
Review

Calcium signalling and pancreatic cell death:
apoptosis or necrosis?
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Secretagogues, such as cholecystokinin and acetylcholine, utilise a variety of second messengers (inositol trisphosphate,

cADPR and nicotinic acid adenine dinucleotide phosphate) to induce specific oscillatory patterns of calcium (Ca2þ ) signals in

pancreatic acinar cells. These are tightly controlled in a spatiotemporal manner, and are coupled to mitochondrial metabolism

necessary to fuel secretion. When Ca2þ homeostasis is disrupted by known precipitants of acute pancreatitis, for example,

hyperstimulation or non-oxidative ethanol metabolites, Ca2þ stores (endoplasmic reticulum and acidic pool) become depleted

and sustained cytosolic [Ca2þ ] elevations replace transient signals, leading to severe consequences. Sustained mitochondrial

depolarisation, possibly via opening of the mitochondrial permeability transition pore (MPTP), elicits cellular ATP depletion that

paralyses energy-dependent Ca2þ pumps causing cytosolic Ca2þ overload, while digestive enzymes are activated prematurely

within the cell; Ca2þ -dependent cellular necrosis ensues. However, when stress to the acinar cell is milder, for example, by

application of the oxidant menadione, release of Ca2þ from stores leads to oscillatory global waves, associated with partial

mitochondrial depolarisation and transient MPTP opening; apoptotic cell death is promoted via the intrinsic pathway, when

associated with generation of reactive oxygen species. Apoptosis, induced by menadione or bile acids, is potentiated by

inhibition of an endogenous detoxifying enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1), suggesting its importance as a

defence mechanism that may influence cell fate.
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Acute inflammation of the pancreas, triggered by such major

precipitants as alcohol and gallstones, currently affects

approximately 50 per 100 000 people per year, with an

increasing incidence.1 It is characterised by autodigestion of

the organ involving premature, calcium (Ca2þ )-dependent

activation of digestive enzymes, vacuole formation in the

apical, granular secretory pole and colocalisation of lyso-

somes and zymogen granules.2,3 Attacks of acute pancrea-

titis resolve spontaneously in a majority of individuals with no

further episodes; however, approximately 20–30% of patients

go on to develop more severe pancreatic injury, often with

extensive pancreatic necrosis and the development of a

systemic inflammatory response syndrome leading tomultiple

organ failure, which may prove fatal.4

Cell death, defined as an irreversible loss of membrane

integrity,5 has been categorised in up to 11 types 6 and is

effected in the pancreatic acinar cell by two principal

processes, apoptosis and necrosis. Apoptosis is genetically

regulated and occurs via both caspase-dependent and

independent pathways,7 while necrosis is thought to be

largely non-programmed and uncontrolled, although this view

has recently been questioned.8 Perturbation of Ca2þ signal-

ling has been linked to both apoptotic and necrotic cell death;9

in the pancreatic acinar cell, oscillatory global rises of

cytosolic Ca2þ may induce apoptosis,10 while sustained

elevations promote necrosis.11,12 These differences may

relate to effects on mitochondrial function associated with

the respective Ca2þ signals. Under physiological conditions

these organelles respond to localised increases in cytosolic

Ca2þ by stimulus-metabolism coupling that generates

NAD(P)H, reductive intermediates that fuel the respiratory

transport chain with consequent production of ATP required

for secretion.13–16 In contrast, global, sustained Ca2þ rises

can drastically reduce ATP production in pancreatic acinar

cells.12

For many years it has been accepted that the major form

of pancreatic acinar cell death is necrosis17 and current

evidence suggests that the balance between apoptosis and

necrosis may influence the severity of acute pancreatitis.18,19

For example, induction of pancreatic acinar cell apoptosis
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protected mice against cerulein-induced pancreatitis,20 while

a recent study has indicated that suppression of the apoptotic

cascade in pancreatic acinar cells, via inhibition of caspases,

leads to necrotising pancreatitis.21 This review will focus on

the role of Ca2þ signalling in the determination of pancreatic

acinar cell fate.

