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Calculating Derivatives of Repeated and Nonrepeated
Eigenvalues Without Explicit Use of Eigenvectors

Uwe Prells¤ and Michael I. Friswell†

University of Wales Swansea, Swansea, Wales SA2 8PP, United Kingdom

The analysis of inverse problems in parametric model updating often require the sensitivities of eigenvalues.
The calculation of these sensitivities is mathematically related to the derivatives of the eigenvalues with respect to
the model parameters. A common method to calculate these derivatives is the Nelson method, which requires the
eigenvectors. The method introduced in this paper is derived from the characteristic equation of the underlying
general eigenvalue problem and allows the derivatives of eigenvalues with respect to the model parameters to be
calculated without explicit use of the eigenvectors. The method is extended for the case of repeated eigenvalues,
which leads to restrictions on the parameterization. For repeated eigenvalues of multiplicity two, these restrictions
are formulated expicitly. Applications and limitations of the method are demonstrated by examples.

Nomenclature
A(q), B(q) = n-by-n matrices depending on q
C = set of complex numbers

r (¢ ¢ ¢ ) = r th compound matrix of the matrix (¢ ¢ ¢ )
, = index sets µ {1, . . . , m}

i, k = indices 2 {1, . . . , n}
IN = set of natural numbers
n 0 = multiplicity of repeated eigenvalue
p(q) = characteristic polynomial
q = m-dimensional vector of adjustment parameters
qr = r th component of q
IR = set of real numbers
r, s = indices 2 {1, . . . , m}
Sm = set of m-dimensional vectors with

components in S
Sm £ n = set of m-by-n matrices with elements in S
ZZ = set of integer numbers
d i k = Kronecker delta
k (q) = eigenvalue 2 {k 1(q), . . . , k n (q)}
k i (q) = i th eigenvalue
k i,r (q) = derivative of the i th eigenvalue with respect

to the r th parameter
(¢ ¢ ¢ )ad = adjoint (adjungate) of the matrix (¢ ¢ ¢ )
(¢ ¢ ¢ )( , ) = matrix resulting from selecting all rows and

columns of (¢ ¢ ¢ ) with indices in
(¢ ¢ ¢ )(i j k) = matrix resulting from elimination of row i and

column k of matrix (¢ ¢ ¢ )
(¢ ¢ ¢ ),r = derivative of (¢ ¢ ¢ ) with respect to the r th

parameter

I. Introduction

M ANY engineering optimization problems, for instance opti-
mal design or model updating, lead to a sensitivity analysis

of the eigenvalue problem. In the case of nonrepeated eigenvalues,
the derivatives of the eigenvalues with respect to a prechosen para-
meterizationcan be calculatedanalytically using Nelson’s method.1

For some parameterizationsthis method can be extended for the case
of repeated eigenvalues.2– 6

The purpose of this paper is to introduce an alternative method,
which is based on the characteristic polynomial of the underlying
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eigenvalue problem. In contrast to the existing methods, the new ap-
proach presented in this paper enables the calculation of eigenvalue
derivatives without using the eigenvectors. In Sec. II the method
is derived for the case of nonrepeated eigenvalues. The method is
extended for the case of pairs of repeated eigenvalues in Sec. III.
Limitations of the method are investigated and formulated as re-
strictions on the parameterization. Several simulated examples are
incorporated into both sections to clarify the concept.

II. Derivation of the Method for
Nonrepeated Eigenvalues

Consider the general eigenvalue problem

(B ¡ k i A)xi = 0, i = 1, . . . , n (1)

with the n £ n matrices A and B and the eigenvalues and eigenvec-
tors k i , xi , respectively, for i = 1, . . . , n. If A = A(q), B = B(q) are
given functions of the parameter vector q 2 S ½ IRm , then of course
the eigenvectors and eigenvalues will depend on q . The investiga-
tions in this paper are restricted to the case that A(q) is nonsingular
and that both matrices A(q) and B(q) can be simultaneously diag-
onalized, i.e., the matrix X (q) = [x1(q), . . . , xn (q)] is nonsingular.
These conditions cover systems with gyroscopic effects, with non-
proportional damping and with rigid-body modes. Moreover the
assumption is made that A(q), B(q), and their derivatives with re-
spect to the parameters are continuous.

The scope of this section is to derive a method to calculate the
derivatives

k i,r (q) :=
@k i (q)

@qr
, i 2 {1, . . . , n}, r = 1, . . . , m (2)

at parameter vector q0 . The derivation is based on the characteristic
polynomial

det[B(q) ¡ k (q) A(q)] = 0 (3)

which is equivalent to

p(q) := det[C(q)] = 0 (4)

where

C(q) := Z (q) ¡ k (q)In (5)

Z(q) := B(q) A ¡ 1(q) (6)

The derivative of p with respect to qr yields
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@p(q)
@qr

=
@det[C(q)]

@qr

(7)

=
nX

i,k = 1

@det[C(q)]
@[C(q)]ik

@[C(q)]ik

@qr

(8)

=
nX

i,k = 1

@det[C(q)]
@[C(q)]ik

[Z ,r (q) ¡ k ,r (q)In ]ik (9)

=
nX

i,k = 1

[C ad(q)]ki [Z ,r (q) ¡ k ,r (q)In ]i k (10)

