
C a l c u l a t i n g Sof tware G e n e r a t o r s from S o l u t i o n
Spec i f i ca t ions *

Richard B. Kieburtz Francoise Bellegarde
Jef Bell James Hook Jeffrey Lewis Dino Oliva

Tim Sheard Lisa Walton Tong Zhou

Pacific Software Research Center
Oregon Graduate Institute of Science & Technology

PO Box 91000, Portland, OR 97291-1000 USA

1 A t e c h n o l o g y f o r a u t o m a t i c p r o g r a m g e n e r a t i o n

Program generators can substantially reduce the effort needed to produce ver-
sions of a common software design that are tailored to particular applications,
but the task of designing and implementing a program generator for a new ap-
plication domain can be formidable. This paper describes a new technology for
creating program generators. It is built upon research results in the theory of
programming languages, formal semantics, program transformation and compi-
lation. It comprises a suite of translation and transformation tools that constitute
a design automation system for software engineering.

In our method, the user's interface to a program generator is a language
in which to specify each particular application for which a software module is
required. We refer to this specification language as a domain-specific design lan-
guage (DSDL), for it is tailored to the problem domain for which the generator is
intended. A DSDL is a specialized, declarative language in which the important,
high-level abstractions of the problem domain are directly expressible. Often,
a DSDL is just a formalization of a tabular or graphical specification language
that engineers in the problem domain have long been using to express detailed
designs.

For a DSDL to be used to express input to a program generator, it must have
a computational semantics. The requirements that we impose upon the semantics
definition for a DSDL are that it be (i) compositional, (ii) effectively computable,
and (iii) total. The implementation of a program generator is derived from the
semantics of a DSDL through several steps of translation and transformation to
obtain satisfactory algorithmic performance and to tailor the implementation to
a specific platform and software environment.

Compositionality implies that an implementation can be assembled piecewise
from the components of the semantics. Effective computability requires semantic

* The research reported here has been sponsored by the USAF Materiel Commancl.

547

functions to be expressed algorithmicaUy. Requiring totality allows the use of
equational theories to drive program transformations.

The idea of deriving an implementation for a formally specified language
from its semantics was first tried experimentally in the SIS system [19] over 25
years ago. However, at that time, the prospect of a technology to improve the
performance of an implementation enough that it would become acceptable for
practical use seemed remote. In the intervening years, there have been many
discoveries relating to the formal calculation of programs, and it seems time to
revisit the ambitious task of automating program generation.

2 Classes of transformations

The compositional style of programming used in designing a computational se-
mantics for a formal specification language is attractive to the designer. However,
p owerfnl transformations are necessary to improve efficiency of the programs syn-
thesized from the semantics. Semantics-preserving, fully automatic transforma-
tion tools can relieve the software designer from having to consider programming
details that tend to obscure high-level concepts relevant to the design itself.

The transformations we have considered fall into four classes, for which dis-
tinct implementation strategies seem most appropriate:

1. Parametric transformations are instances of general theorems established by "
parametricity arguments. They yield equivalences that apply in all datatypes,
hence the resulting transformations are type-parametric.

2. Order-reduction transformations replace expressions that use higher-order
functions by equivalent expressions using only first-order functions.

3. Algebra-specific transformations are those that depend upon some algebraic
laws, such as the associativity and commutativity of a binary operator.

4. Architecture-specific transformations depend upon representation equiva-
lences or properties of the operations of a particular computer architecture.
Such transformations typically occur in the code generator of an optimizing
compiler.