Necrosis. Necrosis is characterised by severe patho-

physiological changes including mitochondrial swelling, plasma-

lemmal disruption and ultimately leakage of cellular contents.

The latter triggers acute exudative inflammation of the

surrounding tissue; subsequent activation and infiltration of

neutrophils is thought to increase intracellular digestive enzyme

activation and exacerbate pancreatitis.22

Over a decade ago we proposed that abnormal, prolonged

elevation of cytosolic Ca2þ is the crucial trigger of pancrea-

titis.23 Under physiological conditions, Ca2þ is tightly regu-

lated in discrete cellular microdomains, which when disrupted

may result in severe pathological consequences.24 Ca2þ

signals in the pancreatic acinar cell, generated by the second

messengers inositol trisphosphate (IP3), nicotinic acid ade-

nine dinucleotide phosphate (NAADP) and cyclic ADP-ribose

(cADPR), are modulated in a precise spatiotemporal manner

necessary for normal secretory function, and are generally

confined to the apical pole.16 A superficial perigranular

mitochondrial buffer barrier restricts the spread of Ca2þ

signals to the basolateral area of the cell,25 an action that may

be shared by the closely situated Golgi apparatus.26

Hyperstimulation with cholecystokinin (CCK) causes acute

pancreatitis in all species so far examined,1 and in pancreatic

acinar cells obtained from mice repeatedly injected with the

CCK analogue cerulein, there is a loss of apical to basolateral

progression of secretagogue-induced Ca2þ signals, suggest-

ing that normal homeostatic control becomes compromised.27

Furthermore, supra-maximal concentrations of CCK-induced

elevation of baseline Ca2þ in isolated pancreatic acinar cells

which was strongly linked to premature intracellular activation

of trypsinogen, the hallmark of acute pancreatitis,2,3 an effect

that may involve activation of the vacuolar ATPase.28 This

action to raise cytosolic Ca2þ is shared by other diverse

pathological stimuli that cause pancreatic injury, including

non-oxidative ethanol metabolites,11,12 duct ligation29 and bile

acids.30–32 In addition, recent evidence has shown that the

enzyme phosphatidylinositol 3-kinase (PI3K) mediates pro-

longed elevations of cytosolic Ca2þ , under conditions of

agonist stimulation, via an inhibitory action on the sarco-

endoplasmic reticulum Ca2þ ATPase (SERCA) pump;33 the

PI3K system has been implicated in the development of acute

pancreatitis since pharmacological inhibition or knockout of

this enzyme was protective in experimental animal models.34,35

Importantly, abrogation of sustained rises of Ca2þ , using

the intracellular Ca2þ chelator 1,2-bis(O-aminophenoxy)

ethane-N,N,N0,N0-tetraacetic acid (BAPTA), prevents

zymogen activation induced by CCK hyperstimulation,2 bile

acid-induced cell damage and death30 and necrosis caused

by non-oxidative ethanol metabolites.11

Apoptosis. Apoptosis is a genetically regulated,

programmed form of cell death that can occur by two

principal routes: extrinsic (receptor-mediated) and intrinsic

(classical: mitochondrial) pathways.9 It is characterised by

distinct features that involve a cascade of events, and which

ultimately lead to removal of the dead cell from the tissue;