= tr
©
C ad(q)[Z ,r (q) ¡ k ,r (q) In ]

ª
= 0 (11)

Here (¢ ¢ ¢ )ik denotes the element in row i and column k of the matrix
in brackets, and (¢ ¢ ¢ )ad is the adjoint. (In some literature the term
adjugate is used to avoid confusion with the Hermitian adjoint.)
matrix, which consists of all principle minors of C , that is,

(C ad)i k := ( ¡ 1)i + k det
¡
C (i j k)

¢
(12)

where C (i j k) is the matrix resulting from eliminating row i and
column k of C . With reference to Eq. (6),

Z ,r (q) =
£
B,r (q) ¡ B(q)A ¡ 1(q) A,r (q)

¤
A ¡ 1(q) (13)

For the transition from Eqs. (9) to (10), the general formula (see,
for instance, Ref. 7)

d det(C)

dC
= det(C)C ¡ 1> = (C ad) > (14)

has been used. Indeed, this formula holds for arbitrary square matri-
ces. To clarify this point, consider the expansion of the determinant
with respect to column k:

det(C) =
nX

j = 1

( ¡ 1) j + k (C) jk det
£
C ( j j k)

¤
(15)

Because the column is arbitrary, one can choose a different column
for each differentiation, i.e., for � xed k the choice is

@det(C)
@(C)ik

=
@

@(C)i k

(
nX

j = 1

( ¡ 1) j + k (C) j k det
£
C ( j j k)

¤
)

(16)

Because by de� nition C ( j j k) does not depend on (C )i k , one � nds

@det(C)
@(C)ik

=
nX

j = 1

( ¡ 1) j + k d i j det
£
C ( j j k)

¤
= ( ¡ 1)i + k det

£
C (i j k)

¤

(17)

where d i j is the Kronecker delta, i.e., it is one for i =k and zero
otherwise. In the case of nonrepeated eigenvalues at q0, C ad(q0) 6= 0.
Hence, Eq. (11) can be solved for k ,r (q0). Using the abbreviations

Fig. 1 Three-degree-of-freedom test model.

ar (q) : = tr
£
C ad(q)Z ,r (q)

¤
(18)

b(q) := tr[C ad(q)] =
nX

i = 1

det
£
C ( i j i) (q)

¤
(19)

Eq. (11) reads

ar (q) ¡ k ,r (q)b(q) = 0 (20)

This equation enables the calculation of the eigenvalue derivatives
if b(q0) 6=0, which leads to the following.

Proposition 1: If the eigenvalue problem C = Z ¡ k In has no
repeated eigenvalues and if Z is diagonalizable, then tr(C ad) 6= 0 for
arbitrary eigenvalue k .

Proof: Because all eigenvalues are simple and because Z is diag-
onalizable, there exists a nonsingular matrix X such that

X ¡ 1 Z X = K (21)

with the diagonal matrix K = {k i }i = 1, ...,n of nonrepeated eigenval-
ues. For an arbitrary eigenvalue k one � nds

C = Z ¡ k In = X ( K ¡ k In )X ¡ 1 (22)

and thus

C ad = X ( K ¡ k I )ad X ¡ 1 (23)

A brief calculation reveals

tr(C ad) = tr[X ( K ¡ k I )ad X ¡ 1] (24)

= tr[( K ¡ k I )ad] (25)

=
nX

i = 1

Y

k 6= i

( k k ¡ k ) (26)

Without loss of generality, one may assume k = k n , yielding

tr(C ad) = ( k 1 ¡ k n) ¢ ¢ ¢ ( k n ¡ 1 ¡ k n ) 6= 0 (27)

which completes the proof. u

Because b(q0) 6=0, Eq. (20) yields

k ,r (q0) = [1/ b(q0)]ar (q
0) (28)

Several theoretical example cases will be studied to demonstrate the
capabilities of the method using the model depicted in Fig. 1 with
the matrices

M =

2

64
m1 0 0

0 m2 0

0 0 m3

3

75 (29)

D =

2

64
d1 0 0

0 d2 0

0 0 d3

3

75 (30)



1428 PRELLS AND FRISWELL

Fig. 2 Determinant of C in case of nonrepeated (top) and two repeated eigenvalues (bottom).

K =

2

64
k1 + k4 + k6 ¡ k4 ¡ k6

¡ k4 k2 + k4 + k5 ¡ k5

¡ k6 ¡ k5 k3 + k5 + k6

3

75 (31)

Remark: To apply the outlined method to large models, the com-
putation of C ad via determinants may become inef� cient. In these
cases the singular value decomposition C = L R R > , with the di-
agonal matrix R of singular values r i , yields (see Appendix B)
C ad = R R ad L > , which is computationally more ef� cient because
the i th diagonal element l i of the diagonal matrix R ad is given by

l i =
Y

k 6= i

r k

.