A compositional programming style introduces many iatermediate data struc-
tures. When semantic functions are applied directly, their compositions may
entail multiple traversals of data structures that represent the abstract syntax
of the object language. These problems can be addressed by two parametric
transformation strategies:

- fusion or deforestation, in which identical control structures of sequentially
applied functions are merged, often allowing an intermediate data structure
to be eliminated [25, 8], and

- the tupling, or parallel fusion strategy [6, 9], in which a pair of functions
that operate on the same data are transformed into a single function that
returns a result pair. Symbolically, this transformation is

(f2 , g x) ~ (f ,g) x

548

When applied to traditional functional programs, parametric strategies can
require expensive and inexact analysis to determine whether sufficient condi-
tions for their application are satisfied. However, if control structures are explic-
itly designated when formulating semantic functions and if this information is
preserved through the translation process, it can be exploited to drive transfor-
mation strategies by pattern matching alone.

Parametric transformations are remarkably effective. However, they do not
exploit specific, algebraic properties of functions used in designing a semantics. A
property like the associativity and commutativity of multiplication over natural
numbers is not parametric. Associativity is necessary to apply the accumulator-
introduction strategy that eliminates recursion in favor of iteration. It can be
exploited by transformation systems based on the unfold-fold method [9], but
these require human intervention or ad hoc heuristics to direct them.

Term-rewriting, using a theory completion process for control, provides a
flexible basis for implementing algebra-specific transformations [11, 2]. Such sys-
tems perform transformations on first-order programs. Parametric transforma-
tion strategies can also be performed by term-rewriting methods. Algebra-specific
transformations are more costly and more difficult to automate than parametric
transformations but they can have a dramatic impact on the performance of
programs. Algorithmic complexity improvement can be obtained through trans-
formations, by a clever use of algebraic laws.

A strategy for order reduction is to generate a specialized version of each
higher-order function for each distinct list of functional arguments to which it is
applied in a given program. Specialization may increase the size of a program but
has no negative impact on its execution time, and often improves it. Generation
of an appropriate data structure to represent closures [20, 1] leads to a more
general but less straightforward approach for order-reducing transformations.

speczficatio~ DSDL [generic] order
" ~ t r a n s l a t o r ~ reduction

parametricity
theorems

algebra-[target [
specific] language]

L r a n ~ o r m s ~

target
code

compiler

laws of implementatton
concrete templates
algebras

target
code

Figure 1--Transformation and translation pipeline

3 C o m p u t a b l e denotat ional semantics

Denotational semantics for programming languages interpret syntax by means
of functional expressions such that all constructions are deterministic and com-
posable. Composability implies that the semantics of a syntactic construction
is a function of the semantics of its component parts--and of nothing else. To

549

ensure that the semantics of a specification language is computable, its intuitive
meaning is formalized in terms of an executable meta-language.

We have designed the ADL language [14] as our preferred meta-language.
ADL is an acronym for Algebraic Design Language. It adapts the notion of
structure algebras from the mathematics of universal algebras to provide an
unusually rich control structure without employing an explicit recursion oper-
ator. ADL is a language of total functions, which admits equational reasoning
and program transformation by equational rewriting. ADL also incorporates a
dual concept of coalgebras, which contribute control structures that correspond
naturally to iteration.

3.1 S t ruc tu r e algebras in ADL

Some structure algebras, most notably the algebra of lists, are familiar to func-
tional programmers and have been used by Bird, Meertens and their students
[5, 16, 17, 12] to derive programs from logical specifications by formal reasoning.
In ADL, structure algebras are first-class entities that can be declared, bound
to identifiers and form the basis for ADL control operators. The declarative ele-
ments of ADL include signatures of algebraic varieties, algebra specifications and
constant (value) declarations.

Signature declarations do not use explicit recursion, for a signature defines
not just a single algebra, but an entire class (or variety) of algebras that share
a common structure. For example, the signature declaration for list algebras is:

signature list(a) (type c; Snil, $cons of a * c}

Each algebra in the variety defined by this signature has operators $nil and
$cons. The identifier c, which ranges over all types, designates the carrier of an
algebra of this variety. For each such algebra, c represents a specific type. The
codomain of each operator is the carrier. The domain typing of each operator is
specified in the signature. By convention, an operator symbol such as Sail, for
which no domain typing is given, represents a constant of the carrier type.

