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ABSTRACT

Introduction. The subject of the study is the kinematic variability and deformations of a planar statically-determinate elastic
truss with a horizontal bolt, lateral supporting trusses and a cross-shaped grid under the action of various types of static
loads. The structure has three movable supports and one fixed support.

Objectives — derivation of formulas giving the dependence of the deflection of the structure in the middle of the span and
the displacement of one of the three movable supports from the dimensions, load and number of panels; analysis of the
kinematic variability and derivation of the analytical dependence of the forces in the rods of the middle of the span from the
number of panels.

Materials and methods. Forces in the rods of the truss are calculated in symbolic form by cutting out nodes using the Maple
symbolic and numeric computational environment. In order to calculate the deflection, the Maxwell — Mohr formula was used.
Calculation formulas for the deflection and displacement of the support were derived using the induction method based on
the results of analytical calculations of a number of trusses with a different number of panels in the crossbar and lateral
support trusses. The special operators of the genfunc package for managing the rational generating functions of the Maple
system were used to identify and solve the recurrence equations satisfied by the sequences of coefficients of the formulas
for deflection and forces. It is assumed that all the rods of the truss have the same rigidity.

Results. Several variants of loads on the truss are considered. A combination of panel numbers is found in which the truss
becomes kinematically variable. The phenomenon is confirmed by the corresponding scheme of possible velocities. All
required dependences have a polynomial form by the number of panels. The curves of the dependence of the deflection on
the number of panels and on the height of the truss are constructed in order to illustrate the analytical solutions.
Conclusions. The proposed scheme of a statically determinate truss is regular, allowing a fairly simple analytic solution of
the deflection problem. The curves of the identified dependencies have significant areas of abrupt changes, which can be
used in problems of optimising the design by weight and rigidity.
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AHHOTALUMUA

BBepneHue. NpeacTtaBneH NoAxoa K KUHEMATUYECKOW U3MEHSEMOCTU U AedopMaLum NIOCKoW CTaTUYeCcku onpeaenvmMon
ynpyron chepMbl C ropu3oHTarnbHbIM pureniemM 1 60KoBbIMM OMOPHBIMU hepMamMm 1 KpecToobpa3HoN peLleTKon nog AeNcTBU-
€M pasnuyHbIX BUAOB CTAaTUYECKNX Harpy3ok. KOHCTPYKUMS MMEET TpU NOABUXKHbBIE Y OAHY HEMOABUXKHYHO OMOpY.

Llenv — BbIBOA hopMyn 3aBrCMMOCTEN Npornba KOHCTPYKLMN B cepeanHe nporeTa U CMeLLeHNst OA4HON U3 TPeX MOABMKHbIX
ornop OT pa3MepoB, Harpy3ku 1 Yncen naHenen, aHanua KNHemMaTU4eckon U3MEeHSEMOCTH, NoMNyYeHne aHanMTUYeckmx 3a-
BVMICUMOCTEN YCUNUIA B CTEPXHSIX CEPEAUHbI NMPporneTa OT Yucna naHenen.

Matepuanbl u meToabl. Hanbonee pacnpoctpaHeHHbIM NOAX0A0M ONpefeneHnst yCUnus B CTEPXHAX epMbl ABNsieTCS
BblYMCIIEHNE B CUMBONbHOM (hOpMe METOAOM Bblpe3aHus Y3MoB C UCMOMb30BaHWEM CUCTEMbI KOMMbIOTEPHOW MaTeMaTtu-
k1 Maple. ins Bbl4mMcneHus npormba ncnonb3yetca dopmyna Makcsenna — Mopa. MeTogom nHAYKUMKU NO pesynsratam
aHanuTU4ecKMx pacyeToB psiga bepM € pasnmnyHbIM YUCMOM NaHenemn B purene n 6oKOBbIX OMOPHbBIX hepMax BbIBOAATCS
pac4yeTHble hopmynbl Ans npornba n cmeLleHns onopbl. CneuyanbHbie onepaTopbl Naketa genfunc Ans ynpaeneHusi pauu-
OHarnbHbIMW MPOU3BOAALLMMU PYHKLUMSAMK cucTeMbl Maple AatoT BO3MOXHOCTb HAWTW U PeLUNTb PeKYPPEHTHbIE YpaBHEHHS,
KOTOPbIM YOOBMNETBOPSIOT NOCNeAoBaTENbHOCTY KO3 hULMEHTOB dhopmyn Ans npornba n ycunuid. MNpuHumaeTca oamMHako-
Bas )X€CTKOCTb BCEX CTEPXKHel hepMbl.

