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S U M M A R Y
Earthquakes potentially serve as abundant and cost-effective gauges of tectonic stress provided
that reliable means exist of extracting robust stress parameters. Several algorithms have been
developed for this task, each of which typically provides information on the orientations of the
three principal stresses and a single stress magnitude parameter. A convenient way of displaying
tectonic stress results is to map the azimuth of maximum horizontal compressive stress, which
is usually approximated using the azimuth of the larger subhorizontal principal stress. This
approximation introduces avoidable errors that depend not only on the principal stress axes’
plunges but also on the value of the stress magnitude parameter. Here we outline a method of
computing the true direction of maximum horizontal compressive stress (SH) and show that
this computation can be performed using only the four stress parameters obtained in routine
focal mechanism stress estimation. Using theoretical examples and new stress inversion results
obtained with focal mechanism data from the central Grı́msey lineament, northern Iceland, we
show that the SH axis may differ by tens of degrees from its commonly adopted proxy. In order
to most appropriately compare tectonic stress estimates with other geophysical parameters,
such as seismic fast directions or geodetically measured strain rate tensors, or to investigate
spatiotemporal variations in stress, we recommend that full use be made of the routinely
estimated stress parameters and that a formal axis of maximum horizontal compression be
calculated.

Key words: fault mechanics, focal mechanism, Grı́msey lineament, horizontal stress, Iceland,
stress tensor.

1 I N T RO D U C T I O N

The rapidly increasing geographic scope and density of continuous
seismic networks provides a rich data set for local tectonic stress esti-
mates (the ‘state of tectonic stress’; see Hardebeck & Michael 2004;
Townend & Zoback 2006; Townend 2006, for recent reviews). The
state of tectonic stress at any point in the Earth is fully defined by six
independent parameters, which are typically represented as either
the six components sij of a 3 × 3 symmetric matrix S or three angles
specifying the orientation of the stress tensor’s eigenvectors with
respect to geographic coordinates and three corresponding eigen-
values. Whereas borehole measurements enable all six stress tensor
parameters to be inferred in ideal circumstances (e.g. Zoback et al.
2003), generally only a four-parameter subset of these parameters
can be determined in typical geological and seismological contexts.
Several algorithms have been developed for this task (e.g. Angelier
1979; Gephart & Forsyth 1984; Lund & Slunga 1999; Abers &
Gephart 2001; Arnold & Townend 2007), each of which typi-
cally provides information on the orientations of the three principal
stresses and a single stress magnitude parameter.

Displaying either full or partial representations of the tectonic
stress tensor in a readily interpretable manner is complicated. It is
common to use stereographic representations to show individual
results and maps to display the axis of maximum horizontal com-
pressive stress, hereafter referred to as SH (e.g. Balfour et al. 2005).
Defining a suitable scalar representation of the stress field has also
proven useful in recent studies of temporal changes in stress as-
sociated with nearby volcanic eruptions or large earthquakes (e.g.
Roman et al. 2004; Bohnhoff et al. 2006, and references therein).
Moreover, it is becoming increasingly feasible to interpret seismo-
logical estimates of tectonic stress directions in conjunction with
dynamic modelling results (Flesch et al. 2000; Townend & Zoback
2004), fault slip inversions (Becker et al. 2005), crustal anisotropy at
borehole and regional scales (Balfour et al. 2005; Boness & Zoback
2006a,b), or geodetic estimates of horizontal principal strain rates
(Townend & Zoback 2006).

