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CALCULATING COHOMOLOGY GROUPS

OF MODULI SPACES OF CURVES
VIA ALGEBRAIC GEOMETRY

by ENRIGO ARBARELLO and MAURIZIO CORNALBA(1)

In this paper we compute the first, second, third, and fifth rational cohomology

groups of ^& , the moduli space of stable ^-pointed genus g curves. It turns out

that H\J^^, Q), H^^^, Q), and H^^^, Q) are zero for all values of g and n,

while H^,^^ , Q) is generated by tautological classes, modulo relations that can be

written down explicitly; the precise statements are given by Theorems (2.1) and (2.2).
We are convinced that the computation of the fourth cohomology of all moduli spaces

^^ should also be accessible to our methods.
It must be observed that some of these results are not new. In fact, it is known

that ^&.n
 ls simply connected (cf. [2], for instance), while Harer has determined

H^.^^^, Q) [8]; once this is known, it is not hard to compute the corresponding

group for ^/& . Harer [10] has also shown that V?{^6g^^ Q) vanishes, at least for

large enough genus. What is really new here is the method of proof, which is based

on standard algebro-geometric techniques, rather than geometric topology. Especially

for odd cohomology, this provides proofs that are quite short and, we hope, rather

transparent. It should also be noticed that the odd cohomology of ^& , at least in
the range we can deal with, seems to be somewhat better behaved than the one of

^&g^ for it is certainly not the case that the first and third cohomology groups of

^^ g^n are always zero.
Roughly speaking, the idea of the proof is as follows. If one could apply the

Lefschetz hyperplane theorem, one might reduce the computation of H^(^^ , Q) to

the one ofH^c^^^, Q), for low k. Although the standard Lefschetz theorem cannot

be used, since ^6 g,n is almost never affine, a foundational result of Harer, which is a

direct consequence of the construction of a cellular decomposition of ^& g,n by means
of Strebel differentials, provides a suitable substitute. A little Hodge theory then shows

that, always for low enough k, H^^^ , Q) injects not only in \^(Q^&g^^ Q), but also

in the A-th cohomology group of the normalization N of Q^&g^ Put otherwise, the
combinatorics of the boundary does not contribute new classes to H^^^ , Q). Since

the components ofN are essentially products of moduli spaces ^^yy such that either

Y < g or Y =
 g and v < n, one may try to compute H .̂̂  , Q) by double induction

on g and n, starting from a few seed cases to be handled directly. This turns out to

be possible, and reduces to elementary linear algebra. An interesting, and somewhat

( ) Both authors supported in part by the Human Capital and Mobility Programme of the European Union under
contract ERBCHRXCT940557 and by the MURST national project " Geometria Algebrica ".
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unexpected, byproduct of the proof is that, for any A:, the A-th cohomology group of

^^ injects into the A-th cohomology of the normalization of the component of the

boundary parametrizing irreducible singular curves, provided g is large enough.

There are other cases, in addition to the ones mentioned above, in which the

cohomology of moduli spaces of curves has been computed. First of all, Harer [11] has

computed the fourth cohomology of ^M for large enough g. In a different direction,

the entire cohomology ring of ^^on ^as been described for any n by Keel [13] in
terms of generators and relations, while Getzler [6] has shown how to recursively

compute the cohomology of ^6^^ for any n. Mumford [18] and Faber [5] have

computed the cohomology of ^^3 and ^&^ i, and Getzler [7] the one of ^&^ 3 and

^^23- Finally, Looijenga [14] has computed the cohomology of ^^3 and ^^3^1.

We will assume Keel's result, which is derived entirely via algebraic geometry,

although the part of it that we use could be proved without much effort by our

methods. Some of Getzler's and Looijenga's results will be needed, while computing

H5, to deal with some of the initial cases of the induction; except for this, our treatment

will be self-contained and for the most part quite elementary.

We are grateful to Eduard Looijenga for indicating to us that Proposition (2.8)

could be proved via Hodge theory; our original proof was based on a fairly involved

combinatorial argument and worked with certainty only for k < 2.

1. Notation

All the varieties we shall consider in this paper will be over C. Only rational

cohomology will be used; when we omit mention of the coefficient group, we always

implicitly assume rational coefficients.

Let g and n be non-negative integers such that 2g — 2 + n > 0. We denote by

^^ the moduli space of stable ^-pointed genus g curves and by ^&g,n its subspace

parametrizing smooth curves. More generally, if P is a set with n elements, it will

be technically convenient to consider also stable P-pointed curves. These are simply

stable curves whose marked points are indexed by P, and not by {!,..., 72}. We shall

denote by ^^.p and ^&g^ the corresponding moduli spaces. The boundary of ^& g^

is 9^&^ = ̂ ^p \ ^^^,p.

By a graph we shall mean the datum G of:

- a non-empty finite set V = V(G) (the vertices of G),

- a non-negative integer gy for every v € V,

- a finite set L = L(G) (the half-edges of G),

- a partition ̂  of L in subsets with one or two elements,
- a partition {Ljy^v of L.

Whe shall call the elements of S^ with one element legs of G and those with

two elements edges, the set of all the latter will be denoted E = E(G). We also set
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4 = IAJ- ^n ^at follows we shall implicitly consider only graphs which are connected,

in an obvious sense. If P is a finite set, by a ^-labelled graph we shall mean the datum
of a graph G plus a bijection between the set of its legs and P.

To every stable P-pointed genus g curve (C; {q?}?^) we may associate a P-
labelled graph G as follows. Let n : N —^ C be the normalization of C. We let V(G)

be the set of all components of N, and L(G) the set of all points of N which map

either to nodes or to marked points of G; two of these constitute an edge if they map

to the same point (a node) of G, while the remaining ones are legs. The indexing of

the legs by P is the obvious one. We also set gy = genus of v, and let Ly be the set of
all elements of L belonging to y. Notice that

g= E^1-!^0)^!1^)!.
yeV(G)

Conversely this formula can be used to define the genus of any connected P-labelled

graph. The graph associated to a stable P-pointed genus g curve is stable in the sense
that 2gy — 2 + ly > 0 for every vertex v, more exactly, to say that a curve is stable is
equivalent to saying that its graph is.

Let G be a connected stable P-labelled graph of genus g. We denote by ^M (G)
the moduli space of all P-pointed genus g stable curves whose associated graph is G;

it is a locally closed subspace of ^& ̂ p of codimension |E(G)|. We also denote by 80

the orbifold fundamental class of^(G), that is, the crude fundamental class divided
by the order of the automorphism group of a general element of^(G). The degree

two classes correspond to graphs with one edge. These come in two kinds; there is
the graph G^r, with one vertex of genus g—\, and there are the graphs G^A? which

have two vertices, one of genus a, with attached the legs indexed by A, and one of
genus g - a, with attached the legs indexed by A" = P \ A. We shall write S^r and S^A

instead of §G_ and SQ ; these classes are the fundamental classes of orbifold Carrier111
 a, A

divisors Ain. and A^A supported on ^{G,rr) and ^(G^), respectively It is clear that

8a,A = S^-a^? anc! also that 6a,A does not make sense as defined unless G^A is a stable
graph, i.e., unless 2a - 2 + |A| ^ 0 and 2(g - a) - 2 + [A0] ^ 0. In practice, this means

that 6a,A is still undefined if a = 0 and |A| < 2 or a = g and [A| > |P| - 2. We will find

it convenient to set 6a,A to zero if a <0, a > g, 2a—2+|A| < 0, or 2(g—d)—2+\A
C
\ < 0.

The class Sirr, as defined above, also does not make sense in genus zero; we will set
it to zero in this case. Finally, for any integer a, we write §a to denote the sum of all

classes 8a,A; notice that, in case g = 2a, the summand S^,A = 8^ ^ occurs only once,
and not twice, in this sum.
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The basic maps between moduli spaces we shall consider are

n : ̂ pu^} -^ ̂ ,p ,

^ '' ^-1,PU{^} -̂  ̂ ,,P .

^ ^ ^AUM X ^-.,(P\A)U{r} -̂  ̂ ,

^

which are defined as follows. The image under j cofa PU{y}-pointed curve is obtained
by " forgetting" the point labelled q and passing to the stable model. The image under
i; of a PU{y , r}-pointed genus g— 1 curve is obtained by identifying the points labelled

q and r; likewise, the image under r| of a pair consisting of an A U {^-pointed genus
a curve and a (P \ A) U {r}-pointed genus g — a curve is the P-pointed curve of genus
g obtained by identifying the points labelled q and r.

The map n : ^^a,pu{g}
 —> ^^pp ls

 ^
so called the universal curve over ^& p.

It has |P| sections, indexed by P; the section a. attaches to any P-pointed curve

(C; {^}zep) Ae P U {^-pointed curve obtained by attaching to G a copy of P1 by
identifying x. and 0 € P1, and labelling the points 1 and oo by p and q. One may

use the universal curve to define further cohomology classes on ^6 p as follows. We

denote by co^ the relative dualizing sheaf and by D. the image of a.. One then sets

^=<^iM; J & C P ,
K^^^i^ED^1), ^0.