PesynbraTtbl. OgHMM 13 NPEMMYLLECTB PAaCCMOTPEHHbIX BAPUAHTOB Harpy3ok Ha doepmy siBrnsieTcst obHapy>XeHne coveTaHms
yucen naHenew, NpyM KOTOpoM depma CTaHOBUTCS KUHEMATUYECKUM N3MEHSIEMON. SBNeHne noaTBepXaeHO COOTBETCTBYO-
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e CXeMour BO3MOXHbIX CKOPOCTeN. Bce nckomble 3aBUCUMOCTU UMEIOT NoNIMHOMUManbHyO d)opMy no yncram naHenew.
B kavecTBe mnncTpauum aHanMTUYeCKnx peLleHnin MoCTPOeHbl KpMBbIe 3aBUCUMOCTU nporMGa OT yncna naHenen un ot

BbICOTbI (DEPMbI.

BeiBoAbl. NpeanoxeHHas cxema ctaTnyeckn onpeaennumon depmel SerseTcs perynﬂpHon 1 gonyckaeTt AoCTaTo4HO npo-
CTO€e aHannTn4eckoe pellueHune 3agadum o I'IpOI'VI69. KpuBble HanaeHHbIX 3aBUCUMOCTEN MMEIOT Y4aCTKM 3Ha4YUTENbHbIX CKa4-
KOOGpaSHbIX N3MEHEHWI, YTO MOXET ObITb MCMOMb30BaHO B 3a4ayax onTMMu3aLmm KOHCTPYKUUK MO BECY U XXECTKOCTU.

KNIOYEBBIE CINNOBA: nnockas dpepma, pama, kapkac 3gaHusi, npornb, uHaykuusi, Maple, aHanutuyeckoe pelueHune

ana UMTUPOBAHWUA: KupcaHose M.H. Calculating model of a frame type planar truss having an arbitrary number of
panels // Becthuk MI'CY. 2018. T. 13. Buin. 9. C. 1184—1192. DOI: 10.22227/1997-0935.2018.10.1184-1192

INTRODUCTION

Planar trusses are often used as the bearing com-
ponents of spatial structures. In many cases the primary
goal of the designers of industrial buildings, workshops
and hangars is to increase the rigidity of the frames [1-3].
Thus, the development of new structural schemes for
trusses that ensure the optimal rigidity and stability of
construction elements is an urgent task. Simple and reli-
able tests used in analytic calculations of building struc-
tures may on the one hand represent an alternative to
numerical studies, but, on the other hand, in many ways
can be seen to complement numerical approaches.

We propose a scheme of a statically-determinate,
articulated frame with a cross-shaped grid (Fig. 1). The
truss is one of the regular types, based around a peri-
odicity cell. The length of the crossbar is 2n panels;
the height of the truss — m. The height of the truss is
2(m+1)h. The truss contains n, =8(n+m)+26 rods,
including five rods comprising simulated supports. The
aim is to obtain an analytical expression for the deflec-
tion, depending on the number of panels in the crossbar
and racks. The derivation of this dependence assumes
the use of an induction method across two parameters,
which considerably complicates the solution. However,
formulas with two independent parameters regulating
the scheme of the truss have a much wider scope: from
low frames with a large span to high tower-type trusses.

