and its taurine conjugate TUDCA are associated with enhancement of

Ca2+ signaling, inhibition of which blocks the activation of key survival pathways (244). In

fact, UDCA stimulates secretion of the Ca2+-mobilizing agonist ATP from hepatocytes into

bile, which may promote bile flow and act on downstream bile-duct epithelia by stimulating

fluid and electrolyte secretion (268). Additionally, UDCA can locally stimulate

cholangiocytes to release ATP and initiate P2Y receptor-mediated Ca2+-dependent fluid

secretion (115). These findings are consistent with the hypothesis that stimulation of certain

types of Ca2+ signaling in bile ducts and hepatocytes may provide a strategy for the

treatment of cholestatic diseases. Taken together, loss of apical InsP3Rs in cholangiocytes

and hepatocytes appear to be a common basis for impaired secretion and the development of

cholestasis. These findings suggest a choleretic effect for Ca2+ through localized Ca2+

release in the pericanalicular region. In contrast, earlier studies had suggested a cholestatic

effect, in which global Ca2+ signals induced by ionophores may promote cholestasis (273).

Understanding the localized nature of these, Ca2+ signaling microdomains may provide

insight into mechanisms of cholestasis and lead to the discovery of new alternatives to treat

this condition.

The role of gap junctions in cholestasis has also been reported. Correa et al. investigated the

involvement of Cx32, the major gap junction protein in the liver (111, 204), in the hepatic

response to cholestasis (78). This study demonstrated that Cx32 deficiency impairs

intercellular communication and the transmission of Ca2+ signals between hepatocytes after

treatment with endotoxin. This finding is consistent with previous observations that Ca2+
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waves and Ca2+ oscillations depend upon gap junctions in hepatocyte couplets (266), and

that decrease in Cx32 protein levels after BDL is associated with impaired coordination of

hormone-induced Ca2+ signals (111). Furthermore, Cx32 deficiency in mice leads to

prolonged cholestasis when compared to wild type animals, suggesting that Cx32 expression

is important for recovery from cholestasis after treatment with endotoxin (78). This report

proposed an important role of gap junctions in the liver, to assure integrated and uniform

tissue response in times of stress (78). Similarly, a subsequent study showed that cholestatic

bile acids inhibit gap junction permeability and prevent the coordination of Ca2+ oscillations

in hepatocytes and cholangiocytes (47). These findings suggest that this inhibitory effect

might contribute to the cholestatic effect of these bile acids and may be an early event before

the downregulation of Cx32 that has been observed previously in other models of cholestasis

(111, 139). In contrast, opposing results were shown subsequently, in which TLCA-induced

cholestasis was partially reversed by TUDCA in both wild type and Cx32-deficient mice,

suggesting that gap junctional intercellular communication is neither essential for the

cholestatic effect of TLCA nor needed for the choleretic effect of TUDCA (313). In

aggregate, these observations are consistent with the idea that altered Ca2+ signaling is

involved in the pathogenesis of cholestasis and can be modulated for therapeutic benefit, but

careful examination of the response of patients to cholestasis may ultimately be necessary to

establish a common basis for this disorder and the relevance of these observations for human

disease.

Viral hepatitis

Viruses encode proteins and utilize host cellular proteins and signaling pathways to enhance

viral replication, so regulating cellular Ca2+ signals is an ideal strategy for altering the

intracellular environment to favor viral replication (66). Hepatitis B virus (HBV) is a para-

retrovirus that affects more than 350 million people worldwide and chronic infection with

HBV is the major cause for the development of HCC (158). The multifunctional HBV

protein HBx is essential for replication (68, 425) and is thought to make significant

contributions to the development of HBV-associated HCC (44). Elevation of [Ca2+]c signals

as a result of HBx has been reported in several studies. HBx regulation of [Ca2+]c was

shown to be essential for HBV replication in HepG2 cells and cultured primary rat

hepatocytes (46, 130); calcium signals also promoted HBV capsid assembly in HepG2 cells

