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Calculability conditions are discussed for local gauge theories with Higgs

type symmetry breaking.  We focus on the naturalness of Ve-universality; the

naturalness of the Cabibbo angle 0 ; the naturalness. of. CP-violating phases;

and the naturalness of non-leptonic AI = 1/2. In this context we examine

many published gauge models and construct others to illuminate the questions at

hand.  We note that naturalness of Ve-universality for charged currents does not

necessarily imply universality for neutral currents, (natural "res,tricted
,,

universality) and emphasize  the  need for
ve-beam

experiments.     For    SU(2)  x U(1)

and  SU(2) >(U(1) >(U(1)  we give first examples of how a non-trivial natural 0

can appear. Models with CP-violation are classified as to whether their

CP-violating phases are natural  or  not.    For    0(4) x U(1)    we  give a first

example in which all the above naturalness criteria. can be implemented.  Here the

natural Ve-universality is necessarily restricted.  The principal tool used in

these investigations is the strict renormalizability relative to a gauge group

11 enlarged by discrete symmetries; and the union of representations reducibie'43

•       under the gauge group to irreducible ones under the enlarged group.  To implement

this program, it is sometimes necessary to introduce Higgs couplings involving
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right-handed neutrinos; here the zero neutrino mass is associated with a discrete

symmetry which remains unbroken upon spontaneous breakdown.  We also find that

strict renormalizability can lead to mass relations between fermions.  In

0

0(4)  x U(1) models,  such mass relations  as  well as right-handed neutrinos  are

necessary ingredients.  Furthermore, for these models the spontaneity of

CP-violation acquires an operational significance, namely as a discrete symmetry

necessary (but not sufficient) to give a CP-violating phase a natural value (90').

While the models we discuss are rather cumbersome, particularly due to the

complexity of the symmetry breaking mechanism, we expect that the tools we have

developed may well have wider applicability.
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'          I.  Introduction

Many gauge models of weak and electromagnetic interactions have been

devised in the last few years.  The basic strategy for their construction

consists in a reconciliation of field theoretical and phenomenological require-

ments.  From the side of field theory one insists on the renormalizability of

the scheme as the principal predictive theoretical tool.  From the side of

phenomenology one attempts to incorporate all the known regularities of the '

weak interactions.  What is known here almost entirely concerns the rather low

energy and low momentum transfer domain. Indeed, it is our ignorance of high

energy weak phenomena which allows, at this stage, for so much play in model

building. Thus, experiments have not even confirmed the actual existence of

massive vector bosons, the key ingredient in all models. In addition, there

are many other questions which when answered will sharply delimit the present

1
freedom of theoretical speculation, such as:  are there other weak currents

than the one customary pair of charge carrying currents?. are there heavy

leptons? are there charmed hadronic states and, if so, what is the scheme

which combines charm with known hadronic symmetries?

While, therefore, the future lies almost entirely in new experimental

information, there is nevertheless much room for further theoretical study at

this time.  Beyond the construction of further models, there exist already a

number of problems of principle which in some way or other have to do with the

question:  to what extent is some given model phenomenological.
.,

This question has already been much discussed in the context both of

2 3.4
specific problems related to some particular gauge model (Ue-universality '   ;

56
strong isospin invariance as a natural versus an artificial symmetry ' ; and

7others); and of broader considerations on the presence and role of ceunterterms

: --
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and (related thereto)   o f "zeroth order relations."8    Thus  it is known  that,   in

order to answer our question, ene must first of all exhibit the Lagrangian  

9
of a given scheme in its strictly renormalizable  form.  .This means in particu-

lar that all necessary counter terms are included  in    .   Then one phenomeno-

logical parameter can be associated with each independent counter term (except

wave function renormalization counter terms).  All observable quantities in the

theory are then expressible in terms of these parameters.  For example, in spin

1/2 electrodynamics, charge and mass need renormalization so they are the

phenomenological parameters.     We  call a quantity "calculable"  if no corresponding

counter term need be introduced.  In ordinary theories, calculability is

determined simply by power counting.  For example, in spin 1/2 electrodynamics,

the anomalous magnetic moment is calculable because the corresponding counter

term is not renormalizable.

In a theory with spontaneously broken symmetry, the situation is more

complicated. The counter terms needed for renormalizability have the symmetries

of the Lagrangian before spontaneous breakdown. In such a case, there may be

non-trivial relations among the counter terms. If so, the masses and coupling    -

constants appearing in the Lagrangian will not be independent phenemenological

parameters. Rather there  will be "zeroth order relations" among these quantities,

78
the corrections to which will be calculable higher order effects. '   We will

call such relations "natural. " For phenemenological reasons  it is sometimes

assumed that there are relations among masses and/or coupling constants which

'.,

are not zeroth-order relatiens. The "corrections"  to such relations  are

6 ..
uncontrollable. Relations  of  this  kind are called -artificial. "

10,11
As an example of a zeroth order relation, consider the Weinberg

SU(2)  X U(1) model  in its original  form. It contains  a  pair of charged vector

f

mesons W   with mass  M   and a neutral vector meson with mass  M  .  Another
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parameter in the model is the mixing angle   0w,  (tan 0w  is a ratie of gauge

coupling constants) . Associated with the three parameters   M    M ,   and   0w,--W' Z

there are only two independent counter terms, so only two of the parameters

are phenomenological. There is a natural, zeroth order relation ameng them:

.

cos20w   =   M  / M    .     Thus       M   cos20w - M is calculable and, since all couplings

in the theory are relatively weak, it is small.  To leading order, the finite-

34
ness of this expression has been verified explicitly. '

If the Weinberg model is correct, then one combination of parameters,

sin2 0wM  ,  is already known because it is related to   e2/G .  A measurement

of  M '  for instance, would then yield a determination ef all three parameters

and make specific predictions about, say, neutral current effects in  vw-electron

scattering.

The naturalness of this relation between  M ' MZ' Sw  depends on the

details of the Higgs meson structure of the model; in particular, on the

assumDtion that the only scalar meson multiplet in the model is the one doublet

needed to give mass to the fermiens. This choice has the virtue of simplicity,

but on the ether hand, it is possible to enlarge the Higgs system without

significantly changing the low energy predictions. The only important new

feature of such a modified SU(2) xu(1) model (aside from the additional Higgs

mesons themselves) is that  M , Mz, and 0w become independent phenomenological

parameters, and their natural relation is lost. In such theories v -electron
U

scattering would not be completely predicted, but instead would serve to
.,

determine the additional parameter.

This discussion illustrates how natural relations serve to.delimit the

number of measurements necessary to reach the predictive level of a gauge theory.

Closely related to this kind of problem are questions whether (approximate)

regularities already observed can be translated, in the context of gauge theory,
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into "natural" relations; in other words whether these regularities are a

necessary theoretical consequence of the choice of gauge model, rather than

just an ad hoc phenomenological input.  An illustrative example is Ve-universality.
-

If a gauge group and its adopted representation content are such that the

»          equality of the   vee-  and  vup-couplings in the charged current is dictated

by the structure of the strictly renormalizable Lagrangian before symmetry

breakdown, then the unit value of the coupling constant ratie will be a zeroth

order relation, the corrections to which will be calculable higher order

effects. This calculability is obviously a sensible theoretical constraint

to be imposed on the choice of gauge model.  This question will be discussed

in more detail in Sections II (a) and III (b).
''

It has become customary to choose the set of scalar fields by a tacit

criterion of minimality; namely by introducing just such fields sufficient to

attain mass where mass is needed. It is the main point of the present study

that it may be worthwhile to replace this criterion by the alternative one to

attain as much naturalness or predictive power as possible. In the example just

discussed of the Weinberg model, these criteria (with respect beth to the

naturalness of the (M ' MZ' 0W) relation and to ue-universality) are equivalent.

But, as we will see, this is not always the case.

In this paper, we consider in detail some questions of calculability and

naturalness in specific models with the aim of developing insight and theoretical

tools which may be generally useful in model building.  We focus on four topics,
V

all essentially concerned with low energy parameters:

a) Naturalness of ve-universality.

b) Zeroth order relations involving the Cabibbo angle 8.

c) Naturalness of CP violating phases.

d)  Naturalness of the non-leptonic   AI = 1/2   rule.
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We limit ourselves to the context of local gauge theories with a spontaneous

breakdown mechanism induced by the presence of scalar fields, some of which

acquire non-zero vacuum expectation values. It is sometimes conjectured that

-'        this Higgs mechanism itself is of a largely phenomenological character and that

the actual symmetry breakdown mechanism is of a more fundamental nature. Since

we have nothing to.contribute to this question, we will stick to the Higgs
[.

mechanism.  In fact, for the purpose of the present study we shall take the

details of the Higgs meson couplings very seriously.

Of course, naturalness is a notion valid to all orders in perturbation

theory. The order of radiative correction in which lack of naturalness first

becomes manifest is often characterized by parameters  « a = 1/137, (for examples

see Sections II(b), III(b)).  Hence caution is needed in the study of natural-

ness questions by graph methods.

Since we do not explicitly consider strong interaction effects in this

paper, it may be asked if we do not push things too far on too narrow a front.

It would appear that there is no such objection if strong interactions are

sufficiently damped at high virtual frequencies, as is for example the case if

they enjoy asymptotic freedom.  However, it may be well to bear such reservations

in mind until we understand better the union with strong interactions.

The next two sections are organized as follows. Section II is devoted to

.gauge groups in which only a single pair of charged vector bosons appear. These

comprise of course SU(2) ,x U(1)   and   0(3) ,   but we shall also  find it instruc-
'.,

tive to consider   SU(2) X U(1) X U(1), which contains two massive neutral vector

bosons.  In Section III we discuss instances where two pairs of charged vector

bosons enter, the groups discussed  are   0(4)    and   0(4) x U(1).

We start with the analysis. of natural universality in Section II(a) and

11.12
briefly review the published models, two of which are natural, '   the others
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artificial in this regard.  We then raise a quite general question:  what is

the physical meaning of universality?
.

As is well known, all physical information bearing on universality stems

from observations of semileptonic charge changing processes.  In the construc-

tion of gauge models, it has almost invariably been assumed tacitly that this

universality property extends   to all currents.     From  here on, "universality"

shall refer to this situation which is met (whether naturally or artificially)

in all SU(2) x U(1)   and 0(3) models which have an equivalent representation

content for muon type and for electron type leptons. In the absence of informa-

tion to the contrary, we are led to ask the following question. Is is possible

to construct models such that:  a) the universality in the |AQ 1=1hadronic

processes is natural while  b) in neutral current processes this universality

does not apply?  We shall refer to such a situation as natural restricted

universality.  The formal meaning of natural universality is therefore that the

substitutional invariance V ++ V - e++11 is natural for all currents, while
e   U'

it does not apply to some currents in the restricted case.