Previously, the majority of comparable solutions for
planar statically-determinate regular trusses were ob-
tained by induction using one parameter only [4-8]. By
applying induction across two parameters, a solution
is obtained for spatial coverage [9] both for a planar
frame [10] and for a cable-stayed truss [11].

CALCULATION

In order to calculate the deflection in the analyti-
cal form, it is first necessary to know the expressions
for the forces in the lattice of the truss. The solution is
obtained using the Maple symbolic mathematics com-
puter program [12]. This program includes a method for
cutting out nodes. To implement the method, the coordi-
nates of the hinges are entered in the program. The con-
nection structure of nodes (hinges) and rods is specified
by special vectors representing the numbers of the ends
of the rods. The matrix of the equilibrium equations for
nodes is formed from the direction cosines of forces,
determined from the given geometry of the structure
and the order in which the rods are joined [9-11]. The
odd rows of the numbers in the matrix correspond to the
projections of the forces on the x-axis, while the even
rows correspond to the projections onto the y-axis. The
right-hand side of the system of equilibrium equations
comprises a vector in which components of the load on
the nodes are recorded. Solving the system of equations

s

a a 2a a @ a a6 a 6o aaaadadadacaaaca 2a a a

Fig. 1. Diagram of the truss, load on the lower belt, m =3, n=>5
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in symbolic form with the given numbers of panels
m and n gives the forces applying in all rods, including
support rods.

The first calculations of forces for different num-
bers of panels showed that, for an odd number of panels
in the crossbar, the determinant of the system of equa-
tions of node equilibrium becomes zero, which corre-
sponds to the kinematic variability of the truss. This is
confirmed by the derived scheme for the distribution of
virtual node velocities (Fig. 2). Vectors of velocities do
not contradict the laws of kinematics; in particular, the
theorem on the projections of velocities is fulfilled for
all rods, i.e. the projections of the velocities of the rod
ends on the axis of the rod (with the sign of the projec-
tion) are equal. The relationship between the velocities
can be determined by considering the instantaneous
centres of the velocities of the rods: u/h=v/a.

The deflection is calculated using the Maxwell-
Mohr formula

S8

A P; R (1)
where E is the modulus of elasticity of the rods, F'is the
cross-sectional area, lj and S, are the length and force
respectively in the j-th rod from the action of the load,
s is the force from a single vertical force applied to the
central node C in the lower belt of the crossbar. The cal-
culation is performed for all the pins in the truss, except
for the five support pins, which are assumed to be rigid.
It turns out that the form of the solution does not change
for trusses with different numbers # and m:

A=P(Ca’+Cc’ + O ) [(2°EF),  (2)
where ¢=+/a’ +h* . Solutions differ only in coeffi-

cients before cubes a’, ¢’ and #’. Using the rgf_find-
recur operator of the Maple package genfunc by in-

duction on n, for m =1, 2, 3 ... from the solution of the
recurrence equation

G, =5C,,-10C , , +10C, , s =5C,, 4 +C,, 5
a sequence of coefficients is obtained
C, = (20n* +40n° +34n” +38n+15)/3,
C, = (20n" —40n’ +10n° +40n+12)/3,
C, = (20n* +40n° +34n* +38n+15)/3,

In order to solve the recurrence equation, the
rsolve operator is used. The periodic regularity of the
variation as a function of m coefficients for powers of
n is fairly obvious. As a result, we have the general
case:

C, = (200" —40m* (=1)" +(22-12(-1)" ) +
+(39+(—1)'")n+3(9—(—1)’")/2)/3.
Similarly, we derive other expressions:

C, =2n +2n((2—(—1)"’)m+3—(—l)"’)+
+(2=(=1)")m=(=1)" +3,
C,=5m2n+1)+
+(1+2n)(2005(p—25in(p—(2—m)cos2(p),
o=mnm/2.