An intuitive method of identifying the direction of maximum
horizontal stress is to simply adopt the trend of the larger subhor-
izontal stress. This approach has been adopted in several of the
studies referred to above, but is appropriate only when one of the

1328 C© 2007 The Authors

Journal compilation C© 2007 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/170/3/1328/2042392 by U

.S. D
epartm

ent of Justice user on 17 August 2022



Calculating horizontal stress orientations 1329

three principal stresses is strictly vertical (Lund 2000). For a per-
fectly Andersonian state of stress with one vertical and two unequal
horizontal stresses (Anderson 1951), SH is parallel to the axis of
maximum principal stress, unless that axis is vertical, in which case
it is parallel to the axis of intermediate stress. The Andersonian
model of stress, which stems from the inference that the Earth’s ap-
proximately flat surface supports no shear stresses, accounts rather
well for typical stress geometries observed in a variety of tectonic
situations (e.g. Townend 2006, and references therein). However,
stress estimation from seismological data, in particular, invariably
yields results in which none of the principal stress axes is exactly
vertical.

In this paper, we show how to estimate the ‘true’ SH orientation (in
a mathematical sense) from routine stress inversion results or an ar-
bitrary stress tensor. We do not address the question here of whether
departures from the idealized geometries represent observational
uncertainties or real ambient conditions, which is the subject of on-
going research. When none of the three principal stresses is strictly
vertical, SH does not simply coincide with the commonly adopted
horizontal projection of the larger subhorizontal stress, which we
refer to below as the maximum horizontal stress proxy, SP. Nev-
ertheless, a true SH direction can be straightforwardly computed
irrespective of the principal stresses’ orientations and with only
partial knowledge of the stress tensor. We show the importance of
correctly calculating SH, especially when spatiotemporal changes
in stress are under investigation, by investigating the variation of
SH with respect to the four seismologically estimable stress param-
eters. We close by briefly illustrating how SH and SP compare in
a case study using data from the Grı́msey lineament in northern
Iceland.

2 C A L C U L AT I N G T H E D I R E C T I O N
O F M A X I M U M H O R I Z O N TA L S T R E S S

The analysis below is based on the observation that the direction
in which horizontal compressive stress is greatest corresponds to
the direction of the normal of the vertical plane experiencing max-
imum normal stress (Lund 2000). For completeness, we first derive
the orientation and magnitude of the maximum horizontal stress
when all six stress tensor parameters are known (Section 2.1). We
then show how the orientation, but not the magnitude, of the max-
imum horizontal stress can be found from the four stress tensor
components obtained in routine inversion of focal mechanism data
(Section 2.2).

Two coordinate systems are of importance here: a principal stress
coordinate system, S, with unit vectors {ŝ1, ŝ2, ŝ3} aligned along
the eigenvectors whose eigenvalues are S1 ≥ S2 ≥ S3, respectively;
and a geographic coordinate system, G, with unit vectors {ĝ1, ĝ2, ĝ3}
aligned with the north, east and down directions, respectively.

In this paper, matrices are represented in sans serif upper-case
letters (e.g. S), vectors in bold lower-case letters (e.g. n), and vector
magnitudes in upper-case italics (e.g. Sn = ||sn||; Table 1). The
components of matrices and vectors are represented, for example,
as sij and ni, respectively, and a caret and subscript (e.g. ŝi ) are used
together to denote the ith unit basis vector of a coordinate system
(i = 1, 2, 3). Vector orientations are expressed in terms of trend
and plunge angles as trend/plunge (e.g. 135/25). For convenience,
we use upper-case bold symbols for the two most frequently used
parameters, namely the vectors of maximum horizontal stress SH

and its proxy SP.

Table 1. Mathematical symbols. Indices i and j each span the range 1, 2, 3,
and a caret (·̂) denotes a unit vector.