Example 1
Consider the undamped case (d1 =d2 =d3 = 0) with the para-

meterization

q = (m1, m2 , m3, k1 , k2 , k3, k4 , k5, k6) > 2 IR9 (32)

For the model represented by the parameter vector

q0 = (1, 4, 1, 1, 8, 2, 2, 2, 1) > (33)

the determinant of K (q0) ¡ k M (q0) is depicted in Fig. 2 (top) for
values k 2 [1.5, 6.25]. The zeroes are

( k 1, k 2 , k 3) = (1.785, 4.539, 5.675) (34)

The procedure will now be demonstrated by calculating the deriva-
tive of k 1 with respect to the parameter q1. The matrix C(q0) is
given by

C =

2

64
2.2143 ¡ 0.5 ¡ 1

¡ 2 1.2143 ¡ 2

¡ 1 ¡ 0.5 3.2143

3

75 (35)

which gives the adjoint

C ad =

2

64
2.9032 2.1072 2.2143

8.4286 6.1175 6.4286

2.2143 1.6072 1.6889

3

75 (36)

From Eq. (13) with A = M and B = K , one � nds for the � rst pa-
rameter

Z ,1 = ¡ K M ¡ 1 M,1 M ¡ 1 =

2

64
¡ 4 0 0

2 0 0

1 0 0

3

75 (37)

and thus from Eqs. (18) and (19)

a1 = ¡ 5.1842 (38)

b = 10.7096 (39)

giving

k 1,1 = ¡ 5.1841 / 10.7096 = ¡ 0.4841 (40)

The derivatives of all eigenvalues at q0 with respect to (w.r.t.) the
nine parameters are shown in Table 1. As expected, an increase in
the mass parameters decreases the eigenvalues, and an increase in
the stiffness parameters increases the eigenvalues.
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Table 1 Derivatives of the eigenvalues ¸ using
the characteristic polynomial det(K ¡¡ ¸M)

Eigenvalue derivatives at q0
Parameter
qr @k 1 / @qr @k 2 / @qr @k 3 / @qr

r = 1 ¡ 0.4841 ¡ 2.4805 ¡ 1.0354
r = 2 ¡ 0.2550 ¡ 0.4530 ¡ 0.0420
r = 3 ¡ 0.2816 ¡ 0.2468 ¡ 4.4716
r = 4 0.2711 0.5465 0.1824
r = 5 0.1428 0.0998 0.0074
r = 6 0.1577 0.0544 0.7879
r = 7 0.0204 1.1133 0.1163
r = 8 0.0004 0.3015 0.9481
r = 9 0.0153 0.2561 1.7287

Table 2 Derivatives of the eigenvalues ¸ using the characteristic
polynomial det(B ¡¡ ¸A)

Eigenvalue derivatives at q0
Parameter
qr @k 1 / @qr @k 2 / @qr @k 3 / @qr

r = 1 0.0401 ¡ 0.2141 j 0.0164 ¡ 0.5841 j ¡ 0.0065 ¡ 0.1814 j
r = 2 ¡ 0.0025 ¡ 0.0087 j ¡ 0.0033 ¡ 0.1065 j 0.0058 ¡ 0.0954 j
r = 3 ¡ 0.0015 ¡ 0.9414 j 0.0256 ¡ 0.0546 j 0.0009 ¡ 0.1056 j
r = 4 ¡ 0.0901 ¡ 0.0158 j ¡ 0.2743 ¡ 0.0040 j ¡ 0.1357 + 0.0066 j
r = 5 ¡ 0.0036 + 0.0011 j ¡ 0.5 + 0.0022 j ¡ 0.0714 ¡ 0.0034 j
r = 6 ¡ 0.3952 + 0.0054 j ¡ 0.0258 ¡ 0.0117 j ¡ 0.0790 + 0.0003 j
r = 7 ¡ 0.0062 + 0.0379 j ¡ 0.0001 + 0.1288 j 0.0063 + 0.1014 j
r = 8 0.0005 + 0.0015 j 0.0014 + 0.0234 j ¡ 0.0018 + 0.0535 j
r = 9 0.0043 + 0.1659 j ¡ 0.0053 + 0.0122 j 0.0010 + 0.0591 j
r = 10 ¡ 0.0068 + 0.0238 j 0.0044 + 0.2621 j 0.0024 + 0.0074 j
r = 11 0.0100 + 0.1994 j ¡ 0.0102 + 0.0704 j 0.0001 + 0.0001 j
r = 12 ¡ 0.0127 + 0.3631 j 0.0115 + 0.0600 j 0.0012 + 0.0056 j

Example 2
Now consider the damped model with the parameterization

q = (m1 , m2, m3 , d1, d2, d3 , k1, k2 , k3, k4 , k5, k6) > 2 IR12 (41)

In this case the matrices A and B are de� ned by

A(q) :=
³

D(q) M(q)

M (q) 0

´
(42)

B(q) : =
³¡ K (q) 0

0 M(q)

´
(43)

At parameter vector

q0 = (1, 4, 1, 0.1, 0, 0.05, 1, 8, 2, 2, 2, 1) > (44)

the principal eigenvalues are

( k 1, k 2 , k 3) = ( ¡ 0.0288 + 2.3816 j, ¡ 0.0287 + 2.1300 j,

¡ 0.0175 + 1.3366 j ) (45)

The complex derivatives of the eigenvalues with respect to the 12
model parametersare listedinTable 2. For real-valuedmatrices A, B
Eq. (28) implies ( k ¤ ),r = ( k ,r ) ¤ , i.e., the derivative of the conjugate
eigenvalue is equal to the conjugate derivative of the eigenvalue. To
verify the derivatives, the eigenvalues would have to be calculated
for various parametervalues. For example the eigenvalues have been
calculatedfor damping parametersq4 , q6 2 [0, 0.2]. The result is de-
picted in Fig. 3 for parameter q4 (solid) and parameter q6 (dotted).
The calculated derivatives match well the slope of the tangents of
the graphs at 0.1 and at 0.05, respectively. As expected from phys-
ical reasoning, the imaginary part of the eigenvalues turn out to be
relatively insensitive w.r.t. the damping parameters (see right half
of Fig. 3), which corresponds well to the relatively low values of
the imaginary parts of the corresponding derivatives shown in rows
4 and 5 of Table 2.