(70). HBx elevation of [Ca2+]c signals is required for other activities of HBx, such as

regulation of cell proliferation, activation of Pyk2/FAK-Src kinases, and activation of the

transcription factor AP-1 (43, 45, 46, 131, 288). A very recent study added to these findings

proposing that HBx stimulates HBV replication through increases in [Ca2+]m uptake, which

promotes ER Ca2+ depletion and increased stored-operated Ca2+ entry, causing an increased

plateau level of [Ca2+]c spikes (419). Indeed, continuing studies geared toward the

discovery of the precise molecular basis of HBx regulation of Ca2+ signaling may help

identify specific targets that regulate HBV replication and HCC development.

Hepatitis C Virus (HCV) also alters Ca2+ signals upon infection. HCV infection is a major

cause of chronic hepatitis, liver cirrhosis, and HCC, affecting more than 170 million people

worldwide (353). Several studies have suggested that HCV promotes alterations in

mitochondrial oxidative metabolism (289, 376). Piccoli et al. provided insight into the
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mechanism by which this may occur, demonstrating that HCV protein expression results in

Ca2+ overload in the mitochondrial compartment, which triggers alterations in the

bioenergetic balance and nitro-oxidative stress (302). This study proposes that these effects

are primed by an HCV protein pool localized on ER-associated mitochondrial membranes.

In this model, HCV-induced ER stress, which has been documented previously (19, 375,

376), may provoke depletion of ER Ca2+, which in turn may be captured by the

mitochondria to result in the described alterations (302). Cumulatively, these results suggest

that restoring [Ca2+]m homeostasis might prevent or even reverse the effects of HCV.

ER stress

Effects of ER stress in the liver are important for the pathogenesis of a number of metabolic

and inflammatory conditions. The ER represents a central regulator of protein folding,

quality control, trafficking, and targeting. Therefore, the ability to adapt its capacity to

manage synthetic, metabolic, and other unfavorable conditions is extremely important to

maintain homeostasis in the cell. Disequilibrium between ER load and folding capacity

establishes ER stress, and the ability to adapt to physiological levels of ER stress is

important to all cells, but especially to professional secretory cells (156), like hepatocytes

(Fig. 2). This adaptation is achieved by the activation of the unfolded protein response

(UPR) which consists of the complex coordinated action of three distinct signal transduction

pathways mediated by inositol requiring enzyme (IRE) 1α, protein kinase RNA-like ER

kinase (PERK), and activating transcription factor 6α (ATF6α) (168, 236). Following

activation, UPR signaling pathways act synergistically to encode functions that ameliorate

the stressed state of the ER. If ER stress persists, the cell is functionally compromised and

signal alarm pathways are activated to lead to apoptosis (168, 236, 335).

UPR activation has been reported in several physiological responses, including glucose and

lipid metabolism, inflammation, autophagy, and apoptosis (168). The role of Ca2+ has been

particularly noted in the process of ER stress-induced apoptosis. Disequilibrium in ER Ca2+

levels can activate the UPR, and constant or pronounced ER stress leads to apoptosis (168).

ER stress-associated cell death results from the action of several apoptosis mediators. Some

of these are activated by the UPR sensors, whereas others are related to Ca2+ and redox

homeostasis (236). The proapoptotic proteins Bax and Bak as well as the antiapoptotic Bcl-2

that reside in the ER membrane and are known to regulate Ca2+ homeostasis, interact with

members of the UPR cascades like IRE1α and c-jun-N-terminal kinase to mediate ER

stress-induced apoptosis (162, 210, 401, 416). Furthermore, ER stress-inducing agents lead

to sustained Ca2+ release from the ER, accumulation of Ca2+ in the mitochondria and

subsequent mitochondrial permeabilization, resulting in release of apoptotic effectors from

mitochondria into the cytosol (93). When the antiapoptotic protein Bcl-2 is over expressed,

resting free ER Ca2+ and cell death are decreased (119). Moreover, deficiency of the

proapoptotic proteins Bak and Bax results in lower free ER Ca2+ content, and reduced

sensitivity to apoptotic agents (286). Furthermore, Bax Inhibitor-1 induces Ca2+ release

under acidic conditions leading to increased cell death (193). In some cases during UPR

activation, translation is resumed prematurely before ER stress is completely resolved.