The physical meaning of the restricted situation is that it is no longer

true  that  (up to lepton mass corrections) the cross sections  for    v   +e +v   +e
P       U

and for
ve + 11 + ve + 11

are equal.  Nor (more importantly in practice) is it true

that the reactions

v    + nucleon   +  v    + X, (1.1)1.-J W              U

ve + nucleon  +  ve + X, (1.2)

have equal cross sections.  Nevertheless, as we shall show by examples, the

cross section ratio for the reactions (1.1) and (1.2) may have simple
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calculability properties. In the context of a gauge theory, we can evidently

have restricted universality if and only if inequivalent representations are

involved for muon and for electron type leptons, that is, if heavy leptons exist

and/or if there is more than one neutral current.  We give examples of this in

»'        Sections II(a) and III(b). Since a breakdown of full universality has been a

subject of much theoretical speculation through the years (especially in con-

nection with lepton mass problems), we can only hope that experimentation with

e-neutrino beams will not be too far off.

In constructing examples of restricted universality, we shall introduce a

tool to be used repeatedly in the sequel, namely the extension of a local gauge

group (  by a discrete group  S,  such that in the limit of unbroken symmetry

we  deal  with  the full invariance under the group  (   x  S. The demand of strict

renormalizability relative to     is to be extended to strict renormalizability

relative to OLXS. It is a further and crucial feature that we shall need

(1

representations which are irreducible under   x S,  though reducible under

  alone.  This
same situation, reducibility relative  0  , irreducibility

relative to       x S will occur  time and again  in this paper. Indeed  it  is

by this same de ice that we shall demonstrate how to construct certain natural

values for the Cabibbo angle; and for CP-violating phases.  As the patient

reader will see, the distinct problems discussed in this paper have in fact

many technical traits in common.

In the examination of universality we came upon some features novel to
,-,

model building. (a) As we shall see (cf. Eqs. (2.2)-(2.6) below), it is

necessary in one example to introduce explicitly right-handed e-neutrinos

in the Higgs couplings. The necessity arises  from the structure  of     S  .

Nevertheless, this neutrino remains massless.  The reason is that one discrete
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element of  S  remains as an invariant operation even after spontaneous symmetry

breakdown. In any event the answer to the question:  why is the neutrino

massless?  (if indeed it is) may well contain a clue to the structure of gauge

theories.  In this context, the old answer:  75-invariance cannot tell the

«         whole story since the neutrino is not singled out by this invariance in the

symmetry limit.

In another example (cf. Eqs. (2.9)-(2.13) below) we find that implementation

of strict renormalizability leads to a quadratic mass relation between fermions.

This relation is natural,  in the technical sense,  and it is  "type one" in a

8
recently given classification.

In Section II(b) we turn to the question of the Cabibbo angle  8  and first

show that  0  is a phenomenological parameter (a renormalization constant) in

all published models that fall under the heading of Section II.  We report

here on two models in which  0  has a natural value. In the first example, the

zeroth order value of  0  is a pure number, namely 450 (hence  tg e =1+0(a)),

a case of methodological though hardly of physical interest. The second example

is furnished within the context  of    SU(2) x U(1)  x U(1).    Here  a  model  is  con-

structed in which  0  is a natural function of the (four) renormalized quark

masses.

The final part (c) of Section II is devoted to a brief discussion of gauge

models with a single pair of charged vector bosons in which CP-violation is·

incorporated.  The inclusion of these effects means that, in some ways or other,

a CP-violating phase (or phases) enter in the gauge model.  We note that these

phases are renormalization constants in the models of this class proposed so

far.  The simple argument for showing this is essentially identical to the one

needed for the proof that  0  is phenomenological in most cases.

."
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In summary, in Section II the following new points emerge:  (a) We learn

how to implement Ve-universality in a restricted way, (b) The necessity may

arise for having right-handed neutrinos appear in Yukawa couplings to Higgs

fields, (c) Natural fermion mass relations may arise as a concomitant to the

implementation of naturalness.  All these will reappear as necessary ingredients

for the class of models discussed in Section III. Since the very design of

these models is based on the notion that Ue-universality and the origins of e

and of CP violation are inseparably intertwined, it is no longer possible, as

in Section II, to treat these problems one by one.  Let us briefly recapitulate

the main idea.

13,14,15The phenomenological starting point of these models is the assump-

tion that there are two instead of the usual one pairs of charged currents,

+ +
coupled to pairs   Wi, W    of charged vector bosons, as follows.

61 E .F 1,[1+Ys),A  -t-  0, 927*(ilys)=  4-2 3,  * c "1&32 +'"'JX         /1, 3)

+9- [fir c '+8-)2 -1-1 19 4 0+13-j€ t&. 3. 4.(1+ES)1,+,'.fi< 41„c.

where .... denote other terms as they may (and indeed will) arise.  a,B,Y,6,

are phases:  |a| = |B| = |y| = |61 =1. This condition ensures pe-universality

(always on a phenomenological level).  The imposition of Cabibbo universality

between U-decay and p- and A- 8-decay implies that these phases cannot all be

real. In fact the latter condition implies that

-

Re a*By&* =0. (1.4)

Now any three of these four phases may be eliminated in favor of a single

phase by choosing appropriate conventions . Example:     we  can  put       a=B=1
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by redefining   e   and  U . And we can effectively put   y=1 by redefining

W2 + Y*W2'     X+Y X  .      By this convention  only 6 survives (and cannot be eliminated)

and Eq. (1.4) implies that (up to an unimportant sign) 6=i. Hence Cabibbo

universality is arrived at via the route of CP-violation. The one single

_        · surviving phase reflects on a property of the lepton terms as a set relative

to the hadron terms in the currents, rather than on a property of an individual

lepton term.

From the point of view of naturalness of parameters the following problems

now arise if Eq. (1.3) is to be implemented via a gauge model.

2   2
1)  Clearly the Cabibbo angle is to be defined by   tan 0 = Ml/M2  where

Ml,M2  are the respective masses of  Wl'W2 ' Question:  is this a natural (i.e.

zeroth order) relation? If so, we shall have, more precisely

1-  e       =    .111   + O 6(,),

(1.5)

2
If realizable this then becomes one of the predictive features of such models:

to calculable corrections of order  a  there should be two charged vector mesons

with mass ratio   /tan 0 2 1/2 .

Note.  Speaking futuristically, even the discovery of a single charged

vector meson· might shed light on whether Eq. (1.3) makes any sense, since in

models of the present kind a  W  cannot decay both in AS =0 and AS = 1

2hadronic (charm conserving) channels with relative rates   0 tan 8 as in the

single W-models.

2)  It follows from Eq. (1.4) that, whatever phase convention we adopt,

we cannot have both    a = B and y=6. Therefore, a certain- dissymmetry has

to appear in the electron type versus the muon type leptons. It gas therefore
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13
clear from the outset that Ve-universality would be an issue.  We are now in

a position to state the problem more precisely than was done hithertofore.

Question:  is such dissymmetry compatible with natural Ve-universality, if not

fully, then at least in the restricted sense?

r   i4
3)  Continuing with the above example of conventions, put u=e    =1   SO

that 4 = Tr/2 . Question:    is  this a natural value  for   111 ?     If  so, we shall

have, more precisely,

sin  41   =   1+ 0(a) . (1.6)

If realizable, CP-violation is then characterized by a calculable CP-violating

phase. In obvious language, one may then further call the CP-violation

16
"maximal. " The impact   of this maximal CP-violation   is  of the "superweak"  kind.

It is shown in Section III how these questions can all be answered

affirmatively. In Part (a) of that Section we give a short review of the models

involved and of earlier comments on their calculability properties. There we

also refer to the question of the naturalness of the non-leptonic AI = 1/2

rule.  Section III (b) is devoted to a systematic discussion of the four questions

raised above.  Once again, discrete symmetries are the key to the arguments

presented. Here we discover that one of the discrete symmetries needed to

implement the naturalness of Eq. (1.5) is that the theory be CP-invariant prior

to the onset of spontaneous symmetry breaking (of course all gauge theories

are CPT invariant) . CP non-invariance  is then "spontaneous. " The esthetic

appeal of this particular mode of CP-invariance breaking was first underlined

17
by T.D. Lee.

It may be useful at this point to state concisely in what way spontaneity

of CP-violation is pertinent to calculability properties of CP-violating effects

A
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1  2in gauge models. First, there .is the question  of the imaginary  part  in    K  -K

mass mixing (the superweak mechanism).  In the present limited state of the art

18
this effect is associated with the S-matrix element for the quark transition

- -

nX + An . Since there cannot be a counterterm for this transition (it would be

a four-Fermi interaction) this transition is finite in any event, and the same

is true for on-shell CP-violating transition elements. Secondly, consideration

has been given to the electric dipole'moment of fermions in gauge theories with

19
CP-violation.  Again there cannot be a counterterm for such mom*nts. Thus

these two effects are calculable quite independently of the way CP-violation

is implemented in gauge models. But now there are two possibilities: 1) If

the CP-violating phase is phenomenological, then at least one of these effects

serves to determine its renormalized value.  2) If the CP-violating phase is

natural, then its value is a separate prediction of the theory to which these

effects have to conform. It is this second case with which we are dealing

here in the realization of Eq. (1.5).

Thus we are led to classify gauge theories with CP-violation as follows.

I)  The CP-violating phase(s) are phenomenological.  CP-violation may or may

not be spontaneous. An example of each of these two instances is mentioned

in Section II (c).

II) The CP-violating phase(s) are natural.  This is the case in Section III (b),

where CP-violation is spontaneous. We have no example where the phase is

natural and CP-violation is non-spontaneous.

CP-invariance is only one of several discrete symmetries which we shall need

in the present context, the more so because we are simultaneously concerned

also with the naturalness of   0, of Ve-universality and of the AI = 1/2

rule.  We now record our findings for the group 0(4) XU(1).
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(a)   All fL 4-vectors,  all fR 4-scalars  (fL,R = left (right) handed fermions) .

