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Abstract

Various authors have proposed using the jackknife technique to approximate a standard error for the Gini

coefficient. It has also been shown that the Gini measure can be obtained simply from an artificial OLS

regression based on the data and their ranks. Accordingly, we show that obtaining an exact analytical

expression for the standard error is a trivial matter. In addition, by extending the regression framework to one

involving Seemingly Unrelated Regressions, several interesting hypotheses regarding the sensitivity of the Gini

coefficient to changes in the data are readily tested in a formal manner.
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Introduction

Although the Gini coefficient is probably the most widely used empirical measure of income inequality, it is

usually reported without any acknowledgement of the fact that it is simply a sample statistic. As such, it has

a sampling variance, and ideally a standard error should be reported. This has long been understood (e.g.,

Hoeffding, 1948), but the standard error associated with the Gini coefficient has been reported only rarely

in practice. The reason for this is that most of the formulations of this standard error that have been proposed

in the literature are mathematically complex, or they require a considerable amount of numerical

computation1. The latter disadvantage applies, in particular, to the application of the jackknife technique2 to

simulate a variance for the Gini coefficient, as suggested by Sandstrom, Wretman and Walden (1985, 1988)

and others.

Recently, Karagiannis and Kovacevic (2000) and Ogwang (2000) have re-considered this issue. In particular

they discuss ways in which the computational burden associated with the jackknife approximation of the Gini

coefficient's variance can be reduced to a level where this method can be applied even when realistically

large data samples are involved. In addition, Ogwang provides a particular regression-based interpretation

of the Gini coefficient that not only forms the basis of his approach, but unwittingly exposes the fact that there

is really no need to resort to the jackknife technique at all in this context! The purposes of this note are to

expose the latter point, and to show how this regression-based interpretation is also helpful with regard to

various hypothesis tests that are of practical interest. We illustrate our results with empirical applications.

Basic Results

Let  be a vector of incomes, with extreme values and , mean , and cumulative distributiony y min y max µ

function . It is well known that the Gini coefficient of inequality is:F y( )

. (1)G F y F y
y

y

= −∫{ ( )[ ( )]}/
min

max

1 µ
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Suppose that the observed data are in increasing order, with i’th. value . Then Ogwang (2000, p.124) notesy i

that the Gini coefficient can also be expressed as3:

, (2)G n n y= −[( ) / ( )]( $ / )2 1 6 β

where  is the sample arithmetic mean of , is the OLS estimator of  in the modely y $β β

, (3)y i
i i
= + +α β ε

and the are zero-mean, independent, and homoskedastic errors. He also shows that  can be writtenε
i s' G

as:

, (4)G n n= − −( $ / ) ( / )2 1 1θ

where is the weighted least squares (WLS) estimator of 2 in the model$θ

, (5)i
i

= +θ ν

where the are heteroskedastic errors with variances of the form . So, in the formulationν
i

s' ( / )σ2 y
i

of the Gini coefficient in (4), we have:

. (6)$ [( ) / ( )]θ =
= =
∑ ∑i y y

i

i

n

i

i

n

1 1

Ogwang’s (2000) principal contribution is to use equation (4) as the basis for applying the jackknife principle

to develop a standard error for G. His innovation dramatically reduces the computational burden of using the

jackknife in this context, as it usually involves computing G from every possible sub-sample that is created

by dropping one observation. The key to his result is that the data are first ranked in the construction of (4)

from (5) and (6).

As useful as the proposals made by Karagiannis and Kovacevic (2000) and by Ogwang (2000) are,  in fact

a closer examination of the latter’s approach reveals that the adoption of the jackknife technique is actually

unnecessary, and the construction of an appropriate standard error for the Gini coefficient is trivial. To see



4

this, note that from (4):

(7)var. ( ) var.( $) /G n= 4 2θ

and so the standard error of G is:

. (8)s e G s e n. .( ) [ . .( $)] /= 2 θ

Of course, comes directly from the WLS estimation of (5), or equivalently from the OLS estimations e. .( $)θ

of the regression model:

, (9)( )i y y ui i i= +θ

where . In other words, the desired standard error can be obtained directly from standardu yi i i= ( )ν