Consequently, newly synthesized proteins can undergo oxidative protein folding in the ER

generating ROS (242). Additionally, protein folding in the ER can lead to activation of
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InsP3Rs and release of [Ca2+]i from the ER, which in turn is transmitted to the mitochondria

to produce ROS (298). In both cases, the generation of ROS results in apoptosis. Thus,

current evidence suggests that Ca2+ and Ca2+-sensitive proteins play a key role in the

development of ER stress-induced apoptosis. However, the exact signaling pathways that

mediate this process in hepatocytes and whether ER stress affects the Ca2+ signaling

machinery and/or downstream functions of Ca2+ are subjects that need further investigation.

Sustained ER stress and activation of the UPR have also been observed in several liver

diseases, and Ca2+ signaling-associated defects have been implicated, in particular, in the

progression of obesity and the obesity-related disorder Nonalcoholic fatty liver disease

(NAFLD). Indeed, incorporation of saturated fatty acids into the ER disrupt its structure and

function (42, 226), affecting the folding capacity and chaperone function by altering ER

Ca2+ homeostasis (54, 140, 149, 402). Several lines of evidence suggest that members of the

Bcl-2 family of proteins, which directly alter ER Ca2+, may play a direct role in saturated

fatty acid-induced hepatocyte cell death and the progression of NAFLD (2, 13, 65, 235,

291). Moreover, palmitic acid requires the flux of Ca2+ and cytochrome C release to mediate

ER stress-induced apoptosis (423). Furthermore, a new link has been established between

ER stress and obesity, in which protein and mRNA levels of SERCA2b are markedly

reduced in the livers of obese mice and recovery of SERCA2b significantly ameliorates ER

stress, increases glucose tolerance and achieves euglycemia in severely obese and diabetic

mice (293) (Fig. 2). Subsequent studies demonstrated that alterations in the ER fatty acid

and lipid composition result in the inhibition of SERCA activity and ER stress. Hence,

abnormal lipid and Ca2+ metabolism are important contributors to hepatic ER stress in

obesity (123).

Therapeutic agents that affect Ca2+ signaling are currently being used for conditions like

spasticity, and other compounds have been tested for specific UPR proteins in the liver

(199). However, further investigation is needed to better understand the molecular basis of

ER stress-induced liver damage and the precise involvement of Ca2+ signaling in this

process to develop targeted therapies for these conditions.

Conclusion

Ca2+ signaling in the liver results from the orchestrated action of multiple members of the

Ca2+ signaling machinery in the different cells that form this highly specialized organ.

Spatial and temporal Ca2+ signaling patterns should be considered not only at the subcellular

and cellular level, but also in the context of the whole organ, in which cells maintain

constant communication to achieve the proper performance of liver function. We

furthermore are now beginning to understand how defects in Ca2+ signaling at these various

levels play a role in the pathogenesis of a wide range of liver diseases. The understanding of

how defects in the Ca2+ signaling machinery and in Ca2+ signaling patterns may lead to

pathological conditions, may in turn result in the rational design of novel, more specific, and

more effective therapeutic approaches.
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Figure 1.
Molecular machinery for Ca2+ signal formation in hepatocytes. Ca2+ signals may be

generated by Ca2+-mobilizing hormones (through activation of G-protein-coupled receptors)

or growth factors (through receptor tyrosine kinases). Binding of a ligand to its specific

receptor leads to the activation of phospholipase C (PLC), which hydrolyzes

Phosphotidylinositol-4-5-bisphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-

trisphosphate (InsP3). DAG remains in the plasma membrane and InsP3 diffuses throughout

the cytosol and binds to the InsP3 receptor (InsP3R) in the endoplasmic reticulum to allow