The classes \y? have degree 2, while K^ has degree 2i. In the rest of this paper, whenever

we speak of tautological or natural classes (of degree 2) on -^.p, we refer to KI, the

\yp, 8^r, and the 6a,A' The classes 8^ and S^A will be called boundary classes. We set

¥ = S\^.

2. The main results

The first of our main results describes the first, third, and fifth cohomology

groups of ̂ ^.

Theorem 2.1. — We have ^t\J^6 ̂  = 0 for k = 1, 3, 5 and all g and n such that

2g - 2 + n > 0.

The next result describes the second cohomology group of ^6 in terms of
generators and relations; it turns out that this group is always generated by the natural
classes.

Theorem 2.2. — For any g and n such that 2g — 2 + n > 0, H^^ ) is generated

by K^ the classes \y^ 5^ and the classes 6a,A such that 0 ^ a ^ g, 2a — 2 + |A| ^ 0 and

2(g — a) — 2 + IA^ ^ 0. The relations among these classes are as follows.
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a) ffg > 2 all relations are generated by those of the form

(2.3) §a,A=§,-,,Ac.

b) I f g = 2 all relations are generated by the (2.3) plus the following one

5K, = 5\y + §,„ - 5§o + 78, .

c) y§
 = 1 a

^ relations are generated by the (2.3) plus the following ones

KI = v - §o ,

12^=§^+12^§o,s, p€{l,...,n}.
S3p

|S|^2

d) Ifg = 0 fl/Z relations are generated by the (2.3) plus the following ones

KI= E^I-^A, ^€{1,..,7Z}, ̂ ,

Ayfx^

V^ = E SO,A , x , y , ^ € {1, ...,^}, A:,J/, ^ distinct,
A=^
A^

8^=0.

Observe, first of all, that the moduli spaces ^&g,n and ^& , although in general
not smooth, are orbifolds; in particular, Poincare duality holds for them in rational
cohomology.

The proof of (2.1) and (2.2) begins with a simple remark. Look first at ^o,n;
it can be viewed as the space of all ^-tuples (0, 1, oo, ^4, ...,^) of distinct points of
P1 or, which is the same, as the space of all (n - 3)-tuples (^4,...,^) in C""3 such
that ^ =t= 0, 1 for all i and ^ =j= ^ for all i =(=j. In other words, ^o,n is nothing but
C"~3 minus a bunch of hyperplanes, so in particular it is an {n — 3)-dimensional affine
variety. It follows that H^(^o,n) = 0 for k > n — 3. Things are similar in higher
genus. In fact, when g > 0, n > 0, Harer [9] (see also [16]) constructs a (4g- 4 + n)-

dimensional spine for ̂ ^; thus H^(^^) vanishes for k > 4-g — 4 + TZ. The spine in
question is constructed starting from the cellular decomposition of ^g^n defined in
terms of Strebel differentials. Harer [9] also shows, by a spectral sequence argument,
that H^(^^) = 0 for k > 4'g— 5. By Poincare duality this implies that the cohomology

with compact support Hf(^^) vanishes for k ^ d(g, n), where

( n - 4 i f ^=0 ,
(2.4) d^n)={ 2g-2 i f ^ = 0 ,

2g-3+n i f ^ > 0 , ^ > 0 .
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Looking at the exact sequence of cohomology with compact supports

• • • ̂  H ,̂,,) -. rf(^) -> H\9^^ -^ H^(^) -^ • •

then proves

Lemma 2.5. — The homomorphism H^^^) —^ 1^(9^^) is an isomorphism for

k < d(g, ri) and is injectivefor k = d(g, n).

Let g and n be non-negative integers such that 2g — 2 + n > 0, and let P be a set
with n elements. Denote by D^, D^ ... the different irreducible components of (9^^p.

Each of these is the image of a map ̂  : X, —^ ̂  g^ where X^ can be of two different

kinds. Either X, = ^_i,pu{^p or else X, = ̂  a,Au{q}
 x

 ^\,Bu{r}. where a+ b = g,

A [J B = P, and both 2a — 2 + |A| and 2b — 2 + |B| are non-negative. In any case q and

r are distinct points not belonging to P, and the map p^ is gotten by identifying q and
r.

Lemma 2.6. — The map tf(^^p) -^ ©,H^.) is injective whenever H^(^ p) -^
H^^^p) zj.

The proof uses a bit of Hodge theory, in the form of the following result of
Deligne.

Proposition 2.7. ([4], Proposition (8.2.5)) — Let Y be proper. If u : X —^ Y is a proper

surjective morphism, and X is smooth, then the weight k quotient of {^(Y, Q) is the image of

H^(Y, Q) z72 tf(X, Q).

In our application, Y is <9^^p, and X is the disjoint union of the X^. Of

course, Deligne's result is stated for varieties and not for orbifolds, and the X^ are

smooth as orbifolds, but usually not as varieties. There are at least two ways out.

One is to convince oneself that Deligne's proof works also in the orbifold context. The

other is to appeal to the results of Looijenga [15] and Boggi-Pikaart [2] which imply

that each of the X^ is the quotient of a smooth variety Z^ by the action of a finite

group; one may then take as X the disjoint union of the Z^ and prove injectivity of

the map H^^^p) —^ ^(X) = ©^H^(Z^), which obviously implies the injectivity of

H'(^p)^e.H^).
Whatever road we choose, the proof proceeds as follows. The homomorphism

p : H'(^p) ̂  H^^p)

is a morphism of mixed Hodge structures, and hence is strictly compatible with the
filtrations. Thus

p(rf(J^p)) n w,_i(rf(cu^p)) = p(w^(tf(^p))) = p({o}) = {0},
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since H^^^ p) is pure of weight k. As we are assuming that p is injective, this shows

that H^(^^p) injects into H^^,p)/W^_i(H^^p) ). On the other hand (2.7)

says that H^^^p)/W^_i(H^^p)) injects into H^(X).

In view of (2.5), an immediate corollary of Lemma (2.6) is the following result.

Proposition 2.8. — The map H^^^p) -^ (D.H^) is injective when k ̂  d(g, |P|).

Proposition (2.8) makes it possible to give a quick inductive proof of (2.1), based
on the following intermediate result.

Lemma 2.9. — Let k be an odd integer, h a non-negative integer, and suppose H^^M ) = 0

for all odd q ^ k, all g ^ h, and all n such that q > d(g, 72). Then W{^1 J = 0 for all odd

q ^ k, all g ^ h, and all n. If W{^& ̂  = 0 for all odd q ^ k and all g and n such that

q> d(g, 72), then W[^& ̂  = 0 for all odd q ^ k and all g and n.

Clearly, it suffices to prove the first assertion. We argue by induction on k. We

may assume, inductively, that W{^& ̂  = 0 for all odd q < k, all g < h and all 72. If

g ^ h and k < d(g, 72), Proposition (2.8) says that H^^^ ̂ ) injects into a direct sum of

vector spaces ^(X^), where X^ is ^/6 _^ ^ or a product of two moduli spaces ^^^a

and -^^p such that a + b = g, a + p = 7 2 + 2 ; in the latter case either a < g or a = g

and a < 72, and similarly for b and P. By the Kunneth formula, H\J^ J injects into

the direct sum of H\^ _^ ^) and of all the tensor products H^^^ ̂ (g)]-!^^^ 3)

with / + 772 = L Since either / or 772 must be odd, the induction hypothesis guarantees

that all these tensor products vanish, except possibly those for which / or 772 is zero.

This means that VL\^& ) injects into a direct sum of vector spaces VL\^6^.^) such

that Y < g or y = g and v < n. But then the result follows by double induction on g

and 72.

Lemma (2.9) reduces the proof of the vanishing of odd cohomology (so long as

it does vanish!) to checking it explicitly for finitely many values of g and 72 in each odd

degree A, that is, those for which k > d(g, 72). When k = 1 this means g = 0, 72 < 4 or

g = 72 = 1. Now, ^^0,3 ls a P01111? while ^&^ 4 and ^& ̂  i are both isomorphic to the

projective line, so the first cohomology groups of all three are zero. This concludes the

proof of (2.1) in case k = 1. For k = 3, 5 the initial cases of the induction are slightly

more complicated and will be dealt with in section 5. Lemma (2.9) cannot be applied

as such if k ^ 11, since it is known that H^^^i n) is not zero. So far as we know,

the cases k = 7, 9 are still open.

The proof of (2.2) will be carried out in the next two sections and will make

essential use of the following result; actually, all we will need is the somewhat weaker

version described in Remark (2.11) below.
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Theorem 2.10. — Let g^ 1 be an integer, let P be a finite set such that 2g- 2 + [P| > 0,
and let q, r be distinct and not belonging to P. Then, if ̂  : ^&^^s ^ —^ ^ p is the

morphism obtained by identifying the points labelled q and r, the pullback map ^* : H\^ p) —^

^(^^-i^u^r}) u
 injectivefor any k ^ 2g - 2 if g ̂  7, and for any k ̂  g^- 5 if g ̂  7.

