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Abstract The psychological and statistical literature contains

several proposals for calculating and plotting confidence

intervals (CIs) for within-subjects (repeated measures) ANOVA

designs. A key distinction is between intervals supporting

inference about patterns of means (and differences between

pairs of means, in particular) and those supporting inferences

about individual means. In this report, it is argued that CIs for the

former are best accomplished by adapting intervals proposed by

Cousineau (Tutorials in Quantitative Methods for Psychology,

1, 42–45, 2005) and Morey (Tutorials in Quantitative Methods

for Psychology, 4, 61–64, 2008) so that nonoverlapping CIs for

individual means correspond to a confidence for their difference

that does not include zero. CIs for the latter can be

accomplished by fitting a multilevel model. In situations in

which both types of inference are of interest, the use of a two-

tiered CI is recommended. Free, open-source, cross-platform

software for such interval estimates and plots (and for some

common alternatives) is provided in the form of R functions for

one-way within-subjects and two-way mixed ANOVA designs.

These functions provide an easy-to-use solution to the difficult

problem of calculating and displaying within-subjects CIs.

Keywords Confidence intervals . ANOVA .Within

subjects . Repeated measures . Displaying means .

Graphical methods

There is now widespread agreement among experts that

confidence intervals (CIs) should replace or supplement the

reporting of p values in psychology (e.g., American

Psychological Association, 2010; Dienes, 2008; Loftus,

2001; Rozeboom, 1960; Wilkinson & Task Force on

Statistical Inference, 1999). What limited empirical data

there are (Fidler & Loftus, 2009) suggest that CIs are easier

to interpret than p values (e.g., reducing common misinter-

pretations associated with significance tests). In addition,

there are a number of statistical arguments in favour of

reporting CIs—the chief one being that they are more

informative, because they convey information about both

the magnitude of an effect and the precision with which it

has been estimated (Baguley, 2009; Loftus, 2001). Not all

of the arguments in favour of reporting CIs are statistical.

Even advocates of null-hypothesis significance tests have

suggested that such tests are overused, leading to “p value

clutter” (Abelson, 1995, p. 77). A plot of means with CIs

could replace many of the less interesting omnibus tests and

pairwise comparisons that routinely accompany ANOVA.

Despite this near consensus, it is not uncommon for

statistical summaries to be limited to point estimates—

even for the most important effects. A major barrier to

reporting CIs is lack of understanding among researchers

of how to calculate an appropriate interval estimate

where more than a single parameter estimate is involved.

Cumming and Finch (2005) explored some of these

barriers, providing guidance on how to calculate, report,

and interpret CIs (with emphasis on the graphical

presentation of means in a two-independent-group design).

The difficulties they addressed are even more acute when

more than two means are of interest or with within-

subjects (repeated measures) designs.

In this article, I review the problem of constructing within-

subjects CIs for ANOVA, consider the additional problem of

displaying the interval, review the main solutions that have

been proposed, and propose guidelines for calculating and

displaying appropriate CIs. These solutions are implemented
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in the software environment R for a one-way design, making

it easy to both obtain and plot suitable intervals. R is free,

open source, and runs on Mac, Linux, and Windows

operating systems (R Development Core Team, 2009). This

program removes a barrier to the reporting of within-subjects

CIs: Few of the commonly proposed solutions are imple-

mented in readily available software.

Within-subject confidence intervals: the nature

of the problem

First, consider the simple case of constructing and plotting a

CI around a single mean. In a typical application, the variance

is unknown and the interval estimate is formed using the t

distribution. Both the CI and the formally equivalent one-

sample t test assume that data are sampled from a population

with normally distributed, independent errors.1 For a sample

of size n, a two-sided CI with 100(1−α)% confidence takes

the form

bm� tn�1;1�a=2 � bsbm; ð1Þ

where bm is the sample mean (and an estimate of the

population mean μ), tn�1;1�a=2 is the critical value of the t

distribution, and bsbm is the standard error of the mean

estimated from the sample standard deviat ion

bs ði:e:; bsbm ¼ bs= ffiffiffi
n

p Þ. The margin of error (CI half-width)

of this interval is therefore a multiple of the standard error of

the parameter estimate. For intervals based on the t

distribution, this multiple depends on (a) sample size and

(b) the desired level of confidence. The sample size has an

impact on both ŝ m̂ and the critical value of t, but its impact

on the latter is often negligible unless n is small (and for a

95% CI, the multiplier tn–1,.975 approaches z.975 = 1.96 for

any large sample).

In practice, researchers are often interested in comparing

several means. ANOVA is the most common statistical

procedure employed for this purpose. The additional

complexity of dealing with several independent means

produces several challenges. Even for the simple case of

two independent means (which reduces to an independent t

test), there are two main ways to plot an appropriate CI.

The first option is to plot a CI for each population mean [e.

g., using Eq. 1]. The second option is to plot a CI for the

difference in population means. For independent means μ1

and μ2, sampled from a normal distribution with unknown

variance, the CI for their difference takes the form

bm1 � bm2 � tn1þn2�2;1�a=2 � bsbm1�bm2

; ð2Þ

where n1 and n2 are the sizes of the two samples and bsbm1�bm2
is the standard error of the difference. This quantity is

typically estimated from the pooled standard deviation of

the samples as bsbm1�bm2

¼ bspooled

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n1 þ 1=n2

p
. The only

additional assumption (at this stage) is that the population

variances of the two groups are equal (i.e., s2
1 ¼ s

2
2). A

crucial observation is that the standard error of the

difference is larger than the standard errors of the two

means (bsbm1 and bsbm2

). This follows from the variance sum

law, which relates the sum or difference of two variables to

their respective variances. For the variance of a difference,

the relationship can be stated as

s
2
x1�x2

¼ s
2
1 þ s

2
2 � 2sx1�x2 ; ð3Þ

where sx1;x2 is the covariance between the two variables.

Because the covariance is zero when the groups are

independent, s2
x1�x2

reduces to s
2
1 þ s

2
2, and it follows that

the standard deviation of a difference is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2
1 þ s

2
2

p
. If the

variances are also equal, it is trivial to show that the

standard error of a difference between independent means isffiffiffi
2

p
times larger than that of either of the separate means

(each standard error being a simple function of σ when n is

fixed). Thus, if sample sizes and variances are approxi-

mately equal, it is not unreasonable to work on the basis

that the standard error of any difference is around
ffiffiffi
2

p
larger

than the standard error for an individual parameter

(Schenker & Gentleman, 2001).

This discrepancy presents problems when deciding what

to plot if more than one parameter (e.g., mean) is involved.

Inference with a CI is usually accomplished merely by

determining whether the interval contains or does not

contain a parameter value of interest (e.g., zero). This

practice mimics a null-hypothesis significance test, but does

not make use of the additional information a CI delivers. A

better starting point is to treat values within the interval as

plausible values of the parameter, and values outside the

interval as implausible values (Cumming & Finch, 2005;

Loftus, 2001).2 Thus, the CI can be interpreted with respect

to a range of potentially plausible parameter values, rather

than restricting interest to a single value. This is very

important when considering the practical significance of an

effect (Baguley, 2009). For instance, a CI that excludes zero

may be statistically significant, but may not include any

effect sizes that are practically significant. Likewise, a CI

that includes zero may be statistically nonsignificant, but

the effect cannot be interpreted as negligible unless it also

excludes nonnegligible effect sizes.

If the margin of error around each individual mean

computed from Eq. 1 is equal to 10, then the margin of

1 Alternatives exist that relax some or all of these assumptions, but are

not relevant to the present discussion.

2 Visual display of interval estimates lends itself to the informal

interpretation of a CI favoured here. CIs can also be used for formal

inference, and if so, the same problems arise.
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error around a difference between independent means will

be in the region of
ffiffiffi
2

p
� 10 � 14 (assuming similar sample

sizes and variances). If the separate intervals overlap by

some minuscule quantity, then the total distance between

them will be approximately 10þ 10 ¼ 20. Since this gap is

larger than 14, it is implausible, according to Eq. 2, that the

true difference is zero. Plotting intervals around the

individual means using Eq. 1 will be misleading (e.g., if

the overlapping CIs are erroneously interpreted as suggest-

ing that the true difference might plausibly be zero).