Symbol Explanation

α Arbitrary trend angle measured clockwise from north
αH Trend of the maximum horizontal compressive stress
αP Trend of the maximum horizontal stress proxy
AXY Rotation matrix between coordinate systems Y and X

D Deviatoric stress tensor (with respect to S3I)
dn Deviatoric normal stress vector
Dn Magnitude of the deviatoric normal stress vector
ĝi Axes of the north-east–down coordinate system G

I Identity matrix
n̂X Unit normal vector represented in coordinate system X

ni Components of the vector n
R Stress ratio equal to (S1 − S2)/(S1 − S3)
S Stress tensor
SH Maximum horizontal compressive stress vector
ŝi Axes of the principal stress coordinate system S

sij Components of matrix S (i.e. the jth component of ŝi )
sn Normal stress vector
Sn Magnitude of the normal stress vector
SP Maximum horizontal stress proxy vector
Si Magnitudes of the principal stresses (S1 ≥ S2 ≥ S3)
X Arbitrary coordinate system

2.1 Calculating the direction of maximum horizontal
stress using the complete stress tensor

We define a vertical plane in the geographic coordinate system, G,
using its unit normal vector, n̂T

G
= (nN , nE , nD) = (cos α, sin α, 0),

where α is the normal’s trend angle measured clockwise from north
and the plane’s strike is α + π /2. We represent n̂ with respect to the
principal stress coordinate system S using the transformation matrix

ASG =




ŝ1 · ĝ1 ŝ1 · ĝ2 ŝ1 · ĝ3

ŝ2 · ĝ1 ŝ2 · ĝ2 ŝ2 · ĝ3

ŝ3 · ĝ1 ŝ3 · ĝ2 ŝ3 · ĝ3


 (1)

(i.e. ai j = ŝi · ĝ j ). Here ŝi = (si N , si E , si D) are unit vectors in the
principal stress directions with respect to the geographic coordinate
system (G), and ĝ1 = (1, 0, 0), ĝ2 = (0, 1, 0) and ĝ3 = (0, 0, 1) are
the basis vectors in the geographic coordinate system. The normal
vector expressed with respect to the principal stress system is then

n̂S = ASGn̂G =




s1N nN + s1E nE

s2N nN + s2E nE

s3N nN + s3E nE


 , (2)

where, for example, s1N is the north component of the ŝ1 unit vector.
In the principal coordinate system, the stress tensor is diagonal

SS =




S1 0 0

0 S2 0

0 0 S3


 (3)

and the normal stress acting on the vertical plane of interest is

sn = (
n̂T

S
SSn̂S

)
n̂S, (4a)

= [
S1(s1N nN + s1E nE )2 + S2(s2N nN + s2E nE )2

+ S3(s3N nN + s3E nE )2
]
n̂S (4b)

= Sn n̂S, (4c)
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1330 B. Lund and J. Townend

where Sn = ||sn||. This normal stress corresponds to the horizontal
stress in the direction of n̂.

The normal stress expressed by eq. (4b) is quadratic in the plane-
normal coordinates, irrespective of the plane’s orientation. Eq. (4b)
does not describe an ellipse in the horizontal plane (corresponding,
for instance, to a horizontal section through the stress ellipsoid) but
rather a more complicated figure whose peanut-like shape reflects
the dependency on squared sines and cosines. In fact, the normal
stress magnitudes of arbitrarily oriented planes define a 3-D peanut
shape, illustrated in Fig. 1. We refer to this surface as the ‘normal
stress surface’ and to its profile in the horizontal plane as the ‘nor-
mal stress section’. The normal stress surface has previously been
referred to as the ‘Reynolds glyph’ in fluid mechanical and geome-
chanical work (Moore et al. 1995, cited by Hashash et al. 2003).
The normal stress surface is a more convenient representation of
the state of stress in this context than the more commonly encoun-
tered stress ellipsoid, as the distance from any point on the surface
to the origin is equal to the magnitude of the normal stress acting
in that direction. This is not true of the stress ellipsoid. In Fig. 1,
we illustrate how two stress states, which differ only in terms of
their stress ratios, R, yield very different normal stress surfaces, and
corresponding normal stress sections.