An algebra specification binds a type for the carrier and a compatibly typed
constant for each operator symbol. An example of a list-algebra specification is:

a lgebra Sum_list = list(int){c := int; $nil := O, $cons := (+)}

In this specification, both the type parameter, a, and the carrier have been bound
to a common type, int; the operator symbol $nil has been bound to a constant of
type int and $eons has been bound to the operator that designates int-addition.

Another I/st-algebra is a free term algebra, which has as its operators data
constructors nil and cons, and whose carrier is the set of terms constructed by
well-typed applications of these operators. The type parameter, a, instantiated
to any type, determines a particular instance of a free list algebra. Thus the
carrier of a free term algebra derived from the variety list corresponds exactly
to an instance of a list datatype in a functional programming language such as

550

Standard ML [18]. For each variety declared by a signature in an ADL program,
its free term algebra functor is implicitly declared.

In ADL, we distinguish two degrees of knowledge of the structure of an
algebra. When an algebra is specified as an instance of a declared variety, we
know how to form composite functions from it with the combinators described
in the following section. This is what we mean by a structure algebra.

If the signature of the variety is not visible or the algebra has not been
declared as an instance of a variety, then only its operators and their typings
are known. We say that such an algebra is concrete. The definitions of operators
of a concrete algebra may be invisible, if the algebra has been imported. For
example, the type int is the carrier of a concrete algebra of integer arithmetic,
which is externally specified.

3.2 C o n t r o l s t r u c t u r e s in A D L

The expression elements of ADL include variables, constants, function and opera-
tor applications, datatype constructions, abstractions and saturated combinator
expressions 2. Of particular interest are the combinator expressions, for these de-
termine all interesting control structures. ADL provides four combinators, red,
horn, gen and cohom. The first two express control derived from algebras; the
second two derive control from coalgebras. We shall only discuss the algebraic
control combinators.

The combinator red is indexed by a sort name and applied to an algebra
specification. Its denotation is then a function from an initial term algebra to
the carrier of the specified algebra. For example, the expression

s u m - t e a [l i s t] Surn_t is t : t i s t (int) --, in t

denotes a function that sums the elements of a list of integers. This function is
an example of a list-algebra homomorphism; the condition that it satisfies is

sum Nil = 0

s u m (cons(x , y)) = �9 + sum y

Had sum been defined in a language such as SML using explicit recursion, then
the homomorphism equations would constitute its declaration. However, recur-
sion is not explicit in ADL, it is instead calculated from the signature declaration
given for the variety list. The combinator red has also been called a catamorphism
combinator [17].

2 The term combinator is used here to mean an operator with no dependence on free
identifiers and which operates on well-typed expressions in the language to produce
a new expression. A combinator expression is sa tura ted if all required arguments of
the combinator are present.

551

3.3 /k tool for parametric transformations

A parametric transformation schema has an instance for every variety of struc-
ture algebra. The quintessential parametric transformation is based upon the
Promotion Theorem [15]. This theorem and the transformation derived from it
are most easily presented with the help of some notation from category theory.

The data of a signature with type parameter a consists of the domain typings
of its operators. We can represent the structure of these data in the category Se t
by a coproduct of the domain types of the separate operators. This representation
is the object map of a bifunctor, s For instance, the bifunctor that represents
the signature list has the object map

C ~ i ~ (a , c) = 1 + a x c

where 1 is the empty product. A list-algebra is represented in this notation by
an arrow. For instance, the algebra Sum_list is the arrow

where the expression enclosed in curly brackets denotes the operation of case
analysis of an element of a sum type, with component operators 0 : 1 --+ int and
(+) : int • int ~ int.