It is possible to apply rules of thumb about the

proportion of overlap to avoid these sorts of errors or to

adjust a graphical display to deal with these problems

(Cumming & Finch, 2005; Schenker & Gentleman, 2001).

Furthermore, depending on the primary focus of inference,

it is reasonable to plot the quantity of interest—whether

individual means or their difference—with an appropriate

CI. This is relatively easy with only two means, but with

three or more means it becomes harder. For instance, a plot

of all of the differences between a set of means can be hard

to interpret. Patterns that are obvious when plotting separate

means (e.g., increasing or decreasing trends) will often be

obscured.

The same general problems that arise when plotting CIs

in between-subjects (independent measures) ANOVA also

arise for within-subjects analyses. Plotting within-subjects

data also raises a more fundamental problem. In a within-

subjects design, it is no longer reasonable to assume that

the errors in each sample are independent. It is almost

inevitable that they will be correlated—and usually posi-

tively correlated. The correlations reflect systematic indi-

vidual differences that arise when measuring the same units

(e.g., human participants) repeatedly. For example, partic-

ipants with good memories will tend to score high on a

memory task, leading to positive correlations between

repeated measurements. Negative correlations might arise

if repeated measurements are constrained by a common

factor that forces some measurements to increase or

decrease at the expense of others (e.g., a fast response time

might slow down a later response if there is insufficient

time to recover between them).

The main implication of this dependence is that the

standard error for the differences between the means of

any two samples will depend on the correlation between

the two. This is evident from Eq. 3, bearing in mind that

the Pearson correlation coefficient is a standardized

covariance (i.e., rX1;X2
¼ sX1;X2

=½sX1
sX2

�). Positive corre-

lations lead to smaller standard errors, while negative

correlations lead to larger standard errors. Only if the

correlation between measures is close to zero would one

expect the standard error of a difference in a within-

subjects design to be similar to that obtained with a

between-subjects design.

Within-subjects confidence intervals: some proposed

solutions

Loftus–Masson intervals In the psychological literature, the

best-known solution to the problem of plotting correlated

means in ANOVA designs is that of Loftus and Masson

(1994; Masson & Loftus, 2003). Loftus and Masson

recognized the central problem of computing within-

subjects confidence intervals in the context of ANOVA.

They started by noting that plotting CIs around individual

means in between-subjects designs is informative about the

pattern of differences between conditions (because their

width is related by a factor of approximately
ffiffiffi
2

p
to the

width of a difference between means). In a between-

subjects design, the typical approach is to use Eq. 1 to

calculate the standard error from a pooled standard

deviation rather than the separate estimates for each sample.

This is readily derived from the between-subjects ANOVA

error term, because bspooled ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror

p
. If sample sizes are

equal, this will produce intervals of identical width, but

when sample sizes are unequal (or if homogeneity of

variance cannot be assumed) researchers are advised to

compute the standard error separately for each sample. In

balanced designs (those with equal cell sizes), this has the

added virtue of revealing systematic patterns in the

variances of the samples (e.g., increasing or decreasing

width of the CI across conditions). However, because the

pooled-variance estimate is based on all N observations,

rather than on n within each of the J levels, the intervals

with separate error terms will be slightly wider (by virtue of

using tn�1;1�a=2 as a multiplier rather than the value

tN�J ;1�a=2).

Loftus and Masson (1994) proposed a method of

constructing a within-subjects CI that mimics the character-

istics of the usual between-subjects CI for ANOVA. In a

between-subjects ANOVA, the individual differences are

subsumed in the error term of the analysis, and hence

reduce the sensitivity of the omnibus F test statistic (this

being MSeffect/MSerror). Since the between-subjects CIs

constructed around individual means usually use the same

error term as the omnibus F test, the two procedures are

broadly consistent. Clear patterns in a plot of means and

CIs tend to be associated with a large F statistic. To create

an equivalent plot for within-subjects CIs that is just as

revealing about the pattern of means between conditions,

Loftus and Masson propose constructing the CI from the

pooled error term of the within-subjects F statistic. In

essence, their approach is to adapt Eq. 1 by deriving ŝpooled

from an error term that excludes systematic individual

differences.

If individual differences are large relative to other

sources of error, they can have a huge impact on the width

of the intervals that are plotted. Figure 1 shows data from a
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hypothetical free recall experiment reported by Loftus and

Masson (1994), comparing three different presentation

times (1, 2, or 5 s per word). The mean number of words

recalled (out of 25) is plotted in Fig. 1a as if they were from

a between-subjects design and in Fig. 1b as if they arose

from a within-subjects design.

Although the standard error used to construct the CI in each

panel is based onMSerror, this is computed from the between-

subjects ANOVA as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSwithin=N

p
and from the within-

subjects ANOVA as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSfactor subjects=n

p
.3 The dramatic

difference in widths in Fig. 1 is a consequence of the high

correlation between repeated measurements on the same

individuals (the correlations between pairs of measurements

from the same individual being in the region of r = .98 for the

free recall data). Real data might well produce less dramatic

differences, but even the moderate correlations typical of

individual differences between human participants (e.g., .20 <

r < .80) are likely to have a substantial impact.

Loftus–Masson intervals are widely used, but have

attracted some criticism. They correctly mimic the relation-

ship between the default CIs and the omnibus F test found for

between-subjects designs, but they necessarily assume

sphericity (homogeneity of variances of the differences

between pairs of repeated samples). The homogeneity-of-

variances assumption is easy to avoid for between-subjects

CIs by switching from pooled to separate error terms, but

trickier to avoid for within-subjects CIs because the separate

error terms would still be correlated. Another concern is that

Loftus–Masson intervals are widely perceived as difficult to

compute and plot, and this has led to several publications

attempting to address these obstacles (e.g., Cousineau, 2005;

Hollands & Jarmasz, 2010; Jarmasz & Hollands, 2009;

Wright, 2007). A final issue is that Loftus–Masson intervals

are primarily concerned with providing a graphical repre-

sentation of a pattern of a set of means for informal

inference. They were never intended to mimic hypothesis

tests for individual means or for the differences between

pairs of means. Loftus and Masson (1994; Masson & Loftus,

2003) are quite explicit about this, and it would be

unreasonable to criticize their approach on this basis.

However, confusion arises in practice if the Loftus–Masson

approach is adopted and interpreted as a graphical imple-

mentation of a significance test.

Cousineau–Morey intervals Cousineau (2005) proposed a

simple alternative to Loftus–Masson CIs that does not

assume sphericity. His approach also strips out individual

differences from the calculation, but does this by normalizing

the data. This procedure was also used by Loftus and Masson

(1994), but only to illustrate the process of removing

individual differences rather than for computing the CI.

Indeed, at least one commentary on Loftus and Masson

proposed constructing within-subjects CIs by normalizing the

raw scores—though they refer to them as scores adjusted for

between-subjects variability (Bakeman & McArthur, 1996).

The process of normalizing a data set starts by

participant-mean centering: subtracting the mean of each

participant from their raw scores. While this removes

individual differences, it also changes the mean score for

each level of the factor. Adding the grand mean back to

every score restores the original means for each level. This

process is illustrated in Fig. 2 for the free recall data. Panel

(a) shows the spread of raw scores around each level mean.

Panel (b) shows the normalized scores. The level means are

indicated by a solid black line, and the grand mean by a

3 In a one-way design, MSwithin is a pooled variance that can be

computed directly as the average of the variances of the groups.

MSfactor×subjects is also a pooled variance, but one equivalent to

averaging the variances of the differences between correlated samples.
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Fig. 1 Data from Loftus and

Masson’s (1994) hypothetical

free recall experiment comparing

three different presentation times

(1, 2, or 5 s per word). Mean

numbers of words recalled (out

of 25) are plotted (a) with a

conventional between-subjects

CI and (b) with a within-subjects

Loftus–Masson CI
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dashed grey line. This combination of participant-mean

centering followed by adding back the grand mean

relocates all condition effects relative to the grand mean

rather than participant means.