This we will prove by triple induction on k, g and n = |P|. The statement is
true when k = 0, and also when k = 1, since VL\J^l ̂  = 0 for any g and n. Suppose

then that g ^ 7, that k ^ 2g - 2, and that the result is known to hold for all triples

(k
1
, g ' , n ' ) such that either k

1
 < k, or k

1 = k and g ' < g, or k ' = k, g ' •=• g, and n
1
 < n. In

view of (2.8), what we have to show is that, if x is any element of VL\J^6 p) such that
^(x) = 0, then x pulls back to zero under any one of the maps

^a,AU{s} x ,̂BU{Q -^ ̂ ,P .

where g = a + b and P = AIJB. By the Kunneth formula, H^^a,Au{s}
 x

 ^bBu{t})

breaks up into a direct sum ofsummands H^^^^^H^J^ ̂ rA where A = /+w.
Thus we have to show that x goes to zero under any one of the maps

p : H^(^p) ̂  H^,^^) 0 H^J^^).

Suppose l^2a- \ and w ^ 26 - 1; then A; = / + m ̂  2(a + b) - 2 = 2,? - 2. The only
possibility is that / = 2a — 1, m = 26 — 1; in particular, / and m are both odd. Since

they add to k ̂  2g_- 2 ^ 1 2 , one of them must equal 5 or less. In view of (2.1), this

implies that ^{^a,Au{s}) ̂  K^^^BU^}) = °? so we are done in this case. We may
then suppose that either / ^ 2a - 2 or m ^ 2b - 2. Say / ^ 2a - 2; this implies, in
particular, that a > 0. Then p fits into a commutative diagram

H^(j^p) -^ H^jr^^) ® IP^^U^})

J-l _ ll _
H^,-i,pu^}) —— H^^^^^^^.p^H^^^u^})

If a = g, that is, if b = 0, then |B| > 1, and hence |A U {s}\ < n. Thus X is always

injective, by induction hypothesis. Since ^{x) = 0, and so 'kp(x) = 0, this implies that
p{x) = 0, as desired.

When g > 7 and k ^ ̂ + 5, the argument is similar, but simpler. Setf(n) = 2n-2

if n ^ 7 and /(^z) = 7 2 + 5 i f 7 z ^ 7 . T o show that p{x) = 0 we may argue as in the

previous case, provided we can show that either a > 0 and / ^ f{a) or b > 0 and

m ^f(b). If a = 0, then m ̂  k <^f(g) =f(b), and similarly if b = 0; we may therefore

assume that a > 0 and b > 0. Three cases are possible. Suppose first that a ^ 7 and

b ^ 7. If / >f{a) = 2a - 2, m > f(b) = 2 6 - 2 , then / ; ^ 2 ^ - 2 > ^ + 5 , against the

assumptions. Suppose next that a ^ 7 and 6 > 7. If / >/(^) = 2 ^ — 2 , m >f(b) = 6 + 5 ,
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then k ^ ^ + ̂  + 5 > <? + 5, contrary to what we have assumed. Suppose finally that

a ̂  7 and b ̂  7. If / >f(d) = a + 5, m >/(&) = & + 5, then A ; > ^ + 1 0 > ^ + 5 , again
against the assumptions.

Remark 2.11. — The above argument actually shows that, if v is an odd integer

and we know that the odd cohomology of all the J^& ^ vanishes in degree not

exceeding v, then H^J^p) -^ H\^^ ̂ ^ ̂ ) is injective f o r A : ^ 2 ^ - 2 i f ^ y + 2 ,

and for k ^ ^ + v \S g^ y + 2. Thus we could improve slightly on (2.10) if we could

prove the vanishing of the odd cohomology in degree greater than 5. In a different

direction, just knowing that the first cohomology vanishes, which is all that has been

fully proved up to now, suffices to show that H^^^p) injects into H^^^i pu^,})

as soon as g ^ 2. This is the only consequence of (2.10) that we will need in the proof
of (2.2).

3. Relations among degree two tautological classes

Our main^goal in this section is to find all the relations satisfied by tautological

classes in H^^^ ̂ p), for all g and P. We begin by describing how the natural classes

pull back under the basic maps n, ^, and T| defined in section 1.

Lemma 3.1. — (i) 7i;*(Ki) = K^ — \y ;

(u) ^W =%- §o,{^} for any p € P;
(iii) 7l*(SJ = 8^

(iv) 7C*(8a,A) = 8<z,A + 8a,AL){<7}.

Part i) of the lemma is proved in [I], while iii) and iv) are clear. To prove ii)

we reason as follows. Consider the diagram

,̂PU{̂ } -^ ^g,PU{r}

7 71 -jj
^,PUM ——^ ^,p

where q/ and (p are defined as "forgetting the point labelled r95 and |l as "forgetting
the point labelled q'\ It is known (cf. [I], for instance) that

H*(o)(p)=Gv(-^ AO,{,,^}).
xef

Thus, if T^, x C P (resp., T^, x € P U {q} ), are the canonical sections of (p (resp., (p'),
then

7T*(T;(G)<p)) = T;*(H*(CO^)) = T;*(CO^,(- ̂ AO, ̂ }))

^ep

for any p C P. This translates into iî  finishing the proof of the lemma.
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Lemma 3.2. — i) ^*(Ki) = K^;

(ii) ^^)=\Vpforanyp^P;

(iiiK*(§J=8^-^-v|/,+ ^ 5,,B;
^EB,r^B

S.,A zfg=2a, A = P = 0 ,

8fl,A
 + Sfl-i,Au{^r} otherwise.

(iv) ^(S,,A) = {

Part i) is proved in [I], while the other parts of the lemma are straightforward.

We now turn to T|. We shall not actually compute the pullbacks of the natural classes

under T|, but only under the map

^: ? a,AU{q} ^,P

which associates to any A U {q} -pointed genus a curve the P-pointed genus g curve

obtained by glueing to it a fixed A° U {r}-pointed genus g— a curve G via identification

of q and r. On the other hand, we know that the first cohomology of ^6^,y always

vanishes, so, by the Kunneth formula, the second cohomology of -^^A x
 ^^ s-a^

 ls

the direct sum ofH^.^^) and H .̂̂  ^c). Thus knowing how the natural classes
pull back under ^ actually tells us how they pull back under T|. It is important to stress

that, although of course 0 depends on the choice of C, any two choices give rise to

homotopic maps so that, in cohomology, the pullback map '&* is independent of the

choice of G.

Lemma 3.3. — i) ^*(Ki) = K^;

(ii)y(v)=^ lfpeA-W ^ Wp) ^ o zfp C A^

(iii) y(8J = §„.

Suppose A = P. Then

(iv) 0*(S^) = { ̂ -^uW-V,
v / v ^B/ I 8^B + 6b+a-g,BU{Q

Suppose A =^ P. Then

Ob,B ' Ob+a-g,BU{q}

-%

if(b,'K)={a,f)or(b,'B)=(g-a,^,

otherwise.

if(b, B) = {a. A) or (b, B) = (g - a. A0),

^BCA and{b,'S) ̂  (a. A),
^ A*fS ^ = J SA•B ^B c A aw ( b

'
 B) f (fl- A)3

[ ) [ w
 \ ̂ a-^ww ^B D A0

 and {b, B) ^ (g - a, A'),
1 0 otherwise.

Again, the only part that needs justification is i), which is proved in [1].

We may now determine all relations among tautological classes in degree two.

We have already observed that there are trivial relations

(3.4) §a,A - V^
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for any a ^ g and any A C P. What the remaining relations are depends on the genus.

We begin with genus zero. In this case it has been observed by Keel [13] that, for any

four distinct elements j&, y, 7*5 s of P, the following relations hold among the classes SO,A

such that [A[ ^ 2 and [A") ^ 2:

(3.5) ^ SO,A = ̂  SO,A = ̂  §O,A .
^3p,q A9/»,r ^3p,s

A^r,s A^q,s A^,r

What is more important, Keel proves that H^^^op) is the quotient of the vector

space generated by the SO,A such that |A| ^ 2 and \A
C
\ ^ 2 modulo the trivial relations

(3.4) and the relations (3.5) for all possible choices of p , q, r, s.

Proposition 3.6. — For any choice of distinct elements x , y , ^ e P, the following relations

hold in H\^Q^:

(3.7) ^ = ̂  §^ ,

A9^

A^^

(3.8) K I = ^(|A|-l)§o,A.
A^x^

TA^J ,̂ together with the relation Sirr = 0 and relations (3.4) and (3.5), generate all relations

in H^^^^o p) among the natural classes K^ \|/̂  §irr., and §o,A with |A| ^ 2 and |A°| ^ 2.