unlike necrosis, apoptosis does not involve release of

intracellular contents and thus does not elicit inflammation.6

Cell and organellar shrinkage, membrane blebbing,

condensation of nuclear chromatin and DNA cleavage, and

flipping of phosphatidylserine moieties from the inner to the

outer side of the plasmalemmal membrane are typical

events, the latter permitting detection of acinar cell

apoptosis experimentally via annexin V staining using

fluorescence microscopy.10,36 Apoptotic pathways employ

caspases, aspartate-specific cysteine proteases, as the key

elements of the initiation and execution of programmed cell

death, with at least 14 isoforms currently resolved.37

Caspases are highly conserved through human evolution

and are currently divided into ‘initiator’ (caspases 8 and 9),

which induce the proteolytic cascade that results in activation

of ‘executioner’ (caspases 3, 6 and 7), that cleave numerous

target proteins. Cellular apoptosis may also occur

independently of caspases via the action of lysosomal

cathepsins, such as cathepsin D, which has been shown to

translocate from lysosomes to the cytosol in response to

apoptotic stimuli.38 Furthermore, the scenario appears even

more complex, since activation of the intrinsic route by the

extrinsic pathway has been recently demonstrated in

pancreatic acinar cells.21

The role of Ca2þ in the induction of apoptosis has been

recognised for several decades. For example, early studies

have shown that the Ca2þ ionophore A2318739 and the

SERCA pump inhibitor thapsigargin,40 which raise cytosolic

Ca2þ , both induced apoptosis, an effect prevented by Ca2þ

chelation with BAPTA. Ca2þ is known to regulate the intrinsic

apoptotic pathway,41 and Ca2þ -dependent opening of the

mitochondrial permeability transition pore (MPTP) is consi-

dered to be a critical feature that leads to cytochrome c release

into the cytosol.42 Once released, cytochrome c, apoptotic

peptidase activating factor-1 and pro-caspase 9 combine to

form an apoptosome that activates caspase 9, with subse-

quent activation of caspase 3 that cleaves specific apoptotic

targets causing cell death.43 However, recent evidence has

suggested that mitochondria may undergo MPTP formation

and cytochrome c release in cells that lack isoforms of the

adenine nucleotide translocator (ANT); the porewas no longer

regulated by ANT ligands, while higher Ca2þ was required for

permeability transition.44 Importantly, hepatocytes without

ANT remained responsive to various initiators of cell death,

questioning the importance of the MPTP in induction of

apoptosis. Furthermore, cells from cyclophilin-D-deficient

mice did not undergo cyclosporin A-sensitive MPTP formation

but died normally in response to various apoptotic stimuli.

These animals showed resistance to necrotic cell death

induced by reactive oxygen species (ROS) and Ca2þ over-

load, suggesting the importance of the MPTP in necrosis, but

not apoptosis.45

The features of the endoplasmic reticulum (ER) Ca2þ store

in relation to secretagogue signalling have been extensively

characterised in the pancreatic acinar cell.16 The ER and

mitochondria possess a close spatial relationship and recent
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evidence has pointed to the potential importance of ER-

mitochondrial Ca2þ transfer to cell death,46 with the proposi-

tion that localised Ca2þ elevations, triggered via release from

the ER, might induce or facilitate mitochondrial features of

apoptosis. In particular, activation of IP3 receptors may exert

a pro-apoptotic role,47 while complex effects of anti-apoptotic

Bcl-2/Bcl-xL and pro-apoptotic Bax/Bak proteins on

ER membrane Ca2þ permeability and mitochondrial function

point to an important relationship between ER stress and

cellular apoptosis.46,48

Bile acid effects on cell fate. In 1901, Opie49 proposed the

common duct theory, which suggested that gallstones that

become impacted at the ampulla of Vater cause bile reflux

into the pancreas, which in turn causes acute pancreatitis.