Figure 2 illustrates how normalized scores relate all

condition effects relative to an idealized average participant

(thus removing individual differences). This process could

also be viewed as a form of ANCOVA in which adjusted

means are calculated by stripping out the effect of a

between-subjects covariate (Bakeman & McArthur, 1996).

Cousineau’s (2005) proposal is to use Eq. 1 to construct CIs

for the normalized samples. Because they are constructed in

the same way as standard CIs for individual means, it is

possible to use standard software to calculate and plot them

(provided you first obtain normalized data). By removing

individual differences and computing CIs from a single

sample (without pooling error terms), there is also no need

to assume sphericity.

Morey (2008) pointed out that Cousineau’s (2005)

approach produces intervals that are consistently too

narrow. Morey explains that normalizing induces a positive

covariance between normalized scores within a condition,

introducing bias into the estimates of the sample variances.

The degree of bias is proportional to the number of means:

For a one-way design with J means, a normalized variance

is too small by a factor of J/(J – 1). This suggests a simple

correction to the Cousineau approach, in which the width of

the CI is rescaled by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J � 1ð Þ=J

p
. For further

discussion, and a formal derivation of the bias, see Morey’s

study.

It is worth illustrating the process of constructing a

Cousineau–Morey interval in a little more detail. This

illustration assumes a one-way within-subjects ANOVA

design with J levels. If Yij is the score of the ith participant

in condition j (for i = 1 to n), bmi is the mean of participant i

across all J levels (for j=1 to J), and bmgrand is the grand

mean, normalized scores can be expressed as:

Y
0

ij ¼ Yij � bmi þ bmgrand: ð4Þ

The correct interval, removing the bias induced by

normalizing the scores, is therefore

bmj � tn�1;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffi
J

J � 1

r
bs 0

bmj

; ð5Þ

where bs 0

bmj
is the standard error of the mean computed from

the normalized scores of the jth level. For factorial designs,

Morey indicates that J can be replaced by the total number of

conditions across all repeated measures fixed factors (i.e.,

excluding the random factor for subjects). In practice, this

involves computing the normalized scores of all repeated

measures conditions as if they arose from a one-way design.

If the design also incorporates between-subjects factors, the

intervals can be computed separately for each of the groups

defined by combinations of between-subjects factors.

The intervals themselves have the same expected width

as the Loftus–Masson CIs in large samples, but do not

assume sphericity. Except when J = 2, their width varies as

a function of the variances and covariances of the repeated

measures samples (though when J = 2, the Cousineau–

Morey and Loftus–Masson intervals are necessarily identi-

cal). Because Cousineau–Morey intervals are sensitive to

the variances of the samples, they are therefore potentially

more informative and more robust than Loftus–Masson

intervals. This comes at a small cost. By abandoning a

pooled error term, the quantile used as a multiplier in Eq. 5

is tn�1;1�a=2 rather than t n�1ð Þ J�1ð Þ;1�a=2. Thus, when J > 2,

the Cousineau–Morey intervals will on average be slightly

wider than Loftus–Masson intervals when n is small

(though any given interval could be smaller or wider,
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remove individual differences

but preserve the relationships

between the level means (shown

by a solid black line) and the

grand mean (shown by a

dashed grey line)

162 Behav Res (2012) 44:158–175



depending on the sample covariance matrix). As the aim is

to produce intervals suitable for detecting patterns among

means when presented graphically, this cost can be

considered negligible. A possible exception is for small

samples (provided also that sphericity is not seriously

violated).

One further issue with the Cousineau–Morey intervals is

that correcting the normalized sample variance for bias

introduces an obstacle to calculating and plotting the CIs. It

is no longer possible simply to apply standard software

solutions to the normalized data. Cousineau (2005) pro-

vides SPSS syntax for computing the uncorrected intervals.

The correction factor can be incorporated into most

software by a suitable adjustment of the confidence level.

For moderately large samples and J = 2, a 99% CI for the

normalized scores gives an approximate 95% Cousineau–

Morey interval. For instance, with α = .05 (i.e., 95%

confidence) and n = 30, the usual critical value of t would

be 2.045. For a factor with J = 3 levels, the correction factor

is
ffiffiffiffiffiffiffiffi
3=2

p
� 1:225. As 1.225×2.045≈2.5, you can mimic a

95% Cousineau–Morey interval by plotting a 98.2% CI for

the normalized data using standard software. A 98.2% CI is

required because t29 = 2.5 excludes around 0.9% in each

tail. It is possible to compute the required confidence level

using most statistics packages or with spreadsheet software.

The Appendix describes SPSS syntax for normalizing a

data set and plotting Cousineau–Morey intervals.

Within-subjects intervals from a multilevel model Blouin

and Riopelle (2005) presented a critique of Loftus–Masson

intervals and proposed an alternative approach based on

multilevel (also termed linear mixed, hierarchical linear, or

random coefficient) regression models. Multilevel models

were developed to deal with clustered data such as children

in schools (where children are modelled as Level 1 units

nested within a random sample of schools at Level 2). Units

within a cluster tend to be more similar to each other than

units from different clusters. In a multilevel model, this

dependency between observations is modelled by estimat-

ing the variance within and between units as separate

parameters. This differs from a standard linear regression

model, where a single variance parameter is estimated for

the individual differences. An important advantage of

multilevel regression is the ability to extend the model to

deal with dependencies arising from contexts other than a

simple nested hierarchy with two levels. These include

hierarchies with more than two levels, or different patterns

of correlations between observations within a level. A more

comprehensive introduction to the topic is found in Hox

(2010).

Blouin and Riopelle’s (2005) critique is quite technical

and has had limited impact (perhaps because it has been

presented in relation to a particular software package: SAS,

SAS Institute, Cary, NC). The core of their critique is that

Loftus–Masson intervals, by stripping out individual differ-

ences, derive CIs from a model in which subjects are

treated as a fixed factor. In contrast, a standard CI such as

those from Eqs. 1 or 2 (including the between-subjects

intervals that Loftus–Masson intervals seek to mimic) treats

subjects as a random effect. This implies that Loftus–

Masson intervals cannot be legitimately applied for infer-

ence about individual means. This may (at first) seem like a

devastating critique of the Loftus–Masson approach. How-

ever, a careful reading of Loftus and Masson (1994) reveals

that this conclusion is unwarranted; as already noted, Loftus

and Masson are quite careful to restrict the interpretation of

their intervals to an informal, graphical inference about the

pattern of means.

Blouin and Riopelle (2005) confirmed this interpretation

when they reported standard errors for the Loftus and

Masson (1994) free recall data (plotted here in Fig. 1) both

for an individual mean and for a difference between means

computed using their preferred method (a multilevel model).4

In their example, presentation time is treated as a fixed effect,

subjects are a random effect, and a covariance matrix with

compound symmetry is fitted for the repeated measures (i.e.,

for the within-subjects effect). Under this model, the standard

error for inference about an individual condition mean is

1.879, but for a difference between means it is
ffiffiffi
2

p
� 0:248.

The value of 0.248 is identical to the standard error of the

Loftus–Masson interval. Inference about the pattern of means

(implicitly linked to the differences between pairs of means)

is therefore unaffected by the choice of ANOVA or multilevel

model in this instance. This should not be surprising. For

balanced data, there is a well-known equivalence between a

multilevel model with compound symmetry among the

repeated measures and a within-subjects ANOVA model,

provided that restricted maximum likelihood (RML) estima-

tion is used to fit the multilevel model (Searle, Casella, &

McCulloch, 1992). The advantage of the multilevel model—

with respect to inference about a pattern of means—is

therefore its flexibility (Blouin & Riopelle, 2005; Hox, 2010;

Searle et al., 1992). Within the multilevel framework, it is

straightforward to relax the sphericity assumption, to cope

with unbalanced designs, and to incorporate additional

factors or covariates.