At the same time, expressions were obtained for
the forces in the middle rods of the span

O=—Pa(2n’ - 2n+1)(-1)") /(2h),
D= Pc/(2h),

U = Pa(n’ =n(-1)" = (1+(-1)" )/2)/h

Fig. 2. Scheme of possible velocities of the variable truss, with one panel in the crossbar and m =2
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In contrast to beam trusses, it is also important to
know the dependence of the horizontal displacement of
the mobile support on the dimensions, load and number
of panels in frame structures. Using the same formula
(1), in which this time s is the forces from the unit hori-
zontal force applied to the support 4, we obtain the fol-
lowing expression

5,=2P(4a’ + 4, + AN') [(haEF),  (3)
where
= (-8n" +12n°(-1)" +
+(9cos29+17—-6cosp+6sing)n+
+3(25imp—200s<p+5+cosZ(p)/2)/6,

A, =((4-2mcos2+2m)n+2—mcos2+m)/4,
4, :((2n+1)((—1)"' +3)m? +
+8(2n+1)m+3(2n+1)(1—(—1)"’))/8.

Reaction of supports are:
Y, =P(2n+1)(1+(—1)’”)/8, Y, =P(n+1/2)+7Y,.

The algorithm used to derive the formulas makes it
easy to switch the load to the truss. Consider the effect
of the load on the upper frame belt (Fig. 3).

The coefficients in (2) take the form:

C, =(20n" —40n* (-1)" = 200" +
+H(43¢-1)" +27)n+12(1+(—1)’"))/3,
C, =20 +2(Q2=(-1)" )m~-
~(=1)" +3)n+2(1+(=1)"),
C, =2(mcos2¢—2cos2¢+2cos@—2sin@+5m)(n+1).

Forces applying in rods can be calculated from
formulas

0=-Pa(n-2(-1")(n+(-1)")/h,
D=0,

U= Pa(n+(-1)")(n-2(-1)" )/h

Reaction of supports are:
Y, ==Pn(1+(-1)")/4, ¥, = P(n+2)- Y,

The coefficients in (3) for calculating the displace-
ment of the support under this loading are:

= (—4n* +6n*(-1)" +
n(41+3cos2—6cos +6sin)/2+12)/3,

/2+1
A3=((n((—1) +3)+4)m’ +
+8(n+1)m+(3n+2)(1—(—1)'"))/4.

4, —n(2+ (1-(=1)")m

In conclusion, we also give the formulas obtained
for the case of loading the frame with a concentrated
force (Fig. 4). The solution is simpler, with the recur-
rence equations having a smaller degree. The time of
performing symbolic transformations is much shorter.

The coefficients in (2) have the form

C =(16n3 ~24(=1)"n* +14n+15-3(1+(-1)" )/2)/3
C,=2n+(2=(=1)")m—(=1)" +3,
C, =5m+mcos2¢p—
—2cos2@+2cos@—2sin Q.

The forces in the rods and the reactions of the sup-
ports are obtained in the following form:

0=-Pa(2n-(-1)") /(2h),
D= Pc/(2h),

U = Pa(n-(1+(-1)") /h
Y, =-P(l+(-1)" /8

Y, = P(1+(1+(-1)") /4 /2.

The verification of the obtained solutions was car-
ried out in the numerical mode of the same program for
arbitrary combinations of the numbers m and n. A linear
combination of the three solutions can be used to calcu-
late rather complicated cases of loading. With the load
evenly distributed over the nodes, it is permissible to
simulate a constant load from the weight of the frame

1P

}\P

a a 2a a 2na
+ +—
Fig. 3. Load on the upper frame belt, n=2, m =1

2na a 2a a a

1187

A9JIN ¥mMHLODg

810Z ‘0L @nss| € awnjop . BulesuiBbug [IAID Jo AlISISAIUN 81B1S MOOSOJ JO SBUIPa220.d « NSDIN MIUISIAA
(8ulluO) 0099-70£Z NSSI (Juld) G£60-2661 NSSI

8102 ‘0L »9Auag €} wo



Tom 13 Beinyck 10, 2018

ISSN 1997-0935 (Print) ISSN 2304-6600 (Online)

BectHuk MICY

Vestnik MGSU - Proceedings of Moscow State University of Civil Engineering + Volume 13 Issue 10, 2018

Mikhail N. Kirsanov

Fig. 4. Frame under the action of concentrated force, n =2, m =2

Fig. 5. 3D model of the truss as part of the building of the industrial building, n = 5, m = 4. Horizontal links are not shown

itself; with a concentrated load, the load from the crane
in an industrial building is applied. The frame can be in-
cluded in the spatial construction of the building (frame
of a warehouse or factory workshop). Individual frames
are connected by horizontal links (Fig. 5).