Only  for the unphysical zeroth order value   0 = 450    can all naturalness condi-

tions be met.  For other 8-values one cannot prevent a lack of naturalness

which (under optimal conditions) becomes manifest only to order

9   1  4
, 0  M   NA 1

(1.7)c<           1 1 l'0   . " 'C,0:,
v-*-. --ir..: f

4'0 2. *, 1

(m ,m .  are a typical neutral and charged lepton mass respectively,  m  =cn

typical Higgs meson mass,  m  = typical vector meson mass).

(b)  All  fL  4-spinors, all  fR  4-scalars.  Again we could push the lack of

naturalness at best to the order of Eq. (1.7).

(c)    0(4)  x U(1) x U(1), same fermion content as under  (b) .    Here full natural-

ness can be met strictly.

(d)    Back  to   0(4) x U(1), left handed quarks and electrons (or muons) 4-spinors,

left handed muons (or electrons) in the adjoint representation of  0(4) . This

is the simplest model we have found so far in which simultaneously the Cabibbo

angle satisfies a natural zeroth order relation and is non-trivial; CP violation

is natural and maximal; ve-universality is natural and restricted; and the

AI = 1/2   rule is natural  (to the extent  that the quark states  used can be

integrated in a theory which includes strong interactions).  After some general

-             comments on the cases (a)-(c) in Section III (a) we analyze case (d) in detail

in Section III (b).  We stress that we have pushed this investigation rather

ruthlessly to the present level in order to show by at least one example that

the conditions studied here can attually all be met.  We regard the complexity

of the model, especially of the Higgs system, as a clear indication that

these matters are far from closed.
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In Section IV we make a final comment on what we believe we have learned

and on what we are sure we don't understand.

Finally, the following morals may be drawn from this methodological

investigation, as we see it.

1)  In gauge model building the following three assumptions are most often

tacitly made.  a) Charge changing weak processes are mediated by one and only

one pair of charged W-mesons.  b) ve-universality is desired to be a property

of all currents.  c) Any occurrence whatsoever of right handed neutrinos is

tabu.  For all we know, none of these (independent) assumptions should be taken

for granted.

2)  Theoretical demands of naturalness will constrict the choice of gauge

group and content in approaches to an electromagnetic-weak synthesis.  As we

tried to make clear, severe demands of this kind already arise from the

consideration of low energy phenomena. The criteria discussed in this paper

would seem reasonable, but we are in no position to claim that they are

imperatives. Also, there are other constraints which deserve at least as

serious consideration, notably the naturalness of hadronic symmetries and of

the U/e mass ratio.

3)  The reader who will have followed this technical discourse on

. naturalness and artificiality may wonder, along with the authors, whatever has

happened  to good old-fashioned simplicity. Perhaps the ,gauge theory approach

is wrong, but this we doubt.  Perhaps some essential theoretical ingredients

are lacking, in particular in regard to symmetry breaking mechanisms.  Perhaps

also what we now consider simplicity may turn out to be deceptive, as experiment

progresses; it would not be the first time in particle physics.  A linear

combination of the last two alternatives is our own best guess.
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+
II. GAUGE THEORIES WITH A SINGLE CHARGED W--PAIR

(a)  Ve-universality

1)  Models with natural universality. There are two of these. In the

10,11first one, the Weinberg model, the left handed electron and electron-

neutrino fields and the muon and mu-neutrino fields transform according to two

equivalent irreducible representations of the gauge group. The renormalizable

couplings of the charged intermediate vector boson to leptons is characterized

by one parameter, the gauge coupling constant associated with the  SU(2)

factor of the group, and is the same for electrons and muons. Clearly muon-

electron universality is natural.  Naturalness here is a direct consequence

of the gauge structure of the theory. This is a simple translation into the

language of renormalizable field theory of the old idea that universality

should have something to do with conserved currents, that is, the transforma-

tion properties of the weakly interacting system under some continuous group.

The Weinberg model is unique in that it involves only observed lepton

states. ..(It is possible to change the abelian gauge structure of the theory-

see below.)  Almost all other unified models of weak and electromagnetic

interactions involve unobserved "heavy leptons. " The number of possible

theories of this kind is very large.  A second published model with univer-

12
sality properties similar to the Weinberg model is the LPZ model. Here the

left handed lepton fields are assigned to gauge  SU(2)-. triplets as follows:

w   (E ,ve'e-)L   and   (M ,vu,1-1-)L ' where   E   and   M are heavy lepton

fields.  As in the Weinberg model, the muon and electron fields have identical

properties under the gauge group, determined by their assignment to equivalent

irreducible representations.
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2)  Two examples of natural restricted universality. If a large number

of heavy lepton states are postulated, there is a great deal of flexibility

in model building. Consider for instance the following problem: can we write

down a model which predicts vu-e scattering with typical weak interaction

-           strength, but in which ve-U scattering is suppressed?  The answer is yes, of

course, by assigning left-handed leptons to triplets as follows:  (vu,W-,M--)L

and  (E ,ve'e-)L .  In this model, the muon and electron fields have different

gauge properties. They have different U(1) gauge quantum numbers. Never-

theless, universality is still natural for charge changing processes.  The

point is that when the laft-handed leptons are assigned to irreducible

representations of the gauge group, the couplings of the intermediate vector

boson to the charged muon and electron currents are determined simply by the

relevant Clebsch-Gordan coefficients. If these coefficients for the muon and

electron currents are equal, universality is natural for the charged currents;

if they are unequal, the model does not have universality.

However, our example shows that natural universality

for the charged currents does not necessarily extend to

neutral current couplings. In fact, this current does contain   v v - but
VV

no vv terms.  Let us now imagine that we complete the model with a quark
ee

structure that satisfies all the usual constraints, including Cabibbo

universality.  (For this purpose one can take over the LPZ-quark representa-

tions.)  Then the amplitudes for the  rocesses Eq. (1.1) are. 0(G)  and those

for Eq. (1.2) are  0(Ga).

The Clebsch-Gordan coefficients for the charged currents may also be

equal for other reasons.  As a fanciful example, imagine assigning the left-

handed lepton fields to gauge multiplets as follows. The electron in a 4
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(gauge isospin 3/2): (E ,ve'e-,E--)L   and the muon in a 5 (gauge isospin 2):
--

(vu,U-,M  ,M---,M----)L .  Now universality is natural even though the repre-

sentations are very different, just because the relevant Glebsch-Gordan

coefficients happen to be equal. In this example the neutral durrent does

-

-          contain both Vv and VV terms but with different weight. Again the
1. U ee

universality, while natural, is only of the restricted type and the ratio of

the amplitudes of the semi-leptonic reactions (1.1) and (1.2) is as 4:1.

3)  Reducible representations, artificial universality.  We have still

not considered all possible models with a single pair of charged vector bosons.

It is possible to relax the condition that the left-handed electron (or muon)

and electron (mu) neutrino field belong to an irreducible representation of

the gauge group.  A well-known example of a model involving reducible repre-

20
sentations is the  0(3) model. Here the left-handed lepton fields are

assigned to singlets and triplets as follows: triplets are

(E , cos B.E'+sin B.ve 'e-)L   and   (M ,cos B.M'+sin B.vy , U-)L ; singlets

are       (cos   B.v   -sib  B.E')L       and       (cos   B.vu-sin  B.M')L  .      In
this example,

e

it is the neutrino fields which transform like a mixture of singlet and

triplet, not like a single irreducible representation.

As written, this model has muon-electron universality, but here it is

not natural.  The reason is that the angle  B  depends on the details of the

Higgs meson couplings, the bare mass terms, and the spontaneous symmetry

breaking and there is no reason for it to be the same for electron and muon

multiplets. In fact, the angles for electron and mu neutrino must be

renormalized with independent counterterms. So while the 0(3) model can

describe muon-electron universality, it cannot predict it.

4)  Right-handed neutrinos. It may be tempting at this point to conclude

that irreducibility in the sense described above is a necessary condition for
61
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naturalness of universality in a gauge model, but such a conclusion would be

premature.  Consider, for example, the problem posed earlier in this section;

to construct a model in which  vu-e   scattering is present but   ve-W

scattering is suppressed.  One such model was given above, but it is also

possible to use reducible representations.  Consider the following assignment

of the left-handed leptons fields:  muon in a doublet    (vy , W-)L ; electrons

in two triplets,

0

19     0   i     Ye  +
N e AD n  . _ -2.

Il --4 (2.1)

71       1  1           2   72-

t                                                                          p +       \

1 I
\8 , -       1  \-r

The first two representations give the usual charged current structure while

the third representation leads to no presently observable experimental

effects. The physics would be the same if (N' - ve)L / /F were assigned

, as  a  singlet, at least' until the appropriate heavy leptons are observed.     But

then universality would not be natural. For the assignment given above, on

the other hand, it is possible to implement naturalness. To see this, we must

analyze this theory in some detail.

The strategy is as follows.  In Eq. (2.1), a 45' mixing angle appears

between v and the heavy lepton    N'  .     If this angle is natural,  thene

 »e-universality  will be natural  for the charged currents.     In  turn,   the. 450-

mixing will be natural if the Higgs coupling needed to give mass to the

electron-type leptons force us to have mixing at 45'.  This can happen when

the symmetry group  of the Lagrangian  is  not  just    SU(2) x U(1) ,    but

SU(2) >(U(1) x S, where  S  is a group of discrete symmetries.  We now
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explicitly exhibit Yukawa couplings invariant under such an enlarged symmetry

group.  For the muon system everything is as in the Weinberg model.  For the

electron system we introduce two real triplets of Higgs mesons,  Hl  and  H2

(t=1 , Y=0)  and two complex triplets,  K   and  K   with  t=1, Y=1,  (we

write the electric charge  as      Q = t3+Y) · All right-handed fermions are taken

to have  t=0  and the appropridte weak hypercharge.  Consider now the follow-

ing set of interactions.

a,4   i  (20:Ft-)  NIN,  +   c fi -9-1) *R  1-12 "i

-1- az  ( f,  ER +  i FZ  )  k.,1   +  a 3  I  '*1  8 K  - v'   '   R   j   ' »
- +     .7.  F+ 1 1, (2.2)

+  9'1    (     FI    e R    +    F,   1  A     )   'K,          +Qt'.  6   'Fl   e' .    - :Fi  fi    )   '1 ,        +  1,1  i   c  '

Observe that in the first line the right-handed neutrino   veR  appears!  The

couplings of Eq. (2.2) are invariant under the following discrete operations.