The multilevel approach offers a flexible method for

obtaining within-subjects CIs, both for revealing patterns of

means and for inferences about individual means. The

former are more-or-less equivalent to either Loftus–Masson

or Cousineau–Morey intervals (depending on the pattern of

4 Blouin and Riopelle (2005) frame the distinction in terms of the SAS

terminology “broad” or “narrow” inference spaces. However, in this

case, the distinction (which is more general) boils down to inference

about means or differences in means. I assume most readers are

unfamiliar with SAS terminology and attempt a simpler exposition.
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variances and covariances being assumed). The latter are

arguably superior to those constructed from individual

samples (Blouin & Riopelle, 2005).

Goldstein–Healy plots The problem of the graphical presen-

tation of means (or indeed of other statistics such as odds

ratios) occurs in contexts other than classical ANOVA designs.

Goldstein and Healy (1995) proposed a simple solution

designed for presenting a large collection of means. Their

solution was intended to facilitate inference about differences

between pairs of statistics—its best-known application being

in the effectiveness of schools (e.g., by plotting estimates of

Level 2 residuals for a multilevel model comparing

educational attainment of children clustered within schools).

The basic form of the proposal is to derive a common

multiplier to the standard errors of each statistic that, when

plotted, would equate to an approximate 95% CI for their

difference. This multiplier combines the appropriate quantile

and the requisite adjustment for a difference between

independent means into a single number, thus facilitating

plotting of a large number of statistics (assuming that the

standard errors are available).5

Goldstein and Healy (1995) showed that for two

independent means sampled from normal distributions with

known standard errors, the probability of nonoverlapping

CIs with 100(1 – α) = C% confidence is given by

gij ¼ 2 1� Φ zC

sbmi

þ sbmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2

bmi

þ s
2

bmj

q

0

B@

1

CA

2

64

3

75: ð6Þ

In this equation, sbmi

and sbmj

are the standard errors of the

means, and zC is the positive quantile of the standard

normal distribution z that corresponds to C% confidence.

When these two standard errors are equal, the quantity

sbmi þ sbmj
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2

bmi

þ s
2

bmj

q
is at its maximum and γij is at its

minimum. Conversely, γij is maximized when one standard

error is infinitely larger than the other (e.g., smi
¼ 0 and

smj
¼ 1). Fixing γij at the desired probability and solving

for zC gives the appropriate multiplier for a plot of the two

means. This logic can be extended to other statistics. The

quantity sbmi þ sbmj
� �

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2

bmi
þ s

2

bmj
q

can be averaged over all

pairs when plotting more than two statistics (and this
approach will be reasonably accurate, unless the range of

standard errors is large).

A multiplier of approximately 1.39 standard errors

produces approximate 95% CIs of the difference between

independent statistics with equal standard errors (Goldstein

& Healy, 1995). Panel (a) of Fig. 3 plots the probability of

nonoverlap γij as a function of the right-hand side of Eq. 6.

This is done separately for the smallest ratio of standard

errors and for maximally different standard errors. The

horizontal line at γij = .05 intersects these lines at 1.386 (to

three decimal places) for the equal-standard-errors curve, or

1.960 if the ratio of standard errors is infinitely large (or if it

approaches zero). The latter necessarily reduces to a

multiplier for a single mean (the other mean being, in

effect, a population parameter measured with perfect

precision). The extension to the t distribution is straightfor-

ward (Afshartous & Preston, 2010; Goldstein & Healy,

1995), in which case the multiplier also varies as a function

of the degrees of freedom (df). This can be seen in panels

(b) and (c) of Fig. 3, where the function for nonoverlap of a

CI is shown for t distributions with 9 and 29 df,

respectively. The t distribution converges rapidly on z as

its df become large. Thus, the z approximation is likely to

be adequate, even if the standard errors are estimated

from the sample standard deviation (provided that n is not

very small).

For within-subjects CIs, it would be unreasonable to

assume independent statistics. Afshartous and Preston

(2010) consider how to construct a Goldstein–Healy plot

for correlated statistics. The sbmi þ sbmj term in Eq. 6 is

derived from the variance sum law when the covariance

between sample statistics is exactly zero (representing the

standard error of a difference between the statistics).

Expressing Eq. 3 in terms of the standard errors of the

statistics and the correlation between the samples ρij and

applying this to Eq. 6 gives the corresponding expression

for within-subjects CIs,

gij ¼ 2 1� Φ zC

sbmi

þ sbmjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s
2

bmi

þ s
2

bmj

� 2rijsbmisbmj

q

0

B@

1

CA

2

64

3

75: ð7Þ

With this equation, the average correlation between pairs of

repeated measures could be used alongside the average

ratio of standard errors to generate a single multiplier for a

set of correlated means or other statistics. Afshartous and

Preston (2010) explained how to calculate multipliers for

within-subjects or between-subjects CIs using the z or t

distribution. Unlike variability in standard errors or the

choice of t or z, whether the statistics are independent or

correlated has a huge impact on the multiplier. For instance,

a modest positive correlation of ρij = .30 reduces the

multiplier from around 1.446 to 1.210 for a t distribution

with df = 29. For the same sample size, ρij = .75 halves the

width of the CI in relation to the independent case (from

1.446 to 0.7231).

5 A plot involving such a large number of statistics is sometimes

termed a caterpillar plot—for its resemblance to the insect. The term

Goldstein–Healy plot is preferred here (because the focus is on

plotting intervals for a small number of means for which the

resemblance is typically lost).
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A Goldstein–Healy plot provides a quick and easy

way to generate a standard error multiplier for plotting

between-subjects or within-subjects CIs (and the ap-

proach is exact if only two means are plotted). One

crucial difference with the Loftus–Masson and Cousineau–

Morey intervals is that intervals are designed so that lack of

overlap between 95% intervals corresponds to a 95% CI

for the difference that does not include zero (i.e., to a

null-hypothesis significance test of the difference be-

tween statistics at α = .05). Thus, on average, the width

of a CI for the Goldstein–Healy plot is smaller than that

of a standard Loftus–Masson or Cousineau–Morey

interval.

Selecting the correct interval to plot

In selecting the correct interval to plot, it is first necessary

to consider the inferences they support. Graphical presen-

tation of interval estimates is best suited to informal

inference. Nevertheless, it is helpful to pick a method that

generates intervals that are at least roughly equivalent to a

CI used for formal inference. The principal reason for this

is that people (including some experienced researchers)

often interpret overlapping 95% CIs as equivalent to a

nonsignificant difference between statistics (Belia, Fidler,

Williams, & Cumming, 2005). This will not always be true,

depending on the type of inference being made and the

choice of interval that is plotted (Cumming & Finch, 2005;

Schenker & Gentleman, 2001). The problem can be

avoided by applying rules of thumb (e.g., 50% overlap

corresponds to a significant difference), but it would be

preferable to plot an interval corresponding to the inference

of primary interest and thus to avoid the problem altogether

(Goldstein & Healy, 1995; Moses, 1987).6

The methods for constructing within-subjects CIs dis-

cussed in the previous section can be grouped roughly into

three broad approaches. First, the Loftus–Masson and

Cousineau–Morey intervals aim to reveal a pattern among

means consistent with an omnibus F test in ANOVA.

Second, the Goldstein–Healy plot aims to depict intervals

for which lack of overlap roughly corresponds to a

significant difference between statistics. Third, a multilevel

model can provide intervals for the individual means that

treat subjects as a random factor. A further distinction is

that the Goldstein–Healy plot and Loftus–Masson intervals

make fairly strong assumptions about the form of the

covariance matrix (either by using a pooled error term or by

assuming a common correlation between conditions).

Cousineau–Morey intervals assume neither sphericity nor

homogeneity of covariances (and are also fairly easy to

compute). A multilevel model is the most flexible

approach, and either compound symmetry or an unstruc-

tured covariance matrix (or covariance structures of

intermediate complexity) can be adopted. This leads

naturally to a choice of intervals that depends on the

primary inference of interest and the nature of the

correlation structure between repeated measures in the

population.