The detrimental effects of bile on the pancreas have

subsequently been confirmed in experimental animal

models.50,51 In isolated pancreatic acinar cells, bile acids

induce elevations of cytosolic Ca2þ that are oscillatory or

sustained in nature (Figure 1a)31 and which result in Ca2þ -

dependent cell death.30 The effects of bile are associated

with partial mitochondrial membrane depolarisation, when

assessed using the sensitive ‘dequench’ mode of tetramethyl

rhodamine methyl ester (TMRM) measurement but not by the

classical mode (Figure 1a), an effect that is inhibited by

chelation of intracellular Ca2þ with BAPTA.32

Recently, we described an acidic, thapsigargin-insensitive

and bafilomycin A-sensitive Ca2þ store located in the

secretory granule area of pancreatic acinar cells, which is

responsive to the second messengers IP3, cADPR and

NAADP (Figure 1b).52 While IP3 and cADPR cause Ca2þ

release by activation of IP3-dependent receptors (IP3Rs) and

ryanodine receptors (RyRs), respectively, NAADP may

activate a novel Ca2þ channel in the acidic compartment53

or open RyRs via a mechanism distinct from that of cADPR.54

The exact location of the acidic store is still uncertain, with

endosomes and lysosomes as possible candidates;53 how-

ever, the most likely association has been made with

zymogen granules (ZGs), which store the inactive digestive

enzyme precursors.52,55 Our recent results show that bile

acids, in addition to inducing Ca2þ release from the

endoplasmic reticulum (ER) store, are able to stimulate the

acidic store in the apical ZG area.56 Using a novel two-photon

permeabilisation technique, we have found that the bile acid

taurolithocholic acid sulphate (TLC-S) specifically activated

RyRs, via an NAADP-dependent mechanism, to release

stored Ca2þ (Figure 1b).

It is generally recognised that the crucial step in the

development of pancreatitis is activation of precursor en-

zymes in the zymogen granules.1 A high intra-granular

concentration of Ca2þ is required for stability of granule

contents,57 most of which is tightly bound together with Hþ

ions within the granular matrix. IP3 and cADPR induce Ca2þ

release from the zymogen granules,55 a feature common to

other types of secretory granules,58,59 and it is feasible that a

local perigranular rise of Ca2þ induced by these second

messengers, or by bile acids acting at RyRs,56 would in turn

activate Ca2þ -dependent Kþ channels present in the

granular membrane, permitting the uptake of Kþ into the

granule. Since the matrix behaves as an ion exchanger,59

Ca2þ and Hþ would be replaced by Kþ , causing disaggrega-

tion of the matrix that may facilitate activation of trypsinogen

to trypsin. While disaggregation is necessary for normal

secretion, excessive cytosolic Ca2þ concentrationsmay induce

premature disaggregation and pathological intracellular di-

gestive enzyme activation, a hypothesis that awaits thorough

evaluation in pancreatic acinar cells.

Recently, we have directly studied the effects of acute

application of TLC-S on pancreatic acinar cell fate, and have

shown that it causes caspase activation, consistent with

induction of the apoptotic death pathway (Figure 1c).36

Interestingly, this action is markedly potentiated when an

endogenous detoxifying enzyme NAD(P)H:quinone oxidore-

ductase (NQO1; DT-diaphorase) is inhibited, and our results

suggest that acute generation of ROS by bile acids may be

important for the promotion of pancreatic acinar cell death.

Bile acids are recognised precipitants of acute pancreatitis

the detrimental actions of which may involve oxidant stress

in vivo,51,60 and our results are in accordance with a recent

detailed study in hepatocytes, showing that TLC-S activated

caspases 8, 9 and 3 via NADPH oxidase-mediated ROS

production.61

Oxidant stress: Ca2þ , ROS and apoptosis. Oxidative

stress has been implicated in the development of acute

pancreatitis in diverse animal experimental models, including

fatty acid infusion, ischaemia, pancreatic duct obstruction,

gallstone pancreatitis and alcohol ingestion,60,62–64 and

measured in patients with mild and severe acute

pancreatitis.65 Previously, we have demonstrated the vital

role of Ca2þ on MPTP opening in pancreatic acinar cell

apoptosis induced by the oxidant menadione.10 Crucially, the

Ca2þ chelator BAPTA prevented both menadione-induced

repetitive cytosolic Ca2þ spikes and apoptosis, instigated via

the intrinsic apoptotic pathway. Our study suggested that

the characteristics of Ca2þ signals generated by menadione

and physiological secretagogues might underlie differences

in their effects on cell fate. For example, physiological

concentrations of CCK and acetylcholine (Ach) induce

oscillatory cytosolic Ca2þ rises, which were initiated in the

apical secretory granular pole, and the spread of which to the

basolateral area was substantially delayed and diminished by

the mitochondrial perigranular and perinuclear buffer barriers

(Figure 2a);25,66 such stimulation did not cause apoptosis.