The different normal stress sections illustrated in Fig. 1 yield dif-
ferent SH trends, in spite of the principal stress axes’ directions being
the same in both cases. We can find the direction of the maximum
horizontal stress analytically by differentiating eq. (4b) with respect
to α.

d Sn

dα
= [

S1

(
s2

1E − s2
1N

) + S2

(
s2

2E − s2
2N

) + S3

(
s2

3E − s2
3N

)]
sin 2α

+ 2 [S1s1N s1E + S2s2N s2E + S3s3N s3E ] cos 2α. (5)

In general (cf. Table 2 below), Sn has one maximum and one mini-
mum in the interval 0 ≤ α ≤ π and setting the derivative in eq. (5)
to zero, we find these stationary points:

tan 2α = 2(S1s1N s1E + S2s2N s2E + S3s3N s3E )

S1

(
s2

1N − s2
1E

) + S2

(
s2

2N − s2
2E

) + S3

(
s2

3N − s2
3E

) . (6)

Using the second derivative of Sn with respect to α we can determine
whether Sn(α) yields a maximum or a minimum value, and identify
the SH trend (αH) accordingly:

αH =
{

α if Sn(α) is a maximum

α + π/2 if Sn(α) is a minimum.
(7)

Fig. 1 illustrates the directions and magnitudes of horizontal nor-
mal stress sn for the two stress states. For comparison, we also show
the direction of the projection of ŝ1 on the horizontal plane, which in
this reverse state of stress corresponds to the maximum horizontal
stress proxy SP. The direction of SH calculated using eq. (6) agrees
as expected with the direction of maximum normal stress in the hor-
izontal slices whereas SH and SP become increasingly discrepant as
R decreases.

Eq. (6) appears to indicate that we need to know the magnitudes
of the stresses to infer the direction of the maximum horizontal

Table 2. Summary of the conditions under which the denominator of eq. (11) equals zero. αH and α1 denote
the trends of the axis of maximum horizontal stress, SH, and the principal axis of maximum compressive
stress, ŝ1, respectively.

Condition Interpretation

s 1N = ± s 1E and R = 1 SH undefined if ŝ1 vertical, else αH = α1 (45◦ or 135◦)
s 1N = ± s 1E and s 2N = ± s 2E SH undefined if R=0, else αH = α1 trend (45◦ or 135◦)
(s2

1N − s2
1E ) + (1 − R)(s2

2N − s2
2E ) = 0 SH undefined if R=0, else αH = α1 trend (45◦ or 135◦)

stress. This is not the case, however, as will be demonstrated in the
following section.

2.2 Calculating the direction of maximum horizontal
stress from focal mechanism stress inversion results

As noted in the introduction, routine stress tensor estimation using
earthquake focal mechanism observations does not, in general, re-
trieve all six independent components of the complete stress tensor.
Rather, only the directions of the three principal stresses and a rela-
tive measure of the magnitude of the intermediate principal stress,
for example, R = (S1 − S2)/(S1 − S3) (after Etchecopar et al.
1981; Gephart & Forsyth 1984), can be estimated. Nevertheless,
the four parameters estimated from focal mechanism inversions are
sufficient to estimate the direction of the maximum horizontal stress
axis, SH, but not its magnitude.

In order to estimate the direction of SH, we follow the procedure
described by Lund (2000) and decompose the stress tensor in the
principal stress coordinate system into deviatoric (D) and isotropic
(S3 I) parts.

SS = (S1 − S3)




1 0 0

0 1 − R 0

0 0 0


 + S3I = D + S3I. (8)

As above, we transform the unit normal of a vertical plane from geo-
graphic coordinates (n̂G) into the principal stress coordinate system,
yielding n̂S. Since we are only interested in the orientation of SH

we ignore the isotropic part of the stress tensor when calculating
the component of normal stress on the vertical plane. By definition,
the isotropic part of S has no directionality and, therefore, does not
contribute to the orientation of SH. The deviatoric component of
normal stress on the vertical plane is

dn = (
n̂T

S
Dn̂S

)
n̂S (9a)

= (S1 − S3)
[
(s1N nN + s1E nE )2 + (1 − R)(s2N nN + s2E nE )2

]
n̂S

(9b)

= Dn n̂S. (9c)

This expression for dn is also the deviatoric horizontal stress in
direction α.