Ca2+ release to the cytosol. Alternatively, receptor tyrosine kinases may translocate to the

nucleus to locally activate PLC and induce Ca2+ release from the nucleoplasmic reticulum

into the nucleoplasm. Nuclear PIP2 is depicted. However, its exact localization within the

nucleus remains unknown [modified from references (211) and (137), with permission].
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Figure 2.
Physiological and pathophysiological actions of Ca2+ in hepatocytes. 1. Cytosolic and

mitochondrial Ca2+ signals are closely interrelated. Ca2+ is transmitted from inositol 1,4,5-

trisphosphate receptors (InsP3Rs) to mitochondria, leading to an increase in mitochondrial

free Ca2+ and the formation of the permeability transition pore (PTP). Reversible opening of

the PTP is observed in normal mitochondrial function and shapes Ca2+ signals, but

persistent opening of the PTP leads to leakage of cytochrome c, augmenting the cellular

sensitivity to apoptotic stimuli. 2. Type II InsP3R-mediated Ca2+ release regulates organic

anion and bile salt secretion through the insertion of the transporters multidrug resistance-

associated protein 2 (MRP2) and bile salt export pump (BSEP), respectively, into the

canalicular membrane. Loss of this isoform results in impaired transporter activity and

contributes to the pathophysiology of intrahepatic cholestasis. 3. Nuclear Ca2+ is essential

for cell-cycle progression through the control of gene transcription and expression of

proliferative proteins. Furthermore, nuclear Ca2+ may be associated with liver tumor growth.

4. The endoplasmic reticulum (ER) regulates protein folding, quality control, trafficking,

and targeting, and these depend on adequate amounts of Ca2+ in the ER lumen. Unbalance

between ER load and protein-folding capacity leads to ER stress. In obesity, liver expression

and activity of SERCA are impaired, leading to ER stress and defective glucose metabolism.
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Figure 3.
Ca2+ waves begin in the apical region of hepatocytes. (A) Confocal images of an isolated rat

hepatocyte couplet loaded with the Ca2+ sensitive dye Fluo-4/AM and stimulated with

vasopressin. Serial images of the region of interest outlined in yellow show that a Ca2+ wave

starts in the apical (a) region of the cell and spreads to the basolateral (b) region. Images

were pseudocolored according to the scale shown at the bottom. (B) Graphical

representation of the fluorescence increase in the apical and basolateral region shows that

the apical Ca2+ signal precedes the basolateral Ca2+ signal [modified from reference (263),

with permission].
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Figure 4.
Inositol 1,4,5-trisphosphate receptors (InsP3R) expression is lost in bile duct epithelia after

bile duct ligation. Confocal immunofluorescence of liver sections from normal rats and rats

subjected to bile duct ligation (BDL) labeled with isoform-specific InsP3R antibodies

(green) and rhodamine phalloidin (red). Type 1 InsP3R labeling in normal bile duct cells (A)

is found throughout each cell although is expressed at low levels, similar to that observed 2

weeks after BDL (B). Type 2 InsP3R labeling is seen throughout each cell in normal liver

sections (C) and it is nearly absent 2 weeks after BDL (D). Type 3 InsP3R labeling is found

predominantly in the apical region of bile duct cells in normal liver sections (E) and is also

markedly reduced 2 weeks after BDL (F) [reprinted from reference (354), with permission].
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Table 1