The free list algebra with parameter type a is the arrow

s "'t (,~, fist(a))

where in list is the composite operator of the free list algebra.
A list reduction, h = red[list] {c; f~,it, loons} satisfies the equations

h nil = fnit

h (cons(~ ,y)) = fco,~s(x, by)

which can be read from the commuting diagram:

(1)
(2)

s tist (a, list(a))

s hst (ida,, h)[

E a't (~, ~)

Not only does red[list] {c;

i n lis ~
. hst(a)

h = rcd[lis~] it; f~., /co., .}

?

, C

{fniI, fcons}

fair, fcons} satisfy the equations read from the din-
gram, but it is the unique function for which the diagram commutes.

Moreover, for any variety T, every T-reduction is uniquely determined by
a T-algebra specification and satisfies a similar diagram, in which the specific
algebraic operators correspond to the T-signature.

552

T h e o r e m : Promotion.
Let {c; f) be a T(a) algebra and let g : c --* c'. If there exists a T(a) algebra
(c'; r such that r g) = gof with type s c) ~ c' then gored[T] f =
red[T]r : r(a)---* c'.
P r o o f : Consider the diagram below. The upper square commutes since h is a T-
algebra reduction. The lower square commutes as the hypothesis of the theorem.
Therefore the outer square commutes, thus the arrow on its right-hand edge is
the unique T-algebra reduction determined by the algebra {c ~ r

in T
ET(a,T(a)) , T(a)

s h)l I h = red[T] f

ET(a, r f , C

e r (a , r ') r . e'

E]

The higher-order transformation tool, HOT, uses a clever heuristic tactic to
calculate an operator r that satisfies the promotion theorem [21, 22]. The tactic
is not comple te- - i t does not always find a candidate if one exists--but it is
inexpensive to apply and it often succeeds.

Given the da ta described in the proof of the Promotion Theorem, HOT
introduces a symbol, gr, with the assumed law tha t g o gt = idc,. A consequence
of the assumption is tha t cT(ida, g) o ET(ida, g') = idg(a,c'). Using this deduced
law, we derive a representation for r namely that

r --- g o f o Sr(id, g')

Now gP is a meaningless symbol, but the expression on the right-hand side of
the equation can often be simplified after introducing the detailed structure of /
and of the bifunctor C T, which is derived from the signature T. In the course of
simplification, any occurrence of the expression g o gt is replaced by idc,, which
is justified by the assumed law. If, after simplification, the residual expression
contains no occurrence of the identifier gt, then it represents the operator of a
T(a)-algebra that was sought. Otherwise, the tactic fails.

553

4 O r d e r - r e d u c t i o n t rans format ions

Order-reduction transformations remove instances of higher-order functions (ap-
plications tha t include function-typed arguments or which return function-typed
results) from a program while preserving its overall semantics. Obviously, this
is only possible for programs that calculate ground-typed results from ground-
typed data. The order-reduction stage in our translation pipeline consists of a
suite of individual algorithms that perform specific order-reduction transforma-
tions efficiently. These are:

- A lambda-lifter [13], which removes nested function declarations and ex-
plicit abstractions, replacing them by new, closed function declarations. Af-
ter lambda-lifting, the program contains function definitions of the form
f xl . . . x~ = e where each of the xi is a variable and e is either a variable,
a constant, an application, or a pat tern case analysis.

- Eta-abstract ion furnishes abstracted variables as arguments to an unsatu-
rated application of a curried function. It is used to increase the arity of
a function definition if its arity does not agree with its typing, and to add
dummy arguments to an applicative expression that is unsaturated.
This t ransformation sometimes enables an expression in the body of a func-
tion declaration to be statically reduced, and is a prerequisite to further
steps of function specialization and reduction. This transformation has been
studied by Chin and Darlington [7], who refer to it as Algorithm A for higher-
order function removal.

- Specializing a function to the arguments found at each of its call sites is a
familiar technique for order-reduction (see for instance, Algorithm R of [7]).
Specialization occurs in two phases. A naive but efficient algorithm is effec-
tive in nearly all cases tha t arise in practice. For cases tha t are beyond the
scope of the naive algorithm, we have implemented a more general specializer
based upon an algorithm due to Reynolds [20].