Once again, we find the direction of SH by differentiating the
magnitude of dn with respect to α.

d Dn

dα
= (S1 − S3)

[(
s2

1E − s2
1N

) + (1 − R)
(
s2

2E − s2
2N

)]
sin 2α

+ 2(S1 − S3) [s1N s1E + (1 − R)s2N s2E ] cos 2α. (10)

Setting the derivative to zero, we find the stationary points at which
dn has its maximum and minimum magnitudes:

tan 2α = 2(s1N s1E + (1 − R)s2N s2E )(
s2

1N − s2
1E

) + (1 − R)
(
s2

2N − s2
2E

) . (11)
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Calculating horizontal stress orientations 1331

north

east

Figure 1. Normal stress surfaces (upper plots) showing the variation in the magnitude of the normal stress acting on surfaces of all orientations. The radius of the
normal stress surface in a direction n̂ is equal to the magnitude of the normal stress acting in that direction, Sn = ||sn ||. The black lines outline the horizontal plane.
Horizontal sections (lower plots) through the surfaces show the magnitude of the horizontal (normal) stress: the red and blue symbols mark the trend of ŝ1 and
SH, respectively. The two cases illustrated here have the same principal axis orientations, but different values of the stress ratio R = (S1 − S2)/(S1 − S3) (after
Etchecopar et al. 1981; Gephart & Forsyth 1984). The principal stress axes (trend/plunge, all angles in degrees) are ŝ1 = 10/10, ŝ2 = 103/17, ŝ3 = 251/70
and R = 0.1 and R = 0.8 for the left- and right-hand cases, respectively.

The stationary points do not depend on the absolute stress magni-
tudes, and the minimum principal stress is involved only via R. The
direction of SH, therefore, depends solely on the horizontal compo-
nents of ŝ1 and ŝ2 and R, as seen from eq. (11). As above, we use
the second derivative of Dn with respect to α to determine whether
α yields a maximum or a minimum magnitude, and identify the SH

direction accordingly (cf. eq. 7). This step requires us to know only
the sign of (S1 − S3), which is positive in all cases of interest: it
cannot be negative, by definition, and if (S1 − S3) is zero the stress
ellipsoid is a sphere, R is undefined, and so is SH. Note that since we
cannot determine the magnitude of the maximum horizontal stress
from the deviatoric stress tensor alone, SH is in this context a unit
vector (although we omit the caret for simplicity, and represent it
as SH rather than ŜH). Note also that eq. (11) is singular for some
stress states, which therefore require special attention (Table 2).

3 C O N T RO L S O N T H E A X I S O F
M A X I M U M H O R I Z O N TA L
C O M P R E S S I V E S T R E S S

In this section, we illustrate the importance of computing a true
SH direction, as opposed to using a proxy (SP) such as the trend
of whichever of ŝ1 and ŝ2 is more horizontal. We start with some
idealised examples, in which we consider various permutations of
a representative principal stress axis geometry. The reference stress
geometry we choose—with axes oriented (trend/plunge, in degrees)
in the directions 010/10, 103/17 and 251/70—is typical of stress
inversion results in that the principal stress directions are slightly
off horizontal and vertical. The section ends with examples of focal
mechanism stress inversions and comparisons of SH and SP using
earthquake data from northern Iceland.