In view of Keel's result, all that needs to be shown is that (3.7) and (3.8)
hold. The proof is by induction on |P|, starting from the obvious remark that

0 = KI = V|/i = V|/2 = V|̂ 3 on ^^op when |P| = 3. The induction step is based on

Lemma (3.1). Suppose that (3.7) and (3.8) hold in <^^op- By symmetry, it suffices to

prove their analogues in ^^o,pu{o} ^or ^JS ^ G P. Pulling back (3.7) via n gives that

Vz - 5o,{^} = ̂  (§0,A + So,AU{<7}) ,

^EAcP

x^A

which is nothing but the analogue of (3.7) for -^o,pu{ff}- Similarly, pulling back (3.8)

yields

K! - ̂  = S (|A| - 1)(§0,A + §0,AUM) ,

X^ACP

that is, using (3.7) to express \|/̂  in terms of boundary classes,

Kl = ^ 8o,ALJM + Y^ (|A| - l)(8o,A + §0,AU{rf) ,

x^ACP x^ACf

which is exactly what had to be shown.
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We now prove a useful technical consequence of Keel's results, which will be
used time and again in the sequel.

Lemma 3.9. — Let Q be a finite set with at least four elements, and let x , y , ^ e Q^ be

distinct. Then _§o,{^} an
^ ^ the classes §o,s such that x C S and 2 ^ [S[ ^ |QJ — 3 constitute a

basis o/H2^^).

As Keel observes, his results imply that the dimension of H^^^o ^) is 2"~1 —

Q) — 1. Now denote by V the subspace spanned by the classes listed in the statement

of the lemma. Since there are 21Qj-l - (IQj) - 1 of these, it suffices to show that all

classes SO,T belong to V. The only classes that are not already present in the list are

those of the form §o,{^}, where x ^ {a, b} and {a, b} ^ {y, ^}. Let p , q, r be elements
of Q, all different from x and such that p =(= r =)= q. We claim that

(3.10) So,{<^} = ^o,{p,r} mod V:

Ifp= q there is nothing to prove. If p =(= q then, in view of (3.4), one ofKeePs relations
(3.5) is

^{^ + Y^ §o,s + 8o,{^} = 6^ ^ + ^ §o,s + 6o,{p,r} ,
x,peS^q,r x,qeS^p,r

3<|S|^|Qj-3 3<|S|^|Qj-3

which implies (3.10). One among y and ^, say ^, is different from both a and b. Two
applications of (3.10) then give

8o,{fl,z>} = So,{a,4 = 8o,{^} = 0 mod V,

proving the lemma.

We will call a basis such as the one constructed in Lemma 3.9) a standard basis

(with respect to x, y and ^). We next state and prove the analogues of (3.6) in higher
genus.

Proposition 3.11. — (i) The following relations hold in H^ ĵ̂  p),for any p C P:

(3.12) Ki =\ | / -8o,

(3.13) 12^=8^+12^8o,s.
S9j&

|S|^2

These, together with the (3.4), generate all relations in H^^^ p) among the natural classes KI,
\|̂  Siro and S^A with 0 < a ̂  1 W 2 < |A| ^ |P| - 2 ^a = 0.
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(ii) The following relation holds in H^.^^ p):

(3.14) 5Ki = 5\|/ + 8irr - 58o + 7§i

This relation and the (3.4) generate all relations in V?-(^6^ p) among the natural classes K^ \|̂ ,

8^ and 8,,A with 0 ^ a ̂  2 and 2 ̂  |A| ^ |P| - 2 if a = 0.

(iii) If g ^ 3, ^ ((?.̂ 1 generate all relations in H^^^ ̂ p) amo^ ̂  ^te^j KI, \|̂  8irr,
^W 8^A ̂  0 < a ̂  g and 2 ^ |A| < |P| - 2 if a = 0.

The proofs of (3.12), (3.13), and (3.14) are the exact analogues of those of (3.8)
and (3.7). The initial cases of the induction are as follows. First of all, for any g and
any P, one has Mumford's relation [17] [3]

(3.15) Ki = 12^-8+\|/,

where S stands for the sum of 8irr and all the S^ with 2a ^ g, and K = <;i(7^(co^)) is the
Hodge class.

For g = |P| = 1, one knows that \y = \ and that 12X-8 = 0 [12], so that Ki = \y

and 8=12\|/. Since in this case 8 = 8irr and 80 = 0, these identities are just the relations

(3.12) and (3.13). For g = 2, P = 0, Mumford [18] has shown that 10X = 8^ + 28p
Coupled with (3.15), this says that

5Ki = 60^ - 58 + 5y = 68irr + 128i - 58^ - 58o - 58i + 5y

= 5\|/ + 8^ - 58o + 78i ,

as desired.

What remains to be shown is that there are no relations in addition to the ones
listed above. We begin with the case of genus 1. We need the following simple remark.

Lemma 3.16. — The homomorphism ^* : H^^^p) —> H^,^^?^,) maps 8irr to

^ero.

Let p be an element of P, and let p : ̂  ^ p —> ^& ̂  ^ be the morphism defined

by forgetting the points labelled by elements of P other than p. Repeated applications

of Lemma (3.1) show that 8irr = 8*(8irr). On the other hand, the composition of ^ and

p maps -^o,pu{<7,r} to a ^g16 P01111- It follows that ^*(8irr) = ^*(p*(8irr)) = 0, as desired.
What we need to do to finish the genus 1 case is to show that 8irr and the

classes 81 ̂ s are independent. First consider the inclusion ^ : ^& ̂  ^ ,—> ^6^ p obtained

by sending any 1-pointed genus 1 curve C to the union of C with a fixed P U {q}-

pointed smooth rational curve E, with the marked point of C identified with the point

ofE labelled y. Notice that, by (3.3), y(8irr) = 8irr, so 8irr G H^^i p) is not zero since

its pullback to H^.^! i) does not vanish.
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_Now look at_ the pullbacks of the boundary classes via the morphism

i;: ^o,pu{<7,r} —^ ^i^p. We have seen that S^r pulls back to zero. On the other

hand it is clear that ^*(§i,s) = §O,SLJ{(^}. The independence of the classes S^r and 81,s
will then follow from the remark that 8irr =t= 0 and from the following result.

Lemma 3.17. — The classes So,su{^,r}. where S runs through all subsets ofP with at most

|P| — 2 elements, are independent in H^^^o pu-r r\)'

Let x,y be any two distinct points of P, and let 0 : ^o,{^,<^} —> ^o pu{ r}

be the morphism consisting in attaching a fixed tail at the point labelled t. Lemma

(3.3) shows that the only class of the form 8o,su{^,r} whose pullback under ^ does

not vanish is §o,{;^} = So,p\{^}u{<7,r}. This shows that, if a linear combination of the

§o,su{<7,r} vanishes, it must involve only those classes such that |S| ^ |P| — 3. These,

however, are independent by Lemma (3.9), as they belong to a standard basis. This
finishes the proof of part i) of (3.11).

To complete the proof of part ii) it remains to show that the boundary classes

and the classes V|/^, p C P, are independent in H2
^^^ ^p) modulo the trivial relations

(3.4). Consider the morphism ^ : ^'i,pu{<^} -^ ^2,p- ^^g (2-2) and (3.13) we find
that

i;*(^)=-^+^&o,s,
12 ^s

^(Sirr)=§irr-^-V.+ ^ §o,S + ^ ^S

^ES,r^S r€S,^S

= ^irr ~~ T^6"'1' ~ ̂  805S
 ~~ T^511'1' - ̂  S05S + ^ 60^ + ^ ^05S

^S izl reS ^€S,r^S r€S,^S

= ^Sirr — 2 ̂  §0,S ,

q^S

^*(§0,A) = SO,A.

Moreover, if P =(= 0 then

^*(§1,A) = 8o,AU{<?,r} + So,ACU{^r} ?

while if P = 0 then ^*(§i) = 8o,{^,r}- Now suppose a linear combination of the V)^,,

5irr, the §O,A and the 5i,A vanishes. This linear combination cannot involve the V|̂ ,
since the class §o,{j^} appears in the expression for ^*(v|̂ ,), but not in the ones for

the pullbacks under ^ of the remaining classes, and part i) says that the boundary

classes are independent in H^^ip^^). On the other hand the above formulas,
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together with part i), clearly show that the pullbacks of the boundary classes under ^

are independent.

To do part in) we proceed by induction on g. When P =(= 0, fix an element p G P;

we have to show that Ki, the V[^, 8irr and the 6a,A such that p G A are independent.

When P = 0, instead, we have to show independence ofKi , the \|̂ , 8irr and the 8^ with

2a ^ g. For g > 3, the formulas in Lemma (3.2), plus the induction hypothesis, show

directly that the pullbacks of these classes via ^ : ^& ^ pu{q r}
 —> ^^p are already

independent. For g = 3, we argue as follows. Suppose there is a relation

0 = aK\ + V^ bi \yi + c 8irr + • • •

among them. Pulling back via ^, and using (3.2) and (3.14), we find a relation on

^^2,Pu{<7,r} of the form

0 = {a - c)^fq + ... + (c + a/5) 8irr + • • •

By ii), all coefficients in this relation must vanish, so a
 = 0. At this point we may

proceed as for g > 3. The proof of (3.11) is now complete.