For example, an application map sqr x, can be replaced by the application
of a new function, map_sqr z, whose definition is gotten by specializing the
definition of map:

map f nil = nil map f (x :: xs) = (f x) :: (map f xs)

with respect to the constant sqr, obtaining

map_sqr nil = nil map_sqr (x :: xs) = (sqr x):: map_sqr xs

A sufficient condition for this technique to work is that the function-typed
arguments in a definition are variable or constant-only. A function-typed argu-
ment of a higher-order function F is variable or constant only if in each recursive
call in the declaration of F , this argument position is filled either by a variable
or by a constant (i.e. a closed expression without free variables). The function
map is variable-only. Reynolds' algorithm constructs a closure representation for
higher-order functions that are not variable-or-constant only.

554

5 A l g e b r a S p e c i f i c T r a n s f o r m a t i o n s

Many transformations are justified in part by the laws of specific algebras. As a
logical extension to an ADL module, properties of an imported concrete algebra
may be asserted as equational laws. It is these laws on which we base algebra-
specific transformations. At the present time, there is no formal verification that
the realization of a concrete algebra actually obeys the asserted laws. This gap
in verifiability needs at tention in the future development of our system.

Common equational laws such as associativity, commutativity, distributivity,
unit laws and inverse laws can justify tactics such as recursion elimination, which
can sometimes reduce the asymptotic complexity of an algorithm.

Astre is a transformation tool based on rewriting techniques [3]. It is flexible
enough so that some tactics can be fully automated. An example is the elim-
ination of structural recursion by accumulator introduction in the presence of
an associative operator, which is the familiar foldr-to-foldl transformation when
specialized to list algebras.

A rewrite system is a set of rules, ordered pairs of terms, written as I --+ r.
When a first-order functional program is expressed by a set of mutually recursive
pat tern-matching equations, it translates into a rewrite system R0. The tech-
niques available to transform such a program are simply rewriting and critical
pair computation. A critical pair is the result of an overlap between the left-
hand sides of two rules g --* d and I --+ r. An overlap exists if there is a position
w in l such that I[~ and g are unifiable with the most general unifier cr (after
renaming the two rules so that their respective sets of variables are disjoint).
A critical pair is the (new) equation ~r(l[w ~ cr(d)]) -- ~(r) where the nota-
tion t[w ~ u] denotes the replacement in t of the subterm at position w by u.
Rewriting allows both folding and unfolding of definitions, depending upon the
orientation of the equations as rules. Critical pair computation performs both
instantiation and unfolding and hence can implement transformations by the
unfold/fold technique. This has been called synthesis by completion [10, 11].

In Astre, synthesis by completion is used as a mechanism to transform R0 into
a sequence of rewrite systems R1, R2 , . . . , Rn to get from a functional program
P0 to a new, semantically equivalent program Pn that is more efficient. Astre
translates Rn into an SML program in which functions are presented by a set of
mutually recursive equations with pat tern-matching arguments.

A fully automated transformation system needs additional techniques, in-
cluding:

- a mechanism that introduces new function definitions to form synthesis
rules. Critical pair computations with synthesis rules are the basis of many
transformations. Synthesis rules were called eureka rules in the fold/unfold
methodology because they depended upon the insight of a clever user.

- a mechanism to orient critical pairs into rewrite rules and to control critical
pair production so that it generates a complete definition of the synthesized
function. Astre orients critical pairs into rules as required by the transfor-
mation strategy. It guarantees that termination of the rewrite system is

555

preserved during the synthesis. Astre carefully controls the production of
critical pairs to ensure that the completion process does not diverge [4].