In the next section the method is extended to the case of pairs of
repeated eigenvalues.

III. Extension of the Method to Repeated Eigenvalues
In case of repeated eigenvalues, higher derivatives of the charac-

teristic equation (4) have to be calculated to obtain the � rst deriva-
tives of the corresponding eigenvalue. The reason is that the curve
p( k ) has a local extrema at the repeated eigenvalue. In Fig. 2 (bot-
tom) the determinant of K (q0) ¡ k (q0)M(q0) is plotted for the un-
damped model introduced in the last section at parameter vector

q0 = (1, 4, 1, 0, 8, 0, 2, 2, 1) (46)

where two repeated eigenvalues k 2(q0) = k 3(q0) = 4 occur. In this
case the rank of the matrix C [see Eq. (5)] is 1 because there exist
two linearly independent eigenvectors associated with eigenvalue
k =4. Hence, although C 6=0, all of the principal minors of C are
zero. By de� nition C ad consists of these minors, and in the light of
Eqs. (18) and (19), ar and b are zero, too. As it will be shown later,
the second derivative of the characteristic polynomial requires the
derivative of C ad, which is not zero because it consists of all minors
of size 1 of C .

In the general case of a repeated eigenvalue k of multiplicity n 0 ,
the rank of C is n ¡ n 0 if there exist n 0 linearly independent eigen-
vectors for the repeated eigenvalue. Hence for all k < n 0 all minors
of size n ¡ k are zero. Because the kth derivative of the characteris-
tic polynomial consists of all minors of size n ¡ k, all derivatives up
to order n 0 ¡ 1 are trivially ful� lled; each term is identically zero.
To obtain an equation for the derivatives of a repeated eigenvalue of
multiplicity n 0 , the n 0 th derivative of the characteristicequation has
to be calculated. The resulting equation is of type

a k ,r1 ¢ ¢ ¢ k ,rn 0 + ar1 k ,r2 ¢ ¢ ¢ k ,rn 0 + ¢ ¢ ¢ + ar1¢ ¢ ¢ rn 0 ¡ 1
k ,rn 0 + ar1¢ ¢ ¢ rn 0 = 0

(47)

where the indices r1 , . . . , rn 0 run independently from 1 to m. This
equation is of degree n 0 in the unknown derivatives and in general
is dif� cult to solve. To clarify the concept, the extension of method
is restricted to the case n 0 =2, which is most common and covers
important applications in dynamics.

Suppose k (q0) has multiplicity 2; then C ad(q0) = 0, and hence

@2 p(q)
@qr @qs

ê
ê
ê
ê
ê q = q0

= tr
£
C ad

,s (q0)C,r (q
0)

¤
(48)

= tr
©
C ad

, s (q0)
£
Z ,r (q0) ¡ k ,r (q0) In

¤ª
= 0 (49)

To calculate the derivative of C ad with respect to parameter qs , one
� nds with reference to Eqs. (12) and (17)

@[C ad(q)]ik

@qs
= ( ¡ 1)i + k

n ¡ 1X

j,l = 1

@det
£
C (k j i) (q)

¤

@
£
C (k j i )(q)

¤
j l

@
£
C (k j i )(q)

¤
j l

@qs

(50)

= ( ¡ 1)i + k
n ¡ 1X

j,l = 1

©£
C (k j i)(q)

¤adª
l j

£
©
[Z , s(q)](k j i) ¡ k , s(q)( In)(k j i )

ª
j l

(51)

= ( ¡ 1)i + k tr
¡¡£

C (k j i)(q)
¤ad

£
©
[Z , s(q)](k j i) ¡ k , s(q)( In)(k j i )

ª¢¢
(52)

De� ning the matrices Ds(q) and E(q) element-wise by

[Ds (q)]ik : = ( ¡ 1)i + k tr
©£

C (k j i) (q)
¤ad

[Z ,s(q)](k j i)
ª

(53)

[E (q)]ik : = ( ¡ 1)i + k tr
©£

C (k j i )(q)
¤ad

( In)(k j i )
ª

(54)

Eq. (49) now reads

@2 p(q)
@qr @qs

ê
ê
ê
ê q = q0

= tr
©£

Ds(q
0) ¡ k ,s(q

0)E(q0)
¤£

Z ,r (q
0) ¡ k ,r (q

0)In

¤ª
= 0

(55)
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Fig. 3 Eigenvalues as functions of the damping parameters (——, � rst, and . . . . , second).