It is possible to narrow down the choice of intervals by

realizing that there is a clear link between the Loftus–Masson

and Goldstein–Healy approaches. Both broadly address the

same question—but by slightly different routes. Assuming
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Fig. 3 Multipliers for a Goldstein–Healy plot of CIs for two

independent statistics, following (a) a z distribution, (b) a t9
distribution, and (c) a t29 distribution. Multipliers are shown as a

function of the probability of nonoverlap of their CIs and for different

ratios of standard errors (equal or infinite)

6 Moses (1987) advocated plots with a multiplier of 1.5 standard

errors for independent statistics (a variant of a Goldstein–Healy plot

that tends to be slightly conservative).
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large samples with equal variances and covariances, the

expected width of both Loftus–Masson and Cousineau–

Morey intervals is larger than that of the interval in a

Goldstein–Healy plot by the familiar factor of
ffiffiffi
2

p
. It is

therefore simple to adjust either interval to match the other.

Because the Cousineau–Morey intervals assume neither

sphericity nor homogeneity of covariances for the repeated

measures they should, as a rule, be preferred over the other

two methods. Sphericity only infrequently holds for real data

sets (with the exception of within-subjects ANOVA effects

with 1 df in the numerator—equivalent to a paired t test—for

which sphericity is always true). Because violations of

sphericity always lead to inferences that are too liberal

(e.g., CIs that are too narrow), it makes sense to choose

interval estimates that relax the assumption by default.

For inferences about differences in means that are

consistent with the omnibus F test from within-subjects

ANOVA, and for which nonoverlap of CIs corresponds to

an inference of no difference, I propose plotting Cousineau–

Morey intervals with the following adjustment:

bmj �
ffiffiffi
2

p

2
tn�1;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffi
J

J � 1

r
bs 0

bmj

 !

¼ bmj � tn�1;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J

4 J � 1ð Þ

s

bs 0

bmj

: ð8Þ

The
ffiffiffi
2

p
=2 factor adjusts a Loftus–Masson or Cousineau–

Morey interval to match that of a CI for a difference (see, e.g.,

Hollands & Jarmasz, 2010). This equation combines advan-

tages of computing a standard error from normalized data with

the ease of interpretation of CIs in a Goldstein–Healy plot.

It is worth making the reasoning behind the
ffiffiffi
2

p
=2

adjustment factor explicit. Although the ratio of the width

of the CI for a difference to the CI for an individual mean isffiffiffi
2

p
to 1, this must be halved when plotting intervals around

individual means. For a difference in means, inference

depends on the margin of error around one statistic

including or not including a parameter value (e.g., zero).

Lack of overlap of CIs plotted around individual means

depends on the margin of error around two statistics. To

ensure that the sum of the margin of error around each

statistic is
ffiffiffi
2

p
times larger than for an individual statistic, it

is necessary to scale each individual margin of error (w) by

the
ffiffiffi
2

p
=2 factor (i.e.,

ffiffiffi
2

p
=2wþ

ffiffiffi
2

p
=2w ¼

ffiffiffi
2

p
w). The

halving is therefore a trivial, but easily overlooked,

consequence of plotting two intervals rather than one.

In some cases, it may be reasonable to plot an adjusted

Loftus–Masson interval instead. For a one-way within-

subjects ANOVA, this takes the form

bmj �
ffiffiffi
2

p

2
� t n�1ð Þ J�1ð Þ;1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror

n

r
; ð9Þ

where MSerror is the denominator of F statistic for the test of

the factor. When sphericity holds, Eq. 9 offers a modest

advantage over Eq. 8 when n – 1 is small (e.g., below 15)

and (n – 1)(J – 1) is large (e.g., over 30). Note that Eq. 9

also explains the correspondence between the Goldstein–

Healy plot and adjusted Loftus–Masson intervals. The

multiplier in the former combines the
ffiffiffi
2

p
2= adjustment

and the quantile t n�1ð Þ J�1ð Þ;1�a=2 in the latter (
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MSerror=n

p

being the standard error). One further distinction is that the

Loftus–Masson intervals deal with within-subjects designs

by removing individual differences from the standard error.

The spirit of the Goldstein–Healy plot is to adjust only the

multiplier, and thus Afshartous and Preston (2010) recal-

culate the multiplier of the Goldstein–Healy plot to take

account of the correlation between the standard errors.

For many applications of ANOVA, it is sufficient to

focus on the pattern of means and differences between pairs

of means. In this case, the adjusted Cousineau–Morey

interval proposed here is a sensible candidate. In some

applications of ANOVA, the primary focus will be on

inference about individual means. This might arise in a

longitudinal study where the focus is on whether the mean

is different from some threshold at each time point. If so, it

would be more appropriate to plot CIs derived from a

multilevel model. One of the advantages of this approach is

the ability to relax the sphericity assumption by fitting a

model with an unstructured covariance matrix (estimating

the variances and covariances between repeated measures

with separate parameters).

I have suggested that inference about individual means is

only infrequently the main focus of inference for ANOVA

designs. Nevertheless, there will almost always be some

interest in the width of the CI for the individual means. For

example, in a recognition memory experiment, the main

focus will usually be on differences between conditions, but

it would also be valuable to ascertain whether performance

in each condition exceeds chance. The width of a CI for an

individual mean also indicates the precision with which that

statistic has been measured (Kelley, Maxwell, & Rausch,

2003; Loftus, 2001). For this reason alone, it would be

advantageous to be able to display CIs representing differ-

ences between means alongside those depicting the preci-

sion with which each sample is measured. Simultaneous

plotting of two distinct interval estimates can be addressed

in several ways, but perhaps the most elegant and user-

friendly display is a two-tiered CI: a form of two-tiered

error bar plot (Cleveland, 1985).

The outer tier of a two-tiered CI is plotted as a standard

error bar. The inner tier is then formed by drawing a line at

right angles to the error bar with the required margin of

error (as if shifting the line commonly drawn at the limits of

the interval so that it bisects the error bar). Cleveland

(1985) used the inner tier of the error bar to designate a
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50% CI (similar to the central box of a box plot), while the

outer tier represented a 95% CI for each statistic. I propose

using the outer tier to depict a 95% CI for an individual

mean and drawing the inner tier so that lack of overlap

corresponds to a 95% CI for the difference in means. This

property is demonstrated in Fig. 4, in which two-tiered CIs

for the difference between two correlated means are

displayed.

In panel (a), the correlation between paired observations is

substantial (r = .8) and a paired t test is statistically

significant (p = .001). In panel (b), the correlation between

paired observations is lower (r = .6) and the paired t test is

on the cusp of statistical significance (p = .05). In panel (c),

the correlation between paired observations is lower still (r =

.45) and the paired t test is nonsignificant (p = .10). Figure 4

demonstrates the close correspondence between overlap of

the inner error bars and statistical significance from a paired t

test (and, by implication, a CI for a difference that includes

zero as a plausible value).

Figure 5 depicts two-tiered CIs for the free recall data

constructed in this way. Panel (a) plots 95% CIs from a

multilevel model with an unstructured covariance matrix

for the outer tier and difference-adjusted Cousineau–Morey

intervals for the inner tier. Panel (b) plots 95% CIs from a

multilevel model under the assumption of compound

symmetry for the repeated measures as the outer tier and

difference-adjusted Loftus–Masson intervals for the inner

tier.

For these data, the correlations between repeated

measures are both very high and very consistent. It

follows that both constrained and unconstrained covari-

ance matrix approaches will produce similar results. This

is the case even though n = 10 (which implies that the

Loftus–Masson intervals are on average slightly narrower

than the Cousineau–Morey intervals).7 Looking at the

two-tiered CI, the presence of plausible differences

between the conditions—indicated by nonoverlapping

inner error bars—is obvious. Also obvious is the lack of

precision with which individual means are measured. So

while the experiment provides clear evidence of differ-

ences between conditions, it is also clear that participants

vary considerably on this task and that each population

mean is estimated very imprecisely.