4. Inductive computation of H2
g,n/

We now turn to the proof of (2.2). Clearly, all that has to be shown is that
H^^? ) is always generated by tautological classes, the relations among these having

been determined in the preceding section. As was the case for (2.1), the proof is by

double induction on g and n. Here we shall describe the induction step. The initial

cases of the induction, that is, those for which 2 > d(g, n), will be dealt with in section 5.

Our strategy is quite simple. Suppose we want to show that V?~(^/& ) is

generated by tautological classes, assuming the same is known to be true in genus

less than g, or in genus g but with fewer than n marked points. Proposition (2.8)

shows that H^.^ ) injects into the direct sum of the second cohomology groups

of the X,. By induction hypothesis, these are generated by tautological classes, all

relations among which are known. By (3.2) and (3.3), we have complete control

on the effect of each map H^^^ ) -—> H2^) on tautological classes, so that, at

least in principle, we can decide which classes in ©H2^) come from tautological

classes on V^{^6 ). On the other hand, given any class in V^(^& ), its pullbacks

to the X^ satisfy obvious compatibility relations on the "intersections55 of the X^.

The subspace of Q) H2^) defined by these compatibility relations can be completely
described using (3.2) and (3.3), at least in principle, because the spaces H2^) are

generated by tautological classes. What we will show, in essence, is that it coincides

with the one generated by the images of the tautological classes of H .̂̂  ). By
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the injectivity of H^^?^) —^ © H2^-), this wiU conclude the proof. We shall first

describe the inductive step in genus 3 or more. The cases of lower genus are a bit
more involved, and will be treated later in this section.

Let then g ^ 3 be an integer, and let P be a finite set. If P is not empty,

let p Jbe a fixed element of P. Let x,y be distinct and not belonging to P. Let

^ : ^g-^pu{x^} ~~^ ^g,p be the map that is obtained by identifying the points

labelled x andj\ We wish to show that ^(^M p) is generated by tautological classes,

assuming the analogous statement is known to hold for ^>y^ whenever y <g or y =
 g

and V < |P |. We will do this only for P ^ 0, the argument for P = 0 being entirely

similar. Let ^ be any element of H^^^p). The pullback ^*(^) is invariant under the

operation of interchanging x and y. Therefore, by the induction assumptions, it is a

linear combination of KI, the y,, i € P, V|/̂  + v^, Sin., and the classes S^u, 8^uu{^}

and Sy,uu{x} + S^uuw? where u is any integer between 0 and g and U runs through all

subsets of P containing p, when g == 3, we can even do without KI. Formulas (3.2) tell

us that there is a linear combination v of tautological classes such that the pullback of
a = ^ — v is of the form

(4.1) ^*(a) =/(\|/. + v|/,) + ^ &,u§.,uu{^}+ ^ ku(8.,uuw + §.,UUM)
peVcP peVcP
O^u^-2 O^u^g-l

for suitable coefficients/,^^, h^u' In case g = 3, we may even assume, using (3.14),

that/= 0. We will show that, in fact, ^*(a) = 0; (2.10) and (2.11) will then tell us

that a itself vanishes, proving that ^ is a linear combination of tautological classes, as
desired.

Suppose s ^ P U {x,y}, and let ^ : -^-i,pu{,} —^ ^^p be the map that is

obtained by attaching a fixed elliptic tail at the point labelled s. Look at the diagram

-^-2,PU{w} ———^ ^g-i,PU{x^}

(4.2) 4 V ^

^,_I,PUH -^ ^,p

where (p attaches the point labelled t of a {^, ^,j/}-pointed projective line to the point

labelled s of a variable curve in ^& g-\ ,Pu{j}? ^d Y ^d P are Ae analogues of ^
and 0, respectively. In this diagram, the outer rectangle and the lower triangle are

commutative up to homotopy. The identity (p*^*(a) = ^*(a), together with formulas
(4.1) and (3.3), applied to (p, implies that

(4.3) 0*(a)= ^ &u8,,uu{.}.
j&eU

O^u^g-2
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On the other hand, if we write down explicitly the identity 7*^*^) = P*^*(oc) using
formulas (4.1), (4.3), (3.2), and (3.3), we get a relation

Y ^ &,u(§M,UU{j} + ̂ u-\,\JU{s,x^})

j&eU

O^y^-2

( A 4\ =
A

>
Vx + ¥^) + ^ &u(8^uu{^} + 8^_i^u{w})

^ ^ yeU
O^M^-2

+ / . ^^u(§M,UU{4 + 8^UUQ} + SM-I,UU{^} + S^-l,UU{v})

peV
O^usig- 1

in H^.^^ ,pu{^,^})- If <? ^ 4, all the tautological classes appearing in (4.4) are

independent, so / = ^u = A^u = 0 for all u and U. When ^ = 3, we already

know that/= 0; since the boundary classes are independent in genus 1, we conclude

that gu^ = Ay,u = 0 for all u and U in this case as well. This shows that ^*(a) = 0, as
desired.

To complete the proof of (2.2) it remains to deal with the genus 1 and genus 2
cases.

Genus 1. We begin by improving on Lemma (3.16). Let P be a finite set, set

n = |P [ and let x and y be distinct and not belonging to P. As usual, we let

^ : ^^o,pu{^} ~^ ^^i,? be the map gotten by identifying the points labelled x

andj/.

Lemma 4.5. — The kernel of^ : H^^^p) —> H^^Q^^) is one-dimensional and

is generated by §irr.

Lemma (3.16) and part i) of Proposition (3.11) say in particular that §irr is not

zero and belongs to the kernel of ^*. It remains to show that any other element of

ker(^*) is a multiple of 8irr. The case |P| = 1 is trivial. In the next section we shall

see that, when |P| = 2, H^^^ p) has dimension two. On the other hand, the class

81^0 € H^^^^ ^p) maps to 8o,{^} e H^'-^o^u^.v})? "^hich is not zero. This takes care

of the case when |P| = 2. We then proceed by induction on n = |P|. Let a be an

element of the kernel of i;*. Let j, t be distinct and not belonging to P U {A:,J/}. For

any subset S of P with at most n — 2 elements consider the diagram

^0,SU{;w} x ^O^L)^} ———^ ^O^U{x^}

.1 4
^i,su{4 x ^O^UM ——^ ^i,p
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where the vertical arrows are obtained by identifying the points labelled x and^, and

the horizontal ones by identifying the points labelled s and t. Using the Kunneth

formula and the^ vanishing of H1 we may write v^(a) = (P, y), where P C H^^i ^r . )

and y C ti\^o^u{t})'
 From ^*(^) = 0 we deduce that r|*(P, y) = 0. On the other

hand T|*(P, y) = (p',y), where ?' is the pullback of ? to ^o,su{w}- I! follows that

y = 0 and, by induction hypothesis, that P = as 8n.r for a suitable constant as. In other

words, v^(a) = (^s 8irr,0). We now wish to show that, actually, a = as does not depend

on S. This will conclude the proof, since then the difference a — a 8irr will restrict to

zero on all components of Q^&^ p and hence will be zero by (2.8). To show that as

is independent of S we proceed as follows. If S =|= 0 write S = T U {w}, where w ^ T,
and consider the diagram

^1,TUM x -^0,{w,y,s} x ^Q,^U{t} —L> ^ I,TU{.} x ̂  0,^U{w,r}

o | VT |
-^ -I-

^\,SU{s} x -^0,SCU{4 ———> ^1,P

where the vertical arrows are obtained by identifying the points labelled x and^, and

the horizontal ones by identifying the points labelled s and t. We find that

(^T 8^0,0) = T*(^T 8,,, 0) = T*(v^(a)) = a*(v^(a)) = ̂ (as 8,,, 0) = {as 8,,, 0, 0),

and hence that as = a-r. Repeated applications of this argument show that as = a^ for
any S. This proves the lemma.

Because of the relations between tautological classes given in Proposition (3.11),

to prove (2.2) in genus one it suffices to show that H^.^^ p) is generated by boundary

classes. We prove this claim by induction on n. The result is obvious for n = 1, while

the case n = 2 will be settled in section 5. Denote by V = Vi^p the subspace of

H^^^^ p) generated by the elements 81 ̂ s, where S runs through all subset of P with

at most 7 2 — 2 elements. To prove our claim it suffices, in view of Lemma (3.16), to
show that the morphism ^* vanishes modulo V.