*J

(AEU=all else unchanged; Kl and K2 are the complex conjugates of Kl' K2'

respectively)

I l l           121  +4 +L         3  922 -9    -V R     ,  E; '6-3' FA,
(2.3)

1

em e fi       'K, e -K i      ,    A E U;

[21          .11  -,
-

'11     ,   N  R   6-3 'g R      2  H I  H H I
(2.4)

0+
'    p   -4   - F I        , R--'     -  6       ,    A  EUS

-                          [3]                                                         '   (2.6)

H·    -9   - H E   ,   R  -5   -4 R   ,  A Elt   .

In addition, the remainder of the Lagrangian is invariant as well under these

discrete operations.  Note that because of E4s. (2.3) and (2.4) the two triplets

have become an irreducible representation of the enlarged group.  These
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transformations have the following important properties.

(a)  Not only are the couplings Eq. (2.2) invariant under the transforma-

tions Eqs. (2.3), (2.4), and (2.5), but furthermore, these transformations

determine these Higgs couplings uniquely (up to the values of the coefficients

al'        ,a 5'      of  course), An obvious  way to verify  this   is to write down first

the most general set of tri-linear couplings
between  41,2 ' Hl,2 ' Kl,2  and

the right-handed fermions which is compatible with the invariance under the

continuous group SU(2) X U(1) . Then by imposition Qf the discrete invariances

01 -C,J
one arrives at Eq. (2.2).

(b) If the vacuum expectation values of the Higgs multiplets are as

follows:

i o \           0\

< '11 > 'Le. 1- , (,2.' -< 5 ). w t.1 (t) , 1(.. < t./1,I  ' :1
--

0 j J 6 \10 (2.6)Oj

then we will have achieved the proper mass diagonalization including a null mass

for the e-neutrino,  (hl' kl'  and  k2  shall be non-zero).  Now the Higgs

meson self-couplings do allow vacuum expectation values with the properties

given by Eq. (2.6), for some region with non-zero measure in the space of

renormalized parameters. In particular, <H >EO is allowed because
2

Eq.   (2.5)   tells  us  that the Higgs potential cannot contain terms linear  in    H2

The reader may we11 be confused at this point about the reason for

introducing v and  H2  in the first place, since the non-introduction ofeR

vR '      Customary  in all gauge models proposed  so  far,   is in itself  a

sufficient ground for having a vanishing neutrino mass.  The idea is that

v R  is necessary for naturalness of the form Eq. (2.1) with the gauge group

SU(2)  x U(1) .     We  will show below that, without
veR'

naturalness  can  only  be
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achieved by enlarging the gauge group.

As was stated in the Introduction, the strict masslessness of the neutrino,

in schemes like these, is associated with a discrete symmetry which remains

valid even after the spontaneous breakdown of symmetry. In the present case,

this is the symmetry given by Eq. (2.5).

As a last example in this Section of natural restricted universality,

we  shall  show how  this  can come about  via the extension  of    SU(2) x U(1)    not

only by discrete symmetries but also by continuous ones. Here it will not be

necessary to introduce   vR .

5)    The gauge group   SU(2) XY(1) X U(1):    Let us again start with
(vu,u- L

as a doublet and with the triplets   91'92   given in Eq. (2.1).  However,

we are now going to consider these multiplets as representations of the gauge

group   SU(2) x U(1) x U(1). This group has the covariant derivative

-'4 -   2 [  417  .1,  3· St.&3, R-.
(2.7)

We choose the charge operator to be

Q = t3+S+R, (2.8)

so  that the electromagnetic field is given  by  '   e-1.Aw   =   g-].A3 + gs-1-Bu + gr].Cl 

-                                                                             21
with      e =  (g-2 + gs2 + g   )-    . The representations  may be labeled  as

SR
(t) '

We now make the detailed assignments as
follows:    (v  , 1·1-)L   is

(1/2) , 91 and  92 are (1)  *.  . All right-handed leptons shall
(-1/2,0) (0-0)

be  SU(2)-singlets.    For    PR    we  take    Q=S (=-1) while  for the electronic

-
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lepton
fields     E  ,   F  ,   eR   and    fR     we  take     Q=R.

We shall need two real triplets  Hl  and  H2  of Higgs mesons of the type

(1)  '    and two more,  K   and  K   which are (1) These shall enter
(0 0) (0,1)

in the
till,2

couplings.      (For  the muon doublet  we  will  have a Higgs doublet
' I

(1/2 0)(1/2)        '          as 'in the familiar    SU(2)  x U(1)    case.) We assume  that  the

Lagrangian is invariant under the following discrete symmetries:

-

Iii  4, 6--1 47-  , Ee 6-, Ft   , eR e. fR
(2.9)

Kt -0  -142-   9  82-9 -H L    ,  A E U,  3

[21     42  0 - 41 ->    Hl  4-4 H 2- 1
(2.10)

F  -#- rA    ,  fA +  - fi  ,  AE a,

-

r-4-

We further assume that the following symmetry is broken only by mass terms:

I,1      E ;  -1   4  - -E l       ,    IN- 4  - li =   -  Ii'   '                    (2.1 1)

141-7 2:   2 Ki -9 -14  , C I# -3',AE#.'

where   CU   is the gauge field defined in Eq. (2.7).  Now the most general

Yukawa couplings consistent with these symmetries and with the gauge symmetry

are

- AN

(,1 ([E i *1 -,F;*111<1 + [e'll- ft P,lki J

2 a*fl [ 4 41 - F;+31(, - E-es 16+5£ 111121 j

+  a i N      4   (  111 + 41)   H :  +C '1'1  - 02 )  Hzj     + 1  .e,
(2.12)
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The Higgs meson self-couplings allow vacuum expectation values such that

<H2> =0, <Hl>' <Kl>'  and <K2> non-zero; and <K >  <I<2 These vacuum

expectation values with the Yukawa coupling written above give the theory we

want, with the additional constraints that the fermion masses satisfy a quadratic

zeroth order relation:

M2 (e) +M (E+)  - M (f-) +M (F ) . (2.13)

Observe that this is a natural mass relation since it is dictated by the

symmetry of the system and by the vacuum expectation values for the H- and

K-fields stated above.

The reader will note similarities between Eqs. (2.3), (2.4) as compared

with Eqs. (2.9), (2.10).  On the other hand, Eq. (2.11) is quite a different

thing than Eq. (2.5).  Let us enlarge on the role of Eq. (2.11).  The symmetries

Eqs. (2.9), (2.10) allow Higgs meson self-couplings of the form

a(I K2) (Hl.H2) +h.c.    Now  if   <Kl>,  <I<2>'  <Hl>    are all non-zero,  this  term

given a direct tadpole contribution to   <H2>  which spoils the naturalness

of the condition <H> =0. The symmetry [3] is specifically designed to
2

forbid this term.  But this symmetry is not consistent with SU(2) XU(1)

structure. It is at this point that the need for the extension by another

U(1)  factor becomes manifest (always as an alternative to the extension

discussed previously.)  Symmetry [3] cannot be an exact symmetry of the

Lagrangian because  one   can  show  that in zeroth order it implies      |< Kl> |   =

1<K2>|
and therefore       m(e-)   =  m(F ),      so   it  must be broken  by mass terms.

That is, we must include in the Lagrangian terms of dimension less than four

which break the symmetry. The renormalization of the dimension-four terms can

-=
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still be done with a symmetric counterterm, as is obvious by power counting.

Thus we can forbid the term
(4K2) '(H].H2)

but still include terms like

1 K     - I  K                                                                                    2 11 1   2 2                                     1       2which break the symmetry between K   and  K . These considera-

tions determine the form of the Lagrangian.

One can again use the catchword irreducibility to describe naturalness

of universality in this model.  We reiterate, however, that here one means

irreducibility under the full symmetry of the Lagrangian which may contain a

complicated discrete group in addition  'to the gauge symmetry.

Finally we note that the Higgs system described above is such that two

massive neutral vector bosons appear. We shall not be interested in the details

of the necessary diagonalization process, except for one qualitative observation

about the two neutral currents coupled to these vector bosons. It is clear

-

from the quantum number assignments given above that a v v term will
VU

generally appear in both these currents, while vv terms will not appearee

in either current. Thus we have here another example of restricted universality

with different orders of magnitude for the processes (1.1) and (1.2).

(b)  The Cabibbo angle

(a)   Remarks  on   SU(2) x U(1)

We begin with a brief description of the way  0  appears in the four

quark version  of     SU(2)  x U(1),     for two reasons. First, in order  to  show  that

8  is not calculable in this model. Secondly, in order to give some indication

of what it may take to promote  0  from a renormalization parameter to a

calculable quantity.
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The model in question has two quark doublets N=(p,nc)L'  N'=(p',Ac)L'

nC   =   n   cos    e t  X   s i n 0, A      =   -n   s i n    0+  X   cos 8, (a)L  = (1+75)a/2. Further
C

there are four singlets   PR ' nR ' AR ' PR '  (a)R =

(1-Y5)a/2 . (We leave aside

the lepton structure.)  The charge carrying current contains the terms

i [gl,PLYlfL    2 LYPAL + " '1, where       gl =   g  cos  8,        g2  =  g  sin  e . g  is one

of the coupling constants of the group, and is subject to renermalization.  If

gl and  g2  suffer independent renormalization, then  0  is not calculable.

Note the distinct ways in which  g  and  0  make their appearance:  g  enters

via the group structure,
0  enters via the details of mass diagonalization.

The reason that 8  is not calculable in this model is that this quantity

does not enter the theory in any other way than the one just indicated, and

cannot enter into any natural zeroth order relation. In order to see this

in detail, we must examine the other quark interactions in the model, namely

their couplings to a scalar field doublet  H . These couplings can be written

as

(fINPR + f2N'PR + f3NPR + f4 'PR)H

./

+  (f5NnR+ f6NA'R+ f7N'nR+ f8N' X )H +h.c.

0 *

where    H = iT2H  . The eight   fi   are a new set of coupling constants each of

which  is  subj ect to independent renormalization.     Up  to a common
factor     e/M '

f5'...,f8   can be written as

f5 = mncos 8',   f6 = mxain e",   f7 = -m sin e',   f8 = mxcos e",·   (2.14)n

where    m  '   I111,   0' ,
0" suffer independent renormalizations . The phenomenological
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introduction of  0 in the model is of course based on the notion that   p,p',n

and  X  shall be zeroth order mass eigenstates.  This last condition implies

that

f 3=f 4=0,
e = 8,  =  e" , (2.15)

which are examples of artificial relations in the sense explained in the

Introduction. (A simple argument shows that the lack of naturalness of Eq.

(2.15) becomes manifest at first in order
G (mx-mn)(m ,-m ).) Therefore we

P   P

learn two things.

(a)  0  is a purely phenomenological parameter.