OLS regression output! Precisely this approach has been used by Selvanathan (1991), Giles and McCann

(1994), Crompton (2000) and others to calculate standard errors for Laspeyres, Paasche, and other types of

price indices4. It should also be stressed that resampling procedures such as the jackknife are justified only

in terms of their asymptotic properties. For instance, Shao (1991) provides a detailed analysis of these

properties, and establishes the weak consistency of the jackknife variance estimator. This estimator is not

necessarily appealing in finite samples - for instance, Efron and Stein (1981) prove that  it is biased upwards

in small samples, so at least it provides a conservative measure.

Numerical Illustrations

First, we illustrate the relationship between the exact standard error given by (8), and its jackknife counterpart,

using an artificial data-set5. Table 1 shows the Gini coefficient and its standard error for various sample sizes,

and the corresponding jackknife calculations. The asymptotic convergence of the latter to the former is

evident, as is the upward bias in the jackknife Gini estimate and its standard error in finite samples. Ogwang

(2000), and the other associated authors noted above, propose that the “exact” Gini coefficient should be used

with the “jackknife” standard error. The percentage distortion in [G / s.e.(G)] that would be associated with

this approach is just the percentage distortion in s.e.(G). This is also shown in Table 1 for our artificial data-
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set.

Next, we consider a small application using data from the Penn World Tables6. Our data measure real per

capita consumption, in internationally comparable terms, for 133 countries in the years7 1970, 1975, 1980 and

1985. In Table 2 we again compare the Gini coefficients and their standard errors obtained by the simple

regression approach described above, and by using the jackknife. As before, the finite-sample bias of the

latter measures is obvious, and in fact is much more pronounced (in percentage terms) than in Table 1. To

construct a 95% confidence interval for the Gini coefficient based on the OLS/WLS results we can use the

critical t-value8 of 1.978 and the standard errors. For each year this confidence interval easily covers the

associated jackknife Gini estimate. The inter-temporal pattern in consumption inequality implied by the various

measures is also interesting. Both sets of Gini coefficient estimates exhibit an increase in value (and hence

in consumption inequality) from 1970 to 1975, a small decrease in 1980, and an increase to a maximum value

in 1985. Interestingly, if consumption inequality is measured by the coefficient of variation (“c.v.” in Table

2), a different picture emerges. By this measure, inequality declines from 1970 to 1975, and to 1980. It then

increases to its maximum value in 1985. The regression model (5) that these results are based upon has an

error term that is assumed to exhibit a particular form of heteroskedasticity. Accordingly, we have used

Harvey’s (1976) test to test the hypothesis of homoskedastic errors against the alternative hypothesis that the

error variance is proportional to .  In each case the null hypothesis is rejected, lending support to the( / )1 y
i

assumptions underlying the calculation of our Gini coefficients9.

 

The OLS/WLS approach to calculating the standard errors for the Gini coefficient also facilitates various

interesting hypothesis tests that cannot be conducted readily if the jackknife approximation is used. For

example, we can test the hypothesis that the Gini coefficient is the same in different years by stacking up the

single-year regressions of the form (5) or (9), using Seemingly Unrelated Regressions (SUR) estimation, and

testing the equality of the appropriate coefficients across the equations. Part (a) of Table 3 shows the SUR

estimates of the Gini coefficient and the standard errors for our consumption data. The  coefficients

themselves are smaller than those obtained year by year (as in Table 1), and the gain in asymptotic efficiency

associated with SUR estimation is reflected in the smaller standard errors. The latter, of course mean that

the percentage distortion in the jackknife standard errors is even greater than the Table 2 results suggest.
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The relevance of using SUR estimation rather than year-by-year OLS  is clear when we test the diagonality

of the model’s error covariance matrix. The Breusch-Pagan Lagrange multiplier test statistic is 796.12, while

the corresponding likelihood ratio test statistic is10 2787.50. Table 3(a) also shows the results of testing the

equality of the slope coefficients (and hence the Gini coefficients) across the equations of the model, and

hence across years. With the exception of the 1975/1980 pair, we strongly reject the hypothesis that the Gini

coefficient is the same in two different years11. Not surprisingly, the Wald statistic  for testing equivalence

across all of the years is 65.10, leading to a clear rejection of this hypothesis12. In part (b) of Table 7 we

show the results when the 1975 and 1980 coefficients are restricted to be the same. With the inclusion of this

additional (data-supported) information, the Gini coefficient standard errors are further reduced, and so the

distortions associated with the jackknife approximation are more pronounced.