To simplify notation, from now on in the genus zero case we shall write 8$

instead of8o,s. Let Q^= PU{x,j/}. Let J!?be the standard basis of H^J^o ^) relative

to ^, x , y . Let a € H^^i ^p). Using the fact that ^ is invariant under the involution

exchanging x and^, we can write ^*a in terms of ̂

^*a = ̂ }8{^} + ^ as 8s

,. ^ scx^es,|s|^2,|x\s|^i

+ JL ^ ̂ {x, y} + S^ ^s(8su{.} + 8su{,}) •
ScX,z€S,|X\S|^3 ScX,zeS,|X\S|^2
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Consider a subset R of P such that |P \ R| ^ 2, and look at the morphism

^R '' ^I,RUM -^ ^I,P

defined by taking a varying stable, genus 1, RU{z/}-pointed curve, a fixed stable, genus

zero, (P\R)U{y}-pointed curve Go, and identifying the points labelled u and v. As we

already noticed before stating Lemma (3.3), the homomorphism ̂  does not depend
on the choice of Co. By induction hypothesis, we have

(4.7) (̂a) = ^ f^ §^s + E ^ ̂ suw V §.r.
ScR,|R\S|^l ScR,|R\S|^2

Consider the elements 81,s ^ H^^ip) with |P \ S| > 2. Recalling the convention

about the symbols S^A? Lemma (3.2) says that

^ SI,X\LM} = S{p,q} ^^3, it ^ + ^ q + ^,

^ ?*^ ^fSsu^e^, if ^ e s , s + p \ ^ , y } , ^ + ^ ^ ^ ,
s 015S l8p\se^, if ^s.

So all the classes 8^s restrict to elements of ^ except when S == P \ {p, q}. We also
have, by lemma (3.3), that

^s i f S c R . S ^ R ,

(4^ ,*. - - ^ = - E Si^-1^ i f S = R ,
(4.y} ^R<>I,S - < S'CRJRYS'I^I 12

8i,R\(P\s)u{^} if S D P \ R,
^ 0 otherwise.

Remark 4.10. — The only class §i^s with S C P and |P \ S| ^ 2 ^^ ^^, m the

expression of^^\^, the class ^\^\{p^u{u} appears with non ^ero coefficient, is §I,P\{^} and in

this case ^R§i,p\^} = §I,R\^^}U{^}

Let us go back to the expression (4.7). Let {r, s} C R' C 7?. We claim that

•n "D /

(4-11) SR\{r,s}
 =<?R/\{^}•

Clearly, it suffices to prove the claim in case R' = R\ {q}. Look at the diagram

W ^\w -^
^

6 1 ,(R\{<7})UM ———^ yy6 1 ,P

__4 ^^

-^I^UM

where the maps are defined in the obvious way. To prove the claim just use the

preceding remark with P = R U {u}, together with the fact that ^^a = ̂ ^r i0c.
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After this preparation we are ready to modify a. Suppose first that P = {^,j&, q}.

The first move consists in adding to a a suitable multiple of §1^0 so as to make

^{^} = 0. The second move consists in adding to a a suitable multiple of §1^} so as

to make^ = 0. The third move consists in adding to a a suitable linear combination

of §1^} and §1^} so as to make a^p} = a^ = 0. The three moves, taken in that
order, do not interfere with each other. As a result

(4.12) ^a = c^{^ + S^), y^a =f
w
^.

Assume now that |P[ ^ 4 . Let p =(= ^ and q =(= x. Observe that, by (4.11), whenever

|P\R| ^2 , |P\S| ^ 2 and {^ ,y}cRnS , we have

R _ Rns _ s
8R\{p,q} ~ gRHS\{p,q} ^ 8s\{p,q} ^

T)

so that <?R\{^} = Jp,q does not depend on R. Therefore subtracting from a the class

EXD{/^} Vp^\,x\{p,q}, we get that g^\^} = 0, for all j&, q and R such that p ^ ^ q ^ ^

| P \ R | ^ 2 and {p, q} C R.

The second move consists in adding to a a linear combination of elements of
type §i,s, with S =[= P \ {p, q}, p ^ ^ q =)= ^ in such a way that

(4.13) ^a= ^ ^(Ssuw+Ssuw)-
z€ScX,|X\S|^2

By the above remark, the second move does not alter what has been accomplished by

the preceding one. For convenience we shall set c-y = 0 when ^ ^ T.

To prove our initial claim we must prove that all the cs are equal to 0. Consider
the square

__ T^ __

^0,RU{w} ———^ ^0,PU{^}

^1 ^1^ 4'

__ ^ __

^1,RUW ———^ ^1,P

where T| is the morphism obtained by identifying the points labelled x andj/, while r)^

is obtained by identifying the point labelled u on the varying curve in -^oRu{^4

with the point labelled v on the fixed curve Go. The equality T[^a = ri*^a, where
R C P and |P \ R| > 2, implies that

(4.14)

^C ^ ^u^} + ^ & 8su{w} -
ScR,|R\S|^l ScR,|R\S|^2

^ ^s(8su{^} + SSUM) + ^ ^s(8(P\s)uw + §(P\S)UW) .
ScR,|P\S|^2 P\ScR,|P\S|^2
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We are going to prove that c-y = 0 for every T by descending induction on |T|. The

first non-trivial case occurs when |T| = n — 2.

If P = {^,j&, q} this amounts to showing that q^. = 0. This follows immediately
from (4.12) and (4.14) for R = {4.

Suppose |P| ^ 4, and set P \ {p,q} = T. We can assume that p ^ ^ and q ^ ^

otherwise c^ = 0. For R = {p, q} the equality (4.14) now reads

f^ ' 8{^} ^/{p^
 s^,^} '^/{^ ^{qw} = CP\L^<?}(SL&,<^} + 8^^,4) ^

where on the left-hand side we used the fact that, by our first move, ^5<7} = 0 while,

to simplify the right-hand side, we used again the fact that cs = 0 if ^ f. S. The above
is a linear relation among elements of a standard basis of H^^^g r . ^ .), hence

(4 i ̂  f^P^} - f{P^} - f{P^} - . - n
^•10} Jo -7{^} -J{^- - ^P\{^<?} - ̂  •

The first step in the induction is completed.

Now let r ̂  3, assume that cs = 0 if |P \ S| < r, let T be such that |P \ T| = r,

and set R = P \ T. As usual we can assume that ^ ^ R. Let us first assume that

|T| = |P\R| ^ 2. Relation (4.14) reads

^ ^ 8(R\s)uM + ^ & 5su{^,^} = ^r(S{^} + 8^,^}),
SCR,|R\S|^1 SCR,|R\S|^2

where, to simplify the right-hand side, we used the inductive hypothesis together with
the fact that cs = 0 if ^ ^ S. This is an equality in H^^o g^r ^). As a basis

for H^^^o ,RU{^ ̂ }) we ^ke a standard basis where now the role of Q^ is played by

RU {x,jy, u} and the role of ^ is played by u. Since ^ ^ R, and ^\^^} = 0, the classes

appearing in the above equality belong to the standard basis; as they are all distinct,
we are done.

Let us finally assume that T = {^}. We start with a general remark. Pulling back

^a =^§1,0 ̂ '̂ M -V^Si,^} + g^\w ̂ /^}^

from H^j^^^) to H2^^^), comparing it with ̂ a =f^^^ +/{^}8^, and
looking at the coefficient of §1^5 we get

(4 Ifi^ f^'^ f^'^ - f^ V h n^.10; ^0 —J{^} -70 v P^'

But if |T| = 1 (and |P[ ^ 4), then relations (4.15) have already been proved so that, in
particular, f^ = 0 for q ^ ^ Using (4.16) again we get

(4.17) ^q} =f^\
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Now look at relation (4.14) for R = {^, q}. Using the induction hypothesis to simplify
the right-hand side one then gets

f^\^ ̂ f^\^} +f^}^}+ g^^ = w§^ + s^.}),
which, by Keel's relations, can be written as

/0 ̂  8^} "^/{^ (^^ + ̂ ^ -" s^^} - S{^} + ̂ ^

V^A^} ̂ ^S^} = ̂ }(§{^} + 8{^}).

which in turn is a linear relation among elements of a standard basis for

^(^(M^w})- In particular it follows that f^ = -f^ which, together with
(4.17), implies that all coefficients in the above identity must vanish, concluding the
proof of the lemma.

Genus 2. In order to prove (2.2) in genus two we must show that, for any finite set P,

the space H^^^ ̂ p) is generated by the classes \y^ with q € P, and by the boundary

classes 8n.r, 81,A, 82,3, where A and B run through all subset of P such that |B'| ^ 2,

and such that, if P 4= 0, then A contains a preassigned point p G P. We set n = |P|.
We first consider the cases n = 0 and n = 1. By Theorem (2.10), H^j^) injects

in H^^i ̂ ) via ^*. On the other hand, H^^^ ̂ ) is two-dimensional and the classes

8irr and 81^0 are independent in H^^^)? so Aat ^* is an isomorphism, and the result
follows in this case.

We next consider the case n = 1. Again H^^^}) injects in H^^'^ r .) via
^*. Look at diagram (4.2) for g = 2. Using Lemma (3.2), Lemma (3.3) and Proposition
(3.11), we find that

^W = ̂  = Y^rr + 8l,{^ + 81,^ + 8i,0 , ^*(8l,0) = 8i,0 + 81,̂  ,

^*(Sirr) = 8,, - y. - VIJT, + 81,̂  + 81,̂  = ^8^ - 28i,^ - 281,0,

^W =^p= -^8irr + 81 ,0 , 0*(8i,0) = 81,0 - ̂  = —^8^ , *̂(8i,) = 8,,.