The recipe for construction of a two-tiered CI

described here is suitable when—as is common—the

correlation between the samples is positive. If some

covariances are negative or if sample sizes are very

small, the recipe could fail: The (outer) multilevel CI

may be narrower than the (inner) difference-adjusted CI.

When n for one or more samples is very low (e.g., <10),

the quality of the variance and covariance estimates is

likely to be poor. A pooled error term is likely to provide

superior estimates in this situation (particularly if negative

correlations have arisen through sampling error). In larger

samples, any negative correlations are likely to reflect a

process of genuine interest to a researcher, and it may be

better to plot the individual means and differences

separately (even if adopting a pooled error term produces

a “successful” two-tiered CI plot).8

Constructing one-tiered and two-tiered confidence

interval plots

Cousineau–Morey CIs can be computed from standard

ANOVA output without too much difficulty (e.g., using

spreadsheet software such as Excel). Single-tier CI plots

can be generated with a little more effort. Many statistical

packages, such SPSS, also have options to fit multilevel

models for within-subjects ANOVA designs and can

provide appropriate CIs for individual means. Constructing

a two-tier plot is more difficult. To facilitate this process for

one-tier plots and to support the use of two-tiered plots, it is

possible to write custom macros or functions. This section

introduces R functions for computing and plotting one-

tiered and two-tiered plots for Loftus–Masson, Cousineau–

Morey, and multilevel model intervals (R Development

Core Team, 2009). I provide the code for new R functions

to compute the CIs and construct the plots in the

supplementary materials for this article. Other functions

used here are loaded automatically with R or are part of the

R base installation. Their application is illustrated first for a

one-way within-subjects design. For the Cousineau–Morey

and multilevel model approaches, it is also extended to

deal with two-way mixed designs. R was chosen because

it is free, open source, and runs on Mac, Windows, and

Linux operating systems. This removes a further obstacle

preventing researchers from graphical presentation of

means from within-subjects ANOVA designs. Goldstein–

Healy plots, more suited to large collections of means

7 In moderate to large samples, true coverage for the two intervals should

be very similar when sphericity is true (and close to nominal coverage for

samples from populations with normal errors), but for even quite modest

violations of sphericity, the coverage of Loftus–Masson intervals is likely

to unacceptable (see Mitzel & Games, 1981).

8 In most cases where the “inner” tier error bars fall outside the range

of the “outer” tier, the bars fall close to the ends of the vertical line

representing the multilevel CI and appear coherently “grouped.” This

unusual variant of the two-tiered plot is still interpretable (and can act

as a diagnostic for the presence of negatively correlated samples). R

code illustrating such a plot is included in the supplementary materials

published with this article.
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and other statistics, are not implemented. However,

Afshartous and Preston (2010) have provided R functions

for calculating multipliers for between-subjects (indepen-

dent) and within-subjects (dependent) designs for both z

and t distributions.

Confidence intervals for one-factor ANOVA designs The

following examples use the free recall data from Loftus and

Masson (1994). This data set and the emotion data set used in

later examples are included in the supplementary materials.

The first step is to load the data into R. Two options are

illustrated here. The first assumes that the data set is in the

form of a comma-separated variable (.csv) file. The second

assumes that data are in an SPSS (.sav) data file. R functions

usually take within-subjects (repeated measures) data in long

form, with each observation on a separate row, but most

ANOVA software requires the data in broad form (where each

person is on a separate row).9 Data imported from other

software will therefore usually arrive in broad format. For this

reason, the R functions described here take input as a data

frame (effectively a collection of named variables arranged in

columns) in broad form. The file is arranged

in three columns so that the first row contains the three

condition names ( , and ) and the

next 10 rows contain the raw data. To import data from this

file, type at the R con-

sole prompt and then hit the return key.10 R will import the

data into the data frame and use the header row as

column names. If the data are in an SPSS .sav file, it is first

necessary load the package (a part of the base

installation that allows for importing of data from other

packages). The following commands use the

function to import the data:

The additional argument overrides the

default behaviour of the function (which is to import data as

an R list object).

For one-way ANOVA, the functions

and provide between-subjects, Loftus–Masson,

and Cousineau–Morey intervals, respectively.11 Each is struc-

tured in the format

. The first argument is the name of

the R data frame object containing the data in broad format

(and must be included). The second argument is the desired

confidence level, and defaults to .95 (95%) if omitted. The

third argument takes the value or and indicates

whether to adjust the width of the interval so that

absence of overlap of CIs for two means corresponds to

a 95% CI for their difference. It defaults to for

and , and for . To call

each function with its default settings, use the format

. For example, difference-

adjusted 95% Cousineau–Morey intervals for the free recall
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Fig. 4 Overlap of the inner-tier error bars of a two-tiered 95% CI

corresponds to statistical significance with α = .05 and indicates that

the 95% CI for a difference includes zero. In panel (a), there is clear

separation of the inner-tier error bars, and the paired t test is

statistically significant (p < .05). In panel (b), the inner-tier error bars

are adjacent, and the paired t test is on the cusp of statistical

significance (p = .05). In panel (c), the inner-tier error bars show

substantial overlap, and the paired t test does not reach statistical

significance (p > .05)

9 Switching between long and broad forms can be accomplished using

the function in R. SPSS users can restructure the data set

using the command.

11 The between-subjects CI function is implemented primarily for

purposes of comparison. It uses a pooled variance estimate and also

only takes input in broad format (rather than the usual long format).

10 R will import files from its working directory. If the data are not in

this directory, either change the working directory or specify the full

path name (not illustrated here because it depends on the operating

system).
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data are obtained from the call: . The output

takes the form

It is easy to override the defaults. The following calls

generate 99% Cousineau–Morey intervals or difference-

adjusted 95% between-subjects intervals:

These functions require data structured in the appropriate way.

If the data frame is in broad form but also includes columns

that are not relevant to the analysis, the required variables can

be selected by column number. For example, if only the 2-

second and 5-second conditions are of interest, the following

call, selecting only Columns 2 and 3, is appropriate:

Multilevel models can be run using several different

packages in R. Here, I use the package. This is also

part of the base R installation (Pinheiro, Bates, DebRoy,

Sarkar, & R Core Team, 2009). In addition, the

package is used to compute the interval estimates (Warnes

et al., 2009). The package is not part of the base

installation and needs to be installed.12 Both packages are

loaded and later detached each time the function is run.

This approach is slightly inefficient but makes it less likely

that the function will interfere with other packages the user is

working with. The multilevel function described here has the

format .

T h e t h i r d a r g u m e n t h a s t h e d e f a u l t

and specifies the type of

covariance matrix fitted for the repeated measures. To fit a

model that assumes compound symmetry, use the argument

. The following calls produce

95% CIs for the free recall data with each of the two

covariance structure options:

One-tiered and two-tiered confidence interval plots forone-way

designs The CIs obtained from these functions can be

used for plotting within R, or as input for other

software that has suitable options for specifying a plot.

The function described here will plot single-

tiered CIs using any of the functions above. The choice of

interval is described by the argument, with the

default being (Cousineau–Morey intervals),

and other options being (Loftus–Masson), (between

subjects), and (multilevel). For the first three types, the

argument defaults to (but is ignored if

) . F o r , t h e

argument defaults to (and

is ignored for any other type of interval). Additional

arguments alter elements of the plot such as axis labels,

limits of the y-axis, main title, error bar line widths, or the

point symbol. Further adjustments are possible by editing
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Fig. 5 Two-tiered CIs for the

free recall data. In panel (a), the

outer tier is a 95% CI derived

from a multilevel model with an

unstructured covariance matrix,

while the inner tier is a

difference-adjusted Cousineau–

Morey interval. In panel (b), the

outer tier is a 95% CI derived

from a multilevel model with a

covariance matrix constrained to

compound symmetry, while the

inner tier is a difference-adjusted

Loftus–Masson interval

12 The call will download and install the

package from an online repository (and you may be prompted to select

one if you have not previously installed a new package).
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the plot or altering the plot parameters in R. The following

commands reproduce panels (a) and (b) of Fig. 1:

The default behaviour of the function is to produce the

option recommended here: a Cousineau–Morey CI with an

adjustment, so that nonoverlapping intervals correspond to

the 95% CI for their difference. Thus, the following two

calls are equivalent:

The composition of a tiered plot is less flexible. It

makes sense to pair multilevel-model CIs with an

unstructured covariance matrix to Cousineau–Morey

intervals. Likewise, it makes sense to pair a multilevel-

model CI that assumes compound symmetry to Loftus–

Masson intervals. The interval type is determined by the

argument. The former is the default output

( ) , whi le the la t t e r

requires the argument . The

argument influences only the inner tier and

adjusts either the Cousineau–Morey or Loftus–Masson

intervals by the
ffiffiffi
2

p
=2 factor required to support infer-

ences about differences between means. As before, this is

set by the argument (which is the

default).