(b)  Eq. (2.15) indicates that a way to seek for a calculable 8 is to

ask for shared constraints which apply to the couplings of quarks to vector

mesons as well as scalar mesons. In this Section we again explore the existence

of additional discrete symmetries as a means to implement such shared constraints.

As a first example, consider an  SU(2) x U(1) model in which 0 is

calculable  for a special zeroth order value, namely   0 = 45 0 . Of course, the

relation tg 8=1 is hardly of any practical interest.   Here it will merely

serve as a first instance of a natural relation in which  8  enters, namely

tg  e   =   1+0(a) . (2.16)

12
The model in question has the same quark content as the LPZ model,

namely two left-handed triplets, with representation  (1)'.  (We may label

Y
the  representations  by    (t),t= weak isospin, Y = weak hypercharge,     and

Q =t3+Y.) The right-handed quarki are singlets,  (0)  .  If one employs a

)
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12
minimal set of scalar multiplets, namely   one real scalar triplet  (1)'  and

one complex triplet (1) in order to give mass to all quark states, then' 8
1

is non-calculable for the model.  By the same argument as given above, one

arrives at Eq. (2.15).  However, if one uses a pair of  (1)'  and a pair of

(1)1 multiplets,    then      0       can be calculable   if its zeroth order value   is' ; Tr/4   .

The argument goes as follows.  Take the two L-quark triplets to be

P,  ,

'l =   C..1. ) /'t'  ,  '2 -  C.-A,/'t'i.j 3 (2.17)

R- IL

corresponding to e  = 7r/4. Both the charged and the neutral vector currents

are invariant under the transformation

1   2
Q -Q , (2.18)

all else unchanged. If we are able to extend this invariance to the full

Lagrangian, then we shall have derives Eq. (2.16).

1  2
Introduce the following scalar multiplets:  H ,H which are both (1)0

and Kl,K2 which are both (1)1 .  Consider the following set of Higgs

couplings  (al'   '86 are constants).

alI (51+9)nR + (51 -Q2)AR]Hl

+ a2[·(51 +Q2)nR - (51_Q2)AR]H2
(2.19)

+ a3[Q]'PR+Q2pt]K-1 + a4[Q]'PR-Q2pt]K2

2 41 2 02
+ a5 IQ.lqR+Q (41]K  + a6[QlqR-Q qi]K  + h.c.

.
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which have the following three properties:

1)  They are invariant under Eq. (2.18) provided we extend the transformation

to

Ql_Q2,      AR * -AR'      pr PI  ,

(2.20)
2      2

 R- R,        K     + -K      ,         AEU.

2)  They are also invariant under the discrete symmetry

Q2 + _Q2,     H2 + -H2,     n ++ A    .R R'
(2.21)

PR » -PR   ,        qi -' -qi  ,           AEU

.. AbTogether with the gauge invariance and the symmetry (2.20), this symmetry

forces the Yukawa couplings to have the form (2.19).

3)  The set of Higgs couplings Eq. (2.19) and the symmetries (2.20), (2.21)

do not imply any unwanted mass degeneracies. In this connection note that the

vacuum expectation values    <Kl> =  (0,0,Al),   <K2> =  (0,0,12)   are such that

the invariances Eqs. (2.20), (2.21) do not imply any connection between   X           -

and X2 Similarly for  Hl  and  H2.

We have now derived Eq. (2.3) but for one point.  It should be ascertained

that also the lepton-Higgs couplings are compatible with the discrete

symmetry under consideration.  This is easily done as follows.  1)  Use the

12                                  1
same lepton representations as in LPZ. 2) Use lepton couplings to K to

generate mass for the charged leptons.  3) Let all lepton states 6e invariant

under the discrete transformations   Eqs.   (2.20)  and  (2.21) .

_S
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The same value 8 = Tr/4 can also be obtained in the Weinberg doublet

model, provided a third discrete symmetry is introduced. This is simply seen

by omitting  q  and  q'  from Eqs. (2.17) and (2.19)-(2.21).  Indeed it may

seem that this is all that is needed.  However, it is now necessary to invoke

-           the additional symmetry

1122
H   + -H , H +-H ,  n +-n .  X +-X. AEU.

-RR'RR'

The price paid here is the introduction of four Higgs doubletJ instead of the

usual single one.

The above is an example of a zeroth order value for  0  which is a

Clebsch-Gordan coefficient. Our next example is of a quite different kind.

(B) Extension  to   SU(2) x U(1) x U(1)

The covariant derivative for this group was given in Eq. (2.7).  We also

. define  Q  as in Eq. (2.8) and will continue to label representations as

(S R)
(t)

-

.  However, here we shall operate with different representations as

compared to Section II (a).

We introduce a four quark model via the following representation content.

There are two L-quark doublets

-                             2 .1  li) L

-1
(12/,

.  (,  f.0
0 01 (2.22)

)
M

v N '  )L   '  I'  0

Here  P -Pt   each are linear combinations of the physical states   PL'P L'

(Q = 2/3)   encountered in Section  II  (a), and likewise for   NL'NL in regard
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to   nL'AL,    (Q = -1/3). The precise choice of these combinations will occupy

us shortly., There are four R-quark singlets:

                 2 'R        :      1.0')  C -6   ,

1)
,       Al            N I         :      (B)

ct,-i) (2.23)

K)
3  "R )  R

The leptons are assigned as follows

( 3  - (-il.  - .')
(-1, c)

3  R --Co)      ,
(2.24)

/  L

and similarly for muonic leptons.

Evidently the scalar multiplets needed to generate lepton mass are distinct

from those which yield quark masses.  For the former purpose one  (1/2) (1/2,0)

suffices.  For the latter, we introduce three doublets called   $, X,  and  n

each of which are (1/2) Obviously these Higgs fields give mass to(0,-1/2)

the charged and to the two neutral vector mesons. For the present purpose

the precise nature of the neutral vector normal modes does not concern us.

In any event the usual constraints on gauge models imposed by the bound on

strangeness changing effects can be met.

Just as for the case considered previously we now seek for a natural

symmetry shared by the vector and the scalar meson interactions. The vector

meson couplings are invariant under

PR  -7  KIR -7   -  TR   7  2 1-9 N K-9   -9,    .   /'  »  -8
0

(2.25)

-                                                                                      1 R   >  3'·   .     f'

all else unchanged.  This invariance applies also to the following Higgs

coupling

11
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a(,Rt' +9)5EL

+   b (Ft, + 9' L,
(2.26)

%  T.4'

+  c (FRX +NRn)Ti-
-  0   . 6,#

+ d(PAX+Nirl)'C +h.c.

provided we extend (2.25) to

0                  4                  0

P +N +-P P'+N'+-P' C   + -C 0+0, xin, n +x. (2.27)R R R'   R   R R' 11    Ki'

Eq. (2.27) does not yet force the Yukawa couplings to have the form (2.26),

but we can impose a second discrete invariance

X +iX,          n  +-in,           +-i| '. AEU. (2.28)JL'

Now the form (2.26)'is unique.  Note that (2.27) and (2.28) do not affect the

leptons and their Higgs doublet, so for what follows we can ignore the entire

lepton sector.

When the Higgs mesons develop vacuum expectation values, the quark.

mass matrix becomes

(PR .P )

(A C }IPL}
(2.29)

i A   «C\IN  \
+  (NR' iq) 1 1    1  + h.c.

L I                                  -

 B aD   \NL j

which involves five parameters which we take to be real for simplicity (this

0
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can be done naturally by imposition of a  CP invariance). In terms of these

five parameters, we can express the eight physical quantities, four masses and

four angles which describe the zeroth-order mass eigenstates. Therefore, there

are three zeroth-order relations among these eight quantities.  One of these

involves only the Cabbibo angle and the quark masses. It is

ls*te
,   11   i ,i,(,i:.-mt,c1Mp-,<,(M,-,mz)-   .

-%

. 9 4      /      - 1,1

;   ) (  441  -  '»M ) (2.30)

. _(3'p' N) 3  +  m f Yll *1 ( 11  1,/   '11*6 + m F.r'1 O
. 0

C  Mp,  *1 p   -+  rnA'y,1. ) 2-
This result has its physical limitations.  Its consistency demands (among

2    2
other things) that m >m , contrary to'naive quark model expectations.

P   n

Nevertheless, we believe it is of some interest to display two distinct

categories in which 8 attains a natural value, whether a nice one or not:

one in which  8 is a "pure number" as in Eq. (2.16); and one in which  e  is

a natural function of particle masses as in Eq. (2.30).

(c)  Comments on CP-violation

As is well known, important constraints on gauge models follow from the

requirements that   |AS   =1  and  |AS| =2 effects shall be sufficiently

---

suppressed. Thus it is customarily assumed that   An  and  nA   terms shall

be entirely absent in neutral currents.  Beyond that, additional suppression

is needed even for  | AS | = 1,2 effects mediated by two virtual vector bosons;

and by real Higgs scalars. In standard SU(2) XU(1) models (except one
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to which we shall come presently) this is achieved as follows. The P,n,X

quarks appear in the following two equivalent representations (again,  nc =

n cose+Asin e, Ac = -n sin e+ A cos e):

C....P,nc,"' L' C.....P',Ac, ")L'

Here the  p'  is an additional quark which (in some sense or other) is charmed

and ....denotes the (possible) presence of other particles.  In addition,

nR  and  AR   are assigned in such a way that they do not contribute to the

- -

effects in question. Then the AS =2 transition An + nX    due to exchange

of a virtual  W ,W   pair is proportional to

2

rm(p) 2 -m(p')2-1

a2  sine   l               M2                       1

, (2.36)

J

where a = 1/137. The mass ratio suppression is due to the action of the

22
Glashow-Iliopoulos-Maiani mechanism. It is this need for some such

additional suppression which has led to a proliferation of quark states typical

for all gauge models in their present state of development. (Contributions

due to virtual Higgs exchange are most often ignored on the ground that the

Higgs scalar masses may be assumed to be sufficiently heavy.)

For our present discussion, the occurrence of the sin 0 factor is

of  interest. It shows   that the Cabibbo angle plays   the  role  of  the  real

(CP-conserving) "mass mixing" parameter in the K-K system.  Thus this mixing

is phenomenological to the extent that  0  is phenomenological.  In all

gauge models with CP-violation proposed so far, the imaginary (CP-violating)

mass mixing enters via the introduction of one or more new and additional

angles which appear in phase factors.  We shall briefly indicate here that in
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those gauge models which fall under the heading of this section these additional

angles are also phenomenological parameters, much like the Cabibbo angle.