List of Abbreviations

[Ca2+]c Cytosolic calcium

[Ca2+]i Intracellular calcium

[Ca2+]m Mitochondrial calcium

[Ca2+]n Nucleoplasmic calcium

5-FU 5-fluorouracil

Ach Acetylcholine

ADP Adenosine diphosphate

AP-1 Activator protein 1

ATP Adenosine triphosphate

ATF6α Activating transcription factor 6α

AVP Arginine vasopressin

BDL Bile duct ligation

BSEP Bile salt export pump

cADPR Cyclic adenosine diphosphate ribose

CaMK Calcium-calmodulin-dependent protein kinase

cAMP Cyclic adenosine monophosphate

CD38 Adenosine diphosphate-ribosyl cyclase

CFTR Cystic fibrosis transmembrane conductance regulator

CGamF Cholylglycylamido-fluorescein

CICR Calcium-induced calcium release

c-Met Hepatocyte growth factor receptor

CMFDA 5-chloromethylfluorescein diacetate

cPKCα Ca2+-dependent conventional protein kinase C alpha

CRAC Calcium release activated channel

CREB Cyclic adenosine monophosphate response element binding

CsA Cyclosporin A

Cx26 Connexin 26

Cx32 Connexin 32

DAG Diacylglycerol

DMSO Dimethylsulfoxide

EGF Epidermal growth factor

Elk1 E twenty-six-like transcription factor 1

ER Endoplasmic reticulum

ERK Extracellular signal-regulated kinase

FLZ N-(2-(4-hydroxy-phenyl)-ethyl]-2-(2,5-dimethoxy-phenyl)-3-(3-methoxy-4-hydroxy-phenyl)-acrylamide

FXR Farnesoid X receptor

GDP Guanosine diphosphate

GFP Green fluorescent protein

GPCR G-protein-coupled receptor

HBV Hepatitis B virus
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HCC Hepatocellular Carcinoma

HCV Hepatitis C Virus

HGF Hepatocyte growth factor

HSC Hepatic stellate cells

IFNα Interferon-alpha

IGF-1 Insulin-like growth factor 1

IMM Inner mitochondrial membrane

INM Inner nuclear membrane

InsP3 Inositol-1,4,5-trisphosphate

InsP3R Inositol-1,4,5-trisphosphate receptor

IRE1α Inositol requiring enzyme 1α

JNK c-jun-N-terminal kinase

LCA Lithocholic acid

LGMN Legumain

LPS Lipopolysaccharide

mCICR Mitochondrial calcium induced calcium release

MCU Mitochondrial calcium uniporter

MRP2 Multidrug resistance associated protein 2

NAADP Nicotinic acid adenine dinucleotide phosphate

NAD(P)H Nicotinamide adenine dinucleotide phosphate

NAFLD Non-alcoholic fatty liver disease

NE Nuclear envelope

NFAT Nuclear factor of activated T-cells

NFKB Nuclear factor kappa B

NPC Nuclear pore complex

NR Nucleoplasmic reticulum

OAP Oct-1 associated protein

OMM Outer mitochondrial membrane

ONM Outer nuclear membrane

PDGF Platelet-derived growth factor

PERK Protein kinase ribonucleic acid-like endoplasmic reticulum kinase

PH Partial hepatectomy

PIP2 Phosphotidylinositol-4-5-bisphosphate

PKA Cyclic adenosine monophosphate-dependent protein kinase

PKC Protein kinase C

PKG Cyclic guanosine monophosphate-dependent protein kinase

PLC Phospholipase C

PT Permeability transition

PTB Phosphotyrosine binding

PTP Permeability transition pore

PV Parvalbumin

RaM Rapid uptake mode

RASAL Ras guanosine triphosphatase activating protein
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RaSH Rapid Subtraction Hybridization

ROS Reactive oxygen species

RTK Receptor Tyrosine Kinase

RyR Ryanodine receptor

SERCA Sarco/endoplasmic reticulum calcium adenosine triphosphatase

SH Src homology domain

SOC Store-operated calcium channel

STIM1 Stromal interaction factor 1

TBH Tertbutylhydroperoxide

tBHP Tert-butyl hydroperoxide

TUDCA Tauroursodeoxycholic acid

TLCA Taurolithocholic acid

TPC Two-pore channel

TRPV Transient receptor potential vanilloid

UDCA Ursodeoxycholic acid

UPR Unfolded protein response

VDAC Voltage-dependent anion channel
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