As for the function, additional arguments

can be supplied to influence the look of the plot or alter

titles and labels. The function also takes

three further arguments: for the size of the points

being plotted, for the size of text labels, and

or (to add a grid to the plot).

The grid is particularly useful for a complex two-tiered

plot, where the grid can make it easier to detect overlap.

Thus panels (a) and panel (b) of Fig. 5 can be reproduced

with the following R code:

A basic two-tiered plot (with Cousineau–Morey intervals

for differences between means as the inner tier and

multilevel CIs with an unstructured covariance matrix as

the outer tier) is therefore obtained by:

To augment the display, plotting parameters can be edited

using the function, and lines or other features added

to the plot using , or one

of many other R graphics functions.13 Hence, to add dashed

lines (line type ) connecting the level means to the

free recall plot, either of these functions will work:

13 To find out more about any function in the R base installation, use

the function or . The call or brings

up information about the graphical parameters.
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Functions for two-way mixed ANOVA designs Obtaining

intervals for more complex designs using the Cousineau–

Morey or multilevel approaches is not too difficult in R.

The principal obstacle is to rewrite the functions to pick

out a grouping variable from a data frame in broad

format. Deciding how to plot the intervals is more

challenging. The functions in this section demonstrate

one solution to plotting the intervals. This is implemented

for the two-tiered plot only.

The functions take input in the form of a data frame in

which some columns represent the J levels of the within-

subjects factor, and either the first or last column is the

grouping variable for the between-subjects factor (with the

last column being designated by default). The following

example uses data from an experiment looking at recogni-

tion of emotions from facial expression and body posture in

young children.14 Three groups of children were shown

photographs of actors displaying the emotions pride,

happiness, or surprise. Members of one group were shown

pictures of both face and torso, members of a second group

were shown torso alone, and children in a third group

were shown face alone. These data are contained in the

file . To load these into R (as a data frame),

use the following command:

To view the data, type the name of the data frame

( ) and hit the return key. For longer files, you may

wish to use the function to see just the first few rows.

The groups are coded numerically from 1 (both face and

torso), through 2 (torso alone), to 3 (face alone).15 The

functions and are similar to

those described earlier, except that they each take an

additional argument: . This indicates the column

containing the grouping variable. It may take only the value

or (with being the default). Because

the grouping variable is in the first column of the

data frame, the following calls are required to produce

Cousineau–Morey intervals (adjusted for differences between

means) and multilevel CIs for individual means (with an

unstructured covariance matrix).

The options for the structure of the multilevel covariance

matrix deserve further discussion. Mixed ANOVA designs

(those with both between-subjects and within-subjects

factors) fit a model that assumes multisample sphericity

(Keselman, Algina, & Kowalchuk, 2001). This requires that

the covariance matrices for each of the groups be identical in

the population being sampled. This is unlikely to hold in

practice. Accordingly, the safest option is to fit a model in

which the covariances between repeated measurements

are free to vary, and in which groups are independent

(but not constrained to be equal). This option is selected

by default, or via the

argument, though a simpler structure will sometimes

suffice. This argument supports two other options. The

argument fits a ma-

trix with compound symmetry within each group (though

neither variances nor covariances between groups are

constrained to be equal). The final option is multisample

compound symmetry ( ), in

which all groups share a common variance and the

covariances within and between groups are equal.

To produce two-tiered CI plots using these functions, use the

function. This will plot Cousineau–

Morey intervals as the inner tier and CIs from a multilevel

model as the outer tier. By default, it adjusts the inner tier to

correspond to a difference between means, while the outer tier

assumes an unstructured covariance matrix. Simpler covari-

ance structures can be fitted if necessary. Even with moderate-

sized data sets, fitting an unstructured covariance matrix for a

two-way design could take some time (e.g., it takes up to a

minute for the emotion data using a reasonably powerful

desktop computer). For this reason, it may be convenient to

set up a plot using a simple covariance structure (e.g.,

adjusting the plot parameters as desired) and switch to the

unstructured covariance matrix as a final step. A two-tiered

plot for the emotion data set can be fitted with each of the

three available covariance structures as follows:

The plot can be customized (e.g., adding or editing labels and

other features). Particularly important for a mixed ANOVA is

the ability to change the colour, size, and type of point symbol

for each group. Arguments to alter these features and also to

add lines connecting groups are incorporated in the function.

The argument displaces points from the same group

along the x-axis to reduce clutter. Its default value depends on

the number of groups but can be increased or reduced. Some

examples follow:

Figure 6 shows a two-tiered plot for the emotion data.

14 These data are from an unpublished study by Uppal (2006).
15 If the groups are coded with text labels, R will treat the codes as a

factor object and arrange the levels in alphabetical order by default.

Using numeric codes makes it easier to reorder the groups.
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The R code to reproduce this plot is:

A two-way ANOVA on the emotion data reports a statistically

significant emotion by group interaction (F4,174 = 8.34) that

the plot can help to interpret. The dark grey horizontal line at

33.3% in Fig. 6 represents recognition performance expected

by random guessing (since there were three options for each

picture) and was added with the call:

The pattern in Fig. 6 is not a simple one, but the inner-tier

CIs suggest that accuracy is generally high and at similar

levels, except for two means (where performance is

markedly lower). These are for recognizing pride by face

alone and happiness by torso alone. This suggests that

children recognize pride mainly by body posture and

happiness through facial expression. The outer-tier intervals

are generally comfortably above chance levels (being above

the grey line). However, for recognizing happiness from

body posture alone, children are performing at levels

consistent with chance. Recognizing pride from facial

expression is also not much different from chance (and the

outer-tier CI just overlaps the grey line).

Conclusions

Graphical presentation of means for within-subjects

ANOVA designs has long been recognized as a problem,

with several possible solutions having been proposed (e.g.,

Afshartous & Preston, 2010; Blouin & Riopelle, 2005;

Loftus & Masson, 1994; Morey, 2008). The recommended

solutions reviewed earlier are summarized in Table 1.

The approach advocated here is to use Eq. 8 to plot

difference-adjusted Cousineau–Morey intervals: intervals

calibrated so that an absence of overlap corresponds to a

CI for a difference between two means. This solution avoids

the restrictive assumption of sphericity and matches the

inference of primary interest for most ANOVA analyses:

patterns among a set of condition means. Each of the

solutions summarized in Table 1 could, in principle, be used

to implement formal inference for the parameter of interest.

This should generally be avoided, because there are

limitations to the approach with respect to formal inference

(where issues such as corrections for multiple comparisons

come to the fore). These and other limitations are considered

in more detail below.