Consider, for example, the function that reverses the elements of a list. It is
translated into the following rewrite system:

reverse (hi 0 -~ nil (3)

reverse(~ :: i s) -~ reverse(~s) ~ [~1 (4)

where ~ is a concrete algebra operator that is associative and has nil as right
and left unit. A simple analysis discovers that the recursive call reverse (is) in
the right-hand side of (4) occurs under the associative operator @. In this case,
it introduces automatically a synthesis rule reverse(x) ~ u ---* g(x,u). This
synthesis rule reduces the right-hand side of (4), yielding reverse(x :: i s) --*
9(xs, Ix]). Critical pair computation with the right unit law, x @ nil ~ x, gives
the pair (reverse(x), g(x, nil)), which yields a new definition of reverse:

reverse(x) (*)
Critical pair computation with associativity gives the equation:

g(x, u) @ z = g(x, u @ z) (**)
Critical pair computations with (3) and (*) return pairs: (nil @ u, 9(nil, u)), and
(g(xs, [x]) ~ u,g(x :: i s , u)). The left-hand side of the first pair reduces into u
by rewriting with the left unit law, nil Q x --* x. The left-hand side of the
second pair reduces by rewriting with equation (**) conveniently oriented into
the rule g(x,u) @ z ---* g(x ,u ~ z). The result is reverse(is) ~ (Ix] @ u), which
further reduces with the synthesis rule itself into g(xs, [x] @ u). The system has
discovered the definition of g:

g(nil, u) -~ u (5)

g(~ :: xs ,~) -~ g(xs, [x] ~ ~) (6)

which is tail recursive. Use of another law of @: Ix] ~ y ~ x :: y, reduces
the left-hand side of (6) into 9(x :: i s) --* 9(xs, x :: u). The new definition of
reverse no longer refers to @:

reverse(x) -~ g(x, nil) g(nil, u) -~ u 9(x :: xs, u) -~ 9(xs, x :: u)

This derivation is replicated each time a recursive call occurs under an associative
operator with left and right unit.

6 G e n e r a t i n g i m p l e m e n t a t i o n s

Following several stages of transformation, our system produces a first-order
SML program that is functionally equivalent to the computational semantics
of a sentence in the DSDL that a user has written. This program can be com-
piled by an SML compiler to produce an executable software module. To execute
this module, the run-time support for SML needs to be present, however. Of-
ten, the requirements imposed by a software architecture, a target p la t formfor

556

the software, or standards adopted by a software organization dictate a specific
form of implementation. To provide for alternate implementations, a back-end
tool called the Program Instantiator generates target code to meet requirements
imposed on a desired implementation.

The Program Instantiator (abbreviated PI) is based upon earlier research by
Dennis Volpano [23, 24]. It is driven by several parameters of an implementation,
which include:

- the target programming language in which an implementation is to be coded;
- templates in the target language that realize implementations of the concrete

algebras used in a program;
- target language templates that provide a standard implementation of free

term algebras and of the case discrimination on data constructors;
- templates for function calls and module headers in the target language.

The PI also interprets an environment specification that provides the types and
structure of data and control interfaces with a host software architecture. The
output of the PI is a module (or modules) in the syntax of the specified target
language that implements the first-order SML program given it as input. The PI
is currently the least mature of the tools in the translation pipeline and several
issues remain to be resolved. These include:

�9 duplicate function declarations. There is currently no test for function defi-
nitions that are identical, up to renaming, and hence could be identified.

�9 heap storage management. The PI does not currently generate a general-
purpose garbage collector. It performs storage allocation in blocks that can
be collected entirely when the data they contain are no longer accessible.

�9 special scoping restrictions. Some possible target languages ('C', for instance)
impose restrictions on the declarations of nested scopes. The PI does not
currently provide for such restrictions.