In contrast, menadione, which elicited apoptosis, produced

Ca2þ transients that were also generated in the apical pole,

but which rapidly spread to the basal and nuclear regions of

the acinar cell, indicating essential differences between the

oxidant and the physiological secretagogues. Menadione

was found to elicit partial, transient mitochondrial

depolarisation that was inhibited by BAPTA, and by

bongkrekic acid, an inhibitor of the MPTP,67 suggesting

that Ca2þ -dependent MPTP opening in pancreatic acinar

cells and consequent mitochondrial inhibition might explain

the rapid spread of menadione-induced Ca2þ waves.

Interestingly, when inhibition of mitochondria with antimycin

A was imposed, ACh-induced Ca2þ reponses effectively

mimicked those of menadione; however, apoptosis did not

occur10 suggesting that other factors may contribute to

menadione-induced pancreatic acinar cell death (Figure 2a).
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Figure 1 (a) TLC-S (100mM) induces (i) variable patterns of cytosolic Ca2þ elevations in three individual pancreatic acinar cells from the same acinar triplet31 and (ii)
partial mitochondrial depolarisation, seen as changes of TMRM fluorescence (‘dequench’ mode); full depolarisation produced by subsequent application of the protonophore
CCCP (10mM).32 (b) (i) Schematic model of second-messenger interactions with acidic and ER Ca2þ stores. IP3 activates IP3Rs in both stores, whereas cADPR and NAADP
activate RyRs in both stores, but via separate binding sites and/or activation mechanisms.52 (ii) Images showing the two-photon permeabilisation technique of a doublet of
pancreatic acinar cells (loaded with Fluo-5N AM; white dot shows region of permeabilisation by two-photon laser beam, as described by Gerasimenko et al.52). Note that only
the lower cell has been permeabilised and is initially bright, due to diffusion of Texas Red dextran into the cytosol, but becomes paler on washout. (iii) TLC-S (200mM), added
in the presence of thapsigargin (10 mM), induced further additional Ca2þ release from an acidic store located in the secretory granule (apical) area (blue), whereas no changes
were detected in the basolateral area (red).56 (c) Effects of bile acids on cell fate. (i) Typical light-transmitted and R110-aspartic acid amide fluorescent images and (ii) mean
data showing that TLC-S (300 mM) induced caspase activation in pancreatic acinar cells that was greatly potentiated when the detoxifying enzyme NQO1 was inhibited by
DMN (30 mM), whereas DMN alone had no effect36
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Figure 2 (A) Schematic model illustrating the differences in Ca2þ homeostasis and induction of the PTP after stimulation with (a) menadione, (b) ACh or (c) stimulation
with ACh plus antimycin A. Generation of ROS by menadione may facilitate opening of the mitochondrial PTP and spread of Ca2þ waves from the apical to basolateral regions
of the cell (BA, bongkrekic acid; PS, phosphatidylserine; ROS, reactive oxygen species; UN, Ca2þ uniporter).10 (B) (i) Transmitted light and CM-H2DCFDA fluorescence
images of a doublet of acinar cells, showing ROS generation induced by menadione (30mM) leads to (iii) apoptosis (measured with annexin V FITC) in pancreatic acinar cells.
This effect of menadione on ROS and cell fate was significantly greater when NQO1 was inhibited by DMN, whereas DMN alone did not generate ROS or cause apoptosis
per se36
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We have recently demonstrated that generation of ROS is

essential for oxidant-induced apoptosis of pancreatic acinar

cells.36Quinones, such asmenadione, enter fast redox cycles

within the cell, which consume NAD(P)H and produce ROS.