A priori, given a class a in H^.^^ r.A we have

^*(a) = ^ 8,, + b(6^ ̂  + 81,^) + c 81,̂  + </8i,0 , ^*(a) = ^81,0 + r8^,

so that, by adding to a a suitable linear combination of \y?, 8^3 and 81^}, one can

assume that r = b = d = 0. Then the equality y*^*(a) = P*^*(a) gives c = t, while the
equality (p*^*(a) == i^*(a) gives

^ §irr - t ^ / ^ d 8^ - ̂ ( y , 8^ + 81,0) = t 8i,0 ,

so that a = t = c = 0, and the result is proved also in this case.
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We now turn to the case when |P| = n > 2, and proceed by induction on n. Fix,

once and for all, a point p in P. Consider subsets R C P such that R0 = P \ R contains

two or more points and p G R0. In addition to ^ and ^ we also consider the map

^R : ^2,RU{4 -^ ^2,P.

defined as identifying the point labelled w of a fixed Rc U {^-pointed projective line

with the point labelled ^ o f a variable curve in ^^3 RUM- Given a class a 6 H^.^^ p),

a priori one has

^*(a) = a Sin. + ̂  ̂ s §i,s + ^ ^s SI,SLJ{^} + ^ ^s(§i,suw + SI,SUM) ^
scp ScPJS0!^ ScPJS^l

^(a)=aR§„+^RV|/,+^+ ^ ^6o,s+ E ^So.suw+E^8^-
rCR ScR,|S|^2 ScR,|S|^l ScR

Let us show that, by adding to a a suitable linear combination of 8irr and of the ^

with i ̂  p, one can assume that ^R = b, = 0 for all R C P such that IR^ ^ 2 and for

all r G R. For each proper subset R7 of R there is an obvious diagram

_ ^/ _
t^^2,R /U{^} ———^ ^^2^p

(4.18) J ^^
4-

-^2,RU{4

which is commutative up to homotopy, and it is evident that d^ = ^R and ^R = 611

whenever r G R'. But then it suffices to annihilate a0 and b ' , for every r C P \ {/?},

which can be achieved by adding to a a suitable linear combination of §irr and \|/y for

r G P \ {p}. Next observe that, in view of (3.2) and (3.13), by adding to a a suitable

multiple of \y? we can assume that a = 0. Finally, since

^*(§2,s) = §i,su{^}. ^*(8i,s) = §i,s + §o,su{^} = §i,s + Si^s0 ^

we can assume that bs
 =

 0 and that as
 = 0 if j& ^ S. In conclusion

(4.19) ^*(a)= ^ ^s§i,s+ ^ ^s(§i,suw+8i,su{,}).
^escp SCPJS^I

(4.20) (̂a) = ̂  + E ̂  ̂ s + E ̂  ̂ suw + E ̂  Si.s
ScR,|S|^2 ScR,|S|^l ScR
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Now set R = P \ {p, q}, for some q € P with q =)= p, and look at the diagram

^l,RU{w} -^ ^1,PU{^}

^1 ^14- -i-

____ OR ____

--^RUM ———> ^2,P-'

Using Lemma (3.3), we get

v*^*(a) = ^ as Si,(s\{j&,<7})u{4 + ̂  ^s(Si,su{x} + §i,suw)

(4.21) {^}CSCP SCR
+ X/ ^(SUSYO^M^} +sl,(S\{^<7})u{^}).

{/^CSCPJS^I

|i*̂ (a) = ̂  + ^ ^ SI,(R\S)U{X^,.}
,4^ SCR,|S|^2

+ X. ^S Sl,(R\S)U{^} + ̂  AS (Si,s + §1,(R\S)U{4) .

SCR,|S|^1 ScR

The equality v*^*(a) = |Ll*^(a) provides a relation of linear dependence between classes
of the following types

§1 ,TU{4 ? Sl ,TU{x} ? §1 ,TU{>>} 5 §1 ,TU{^,4 5 §1 ,TU{^,4 5

V^ ? §1 ,TU{^,4 3 §1 ,TU{^} 5 §1 ,T + §1 ,R\TU{4 ?

where T C R. By the results on H2
{^^^, and since \|/̂  = (l/12)8irr + • • -, the above

classes are linearly independent, so that all the coefficient in (4.21) and (4.22) are zero.
As q is any element in P different from p, this means that (4.19) becomes

(4 23} ^
(a) = a{p}6i>w + ̂ 81'-^ + s1^})

+ ^PW^UPXL^UW + ^(PVL^UM) ?

while ^(a) = 0. We now look again at diagram (4.2). The identity (p*^*(a) = ^*(a),
together with (3.3), applied to (p, gives

(4.24) ^*(a) = ^}8i,^ ,

whHe the identity Y*^*(a) = P*^*(a) gives

^M5^,^} = ^M8^^} + ^}(s^^^} + 8{^,4)

+ ̂ ^^(^^^{x,.} + 5(P\{^})uO.,.}) .

As long as |P| ^ 3, the boundary classes appearing in the above relation belong

to the standard basis of H^^^p^^) relative to p , x , y , so that all coefficients must



CALCULATING COHOMOLOGY GROUPS OF MODULI SPACES 121

vanish and we are done. If P = {/?, q}, we further simplify notation and rewrite the

above relation as

a 8 ,̂} = a S^} + ̂ (8{^} + 8^^}) + <S^} + 8^}).

We choose 8{^}, S{^}, S^}, S{^} and 5{^} as a basis for -^05 anc^ using the
relations

s^^} = 8^^} + S{^} - S^^} ^ ^^ = s^^} + 8{<7,4 - ^y,^} .

we get a = —26? and c = —</. Thus

^*(oc) = ^§1^} + Si^} + §i,{^} - 8i^} - §i,{^}).

On the other hand, using (3.2) and (3.13), one finds that

2Si,w + 81,LM} + ^{M- - ̂ {^ - ̂ -f^} = ̂ *(sl,W + ¥<? -- ¥j&).

so (2.10) implies that a = ^(5i,{^} + ̂ fq — ^fp). The proof of (2.2) is now complete.

5. The initial cases of the induction

In this section we calculate those cohomology groups which are needed to

start the inductive proofs of (2.1) and (2.2). More exactly, we shall compute the k-

th cohomology group of ^M for all k, g and n such that k < 3 or k = 5 and

d(g, n) < k. Our treatment will be elementary and self-contained for k ^ 3, while for

k = 5 we shall use, directly or indirectly, some of the results of [6], [7], and [14].

We have already settled the case k == 1 in the body of the proof of (2.1). For

k = 2, the values of g and n involved are g = 0 and n ^ 5, and g = 1 and n ^ 2. For

k = 3 they are g = 0 and n ^ 6, g = 1 and n ̂  3, and g = 2 and n ^ 1, while for k = 5

they are g = 0 and n ^ 8, g = 1 and n ^ 5, g = 2 and n ̂  3, and ^ = 3 and TZ ^ 1.

As we said, in genus zero we rely on Keel's results [13], although the

computations could be easily done directly. What Keel shows, among other things, is

that H^^SQ ^) vanishes for all odd k, and that H^^^o n)
 ls generated by tautological

classes, modulo the relations described in (3.6), and has dimension 2"~1 — Q) — 1.

We now turn to higher genus. Since ^/& i i is isomorphic to P1, its second

cohomology is one-dimensional (and generated by 5irr). We next show that there are

surjective morphisms a : ̂ ^o 6 ~^ "^2 o an(! P : "^o 7 —> ^^2 r This implies that

the third cohomology groups of ^^^o anc! ^^2 i ^^a111 .̂ Let (C;j&i, ...,po) be a 6-

pointed stable genus zero curve. The morphism a associates to it the stable model of
the double admissible covering of C branched at the p^ As for P, the image under it

of a 7-pointed stable genus zero curve (C;j&i, ...,^7) is defined to be the stable model

of (D;^), where D is the double admissible covering of G branched at j&i, ...,PQ, and
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q is one of the points lying above pj. Notice that it is immaterial which of the two

possible choices for q we make, since they yield isomorphic 1-pointed curves.

To complete^our analysis for k = 2, 3 it remains to compute the second

cohomology of ^12 and the third cohomology of ^& i 3. It will suffice to prove
the following.

Lemma 5.1. — We ham h2{^^^ = 2, ^(J^i 3) = 0.

In fact, there are exactly two boundary classes in H^^^ ^)? namely §irr and

§1,0, which are independent by part i) of (3.11). Thus the first part of (5.1) implies
that §irr and §1^ generate ^{J^& ̂  3).

The proof of the second part of (5.1) relies on Theorem (2.2), and hence also

on the first part, in that we will use the fact that H^^i 3) is freely generated by

boundary classes. Since the boundary classes are 6^ 5i,0, 8i ,{ i}? Si,{2}? and §1^3}, this
shows in particular that ^(^i 3) = 5. As we know that h\J^>^ 3) = h\JM.^ 3) = 0,

Poincare duality implies that 30(^1,2) = 2 + h
2
^^^) and x(^i^) = 12 - A3^^^).