7 I m p l e m e n t i n g t h e p i p e l i n e

The translation and transformation tools described in the preceding sections
have all been implemented in Standard ML (SML) [18] except for Astre, the
term-rewriting transformation tool, which is implemented in CAML. Further-
more, a restricted sublanguage of SML is used for the intermediate representa-
tion of programs as they are passed through the pipeline. An abstract syntax
representation of SML is used internally by each tool. This representation is
unique to the transformation pipeline and has little in common with the inter-
nal representation used by the SML/NJ compiler, for instance.

Use of SML language technology has been an important factor in the success
of the project during the fifteen months in which most of the tool development
occurred. It has allowed substantial code reuse among tools, and has simplified
integration and testing procedures.

557

8 An application generator

The design me thod we have described here has been applied to design a software
component generator for message translation and validation (MTV). This ap-
plication arises in mili tary command and control systems, with automat ic teller
machines in banking and with point-of-sale terminals for retail stores. A central
controller receives messages encoded as byte-strings from remote sensors or ter-
minals. I t must validate each message and translate it into an internal format
for fur ther analysis and response. A controller may serve several sensors, each
of which generates messages in a different format. An MTV module is required
for each message format. I t analyzes a string of bytes given as input to check
whether it has the expected structure, reports errors if the input is not a valid
message, and t ranslates the input into a da ta s tructure representing the contents
of the message if the input is valid.

Under current practice, an engineer receives a message specification in the
form of an interface control document (ICD). An ICD is a semi-formal description
of the str ing-encoded format of the message. I t gives the max imum expected
length of a message, followed by a field-by-field description of its contents. Field
descriptions may themselves have internal structure. For example, a date field
will contain a day, month and year. A field may represent various types of data.
For example, a field may represent an altitude if it consists only of digits or a
location if it contains alphabet ic characters. An ICD can also specify constraints
on valid messages; these are expressed informally in natural language. We have
designed a Message Specification Language (MSL), which is a formal, domain-
specific design language for the MTV application.

For the M T V domain the essential abstract ions are the internal and external
representat ions of messages. They are related by translat ion functions tha t map
between them. A logical representation in which both intra- and inter-field con-
straints are imposed is introduced as an intermediate representation. From the
logical representation, a controller can derive the necessary internal representa-
tion. There is also a "user" representation, which is an Ascii string in a format
readable by humans. I t is used for logging messages received by a controller or
for manual entry of a message.

A software module for M T V consists of six components:

- two functions tha t check the formats of external or user messages,

- two functions tha t t ranslate between external and internal formats, and

- two functions tha t t ranslate between user and internal formats.

The MSL language describes the logical s t ructure of a message, the translat ion
action tha t parses a message, scaling of numeric values, and any constraints
imposed on the values of fields. From these descriptions, the MSL translator
and the t ransformat ion pipeline generate the required six functions as an Ada
package.

558

8.1 T h e M e s s a g e Specification Language
To use the M T V generator, an engineer specifies the logical s t ructure of a mes-
sage as a logical type in MSL. In the example tha t follows, square brackets enclose
the components of a labeled sum. Labeled sums are types for variant records.
Labeled products are types for records, but they are not illustrated here.

(* Type declarations *)
type Confidence_type = [High, Medium, Low, No];

type Alt_or_TC_type = [Altitude: integer(l..89),
Track_confidence : Confidence_type,
No_value_or_Air_less than I000] ;

The engineer also specifies the translation map in one direction: from external
to logical. This specifies an external message reader (EXR). For the field types
shown above, the external reader declarations are:

(* Action declarations *)
EXRaction to_Confidence = [High: Asc 2 I "HH",

Medium: Asc 2 I "MM",
Low: Asc 2 i "LL",
No: Asc 2 I "NN"];

EXRaction to_Alt_or_TC = [Al~itude: Asc2Int 2,
Track_confidence : toConfidence,
No_value_or_Air_less than_t000: Skip 0

] ~ Delim "/"; (* field separator "/" *)

Message reader declarations are a fundamental syntactic construct in MSL, and
are given semantics in its formal definition. The semantics makes use of the
s t ructure implicit in the types declared for the corresponding fields. Primitive
trans]ation functions such as Asc2In t provide basic translation actions. For ex-
ample, Asc2 In t 2 reads two Ascii characters (which must be numerals) and
produces an integer value.