3.1 Effects of variations in the stress ratio parameter

The stress ratio R describes the magnitude of the intermediate prin-
cipal stress S2 with respect to the maximum and minimum principal
stress magnitudes, S1 and S3, as defined in Section 2.2. The value
of R, therefore, affects the shape of the stress ellipsoid and the nor-
mal stress surface and section, as illustrated by Fig. 1. As R varies
from zero to one, S2 varies from S1 to S3, which causes the stress
state to change from one axially symmetric state (corresponding to
an oblate stress ellipsoid) via a fully 3-D state to a second axially
symmetric state (with a prolate stress ellipsoid; Simpson 1997). In
Fig. 2, we show how the direction of SH varies with the value of R for
normal, strike-slip and reverse states of stress. Fig. 2 shows clearly
that for normal and reverse stress states, SH can vary greatly with
even small variations in R. This happens when the magnitude of
the intermediate stress approaches S1 and the normal stress surface
becomes more spherical and less peanut-like.

3.2 Effects of variations in the stress axes’ orientations

The deviations of the principal stress axes from horizontal and ver-
tical directly affect the orientation of SH. Two stress states with
the same principal stress magnitudes but differing in having sub-
horizontal and subvertical ŝ1 axes will obviously have different SH

orientations. This is because as ŝ1 becomes more vertical, ŝ2 pre-
dominates in the horizontal plane. Fig. 3 illustrates how the SH trend
varies as two of the principal stress axes are rotated about the third,
for three related initial stress configurations. We include the effect
of variations in R to illustrate the complexity of the relationship
between the four seismologically measurable parameters and the
SH axis. For comparison, we also show the trend of the maximum
horizontal stress proxy SP.
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Figure 2. Variation of the SH trend as a function of the stress ratio R for three
different stress axis geometries. The principal stress axes (see Fig. 1 caption)
are as follows: upper (normal)—ŝ1 = 251/70, ŝ2 = 10/10, ŝ3 = 103/17;
middle (strike-slip)—ŝ1 = 10/10, ŝ2 = 251/70, ŝ3 = 283/−17; and lower
(reverse)—ŝ1 = 10/10, ŝ2 = 103/17, ŝ3 = 251/70.

We see from Fig. 3 that variations in the directions of the principal
stress axis do indeed affect SH markedly, and that the effect is rather
complicated. For variations in the principal stress axes of up to 90◦,
we observe variations in SH of more than 150◦. As Fig. 2 reveals,
strike-slip stress states exhibit comparatively small variations in SH

direction with R, for fixed stress geometries, and small variations in
the principal stress directions do not cause particularly large SH di-
rection changes either. For reverse and normal-faulting stress states,
however, even small changes in the principal stress axes’ directions
can produce substantial changes in the SH direction.

3.3 Effects of uncertainties in stress parameter estimates

We are concerned in this paper with the transformation of routinely
estimated stress parameters into more straightforwardly viewed and
interpreted SH azimuths, rather than with the methods used to es-
timate the stress parameters in the first place. Consequently, we do
not address here the question of estimating SH uncertainties (cf.

Hardebeck & Hauksson 2001; Townend 2006, and references
therein), which stem directly from the estimated uncertainties in
the directions of the principal stresses and the stress ratio R. For the
purposes of illustration, however, Fig. 4 shows examples of uncer-
tainties in the principal stress directions and R being mapped into
a range of SH trends. Fig. 4 depicts normal strike-slip and reverse
stress regimes with moderate departures from idealized Anderso-
nian geometries and representative uncertainties in the principal
stress axes’ geometries and the stress ratio R. The parameters illus-
trated here were computed from real focal mechanism data using a
recently developed algorithm that incorporates uncertainties in the
focal mechanism estimates themselves (Arnold & Townend 2007).
Note that we have omitted labels on the probability density con-
tours shown on each stereonet, as these are not readily comparable
between different figures. The histograms are presented with verti-
cal scales, although what are key to interpreting these probability
density distributions visually are the relative positions, heights and
widths of the peaks.

As noted above, the difference between the azimuth of maximum
horizontal compressive stress and its proxy is most pronounced in
normal and reverse cases. In the particular example of a normal stress
state illustrated in Fig. 4, the peak in the SH distribution lies slightly
anticlockwise (lower azimuth) of the peak in the S2 distribution,
due to a small contribution in the horizontal plane of a larger but
steeply plunging S1 axis. In the reverse case, the difference between
SH and SP is minimal (reflecting the fact that the distribution of R
is such that S1 predominates over S2 in the horizontal plane despite
its slight plunge).