Inhibition of the enzyme NQO1, to prevent menadione

detoxification by two-electron reduction, potentiated both

ROS generation and consequent apoptosis, while the novel

NQO1 inhibitor 4-dimethoxy-2-methylnaphthalene (DMN), a

menadione analogue designed not to undergo redox cycling,

neither produced ROS nor affected cell fate per se (Figures 2b

and 3). NQO1 is thought to be an important cellular defence

mechanism to counteract electrophile and oxidant damage,68

possibly by maintaining co-enzyme Q in a reduced, anti-

oxidant state.69 It is overexpressed in acute pancreatitis and

many cancers including pancreatic adenocarcinoma,70 and

may be an important early biomarker of disease. A recent

study has shown that increased expression of NQO1 reduced

ROS generation induced by tert-butyl hydroperoxide and also

suppressed tumour necrosis factora- and interferong-induced

NO production via iNOS,71 while menadione-induced toxicity

was augmented in NQO1-deficient mice.72 Since earlier

observations have indicated that transient Ca2þ signals alone

are insufficient to induce opening of the MPTP and apoptosis

per se,10 our recent data strongly suggest generation of ROS

may constitute an important additional component that

promotes acinar cell death. This is in accord with a previous

study in hepatocytes, demonstrating MPTP opening via

menadione-induced oxidative stress73 and consistent with a

model in which oxidation of MPTP components sensitises

Ca2þ -dependent pore opening.74,75

Cell fate and energetics: the importance of mito-

chondrial ATP production. Under physiological

conditions mitochondria respond to local increases of

cytosolic Ca2þ by generating ATP via stimulus-metabolism

coupling.13,14,16 However, Ca2þ overload can drastically

reduce ATP production and this may constitute a vital switch

between apoptosis and necrosis that ultimately determines cell

fate.76 It has been suggested that promotion of necrosis

through ATP depletion might in part be mediated via an inability

of the apoptosome to activate the initiator caspase 9.18

Recently, an important mechanism whereby alcohol may

induce Ca2þ -dependent necrotic acinar cell death has been

identified.12 Fatty acid ethyl esters (FAEEs), non-oxidative

metabolites of ethanol, are generated at higher concentrations

within the pancreas than any other organ,77–79 and unlike

ethanol per se, are able to induce experimental pancreatitis

in vivo.80 Non-oxidative ethanol metabolites induce persistent,

global, cytosolic Ca2þ signals in a concentration-dependent

manner,11 initiated via IP3 receptor-mediated Ca2þ release and

sustained by depolarisation of mitochondria,12 the organelle at

which FAEE accumulation and hydrolysis to fatty acids (FA) is

thought to occur.81 The consequent mitochondrial impairment

leads to a depletion of intracellular ATP, causing run down of

the SERCA and plasma membrane Ca2þ -dependent pumps

and consequent inadequate clearance of raised cytosolic

Ca2þ (Figure 4).

Interestingly, FAEE-induced mitochondrial impairment in

pancreatic acinar cells occurs as a result of the formation of

FAs from FAEE hydrolysis, since FAEE esterase inhibition

prevents FAEE-induced mitochondrial impairment, allowing

ATP to be generated and thus protecting the cell from

cytosolic Ca2þ overload.12 This mechanism explains not only

how ethanol may induce severe acute pancreatitis through

mitochondrial inhibition but also provides a basis for acinar cell
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injury in pancreatitis induced by hyperlipidaemia, a recog-