ANALYSIS

The curves of the dependence of the dimension-
less deflection on the number of panels (Fig. 6) in the
condition of constancy of the span of the structure
L =60 m, a=L/(4n) show that, starting from a par-
ticular value of n, the relative deflection increases al-
most linearly. Here is denoted: A'=AEF/(P,,L),
P, =P(2n+4). The point of the break at the begin-
ning of the graph is accounted for by unrealistically
long panels a=L/(4n)=60/8=7.5 m and has no
practical meaning to optimise rigidity. However, the
very presence of such a point suggests that, with certain
combinations of sizes and areas of the rod section, it is

1188

possible to find a condition under which the rigidity of
the structure is optimal.
The slope of the asymptote of the curves on the
graph gives the following limit lim AYn="h/(2L).
n—>0

The dependence of the deflection on the number of
panels m in height is more complicated (Fig. 7). Curves
constructed at a fixed frame height show strong kinks.
This feature of the solution can be used to optimise the
rigidity of the structure. Without changing the height
of the truss, but only changing the number of panels in
height, it is possible to increase the rigidity by a factor
of two. This can be seen in Fig. 7 from the curve con-
structed at H = 30 m at the points m = 3 and m = 4.

The curves of the dependence of the deflection on
the height of the truss (Fig. 8) show that this function
has a pronounced minimum. It follows from the self-in-
tersection of the curves that the order of the curves with
an increase in the number of panels m is different for
different heights. For small heights (4 <7 m), the hard-
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Fig. 6. Dependence of the deflection on the number of panels, m = 2

Fig. 7. Dependence of the deflection on the number of panels in height, n = 3
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Fig. 8. Dependence of the deflection on the height of the truss, n =4, L =60 m

est is the truss at m = 4; for greater heights, the smallest
deflection is in the truss with one panel along the height
of the structure. The extreme point (the minimum on the
curve) moves to the right with decreasing number m,
reaching unrealistically large values 4 =~ 7 m for m = 1.

CONCLUSIONS

The search for schemes for statically-determinate
regular constructions, begun by R.G. Hutchinson,
N.A. Fleck [13, 14], is continuing. In this paper, another
frame type truss is proposed, inductive analysis carried
out and the derivation of compact formulas for calcula-
tion of deflection and forces, depending on the number
of panels, presented. In addition to solving static prob-
lems and the observed effects of an abrupt change in ri-
gidity, a potentially dangerous hidden construction fea-
ture of this structure was found for this design. With an
odd number of panels in the crossbar, regardless of the
size of the truss, the number of panels in height and the

type of load, the determinant of the system of equilibri-
um equations degenerates, indicating the kinematic vari-
ability of the truss. In the general case, this feature can
be overlooked in the numerical analysis beyond the cal-
culation error. In addition, in a real execution of a truss
of this kind have rigid or semi-rigid connections instead
of hinges and the kinematic variation of the hinge model
is not apparent. However, this does not reduce the po-
tential danger of the found effect; consequently, a rea-
sonable designer will avoid using a scheme with an odd
number of nodes in a crossbar of this design.

The resulting formulas for deflection can be used
in practice to estimate the deflection of the projected
trusses; the method itself is quite applicable to other
planar and spatial regular constructions. A survey of
analytical solutions for planar trusses is given in [4—6].
Questions of the theory of regular building structures
were considered in [15-20]. Inductive analysis and
derivation of formulas for the deflection of some planar
trusses carried out in [21-25].
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