23
Consider for example a variant of the   SU(2) >( U(1) variety with

representation content: (p,nc)L '  (P''Ac)L'   (p''n cos $ +iX sin (b)R'  all

doublets; all other quark states singlets.  An upper bound on  $  follows from

physical constraints on   |AS| = 1 neutral current effects.  On the other

hand, this typically "on shell" model  also  has a lower bound  on    $    such  as

to give the right order of magnitude for CP-violating effects.

(For  this  as   for  any "on shell" model, the non-leptonic     |AI|  = 1/2    rule

4                                 -4for CP-violating effects remains unexplained.)·A value for 0010

appears acceptable at this stage.

The most general Higgs system which couples to the quark states can contain

the weak isospin representations:  singlet (mass terms), doublet and triplet.

Such a general system was used in Ref. 22. It is clear that under such

circumstances there is no possibility for natural mass relations.  As a result,

the parameter $ is then a phenomenological parameter, by the same reasoning

as was given in Section II (b) for   0 .  What happens is the occurrence of

a new and relatively imaginary coupling constant ig sin $ which is subject

to separate renormalization.

The question arises whether· it is possible to restrict the Higgs system

in such a way that constraints appear which involve quark masses as well as

parameters   0,4,   the constraints being due to diagonalization conditions.

This is possible by restricting the Higgs content in such a way that triplets

25
are not introduced. The ensuing constrai4 relations       have not encouraged

us to pursue further the question whether an appropriate Higgs system would

guarantee that 0 ,$   are natural.
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The gauge model briefly reviewed  here  is' of the "small para ter" variety,
/\

in the sense that an additional parameter ($ in this case) is introduced for

the explicit purpose of generating CP-violating effects.  The smallness of

these effects is associated with the smallness of the parameter in the scale

-               set by    0,   the "real" ICI< mixing parameter  .   The main point we wished to

bring out is that, in general, one must be prepared for the fact that such a

parameter is phenomenological.

This also applies to a recently studied variant of the  0(3)  variety

26
where CP-violation is spontaneous. Here the neutral current effects enter

differently and the phases can be introduced in such a way that they are

unconstrained by AS = 1   effects  (and may therefore be large) . The number

of Yukawa couplings between Higgs mesons and fermions, allowed by strict

renormalizability, is too large to permit the phases to appear in natural

zeroth order relations so that these phases remain phenomenological.  Their

sines enter as proportionality factors in all CP-violating effects, the scale of

which is set by the magnitude of Higgs meson masses and Higgs field vacuum

17,26
expectation values.
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III Gauge theories of the   0(4) x U(1) type

(a)  Some general features

The covariant derivative for this group is given by

3,  =  32  - i t( fri + trg) - 91 err,
(3.1)

+ + + + + + + +
with t x.t=i t, p x p=i p. t  and p commute and so .does the weak hyper-

charge  Y  with both. The electric charge operator is    Q =

t3+P3+Y'   so that

3-=ea/51 '1 , 31 = 0/6051 , e = 23' (12 **03'1)-,t
(3.2)

and  y is the mixing angle of the theory.  The reflection operation  R  with

+ +
respect to 0(4) is: R:t++p. Introduce the following orthonormal set

 :ts,

of gauge fields (which are all orthogonal to the electromagnetic field).

W 1-=   41  [A 4  -C l- : (R -ci)],

1'11 = 12 I A¢+Cl-i (A +CD;V. (3.3)

Z   =  *  [  PP- c.31,
V            1-  r   (A3+ Co cos 1  -B & s M Y]

wl,2 - YS 1- Iand their conJugates represent singly-charged vector fields (we suppress

their W-index),     Z,V are neutral. Moreover, all these .fields are eigenstates

1
of  R:  W   and  Z  are R-odd, the others (and the electromagnetic field)

are R-even.

Eq. (3.3) is a trivial rearrangement in the symmetry limit where all

12
vector bosons are.massless. However we shall wish to retain W' , Z  and

V  as zeroth order normal modes upon spontaneous symmetry breakdown.  This

major constraint has the following implications.
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[1]    The vacuum -expectation values  of the Higgs mesons must satisfy

R-invariance in order to guarantee that the zeroth order vector meson mass

matrix be R-invariant.

[2]  In turn, the Higgs surface must be constrained in a natural way so as

to force the R-invariance of the vacuum expectation values.

[3]  In turn, the Higgs-fermion Yukawa couplings,must be naturally compatible

with all symmetry conditions implied by [1] and [2] and must properly

diagonalize the fermion mass matrix in the tree approximation. This strongly

delimits the choice of fermion representations.  All these points will be

explicitly demonstrated in the example discussed in Section III (b).

Let us suppose that this is achieved and that, moreover, after spontaneous

symmetry breaking the charged current couplings given by Eq. (1.3) and the

27
condition Eq. (1.4) are natural. Then ve-universality will be natural for

charge carrying currents, the CP-violating phases will be natural and the

Cabibbo angle will satisfy the relation Eq. (1.5).  Furthermore, in a model

of this kind, the charged vector bosons do not mediate strangeness changing

(and charm conserving) non-leptonic weak interactions. Instead, these inter-  .

' actions are mediated by the neutral Z-boson, and it is possible to implement

a natural AI = 1/2   rule.

In all published models, the R-invariance of the Higgs system is

unnatural.

a)  The first model of this kind to be proposed was based on the group  0(4),

La  special  case  of    0(4)  x U(1). Left-handed fermions    (f  ) were taken  to  be

4-vectors in 0(4) . However, no representation for the right-handed fermions

R           28
(f )  was found which was consistent with R-invariance of the vacuum
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expectation values of the Higgsmesons.  As a result, an  0(a)  logarithmic

1  2
divergence in the CP-violating part of the W -W  mixing was generated by single

29
virtual lepton loops. Indeed, it was for this reason that the study of

0(4) X U(1) was initiated.

30             L
b)    0(4) X U(1), vector model. Here the f are again 4-vectors  (Y=0),

R
but the f are  0(4)  scalars with  Y=Q,  the electric charge.  Higgs mesons

are also 4-vectors (with either  Y=O  or Y=il). In this model, the vacuum

expectation values of the Higgs mesons could be chosen to be R-invariant, but

the choice was unnatural: the logarithmic divergence mentioned above persisted.

It was then noted that this divergence could be eliminated by requiring the

31
equality of two neutral lepton masses.

At this point, the present authors took up the problem and began by

inquiring whether this model with the lepton mass relation could have a natural

R-invariance of the Higgs system. We discovered that it did not. However, by

enlarging both the Higgs and the lepton system we could "push back" the lack

of naturalness so that the leading order in which the logarithmic Wl-W2 mixing

divergence appears is given by Eq. (1.7).  We were able to show, furthermore,

that this result cannot be improved further, except for the uninteresting

case e = 45° (where all naturalness conditions can be met). We were not

content with the argument that the coefficient of this logarithmic divergence

is quite small. Considerations such as these led us to consider the whole

question of the Higgs system in more detail and stimulated the investigations

of this paper.

15
c)   0(4) XU(1), spinor representations. Meanwhile,  it was noted that

most of the same weak interaction properties could be incorporated in an

L
0(4) x U(1) model in which the f transform as 4-spinors. In this kind of
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model, there are necessarily "elastic" neutral currents (though not for both

electron- and muon-neutrinos).  For pure spinor models we were again unable to

insure naturalness.  Although, as noted in Ref. 15, the CP-violating mixing is

finite here to  0(a)  without any lepton mass constraints, the strict imple-

mentation of the needed R-invariance causes trouble, once again to an order

which cannot be improved beyond Eq. (1.7).  However, by enlarging the gauge

group  to    0(4)  X U(1)  X U(1) and enlarging the lepton content,  we  were  able  to

implement naturalness in pure spinor models.

In  the next section,  we will describe in detail  an    0(4)  x U(1) model

which can be made natural. It  employs ,the quark spinor structure  of  Ref.   15

but is hybrid as far as leptons are concerned.  For the latter, the left muon

(or electron) type states transform as spinors, while the left electron (or

muon) states transform like the adjoint representation of  0(4).  We shall

discover a number of natural mass relations between the fermions. Amongst

these there appear zeroth order mass degeneracies of neutral lepton pairs.

14
This is reminiscent of what was tried for the vector model. But now these

degeneracies are truly natural.

Before turning to this, we make a brief comment in regard to the natural-

ness of the non-leptonic AI = 1/2 rule, since the appearance of  this rule

is one of the themes for all the gauge models considered in this Section.  To

the extent that the isospin assignments of the quark states used in these models

can eventually be part of a sensible strong interaction picture, the AI = 1/2

rule is natural to these models, in the sense that no constraints are involved

32
on coupling constants and/or masses to implement the argument. One may ask

the same question for alternative schemes to arrive at this rule. There are

two main ideas here. 1) Octet dominance, where the AI = 1/2 rule emerges

.i
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due to strong interaction enhancement effects.  From the point of view of

weak-electromagnetic gauge theories, the question of naturalness is moot here.

33
2) The schizon scheme where  the   AI = 1/2 rule comes about via  the   AI = 3/2

cancellation between a neutral vector meson coupling (constant  g ,  vector

mass   M0)  and
a charged coupling (constant g, vector mass   M) .    It  is

readily seen that (possibly up to a known Clebsch-Gordan coefficient) this

demands the validity of the relation

2
q2*

(3.4)

ty - Ai» 'Me«I»e.
In the context of a gauge theory this introduces new demands of naturalness

(since in general  g , g, M , M  will suffer independent renormalizations).

This was emphasized by B&g who recently obtained a realization of the schizon

34
scheme in the context of a gauge model.

We conclude this subsection with two remarks on the order of magnitude

19
estimates for electric dipole moments given elsewhere. First, these

estimates  for  the   0(4) x U(1) vector model remain unaffected but,  as  said,

the neutral heavy lepton degeneracy employed there is not natural.  Secondly,

these qualitative estimates apply as well to the natural model to be discussed

next.

(b)  A detailed example

In this section we discuss in detail the simplest'model we know of with

the following properties:  ve-universality (restricted) is natural; CP-violation

is natural and maximal and CP-violating effects depend in leading order only
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on fermion and vector meson masses and the gauge coupling consta'nts; the

Cabibbo angle satisfies  Eq.   (1.5) ; and there  is a natural    AI = 1/2    rule  for

nonleptonic strangeness changing processes.  As mentioned earlier, this model

is  based  on the gauge group   0(4) x U(1)    with the right-handed fermions   0(4)

singlets and the left-handed fermions transforming as 4-spinors and six

component tensors (in the adjoint representation).