3.4 Regional application

To illustrate the effects of the SH calculation using real data, we
present here differences in SH and SP directions using focal mech-
anism stress inversion results from a small section of the Tjörnes
fracture zone in northern Iceland (Fig. 5). The Tjörnes fracture zone
is an oceanic transform zone in the Mid-Atlantic Ridge system con-
necting the on-shore North Volcanic Zone in northern Iceland to the
off-shore Kolbeinsey Ridge further north (e.g. Saemundsson 1974).
Seismicity in the Tjörnes fracture zone defines two main WNW-
striking lineaments, the Grı́msey lineament and the Húsavik–Flatey
fault (Einarsson 1991; Rögnvaldsson et al. 1998). The right-lateral
Húsavik–Flatey fault is considered the predominant structure in the
Tjörnes fracture zone (e.g. Gudmundsson et al. 1993; Riedel et al.
2005), whereas the Grı́msey lineament, where our data come from,
is not defined by a continuous fault but rather composed of en-
echelon structures, namely NNE-striking normal faults and grabens
offset by N–S-striking subvertical planes exhibiting left-lateral mo-
tion (Rögnvaldsson et al. 1998). The overall strike of the Grı́msey
lineament is N128◦E (Rögnvaldsson et al. 1998) and comparing this
to the plate motion direction of N103◦E (DeMets et al. 1994), we see
that there is a significant component of opening across the Grı́msey
lineament.

We focus here on stress inversion results from the central por-
tion of the Grı́msey lineament, south of the Grı́msey hydrothermal
field (Riedel et al. 2001) and the site of intense seismic activity
in recent years. Our data set contains 1653 earthquakes recorded
by the Icelandic SIL network (South Iceland Lowland; Bödvarsson
et al. 1999) between October 2000 and March 2006. Magnitudes
range from M L 0.3 to 4.5. All events have focal mechanisms cal-
culated using the spectral amplitude method of Rögnvaldsson &
Slunga (1993) following routine SIL network analysis (Bödvarsson
et al. 1999). Focal mechanisms of the 20 largest events (M L > 3)
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Figure 3. Variation of the SH and SP trends (αH and αP, respectively) for progressive rotations of the stress axes and different values of the stress ratio R.
(Left) Rotation about ŝ2 from a reverse stress state to a normal stress state. (Centre) rotation about ŝ1 from a reverse stress state to a strike-slip stress state.
(Right) rotation about ŝ3 from a strike-slip stress state to a normal stress state. The initial geometry is ŝ1 = 010/10, ŝ2 = 103/17 and ŝ3 = 251/70 in the left
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of the different stress states, with north at the top of the circles. The lower plot illustrates the variation in SH for different values of R (solid coloured curves) as
well as the trend of whichever of ŝ1 or ŝ2 is more horizontal (dashed curve).
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Max difference 60°
Mean difference 24°
Mean SH direction N 4°W
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Figure 5. Stress inversion results from northern Iceland demonstrating the difference between SH and SP. (Left) Map of the Tjörnes fracture zone, northern
Iceland, showing the Grı́msey lineament and Húsavik–Flatey fault. The portion of the Grı́msey lineament shown in the right-hand figure is illustrated by the
box. The focal mechanisms illustrated correspond to the 20 largest (M L > 3) earthquakes occurring within the boxed region between October 2000 and March
2006. The black triangles denote stations in the SIL seismic network. The inset is a map of Iceland showing the outline of the plate boundary and the Tjörnes
fracture zone (box), and the North America–Eurasia plate spreading direction (DeMets et al. 1994). Note that at these latitudes (66.5◦N), 0.1◦ of longitude
corresponds to approximately 4.4 km, and 0.1◦ of latitude to approximately 11 km. (Right) Angular differences between the trend of the axis of maximum
horizontal stress (SH) calculated using eq. (11) and the trend of the larger subhorizontal principal stress (the maximum horizontal stress proxy, SP). Blue
indicates a normal faulting stress state and green a strike-slip state. Red dots mark the epicentres of earthquakes whose focal mechanisms were used to compute
the stress parameters. The arrow symbols indicate the sense of rotation from SP to SH. Maximum and mean differences are calculated using the absolute values
of the angular differences.