Lemma (5.1) is then a consequence of the following result.

Lemma 5.2. — We have x(^i^) =
 ̂  X(-^i 3) = 12.

In [6], Getzler computes the Euler characteristic of ^^ ^ for any n, and (5.2)

is a very special case of his result. Here, however, we shall give an elementary and

self-contained proof, which uses the following simple remark. Suppose X is a quasi-
projective algebraic variety, and let

X = X, D X^ D ... D X^ :) X,

be a filtration of X by closed subvarieties. Suppose that X, = X^ \ X^ is of pure

complex dimension i (or is empty) for every i. Then the exact sequence of cohomology

with compact supports shows that the Euler characteristic with compact supports of

X is the sum of those of X^ and X</. Repeating this argument for X^_p then for

X^_2, and so on, shows that ^,(X) = EX.(X,). If Poincare duality holds for the X,, for

instance if they are orbifolds, then %.(X,) = ^(X,) for any i. If in addition X is compact,

or an orbifold, we conclude that ^(X) = Y, ̂ (X,). For us, the main consequence of this

is that, if one stratifies ^& ̂  according to graph type, then the Euler characteristic of

^^n
 ls ^e sum of the Euler characteristics of the open strata. Before we can use this

to prove Lemma (5.2), we need to compute some auxiliary Euler characteristics. First
recall that

X(^o,n)=(-ir^-3)!.
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In fact, this can be proved inductively, starting from the case when n = 3, by observing

that omitting the last marked point yields a fibration ^o,» —
>
 ^o,n-\ whose fibers

are projective lines minus n — 1 points, so that %(^^o,/z) = (3 — 7z)x(^^o^-i).

We next compute the Euler characteristics of the quotients of ^^0,4 and ^^05
modulo the operation of interchanging the labelling of two of the marked points, which

we will denote by ^0,4 ^d ^0,5? respectively. We claim that

(5.3) ^^)=o; ^^)=l.

The map ^^0,4 —
> *^o,4 ^as degree 2. We claim that there is a unique fiber consisting

of only one point, so that

-1=X(^0,4)= 2X(^%0,4)-1,

proving the first identity in (5.3). Suppose in fact that there is an isomorphism between

the two 4-pointed curves (P^O, oo, 1, x) and (P^O, oo, x, 1). This means that there is

an automorphism a of P1 such that a(0) = 0, a(oo) = oo, a(l) = x, and a(x) = 1. The

first two conditions imply that a is of the form a(^) = a^, for some nonzero complex

number a. The last two conditions say that x = a and a
2
 = 1. Thus the curve in

question, up to isomorphism, is (P^O, oo, 1, — 1). As for the second identity in (5.3),

the morphism ^^0,5 —
> -^0,5 ls clearly unramified and of degree 2, so that xG-^o 5)

is one half of %(^^ 0,5). This completes the proof of (5.3).

We next observe that

(5.4) x(^i ,2)=l ; X(^i,3)=0.

The Euler characteristic of^^i^ can be easily calculated inductively by examining the

morphism ^&\^n ~^ ^& \,n-\ 5 beginning from the observation that ^^1,1 is the affine
line, and hence its Euler characteristic is 1. First of all, let (C',p) be a smooth 1-pointed

genus 1 curve, and T its —1 involution. Let (p be a non-trivial automorphism of (C;j&);

we wish to describe the fixed point set of (p. When (p = T, this clearly consists of the

2-torsion points. In general, notice that (p commutes with T, and hence descends to an

automorphism (p of P1 = C/T fixing the image of p. On the other hand, (p may differ

from T only in two cases. The first is when C is the double covering of P1 branched at

0, 1, — 1, oo (and p maps to oo, for instance); (p must leave 0 fixed, and interchange

1 and —1, so it is just multiplication by —1. In particular, its fixed points are just 0

and oo, so (p has two fixed points, that is, p and the one lying above 0. The other

case is when C is the double covering of P1 branched at oo and at the cubic roots of

1, with p mapping to oo. Since (p must fix 0, it is just multiplication by a cubic root of
unity. Two cases are possible. If (p interchanges the two points of C lying above 0, it

has order 6 and its only fixed point is p', otherwise, (p has order 3 and 3 fixed points,

namely p and those lying above 0.
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Now look at n : ̂ ^1,2 ~^ ^^1,1- Its fiber over (C;j&) is just the quotient of G by
the automorphism group of (C;j&), minus the image ofj&; in particular, it is dominated

by (G \ {^})/T, where T is the — 1 involution, which is just the affine line. Hence all

the fibers of n are affine lines, so %{^&\^) = %(C)%(^^i^i) = 1.

We can do something similar with n : ̂ ^1,3 —>- ^&\^. Denote by X the locus

in ^^1,2 of all curves {C',p\,p^) such that p^ is a 2-torsion point with respect to the

group law with origin in p\. Clearly, X is isomorphic to ^^o 4? so X(X) = 0. We also
denote by x the point of ^&\^ corresponding to the covering C of P1 ramified at 00

and at the third roots of unity, whith p\ lying above oo and p^ above 0, and denote

by U the complement of X U {x}. The fiber of K above any point of U is an elliptic

curve minus two points, while the fiber above any point of X U {x} is a projective line

minus two points. Thus

X(U)=x(^i ,2) -X(X)- l=0,

x(^ 1,3) = x^W) + x^-'W) + x(^))
= -2X(U) + X(C \ {0})x(X) + x(C \ {0}) = 0.

We may now compute the Euler characteristics of ^& ̂  3 and ^& i 3 using the

stratification by graph type. The open strata of ^^i 3, other than ^^1,2? are indexed
by the graphs in Figure 1. Here, and elsewhere, we adopt the convention that a solid

dot stands for a component of genus zero, and a hollow one for a component of genus

one.

(X -< 0-<
FIG. i.

There are two one-dimensional strata Vi and V2, corresponding to the first two

graphs, while the zero-dimensional strata are the two points corresponding to the last

two graphs. It is evident that Vi is isomorphic to ^^049 an(^ ^2 to ^&\^\. Thus

X(^i,2) = X(^i,2) + X(^o,4) + X(^i,i) + 2 = X(^i,2) + 3 = 4 .

This proves the first statement in (5.2), and consequently also the first one in (5.1).

Theorem (2.2) is now fully proved.

We finally turn to ^i 3. Its open strata other than ^1,3 correspond to the
graphs in Figure 2 (plus a labelling of the legs by 1, 2, 3).

There are: one stratum corresponding to graph A, isomorphic to -^055 one

corresponding to graph B, isomorphic to -^1,1 x ^^0,45 three strata corresponding
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A B C

0- ^<
D E F G

0-< 0-< ^—< -<x
H I J

0^<
FIG. 2.

to graph C and isomorphic to ^^1,25 ow stratum corresponding to graph D,

isomorphic to -^0,45 three corresponding to graph E and isomorphic to ^^04?
three corresponding to graph F and isomorphic to .̂ 1,1, three corresponding to

graph G and isomorphic to ^0,4? ^d seven zero-dimensional strata, all points, three
corresponding to graph H, three to graph I, and one to graph J. Putting everything
together we conclude that

X(^l,3) = X(^l,3) + 3C(^0,5) + X(^l,l)X(^0,4) + 3X^1,2)

+ %(^o,4) + 630(^0,4) + 3x(^i,i) + 7 = 1 2 ,

as desired.

Theorem (2.1) is now completely proved for k = 1, 3. It remains to examine

the initial cases of the induction for k = 5, in positive genus. These are: g = 1 and

n < 5, g = 2 and n < 3, g = 3 and n ^ 1. The group H^^i J vanishes when

n ^ 2 for dimension reasons, and when n ^ 4 by Poincare duality; in fact, H^^^i 3)

and H^^i^) are Poincare dual to H^^^) and H^^^). Likewise, H^^"^)

and H^^^i) are Poincare dual to H\^^) and H .̂̂ !̂  ^), which are both zero.

On the other hand, Getzler has shown in [6] that H^^ 15) vanishes, while in [7]

he has proved that H^^^) and H^^^) are zero. At this point 2.9) implies

that H^^^ ̂ ) vanishes for g < 2 and all n. In genus 3 we may argue as follows.
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Looijenga [14] proves that H^^s) and H^^^i) are zero. By Poincare duality, this

is the same as saying that H^^s) and H^(^%3^) vanish, so the exact sequence of

cohomology with compact supports shows that H^.^^) and H^^^ ^) inject into

H^^s^and H
5
^^^^, respectively Lemma (2.6) then says that both H^J^)

and \f{^&^^ inject into sums ©H5^,), where the X, are products of moduli spaces

-^^ with <? < 3* Ky what has already been proved, H5^-) = 0 for all z, hence

H^.^) = H5
^^) = 0. This concludes the proof of (2.1).
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