which leads to

a(q0) k ,s(q
0) k ,r (q

0) + k , s(q
0)br (q

0) + cs(q
0) k ,r (q

0) + gsr (q
0) = 0

(56)

with the de� nitions

a(q0) : = tr[E(q0)] =
nX

i = 1

tr
©£

C (i j i )(q0)
¤adª

(57)

br (q0) := ¡ tr
£
E(q0)Z ,r (q

0)
¤

(58)

cs(q
0) : = ¡ tr

£
Ds(q

0)
¤

(59)

gsr (q
0) : = tr

£
Ds(q

0)Z ,r (q
0)

¤
(60)

Equation (56) is equivalent to

axx > + xb > + cx > + G = 0 (61)

where the r th component of the vectors x, b, and c are k ,r , br , and cr ,
respectively, and the element in row r and column s the matrix G is
grs . Before discussing the solution of Eq. (61), it will be shown that
G is symmetric and that b =c. In the light of Eq. (48), the symmetry
of G and the equality of b and c are equivalent with the arbitrariness
of the order of differentiation r $ s. Hence it is suf� cient to prove
the following proposition.

Proposition 2: Let C =C (q) be an arbitrary square matrix pos-
sessing continuous derivatives w.r.t the m parameters q 2 IRm , and
let (¢ ¢ ¢ ),r denote the derivative w.r.t. the r th parameter, then

tr
£
(C ad),r C,s

¤
= tr

£
(C ad), sC,r

¤
(62)

Proof: Differentiating C adC = det(C)I w.r.t. the r th parameter
yields

(C ad),r C + C adC,r = det(C),r I (63)

Multiplying this equation by C ad and reordering leads to

det(C )(C ad),r = det(C),r C
ad ¡ C adC,r C

ad (64)

from which one � nds

det(C) tr
£
(C ad),r C, s

¤
= det(C),r tr

¡
C adC, s

¢
¡ tr

¡
C adC,r C

adC,s

¢

(65)

This expression is invariant w.r.t. the interchange of r and s if and
only if

det(C),r tr
¡
C adC,s

¢
= det(C),s tr

¡
C adC,r

¢
(66)

which is indeed the case because

det(C),r = tr
¡
C adC,r

¢
(67)

u

Proposition 2 is, of course, equivalent to the fact that the order of
differentiation is arbitrary if the � rst derivativesare continuous. Now
Eq. (61) reads

axx > + xb > + bx > + G = 0 (68)

with G = G > . To calculate the derivatives x from Eq. (68), one has
to show the following:

1) a 6=0.
2) Equation (68) is consistent.

The � rst point requires the following proposition.
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Proposition 3: If Z(q0) is diagonalizable and possesses repeated
eigenvalues of multiplicity n 0 = 2, then a(q0) 6=0.

The proof of Proposition 3 can be found in Appendix A. The sec-
ond point depends on the parameterizationof the matrices A(q) and
B(q). As was reported in Ref. 6, the derivatives of repeated eigen-
values do not exist for every parameterization because in general
@k (q) / @q > is not continuous at q0 (see, for instance, Ref. 5). An
example for this case is presented later in this paper. The question
of a permissible parameterization here is related to the consistency
of Eq. (11). Because a 6= 0, Eq. (68) can be rewritten as

(x + b /a)(x + b /a) > = (bb > / a ¡ G) /a| {z }
=: H

(69)

In this case the question of the existence of a solution leads to the
following.

Theorem 1: The derivative of the repeated eigenvalue of multi-
plicity 2 with respect to the m parameters q exists if H , as de� ned
in Eq. (69), has a decomposition

H = r uu > , r 2 C, u 2 Cm (70)

If Theorem 1 holds, the two solutions of Eq. (69) are

x = ¡ b /a §
p

r u (71)

In case r = 0 both derivatives are identical.
Before some examples are presented, the issue of a permissible

parameterizationis addressed. In practical applications the problem
is to select a subset from a given set of parameters such that the
derivatives of a repeated eigenvalue with respect to all parameters
of that subset exist. Each parameter subset having that property
is called permissible. The problem is to formulate a criterion of

Fig. 4 Flowchart of the algorithm to calculate the derivatives of a repeated eigenvalue of multiplicity n 0 = 2.

permissibility. For the extended Nelson method (see Ref. 6) such a
criterion has been formulated. For the characteristicequation-based
method presented in this paper, a criterion can be formulated by a
modi� cation of Theorem 1.

Theorem 2: Let H be as de� ned by Eq. (69) for an arbitrary
set of m parameters with indices : ={1, . . . , m}. Each subset

of parameters, represented by the subset ½ of indices, is
permissible if Theorem 1 holds for (H )( , ) , which denotes that
matrix resulting from selecting all columns and rows of H with
indices in .

To clarify the procedure for calculating the derivatives of a re-
peated eigenvalue of multiplicityn 0 =2, a � owchart of the algorithm
is shown schematically in Fig. 4. For the complete set of all m pa-
rameters, the matrix H is calculated, and its rank is checked using
the singular value decomposition. If the rank of H is larger than
one, all permissible parameters subsets are evaluated by checking
the rank of the matrices resulting from choosing m 0 < m columns
and rows of H . Starting with all parameter subsets of cardinality
m 0 = 2, one has to calculate the ranks of m(m ¡ 1) /2 matrices of
size 2 by 2.