Sometimes interest focuses on whether individual means

are different from some population value (e.g., chance

performance). In this case, and following Blouin and

Riopelle (2005), a multilevel model can be used to derive

the appropriate interval estimates (and models can be fitted
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Fig. 6 Two-tiered plot for a two-way mixed ANOVA design using the

emotion data. The groups (both face and torso, torso alone, or face

alone) are identified by different plot and line symbols, while the

within-subjects factor (emotion) is identified on the x-axis. The outer

tier of the error bars depicts a 95% CI for an individual mean derived

from a multilevel model with an unstructured covariance matrix, while

the inner tier is a difference-adjusted Cousineau–Morey interval

Table 1 Comparison of the key features of five proposals for plotting within-subjects confidence intervals

Source Parameter of Interest Subjects Covariance Matrix Estimate

Loftus & Masson (1994) μj fixed pooled

Morey (2008) μj fixed unpooled

Afshartous & Preston (2010) μi – μj N.A.† partially pooled ††

Blouin & Riopelle (2005) μj random pooled†††

Eq. 8 (this paper) μi – μj N.A.† unpooled

†Blouin and Riopelle (2005) showed that treating subjects as a fixed or as a random factor leads to the same CI for contrasts such as μi – μj.
††This entry assumes that the multiplier for the standard error uses the average correlation between pairs of repeated measures, but separate,

unpooled variances. †††Blouin and Riopelle used a pooled estimate in their examples but noted that this condition can be relaxed
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that relax the sphericity assumption or cope with imbal-

ance). In many cases, both types of inference are of interest,

and two-tiered CIs can be plotted. In a two-tiered plot, the

outer tier depicts the CI for an individual mean and the

inner tier supports inferences about differences between

means. For plotting large numbers of means or other

statistics, a Goldstein–Healy plot is a convenient alternative

(Afshartous & Preston, 2010; Goldstein & Healy, 1995).

A practical obstacle to graphical presentation of means

is that few of the options are implemented in widely

available statistics software. I have provided R functions

that compute CIs and generate both one-tiered and two-

tiered plots for the Loftus–Masson, Cousineau–Morey,

and multilevel approaches reviewed here. The initial

focus is on intervals for a one-way ANOVA design, but it

is possible to modify these functions for more complex

designs (and this is illustrated for a two-way mixed

ANOVA).

Potential limitations There are several potential limita-

tions of the approach advocated here. First, emphasis is

on informal inference about means or patterns of means.

The interval estimates proposed here will be reasonably

accurate for most within-subjects ANOVA designs, but

are intended chiefly as an aid to the exploration and

interpretation of data. Thus, they may compliment formal

inference, but are not intended to mimic null-hypothesis

significance tests.

Even so, informal inference is more than sufficient to

resolve many research questions—notably where the effects

are very salient in a graphical display. This suggests that

formal inference should be reserved to test hypotheses that

relate to patterns that are not easily detected by eye, or to

quantify the degree of support for a particularly important

hypothesis. In the context of ANOVA, such hypotheses are not

typically addressed by the omnibus test of an effect, but by

focused contrasts (see, e.g., Loftus, 2001; Rosenthal, Rosnow,

& Rubin, 2000).16 Furthermore, formal inference need not

take the form of a null-hypothesis significance test. Rouder,

Speckman, Sun, Morey, and Iverson (2009) recommend CIs

for reporting data but advocate Bayes factors for formal

inference. Dienes (2008) describes approaches for Bayesian

and likelihood-based inference for contrasts among means

and provides MATLAB code to implement them.17 Contrasts

are particularly useful for testing hypotheses about complex

interaction effects (Abelson & Prentice, 1997). Thus, the

limitations of graphical methods for inference may, paradox-

ically, be an advantage. As noted in the introduction,

significance tests tend to be overused, and those tests not

relating to the main hypotheses of interest can often be

replaced by a graph with appropriate interval estimates.

Formal inference can then be reserved for tests of a small

number of important hypotheses.

A second limitation is that all of the approaches discussed

here make distributional assumptions that may not hold in

practice. Where the errors of the statistical model are not at

least approximately normal—and particularly where they

follow heavy-tailed or highly skewed distributions—interval

estimates based on the z or t distribution may not provide

good approximations (see, e.g., Afshartous & Preston, 2010).

For the Loftus–Masson and Cousineau–Morey approaches, it

is possible to apply bootstrap solutions. Wright (2007)

provides R functions for bootstrap versions of the Loftus–

Masson intervals for one-way ANOVA. For more complex

designs, it is advisable to apply a bespoke solution. The best

approach may be to bootstrap trimmed means or medians

(rather than means), and the adequacy of the bootstrap

simulations in each case needs to be checked (see Wilcox &

Keselman, 2003). Similar reservations arise for complex

multilevel models. However, the equivalence of multilevel

models with balanced designs to within-subjects ANOVA

models (at least when restricted maximum likelihood

estimation is used and compound symmetry assumed)

suggests that CIs will be sufficiently accurate for the range

of models implemented here. This may no longer be true for

very unbalanced designs or where the distributional assump-

tions of ANOVA are severely violated. One alternative is to

obtain the highest posterior density (HPD) intervals from

Markov chain Monte Carlo simulations (see, e.g., Baayen,

Davidson, & Bates, 2008). In addition, if bootstrapping or

other approaches are required for the CIs, the conventional

ANOVA model may be unsuitable, and other approaches

should be considered. In short, if a within-subjects ANOVA is

considered suitable in the first place, the proposed solutions

implemented here should suffice for informal inference.

The final limitation is that I have not explicitly

considered the issue of multiple testing. Correcting for

multiple testing is a difficult problem for informal infer-

ence. As a large number of inferences can be drawn, and as

different people will be interested in different questions, it

may not be appropriate to determine any correction in

advance. For graphical presentation of means, it is more

appropriate to report uncorrected CIs and take account of

multiple testing in other ways. For example, with J = 5

16 Any ANOVA contrast can be viewed as a difference between two

means (constructed from weighted linear combinations of a set of

sample means). It is therefore relatively straightforward to plot a CI

for a contrast using conventional methods (though it is generally more

helpful to plot the set of unweighted means, as advocated here). If a

plot of the contrast itself is required, it is probably better to plot a CI

of the weighted difference itself rather than plot the weighted means

separately. In addition, it is important to rescale the contrast weights so

that their absolute sum is 2, or else the difference will no longer be on

the same scale as the original means (see Kirk, 1995, p. 114). 17 For R code, see Baguley and Kaye (2010).
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means, there are J J � 1ð Þ=2 ¼ 10 possible pairwise

comparisons. This implies that one pair of appropriately

adjusted 95% CIs would be expected not to overlap just by

chance. Where the number of inferences to be drawn is

known in advance, it is possible to make a Bonferroni-style

correction by altering the confidence level (e.g., for five

tests, a 99% CI is a Bonferroni-adjusted 95% CI). The

drawback of this approach is that corrections for multiple

testing suitable for plotting tend to be very conservative. If

multiple corrections are critical, it is best to supplement

graphical presentation with formal a priori or post hoc

inference using a procedure that also controls Type I error

rates in a strong fashion.18 There are also more formal

treatments of the multiple-comparison problem in relation

to a Goldstein–Healy plot (see Afshartous & Preston, 2010;

Afshartous & Wolf, 2007).

Summary It is possible to offer a solution to plotting

within-subjects CIs that is both accurate and robust to

violations of sphericity. The intervals themselves can be

calculated and plotted in R with the functions provided

here. These interval estimates are suitable for exploratory

analyses and informal inference when reporting data

from classical ANOVA designs, and they are designed to

support graphical inference about the pattern of means

across conditions. When both types of inference are of

interest, they can be displayed together as a two-tiered

CI.

Author note The author thanks Andy Fugard, Ken Kelley, Gregory

Francis, and two anonymous reviewers for providing constructive

comments on previous drafts of the manuscript.

Appendix

This code tricks SPSS into plotting 95% confidence

intervals for the Loftus and Masson (1994) free recall data

with the Cousineau–Morey approach. The first set of

commands computes the required confidence level to

obtain a 95% CI, using the normalized scores for n per

level = 10 and J = 3 levels. To adjust any of these values,

just edit the appropriate value of the input (0.95, 3, or 10).

This should return the target confidence level (97.83%) as a

variable in a new data view window and return the value to

the output window (along with the inputs).

At this point, open or make active the SPSS data file

. The next set of commands calculates the

normalized data (and is adapted from Cousineau, 2005).

To obtain the 95% Cousineau–Morey intervals, either use

the one-sample T-TEST procedure or plot the CIs using

97.83% as the nominal confidence level.

These in t e rva l s ma tch those o f the ca l l

to the

R function provided in the supplementary materials to

about three decimal places.
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