nised risk factor for the disease. In accord, it has previously

been demonstrated that infusion of oleic acid, to induce

acute pancreatitis in vivo, caused dramatic decreases of

intracellular ATP,62 a feature also common to cerulein

hyperstimulation.82 In the cerulein model of pancreatitis,

isolated mitochondria exhibit damage, including swelling and

disruption of cristae.83 The importance of a decline of the

ATP :ADP ratio in pancreatic acinar cells has also been

shown recently from experiments in which energy-dependent

Loss of mitochondrial membrane potential and cytosolic Ca2+ rise
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Figure 4 Excess fatty acids, which are formed from the breakdown of non-oxidative ethanol metabolites (FAEEs) in mitochondria,12,81 induce sustained increases of
cytosolic Ca2þ and inhibit mitochondrial function. Palmitoleic acid (POA; 50–100mM) (a) depolarised mitochondrial membrane potential (see light-transmitted and TMRM
fluorescence images (left), and graph red trace) and elevated cytosolic [Ca2þ ] (Fluo4 fluorescence blue trace) measured simultaneously in dual-loaded pancreatic acinar
cells, (b) concomitantly decreased NADH (red) and increased FAD autofluorescence (green) in the perigranular mitochondrial region, (c) depleted cellular ATP, seen as an
increase in Mg Green fluorescence; subsequent addition of the protonophore CCCP, which depolarises the inner mitochondrial membrane, caused no further change. (d)
Provision of supplementary ATP to the interior of the cell, via patch-pipette, prevented the rise of cytosolic Ca2þ induced by POA in the patched cell (blue), whereas a typical
sustained Ca2þ response was obtained in a nearby non-patched cell (red) that did not receive ATP12
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necrosis is promoted by endotoxin following chronic alcohol

exposure in rats.84 Furthermore, bile salts induce prolonged,

global, cytosolic Ca2þ signals31 that are associated with

mitochondrial depolarisation,32 although this effect on mito-

chondria appears less pronounced than with non-oxidative

alcohol metabolites and may indicate important differences

between the toxins. Such mitochondrial inhibition appears to

provoke compensatory protective measures in the cell,

including an upregulation of mitochondrial ATP synthase,

observed after both cerulein hyperstimulation and chronic

alcohol exposure.85 The importance of ATP depletion for

pancreatic acinar cell fate is further underscored by experi-

ments in which addition of ATP to the cell interior, adminis-

tered via a patch pipette, was able to reverse the detrimental

Ca2þ signals induced by alcohol metabolites. For example,

FA-induced sustained cytosolic Ca2þ rises, via the release

from ER Ca2þ stores and subsequent Ca2þ entry, were

completely abolished in cells receiving supplementary ATP,

whereas control cells produced large, sustained elevations of

cytosolic Ca2þ (Figure 4)12 that cause cellular necrosis.11

Conclusions

It is clear that Ca2þ signalling is tightly regulated within

subcellular microdomains in the pancreatic acinar cell for

normal physiological processes,24 and evidence suggests

that different patterns of cytosolic Ca2þ rises influence both

apoptotic and necrotic cell death pathways. The balance

between these two principal types of cell death might

influence the severity of acute pancreatitis; however, whether

induction of apoptosis would be beneficial in a clinical setting

remains unproven. The current data in pancreatic acinar

cells indicate that transient release of Ca2þ from the ER and

acidic stores, induced by mild stimuli, such as oxidant stress,

promotes apoptosis via the intrinsic pathway, when an

additional factor, for example, the generation of ROS is

present. This action may depend on a partial mitochondrial

depolarisation and transient opening of theMPTP, which does

not adversely influence ATP production.41 More severe

insults, on the other hand, cause depletion of Ca2þ stores

with the induction of sustained global Ca2þ elevations that

inhibit mitochondrial function with a consequent drastic fall

of ATP production, paralysing energy-dependent processes

such as the plasmalemmal and ER Ca2þ pumps, and also

prematurely activate digestive enzymes (Figure 5). Interven-

tions that address either inhibition of sustained Ca2þ rises or

protection of mitochondrial function may prove beneficial in

the treatment of acute pancreatitis.
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