Example 3
The undamped model introduced in the last section with the pa-

rameterization

q = (m1 , m2 , m3, k1 , k2, k3, k4 , k5, k6) > 2 IR9 (72)

has eigenvalues k 1 =1, k 2(q0) = k 3(q0) =4 at parameter vector

q0 = (1, 4, 1, 0, 8, 0, 2, 2, 1) (73)
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The procedure to calculate the derivativesof the repeatedeigenvalue
with respect to the m =9 parameters leads to a = ¡ 24 and

b = ( ¡ 32, ¡ 8, ¡ 32, 8, 2, 8, 14, 14, 24) > (74)

G = (1/ 1296)

2

6666666666666664

¡ 57,600 ¡ 13,536 ¡ 54,144 14,400 3384 13,536 24,984 23,256 42,336

¡ 13,536 ¡ 3600 ¡ 13,536 3384 900 3384 6084 6084 9936

¡ 54,144 ¡ 13,536 ¡ 57,600 13,536 3384 14,400 23,256 24,984 42,336

14,400 3384 13,536 ¡ 3600 ¡ 846 ¡ 3384 ¡ 6246 ¡ 5814 ¡ 10,584

3384 900 3384 ¡ 846 ¡ 225 ¡ 846 ¡ 1521 ¡ 1521 ¡ 2484

13,536 3384 14,400 ¡ 3384 ¡ 846 ¡ 3600 ¡ 5814 ¡ 6246 ¡ 10,584

24,984 6084 23,256 ¡ 6246 ¡ 1521 ¡ 5814 ¡ 11,025 ¡ 10,161 ¡ 18,036

23,256 6084 24,984 ¡ 5814 ¡ 1521 ¡ 6246 ¡ 10,161 ¡ 11,025 ¡ 18,036

42,336 9936 42,336 ¡ 10,584 ¡ 2484 ¡ 10,584 ¡ 18,036 ¡ 18,036 ¡ 32,400

3

7777777777777775

(75)

which enables the computation of H de� ned by the right-hand
side of Eq. (69). From the singular values r 1 =3.5, r 2 =2.076,
r i ·10 ¡ 16 , i = 3, . . . , 9, of H , one � nds rank[H ] =2, which
means, with reference to Theorem 1, that the derivatives to all
nine parameters do not exist. To � nd out all permissible sub-
sets ½ : ={1, . . . , 9}, Theorem 2 has been applied. For all
m(m ¡ 1) /2 = 36 subsets of cardinality 2, the singular values of
(H )( , ) have been calculated to evaluate their ranks. For instance,
the subset = {1, 4} leads to

(H )( , ) =
1

9

³
16 ¡ 4

¡ 4 1

´
= (4, ¡ 1) > (4, ¡ 1) /9 (76)

which obviously has rank one. Selecting elements 1 and 4 of vector
b, Eq. (69) corresponds to

£
x ¡ 1

24
( ¡ 32, 8) > ¤£

x ¡ 1
24

( ¡ 32, 8) > ¤ >
= (4, ¡ 1) > (4, ¡ 1) /9 (77)

with the two solutions [see Eq. (71)]

x > 2 {( ¡ 8, 2) /3, (0, 0)} (78)

The evaluation of ranks of all ( 9
3 ) =9!/ (3!6!) = 84 matrices(H )( , )

corresponding to all subsets with cardinality 3 reveals that there
exists only one permissible subset ={2, 5, 9}. Moreover, none of
the 124 subsets with cardinality 4 is permissible.

All of the results are summarized in Table 3. There are � ve sets
of two parameters and one set of three parameters that are permissi-
ble. The corresponding derivatives are shown in columns 3 and 4 of
Table 3. The results of the last two rows correspond to those found
by Prells and Friswell.6 They reported that the number of permissi-
ble parameters can only exceed the multiplicity n 0 of the repeated
eigenvalue if the corresponding matrix derivatives are linearly de-
pendent. The result shown in the last row of Table 3 corresponds
to the derivative with respect parameters associated with m2, k2,
and k6 . From the de� nition of the matrices [see Eqs. (29) and (31)],
one � nds that the matrix derivative associated with m2 is indeed the
same as that associated with k2 . The derivatives w.r.t. each single
parameter are listed in Table 4. To verify these results, the corre-
sponding graphs of k 2(qr ) (solid) and of k 3(qr ) (dotted) are depicted
in Fig. 5. Although the derivative w.r.t. each single parameter (see

Table 3 Permissible subsets of cardinality >1 of the
undamped model and the corresponding derivatives

of the repeated eigenvalues

Set number k 2, k 3,

1 {1, 4} (0, 0) ( ¡ 8/3, 2/3)
2 {2, 5} (0, 0) ( ¡ 2/3, 1/6)
3 {2, 9} (0, 2) ( ¡ 2/3, 0)
4 {3, 6} (0, 0) ( ¡ 8/3, 2/3)
5 {5, 9} (0, 2) (1/6, 0)
6 {2, 5, 9} (0, 0, 2) ( ¡ 2/3, 1/6, 0)

Table 4) exists, the derivatives w.r.t. more than one parameter do
not exist in general because they are not continuous at q0 . For ex-
ample, the surfaces k 2(q3, q9) and k 3(q3, q9) are plotted in Fig. 6
over the square (q3, q9) 2 [0.95, 1.05]2 . To clarify the situation, the

same two surfaces are shown in Fig. 7 with a different viewing
angle. At the point (q3 , q9) = (1, 1) the surfaces meet at a corner,
which corresponds to the only common point k 2 = k 3 = 4. Hence
the derivatives are not continuous at that point. The situation is dif-
ferent for a permissible set of parameters as shown, for example,
in Fig. 8 for parameters (q3, q6) 2 [0.95, 1.05] £ [ ¡ 0.05, 0.05]. The
surfaces k 2(q3 , q6) and k 3(q3 , q6) represent two intersecting planes.
At the point (q3, q6) = (1, 0) the derivative is continuous.