are shown in Fig. 5. These largest mechanisms are predominantly
strike-slip but most of the focal mechanisms in our data set exhibit
oblique normal to strike-slip faulting, in keeping with the discussion
above. The large events are not anomalous as an extensional stress
state does not preclude strike-slip faulting on pre-existing struc-
tures, although it is less ideal in Andersonian terms than optimally
oriented normal faulting. The stress field calculations are based on
a recursive (‘quadtree’) division of the data set into spatially dis-
tinct groups containing an average of 160 focal mechanisms each
(Townend & Zoback 2001). The number of focal mechanisms in
each group is reduced (to an average of 60) using the correlation
technique described by Lund & Bödvarsson (2002), which short-
ens the time required for each inversion and yields more realistic
confidence intervals. We calculate the stress orientations and stress
ratio for each group using a grid search algorithm that incorporates
a fault stability criterion to distinguish the nodal planes (Lund &
Slunga 1999).

We have not yet undertaken a detailed analysis of regional stress
near the Grı́msey lineament, and limit our analysis of the results il-
lustrated in Fig. 5 to a brief comment on how SH and SP differ. Most
of the stress inversions indicate a normal state of stress (subvertical
ŝ1), although a subset of the results are strike-slip (subvertical ŝ2).
This agrees with the observations referred to above of a considerable
normal-faulting component in the Grı́msey lineament. Comparing
the SH directions with the maximum horizontal stress proxy, SP,
reveals some appreciable differences, which in a few cases exceed
30◦. The average discrepancy, calculated using the absolute value of
the difference in trend between SH and SP, is 24◦, a non-negligible
difference if SH were to be interpreted accurately in the context of
fault mechanics or in conjunction with other geophysical parame-
ters. Note also that for our area of study, using SP instead of SH

introduces a westerly bias in the estimates, on average. As expected
based on the analysis presented in Section 3.2, the discrepancies are
generally larger for the normal stress states than the strike-slip.

4 S U M M A RY

Calculating a true direction of maximum horizontal compressive
stress allows all four seismologically determinable stress parame-
ters to be amalgamated into a single readily visualized and physi-
cally meaningful parameter. This simplifies regional stress mapping
and the comparison of spatially or temporally distinct stress esti-
mates, procedures which are otherwise complicated by the lack of
full knowledge of the stress parameters.

As Figs 1–3 illustrate, the SH trend is not, in general, equal to the
trend of the larger of the two subhorizontal principal stresses (SP),
and in some circumstances may differ by tens of degrees. These
differences amount to surmountable errors in interpreting stress in-
version results. Correctly accounting for the effects of plunging prin-
cipal stress axes and variable stress magnitude ratios is paramount
in investigating changes in ambient stress caused by either nearby
earthquakes or volcanic processes.

It is straightforward to compute a true axis of maximum hor-
izontal compressive stress, and avoid the artefacts introduced by
projected plunging stress axes onto a horizontal plane. For reli-
able comparison of tectonic stress directions with other geophysical
parameters—such as horizontal strain rate directions, seismic fast
directions or borehole data—we recommend making use of all four
seismologically determinable parameters to calculate SH. The ap-
proach we have taken here may also prove useful when mapping
other tensorial properties, such as hydraulic conductivity, when the
principal axes are not strictly horizontal and vertical. It can also be
straightforwardly adapted for use in making vertical cross-sections
or maps of arbitrary orientation.
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