As a final example of the usefulness of the SUR approach to calculating both the Gini coefficient and its

estimated variability, we consider the significance of the effect on this measure of international consumption

inequality if one or more countries are deleted from the sample. In each year, the U.S.A. has the highest real

per capita consumption among the countries in our sample, and Ethiopia has the smallest. Table 4 shows the

results of testing the robustness of the Gini coefficient estimates, in each year (based on restricted SUR

estimation), to the deletion of one or both of these extreme sample values13.

Comparing Tables 3(b) and 4, we see that the Gini coefficient is slightly more sensitive to the omission of the

U.S.A. from the sample than to the omission of Ethiopia. Not surprisingly, it is even more sensitive to the

omission of both countries. The Wald statistics relate to the equivalence of the Gini values before and after

the various omissions - they are asymptotically chi-square distributed with degrees of freedom equal to the

number of countries deleted. Interestingly, when we focus on statistical significance rather then the numerical

values of the Gini coefficients, a different picture emerges. When the U.S.A. is dropped from the sample we

cannot reject the null hypothesis, that the Gini coefficient is unaltered, at the 15% significance level or lower.

On the other hand, when Ethiopia is dropped from the sample, we reject this null hypothesis at the 5% level,

though not at the 2.5% level or lower. Finally, when both countries are dropped, we again reject the stability

of the Gini coefficient at the 5% level, though not at the 4% level or lower. 
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Concluding Remarks

The Gini coefficient is the most common economic measure of inequality. A standard error is needed if

confidence intervals or tests are to be constructed for this coefficient, and various authors have proposed

using the jackknife technique to get a large-sample approximation for this standard error. However, because

the Gini coefficient can be obtained from a simple OLS regression-based approach, the exact calculation of

its standard error is actually trivial. This insight also provides the basis for constructing various tests of the

robustness of the Gini coefficient to changes in the sample of data, using SUR estimation as the basis for this

analysis. Such tests are not readily constructed if the jackknife methodology is used. 
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Table 1

Gini Coefficients and Standard Errors - Artificial Data

n   “Exact” (OLS/WLS)         Jackknife % Distortion in

G s.e.(G) G s.e.(G) Jackknife s.e.(G)

25 0.2291 0.1054 0.2800 0.1125  6.7

50 0.2291 0.0738 0.2541 0.0767 3.9

100 0.2291 0.0520 0.2415 0.0533 2.5

500 0.2291 0.0231 0.2316 0.0235 1.7

1000 0.2291 0.0164 0.2303 0.0166  1.2

5000 0.2291 0.0073 0.2293 0.0074 1.4

10000 0.2291 0.0052 0.2292 0.0052 0.0

Table 2

Gini Coefficients and Standard Errors - PWT Consumption Data

(133 Countries)

  “Exact” (OLS/WLS)      Jackknife % Distortion in c.v

Year G s.e.(G) G s.e.(G) Jackknife s.e.(G) (%)

1970 0.4705 0.0417 0.4816 0.0481  15.3 93.16

1975 0.4796 0.0405 0.4908 0.0460 13.6 93.04

1980 0.4785 0.0396 0.4897 0.0448 13.1 91.16

1985 0.4940 0.0391 0.5053 0.0441 12.8 95.20
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Table 3

Gini Coefficients and Standard Errors - PWT Consumption Data

(SUR Estimation)

  

Year G s.e.(G) % Distortion in z-tests

Jackknife s.e.(G) 1970 1975 1980

(a) Unrestricted Estimation

1970 0.3369 0.0238 102.1 

1975 0.3454 0.0231 99.1 -5.61

1980 0.3478 0.0226 75.2 -3.94 -1.43

1985 0.3575 0.0232 68.5 -6.74 -6.20 -6.56

(b) Restricted Estimation

1970 0.3478 0.0222 116.7

1975 0.3552 0.0217 112.0 -5.80

1980 0.3552 0.0217 106.5 -5.80 n.a.