Example 4
Keeping parameters (q1 , q3 , q4 , q6, q7, q9) = (1, 1, 0, 0, 2, 1)

constant and de� ning two new parameters by

q1 Ã ¡ 1.41q2 + 0.35q5 + 0.5q9 (79)

q2 Ã ¡ 0.37q2 ¡ 1.49q5 (80)

gives an example with equal derivatives at q0 = ¡ (2.34, 13.4) > .
With reference to Eq. (68), one � nds a = ¡ 24, b = (24, 0) > , and

G = ¡
³
24 0

0 0

´

Hence H =0, and the derivatives x = ¡ (1, 0) > are the same for both
repeated eigenvalues.

Example 5
Consider the damped model at parameter values

q0 = (1, 4, 1, 0.1, 0.4, 0.1, 0, 8, 0, 2, 2, 1) > (81)

which has two repeated complex eigenvalues

( k 1, k 2 , k 3) = ( ¡ 0.05 + 0.9987 j,

¡ 0.05 + 1.9994 j, ¡ 0.05 + 1.9994 j ) (82)

With reference to Eqs. (57) and (58), one � nds a =95.94 and b1 =
b3 =1.599 + 31.95 j , b2 = ¡ 0.3997 + 7.9875 j , b4 =b5 = b6 =
b7 =b8 = b9 = 15.99 ¡ 0.3999 j , b10 =b11 =51.9675 ¡ 1.2996 j ,
and b12 = 47.97 ¡ 1.1996 j . The rank of the matrix H is 4. The
evaluation of permissible parameter subsets leads to seven subsets
of cardinality 2:

{1, 4}, {1, 7}, {2, 5}, {2, 8}, {3, 6}, {3, 9}, {5, 8} (83)

and to three subsets of cardinality 3:

Table 4 Permissible singleton sets of the undamped model and the
corresponding derivatives of the repeated eigenvalues

r

Eigenvalue 1 2 3 4 5 6 7 8 9

k 2,r 0 0 0 0 0 0 0 0 2
k 2,r ¡ 8/3 ¡ 2/3 ¡ 8/3 2/3 1/6 2/3 7/6 7/6 0
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Fig. 5 Graphs ¸2(qr ) (——) and ¸3(qr ) ( ¢ ¢ ¢ ¢ ) for the undamped model with repeated eigenvalues.

Fig. 6 Surfaces ¸2(q3; q9) and ¸3(q3; q9 ) with noncontinuous derivatives at (q3; q9) = (1; 1).
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Fig. 7 Different viewing angle of surfaces ¸2(q3; q9 ) and ¸3(q3; q9 ) with noncontinuous derivatives at (q3; q9) = (1; 1).

Fig. 8 Surfaces ¸2(q3; q6) and ¸3(q3; q6) with continuous derivatives at (q3; q6) = (1; 0).
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{1, 4, 7}, {2, 5, 8}, {3, 6, 9} (84)

The derivatives of k 2 and k 3 with respect to the parameters of each
subset are consistent with the derivatives with respect to each single
parameter. In detail one � nds

k 3,r (q
0) = 0, r = 1, . . . , 12 (85)

k 2,1(q
0) = k 2,3(q

0) = 0.0333 ¡ 0.6660 j (86)

k 2,2 = 0.0083 ¡ 0.1665 j (87)

k 2,r (q0) = ¡ 0.3333 + 0.0083 j, r = 4, . . . , 9 (88)

k 2,10(q
0) = k 2,11 = ¡ 1.0833 + 0.0271 j (89)

k 2,12(q
0) = ¡ 1 + 0.025 j (90)

The derivatives w.r.t. parameters q10 , q11, q12 do not occur in ei-
ther subset. Hence for these parameters only the singleton sets are
permissible. The subsets of cardinality 3 are indeed permissible be-
cause the matrix derivatives associated with parameters q1, q2 , and
q3 are equal to those associated with parameters q4 , q5, and q6,
respectively.

IV. Conclusions
A method to calculate the derivatives of repeatedand nonrepeated

eigenvalues has been introduced, which is basedon the characteristic
polynominal of the underlying eigenvalue problem. In contrast to
existing methods, this method does not require the eigenvectors.
The case of repeated eigenvalues of arbitrary multiplicity has been
discussed. The derivatives of repeated eigenvalues do not exist for
any parameterization.The condition for permissible parameterswas
formulated for pairs of repeated eigenvalues. The application of the
method has been demonstrated by several simulation examples.