In the present stage of development, any model in this class always has a

counterpart in which the representation content of electronic and muonic

leptons are interchanged. Physically, one case differs from the other for

example in the way v and v enter in the neutral currents. The case to
e 11

be described next allows to  0(G) for
vu +N+VU

+zero charm hadron system,

while the correspondin   ve  reaction is forbidden to this order.  The alternative

solution allows for "elastic"   v     but  not  for v - processes. Now to the
e                                                      V

example.

A 4-spinor is a pair of doublets  (u,v)  where  u  transforms as a doublet

1

+
under the SU(2) subgroup generated by  t  and  v  transforms as a doublet

1

+
under the  SU(2)  subgroup generated by  p .  Under the R operation,  u  and

v  are interchanged.

The left-handed muonic leptons transform like a pair of 4-spinord with

Y  = -1 /2:
- A/10

u        =F       9.r                                                                         
                            '-t

1

-

1        L 2  + Me)/,12 3 L , 7 = - (f--M-,Ait

r  Oo             - i (3.5a)

11=
1          -   o-   +  O-) /'ii..  L     '

1 Co--O-)/4
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where  v   is supposed to be a second massless.neutrino.

The left-handed quarks transform like a pair of 4-spinors with Y = 1/2:

-                        4,02   =  »"»'    , 1,01
.> 9'r  S  »11, -1'/

)L                                3
   v               t  /_ h+2)/22  -   b o L

.3

C %+4 , 0-t
o    (3.5b )

164  ''i     -   <C' ) - 91)/Ji  - 4 '        1   ti Vi   =    t- Ch+S))/Li  +0  /1

qo,r'  are neutral.  p',q  and  r  are positive.

The six-component tensor representation is a pair of triplets  (U,V),

+
where U transforms like a 3-vector under t  and V transforms like a 3-vector

+ ++
under     p  . In other words, (U,V)  transforms like  (t,p),  so this is the

adjoint representation.  Again, the. R  operation interchanges  U  and  V.

The electronic leptons transform like a pair of these representations with

'               1+ +C. l at- e          -

;11'1  .1.-dye'l'»  .,
;  i- tv  +N')111 + 5''      ,

6-  +  / -                                                      L     8                              -1D

n

- Gt H+At (3.5c)

il·Ir -  F (1 -  of/ 1 -X'   ,  12 12 =  LI(MLN:)/litx'j.
Qv.4 -  i -

L     E-  +    2-                     -1 L                                 «      E- -  P
--i

All right-handed fermion f ields  are 0(4) singlets with   Y = Q.    We will

have to include right-handed neutrino fields, for naturalness, even though

the neutrinos are massless.  However, before we discuss the Higgs meson system
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and the Yukawa couplings in detail, a few comments are in order.

1)  The charged currents do have the form Eq. (1.3) where all additional

terms involve heavy fermions so far unobserved.  This is easily verified from

Ref.  15,  Eqs. (6)-(8) which hold  for any representation content  of   0(4) x U(1).

Indeed since the quark structure Eq. (3.5b) is as in that paper, the detailed

hadronic contributions to all currents are as given explicitly in Ref. 15.

2)  The required form Eq. (1.3) could also have been achieved with a

L                                                       14
much simpler f system (for example, either four 4-vectors in all or four

15
4-spinors in all  ) if it were not that we are concerned here about naturalness.

3)  It is also this concern which leads us to introduce the spinor  (u2'v2)

which, as the alert reader will have noticed, only involves unobserved fermions.

4)  The detailed discussion of the currents in this model is not our

present concern, except for the remark that the natural ve-universality here

12is restricted to the pairs of currents coupled to W and  W . Indeed, the

neutral vector meson    Zu    (see  Eq.   (3.3)) is coupled  to the operator    t3 - 93'

from which it follows that the amplitude for Z+V +V is  0(G)  while
U   U

-                                                                                         -                                                                                         -

the amplitudes for     Z  +P+W ,    or   e +e,   or   v  +ve   are each   0(Ga).
U                               e

The neutral vector
meson   V 

is coupled  to    t3 + P3 - Q sin2 Y,  Cy   as  in
I - -

Eq. (3.2)).  Thus the associated current contains \)  V -: 1.1 1.4  ee- but no
P ji '

v v - terms, so that the (calculable) ratio for rates of the processes
ee

2
Eqs. (1.2) and (1.1) is proportional to a . (We repeat that lack of

universality for certain currents does not imply lack of calculability for

models of this kind.)

5)  The model is free of anomalies.  This is still true, even if we

replace the 8 integrally charged quarks by 8 color triplets of fractionally
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charged quarks, where the color  SU(3)  commutes with the weak and electro-

magnetic gauge group.

6)  If we were not concerned about naturalness, we could give arbitrary

masses to the fermions with only three representations of Higgs mesons:  one

4-spinor  with    Y= 1/2, one 6-tensor  with    Y=0,     and one 6-tensor  with    Y=1.

Instead  we  will  need ten 4-spinors  with    Y = 1/2, three 6-tensors  with    Y = 0,

and two 6-tensors with  Y=1   and the fermion masses will satisfy various mass

relations.

The basic strategy in constructing the model is to write down a set of

Yukawa couplings such that when the Higgs mesons develop R-invariant vacuum

expectation values, the fermion masses are generated consistent with Eq. (3.5).

The Yukawa couplings should have enough discrete symmetries to insure their

uniqueness and furthermore, these symmetries must prevent the appearance of

Higgs meson self-couplings which would spoil the naturalness of the R-invariant

vacuum expectation values. The list of discrete symmetries will include CP-

and an R-invariance, which in general will be different from the R-invariance

of the vacuum expectation values. These two symmetries act nontrivially on all

the fields.  There will also be symmetries which act, for instance, only on the

muonic lepton fields.  Because of these latter symmetries, the strongest con-

straints on the system are always obtained by considering only a piece of the

model, either the muon system, the quark system, or the electron system at

-         any one time. So in what follows, we will discuss the three subsystems

separately.

First consider the muon system.  The Higgs mesons needed to generate the

fermion masses are 4-spinors  with    Y = 1/2, which are pairs of doublets     (a,B).

To insure R-invariance of the zeroth-order vector meson mass matrix, we must
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require  that  for each  such pair the vacuum expectation values satisfy  <a > =

<B>  .   The muon system requires 4 such spinors. The Yukawa couplings are

Ati'-S,1., '-'r'F, ':< -'.E, «,0,+ fF. MI  j         

+8   j,   (E l 0 4 + 1  #3 ) '1   +   l 2 2 4 3 +91 & )D R

+  Liz 144 -4 14)  M I +    C ii,   44 -FL'4) 02
j (3.6)

-'   C   il    1 Ul   't4  + 4 4  )1'*  -   (.U* 014 +.il #4) 4
A- 1

-  (-21 023-51  3)M-R+  CTIL*3 -2213*)OR 1  + R.C.

Here  ( ,2) = i(.[20 *, T28*)  is a 4-spinor with  Y=1/2. The constants  A, B,

and  C  are real so  CP  is a good symmetry. Suppressing space-time variables,

the Higgs mesons transform as follows under    CP  : ai + ait     and    Bi + Bif     for

i=1 to 4.  Under the  R  symmetry, the fields in Eq. (3.6) transform as

follows:      ai ++Bi        for         i=l   to   3,      14+4  -84,      ul*+  v2,      u2 ++ vl ,      vuR++  VOR  ,

M  -   0   .         vi -oi·        MI -OR
· This is not the R invariance of the vacuum

expectation values, because  of the trans formation       az, ++ -B4
instead  of

0 4 +-+ 84  '

In addition to these two symmetries which act nontrivially on the

electronic leptons and the quarks as well as on the muons, we introduce the

following symmetries in order to force the Yukawa couplings to have the form

Eq. (3.6).

Separate conservation of muon number and 0-number . (3.7.1)

41 -9 -  41       2     * e   -9   - 1R (3.7.2a)

(3.7.2b)
6 1  4     - pt          '      'i R   -9     -   )4 R
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42 =9  - 41    2     0&  -9   -
no (3.7.2c)
vn4

(3.7.2d)

Tz.9   - P:    ,      0 I-9   -  M l  .

(3.7.3)

9444 Ja,   ( 1 4'fl. 1 44 -9-49 2  (14-9 - 4 1
,\0

11.1    6-9 'AL  1     91  49151    ) 1*R *-1  .R     ,     11 R 6-9   MI  ,  /4  69 64   '  MR &9 01

(3.7.4)

43+4  *-4,   6  -'#4   +  - 133   ,   1  -9  - Ir, 1  -'   -'G   >     A R  -'  - * R  ,
-

M 1  -'  -  M ,       ,     11 i  =    MR  -,  -  Q      ,      08   -,OR   5   -4   .
In each of these, if a field does not appear, it is unchanged by the transfor-

mation.  With the exception of Eq. (3.7.4) (which is to be broken by quadratic

Higgs terms), these transformations are required to be exact symmetries of

the Lagrangian.

If the Higgs mesons develop the vacuum expectation values <a > =<B > =11

0  '       <ai>   =  <Bi>   4   0      for      i=2   to   4,      and       <a3>   0  <«4>'      then   the
fermion

mass eigenstates are as shown in Eq. (3.5a), with the mass relations

MCV,)= mit)=O 2  4,�(M') = 40'),
(3.8)

471 ( ) + 'rn (M-)1 = 711(5)1+ 711(0-)26
So that of the eight muon-system masses only four are independent.  Our task

-          now is to show that these vacuum expectation values are natural.

; First consider the condition   < al> = < Bl> =0 Because of the

symmetries (3.7.2a and b) , these vacuum expectation values are necessarily

extremal; because  al  and  Bl  must appear quadratically.  For some range
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 of the parameters   in the scalar meson potential,    < al>  =  < 81>  =   O       will

minimize the action. Similarly, the condition <a > = <B.> will be extremal
i 1

(and minimal for some range of parameters) if the Higgs meson self-interactions

are invariant under the interchange      ai - Bi '

This is a sufficient, not a necessary condition, but for the muon sub-

system it is satisfied.

The only terms which could spoil this invariance are those in which an

odd number of a4  or   B4  fields appear, because, if there are an even

number,     the true R-invariance    of the Lagrangian,
which    involves           a4  ++ -84   '

has  ·the same effect  as the
R-invariance  we  want,       a4 +-+ 84  .