1985 0.3653 0.0213 107.0 -8.08 -7.13 -7.13
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Table 4

Tests for Robustness of Gini Coefficient

(Restricted SUR Estimation)

  

Year        Omit U.S.A. Omit Ethiopia Omit U.S.A. & Ethiopia

G Wald G Wald G Wald

[s.e.(G)] [p-value] [s.e.(G)] [p-value] [s.e.(G)]         [p-value]

1970 0.3505 1.9826 0.3488 4.3938 0.3514 6.3849

[0.0223] [0.160] [0.0222] [0.038] [0.0223] [0.041]

1975 0.3578 2.0266 0.3562 4.3382 0.3588 6.37545

[0.0218] [0.155] [0.0217 ] [0.037] [0.0218] [0.041]

1980 0.3578 2.0266 0.3562 4.3382 0.3588 6.3745

[0.0218] [0.155] [0.0217 ] [0.037] [0.0218] [0.041]

1985 0.3679 2.0566 0.3663 4.2339 0.3689 6.3001

[0.0214] [0.152] [0.0213 ] [0.040] [0.0214] [0.042]
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Footnotes

1. For example, see Glasser (1962), Sendler (1979), Sandstrom, Wretman and Walden (1985, 1998), and

other authors cited by Ogwang (2000, p. 123).

2.  . See Efron (1982), especially Chapter 3, for details of the theoretical justification for the jackknife

and other related resampling techniques. The jackknife was first suggested by Quenouille (1949,

1956) as a non-parametric method for estimating bias, and it was extended by Tukey (1958) to the

problem of estimating varaince. Yitzhaki (1991) discusses the application of the jackknife to a range

of measures related to the Gini index.

3. See, also, Lerman and Yitzhaki (1984) and Shalit (1985).

4. For a general discussion of the stochastic approach to price index construction, see Clements and

Izan (1987).

5. The basic data, for n = 25, is:{1 7 6 5 6 7 8 4 3 6 4 2 1 3 4 5 6 7 8 9 8 7 6 5 4}. 

The sample size is increased by assuming that the data are “fixed in repeated samples”. That is, if

n = 25j, the above sample is repeated “j” times. Accordingly, the “exact” (OLS) Gini coefficient

values shown in Table 1are invariant to the sample size. All of the calculations were undertaken with

the SHAZAM (2001) econometrics package.

6. See Summers and Heston (1995). The data were extracted using the Windows-based freeware also

available at the NBER website at http://www.nber.org/pub/pwt56/.

7. The Penn World Tables data-set covers more countries than this, over the period 1950-1992. We

have chosen a selection of recent years for which the data of interest are available for a large

proportion of the countries. The list of countries and data used in our sample are available at

http://web.uvic~dgiles/ewp0202data.xls.

8. The Student-t assumption follows if the errors in (5) or (9) are Normally distributed. Asymptotically

this will be a reasonable approximation, but the exact finite-sample distribution of G is another matter

that we don’t pursue in this paper.

9. The t-statistics (and their p-values) for 1970, 1975, 1980 and 1985 are -0.3817 (0.739), -0.3790

(0.741), 0.4232 (0.714) and -0.6615 (0.576) respectively. Any remaining concerns about other types

of heteroskedasticity could be addressed by using White’s (1980) heteroskedasticity-consistent

estimator of the covariance matrix, and hence of the standard errors.
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10. Both statistics are asymptotically chi-square with six degrees of freedom under the null hypothesis,

so we clearly reject the null of a diagonal covariance matrix.

11. The p-value associated with the z-statistic for 1975/1980 is15.22%.

12. This statistic  is asymptotically chi-square with three degrees of freedom under the null hypothesis,

so the 1% critical value is 11.3449, and the p-value is essentially zero.

13. These tests are readily implemented through the use of simple dummy variables to isolate the

observations (countries) of interest.