Appendix A: Proof of Proposition 3
With reference to Eq. (54),

tr(E) =
nX

i = 1

tr
©£

C (i j i)
¤adª

(A1)

=
nX

i = 1

tr
£¡

H >
i C Hi

¢ad¤
(A2)

with the selecting matrix Hi := [e1, . . . , ei ¡ 1 , ei + 1, . . . , en] 2
INn £ (n ¡ 1) , which results by elimination of the i th column of
the identity matrix In . H >

i Hi = In ¡ 1 for arbitrary i 2 {1, . . . , n}.
To proceed, one needs to introduce the r th compound matrix

r (A) 2 CN £ M of an arbitrary n £ m matrix A, where N := ( n
r ) and

M : = ( m
r ), and in general

³
n

r

´
:=

n!

r!(n ¡ r)!
, n ¸ r 2 IN (A3)

The compound matrix r ( A) consistsof allminors of sizer of A (see,
for instance, Horn and Johnson,8 p. 19 ff.), where the N index sets
a i ½ {1, . . . , n}, i = 1, . . . , N and the M index sets b k ½ {1, . . . , m},
k = 1, . . . , M are of cardinality r and are usually ordered lexico-
graphically. Thus, the element in row i and column k of r ( A) is
det( A a i b k ), i.e., the determinant of the r £ r matrix resulting from
selecting all rows with indices in a i and all columns with indices in
b k of A. Some properties of compound matrices are

r (AB) = r ( A) r (B), A, B arbitrary (A4)

r ( A ¡ 1) = r (A) ¡ 1 , A nonsingular (A5)

r (A > ) = r (A) > (A6)

(A)ad = n ¡ 1( A) > > , A 2 Cn £ n (A7)

where in the latter equation

:=

2

6664

0 0 ¢ ¢ ¢ 0 1

0 0 ¢ ¢ ¢ ¡ 1 0
¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢

( ¡ 1)n ¡ 1 0 ¢ ¢ ¢ 0 0

3

7775
2 ZZn £ n (A8)

Note, that > = In . The argument of the trace in Eq. (92) now can
be written as

¡
H >

i C Hi

¢ad
= n ¡ 2

¡
H >

i C Hi

¢ > > (A9)

= n ¡ 2(Hi )
>

n ¡ 2(C ) >
n ¡ 2(Hi )

> (A10)

Because Z is diagonalizable, one may write C = X X X ¡ 1 , where
X : = K ¡ k In , which leads to

n ¡ 2(C) = n ¡ 2(X ) n ¡ 2( X ) n ¡ 2(X) ¡ 1 (A11)

Without loss of generality, one may assume that k n ¡ 1 = k n = k
yielding

n ¡ 2( X ) = q e1e
>
1 2 CN £ N (A12)

where

N : =
n(n ¡ 1)

2
, q :=

n ¡ 2Y

i =1

( k i ¡ k ) 6=0

The trace of E now becomes

tr(E ) = q
nX

i = 1

tr
£

n ¡ 2(Hi )
>

n ¡ 2(X ) ¡ > e1e
>
1 n ¡ 2(X ) >

£ n ¡ 2(Hi )
> ¤

(A13)

= q
nX

i = 1

e >
1 n ¡ 2(X) >

n ¡ 2(Hi ) n ¡ 2(Hi )
>

n ¡ 2(X ) ¡ > e1

(A14)

= q y >
nX

i = 1

n ¡ 2[N (i )]z (A15)

where z := n ¡ 2(X) ¡ > e1 and y : = n ¡ 2(X )e1 , which implies
z > y =1. The matrix N (i ) := Hi H >

i is diagonal and consists of units
in all diagonal places except a zero at position (i, i ). The (n ¡ 2)th
compound matrix of N (i ) is diagonal, too. Its kth diagonal com-
ponent is the determinant of N (i )( a k , a k ) , where a k is the kth sub-
set of cardinality n ¡ 2 of the index set {1, . . . , n}. De� ning for
k = 1, . . . , n(n ¡ 1) / 2 = N and for i =1, . . . , n

( )ki : =
«

0, i 2 a k

1, else (A16)

one � nds

n ¡ 2[N (i )] = diag( ei ) (A17)

Because there are n ¡ (n ¡ 2) =2 units in each row and ( n
n ¡ 2 ) ¡

( n ¡ 1
n ¡ 3 ) = ( n ¡ 1

n ¡ 2 ) =n ¡ 1 units in each column of , a simple calcu-
lation reveals

tr(E) = q y >
nX

i = 1

[diag( ei )]z (A18)

= q y > (2IN )z = 2q (A19)

which completes the proof. u

Appendix B: Computation of the Adjoint
If the size of C is large, the direct computation of its adjoint via

the determinants may become time consuming. A more ef� cient
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way is to calculate the adjoint via the singular value decomposition
of C . Using properties (A4) and (A7), one � nds

C ad = (L R R > )ad (B20)

= n ¡ 1(R R L > ) > (B21)

= n ¡ 1(R) >
n ¡ 1( R ) >

n ¡ 1(L) > > (B22)

= (Rad) > R ad Lad (B23)

= R R ad L > (B24)

The transition to the last equation is possible because, in general,
for an unitary matrix U [see Eq. (14)] U ad =U > .
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