The quadratic

self-couplings are obviously invariant, as are the quartic terms which involve

only   al'Bl'a2  and  82 The quartic terms involving only
'3'83'a4  and

84  are also invariant because of the symmetry (3.7.3).  So the only possible

problems are terms  like      (a a  ) (ata  )    or    (afa  ) (0:-1 a  ) or others  of  this1 3 1 4 1 1 34

type.  The first term is forbidden by Eq. (3.7.4), while the second is

forbidden by Eq. (3.7.4) and CP.  Finally, Eq. (3.7.4) cannot be an exact

symmetry of the Lagrangian because it would imply  < 03> = +< 0,4>
which

would yield unwanted mass degeneracies among the charged leptons. So, as

said above, this symmetry must be broken by mass terms.

This concludes the discussion of the muon sector. Before going on to

a similar study of the other sectors, we should emphasize that the tricks

we have used here to enforce naturalness are not special to this model.

Indeed, features like the appearance of right-handed neutrino fields, discrete

symmetries broken by mass terms and the quadratic mass relation have already

been encountered in the discussion of simpler models.  Here they are all

necessary, along with the existence of a pair of neutral lepton fields
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degenerate in zeroth order.  We expect that some of these features will be

i                                                         '.                                        -

necessary in an9 model in which naturalness depends on discrete symmetry

structure.

For the quark sector, we need-6 more 4-spinors.with Y=l/2, (ai,Bi)

for i=5 to 10. The Yukawa couplings are:

ID i  (-fls 0,9  + 3 Ps )1/R  f  (TE't·'9 +  3 fs) t 

+ (546 +24 PL) *,A - tallat .1-73 46) teR.j

+ E it OB-a# ) d,  + (93 -54) 6,] PR

+I(£34,u#)47 - Li,+Ew)471.Ki

+FiI LE,-124)  4%  +   15-ill) tz) 3&
(3.9)

4  I-    LES+El  )4%    +   (73 +74)Pi]T'Rl

bJ     -A J                  A'    - n  \A

+G< (-£30Lj +55)90 + liI#cvS+%% 17*

+  (FS 41,  -i  i, 1  11.R + t *4 <  -P# A.) td

19            +  F l i t"i·3 2 ,-1. 3' 1,)PR- (W46 0 +PIA«)$4

-  ( 375    -73   Fo     )   F'R   +   L" 4   9   -   94 3     )  ' R  i  .1-   f· . c.
Again we want <ai>= <Bi> for all i, and  <a5,   <a6> and  <a9> 0

<alo>.
The constants  D-H  are  real,   so    CP     is  a goo2 symmetry, and again

take S    ai-*a:'.t     and   Bi+Bit

The R-invariance is: ai++Bi for i=5,  and 7 to 10, a6++ -86'

00

llJ   4--*   V3'        u4+v.   v4 '        (11     rR,        1111-*   -Il  ,        PR+   -PR,     rR   +-r.]i .

The invariance peculiar to the quark sector are, quark number

conservation and:

i
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0         -0

450 -9  , 54-&,46 -9-4, *6-9 -A , 10*-9£ , ER-' -462 ' (3.10.1)

48,    *R -P- AR,   20 -9-'K   '
47  -*-9,  FF*-Al  ,  9 -'-'9 'Bri- (3.10.2)

'>t 4-'(9 , B3 7 - 19 , of. -1 - ot to, P 1. -P
-'to,

(3.10.3)

PR-9-AR,Ple-1 k,  eR -5-4 > ER-'-eR.

46  --*04    7     6   -*136    ,    1, 4 -40,   13,0 -4
-1 0, (3.10.4)

U34-  4  '1'3 6=114  .'4 6-*tR,  Pie-¥R  'f;*'t; ,%*-AR'

O(  -4-*89#8 4 -pS> 43 *' - 5  '040-$- SO                           (3.10.5)

l14 0 -4,  41  -9  -6     ,  AR  4.'AR   , t -5 -*A, PR*'-1*,Ff:'4-PA '

tis. 4-*  4  6  ,        r   4-4  46      ,    4   -*  - '24  ,
(3.10.6)

[to be broken by quadratic Higgs terms].

«9   0  410    4   -  43   '     P9  4  -Bl«  1 -<6,   4 14 +  -PR 2 (3.10.7)

%R 9 *R -4 - 94 , [to be broken by quadratic Higgs terms].

These symmetries force the Yukawa couplings to have the form (3.9) and also

insure   that    <ai>  =  < Bi> is extremal by forcing the Higgs meson self-couplings

to be invariant under the interchange a ++B · The 4uark masses satisfy
i     i
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the quadratic mass relation:

m(P)2 +m(P'')2= m(q)2 +m(r)2 (3.11)

Eq.  (3.10.6) is to be broken as indicated in order to prevent  <a5> = <a6>

which would suppress strangeness changing non-leptonic decays.  Eq. (3.10.7)

is to be broken in order to prevent unwanted mass degeneracies.

For the electronic lepton system, we need three tensor Higgs meson

representations with  Y=0,  ($i,Xi)  for  i=1 to 3 and two with Y=1,

(9i,wi)  for  i=l or 2.  The Yukawa couplings are:

I  i  Li  fi  + 291 '(, ) ,2  -  Cll,  e 4 1 0, )'Ki' 3

+ I    i    [CIZI - TE, )   (f,-  L   (91  +V,)  I'.] Wi
- -

+ I 1121 -1.RA 5 - 2 (Vi - VL) %3 ] '1# 3

7,  -  ,   -t       '
- A+7

tk <  C ZE) '4, + vi '0, )28 + (Ili 'Fl + -92 51 )GR )

+   L   i    'Fil   M,   +VI 11,) 8·1  -    C  TI, il,  2 7, S.) GRJ
(3.11)

.       -,  M   {    1-ki 0  -VI ZI )19<+ + Cli,t -V  51  )8 j

*N   f    Ck, i --Vl s,)11-   CE,t -12 117A )H;-j

+ 0  i    lul '11 1- 9.1  «,I) ei + C U, pl +72 4) GR  j
./

+  2    f      (ZE; 11 47,  cooek  -   Illi**+9*,0,) Efe f

4 Q  i   IR  Pl -vt u,1 fA +  IlI,4 -Vze') FRR.

+ R  i   CTI' 91 -vi w,) fA - (-R:1'L -  *.Q, )FRJ + bl.C ,
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++

Here  ( ,W) = (ir,W*)  is a tensor with Y=-1. The constants I-R are real

so the CP invariance involves
*i - *t,     xi --Xt  ,    '1'i""Itt,       wi + ut  ·        The

R-invariance   is         i + Xi + -$i  '       11'i +-+ wi  '       Ul 4-* Vl  ,       U2 ++ -v2   '       Xl  + ix ,

X  « iX ,      NI  - -iN ,      ve   - -ive    ,      1,  - -h;: ,      G;: -' -GI ,      fi - -fi  ,    EI - -EI  ·RR
The other invariances are:

m   -2, - 0,6 )96,3-71 1 4-7-k';  , XR -i' -'X'R .ri , 7 (3.12.1)

92--3 - 11, ) ')42-4,,   R
NO -5 - NOO  ,

(3.12.2)

f3  -A  -f i     ,    av s   -*  - '«3  1    16%6-9  -1 2  ' (3.12.3)

,·                            It             N'    9    -V2  2

fz.  * 73 , *01 62, 76 3,U 2.--9 -- L ,  2
O          A                                                           V- +

) R-3  -   R,     IVR +"  i R    ,   6,0 -2    -   eR D (3.12.4)

-

HAR -4 -Ht, E-8 1 -ER 7 Fe --3 -Fe ·

11 6-* 141,\4»\,(i  'P=-41,  92»-E,  '*3= -763,
At #+ .Ut (3.12.5)

*Le- 42  1   02.-4 - 6)1 1     2'  6-1 X' 7 9- 6-9 6
2 2    14%  ,*   ''  12-9

L  A  6-'  El   ,   fR   6-' FR '
These symmetries force the Yukawa couplings to have the form (3.11).  Now if

the Higgs mesons develop the vacuum expectation
values   < 43>  =<X3>  =  0,

< i> = <Xi> 4 0   for  i=l or 2 and
<*i>   =  <wi>   4   0      for      i=l      or   2,    then

the fermion mass matrix is consistent with (3.5c) with the mass relation

m(xo) = m(Xo) . (3.13)

All naturalness conditions can be met, as follows. The condition
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<43  = <XJ> = 0   is extremal because of the  75  invariance (3.12.3).  In

this case, we do not need an additional quadratic mass relation to insure the

R-invariance of the vacuum expectation values, because terms which involve

+   +
one of the X'S linearly, such as  ($ 9)(w X),  do not affect the vacuum

expectation values as long as electromagnetic gauge invariance is not

spontaneously broken. So here again, R-invariance is natural.

The reader can check that terms which couple Higgs mesons from different

subsystems do not spoil naturalness.

We are still not quite finished.  All of the Higgs meson vacuum expecta-

tion values we have discussed so far contribute equally to the  Wl  and  W2

masses, so we need some additional Higgs structure to avoid the unphysical

result, tan 0 = 1.    This is easily remedied with a real 4-vector Higgs meson

whose vacuum expectation value contributes to the  W2  mass, but not the  Wl

mass.

IV A FINAL COMMENT

We got involved in this investigation by asking what seemed to us at the

time to be a rather simple question: could the desirable properties of the

0(4)  x U(1) model  be made natural?    We have found an answer  but  in the process

have discovered the very much more important fact that the question itself
-

is far from simple.  We could not have foreseen the labyrinth of technical

difficulties into which this problem had led us.  Possibly, some of the

difficulties were self-inflicted, due to our adherence to Higgs-type

symmetry breaking; but we know of no other way to ask these detailed questions.
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We must also admit that we still do not know all the rules of the game we

are playing.

The problem is this: there are certain properties which we wish to

implement naturally, for instance,  45'  angles in the fermion mass matrix or
'11.

(as  in   oA) X U(1) models) symmetries  of the zeroth order vector meson mass

matrix; so the Higgs meson structure of the theory must be tightly constrained.
.

Not only the Yukawa couplings but also the Higgs vacuum expectation values

must be forced to take very specific forms. In some cases, we can satisfy

all these constraints by imposing discrete symmetries on the Lagrangian, while

in others we can prove that the constraints can never be satisfied. But our

results have been obtained at least partially by trial and error.  We feel

that there must be general strategies for the construction of natural models

and further that such general results would be a very important advance in the

study of the structure of gauge theories.

.
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