From the specification of an external message reader, the MSL translator
not only compiles a message parser tha t produces a logical representation, but
also infers the inverse mapping from logical to external representation and the
logical to user mappings. For either the external to logical or the user to logical
translat ion, the semantics must prescribe checking of constraints on values of
fields in the message. Constraints are of two kinds:

- Subrange specifications on an individual field. These are specified in a field
type and are t ranslated as range checks;

- Inter-field dependencies. These can involve conjunctions or disjunctions of
boolean-valued expressions tha t refer to values in different fields.

A generator for M T V modules has been implemented with the technology
described in this paper and evaluated in an experiment whose results will be
repor ted elsewhere.

559

9 C o n c l u s i o n s

We have successful])" demonstra ted an automated transformation system tha t
compiles practical software modules from the semantic specification of a domain-
specific application design language. The integrated suite of transformation and
translation tools represents a new level of design automation for software. Al-
though there is much more tha t can be done to further improve the performance
of generated code, the prototype system demonstrates the feasibility of this ap-
proach.

The implementation of type-parametric theorems as transformation tactics
for HOT has not been done before. It remains to be seen whether algebra-specific
transformations can be incorporated in the same tool by referring to a database
of algebraic taws. In the current system, algebra-specific transformations are
performed by term-rewriting, which is an entirely different paradigm.

A c k n o w l e d g e m e n t s

We wish to acknowledge the generous help of Andrew Tolmach, who shared
with us his extensive knowledge and valuable insight of Standard ML language
technology, and of Satnam Singh, who furnished expert advice on Ada code
generation issues. We are grateful to Laura McKinney and Alexei Kotov, who
provided management and measurement of our project, essential to its success.

R e f e r e n c e s

1. J. M. Bell and J. Hook. Defunctionalization of typed programs. Technical report,
Department of Computer Science and Engineering, Oregon Graduate Institute,
Feb. 1994.

2. F. Betlegarde. Program transformation and rewriting. In Proceedings of the fourth
conference on Rewriting Techniques and Applications, vol. 488 of LNCS, pages
226-239, Berlin, 1991. Springer-Verlag.

3. F. Beltegarde. A transformation system combining partial evaluation with term
rewriting. In Higher Order Algebra, Logic and Term Rewriting (HOA '93), vol. 816
of Lecture Notes zn Computer Science, pages 40-58. Sprlnger-Verlag, Sept. 1993.

4. F. Bellegarde. Termination issues in automated synthesea. Submitted to RTA95,
Sept. 1994.

5. R. S. Bird. An introduction to the theory of lists. In M. Broy, editor, Logic of
Programming and Calculi of Discrete Design, vol. 36 of NATO Series F. Springer-
Verlag, 1986.

6. W. Butte. Reeursive Programming Techniques: Addison-Wesley, 1975.
7. W. Chin and J. Darlington. Higher-order removal: A modular approach. Unpub-

lished work, 1993.
8. W.-N. Chin. Safe fusion of functional expressions. In Proc. of 1992 ACM Conf.

on Lisp and Functional Programming, pages 11-20, June 1992.
9. J. Darlington and R. Burstall. A system which automatically improves programs.

Acta Informatica, 6(1):41-60, 1976.
10. N. Dershowitz. Synthesis by completion. In Proceedings of the Ninth International

Joint Conference on Artificial Intelligence, pages 208-214, Los Angeles, 1985.

560

11. N. Dershowitz. Completion and its applications. In Resolution of Equations in
Algebratc Structures. Academic Press, New York, 1988.

12. M.M. Fokkinga. Law and Order in Algorithmics. PhD thesis, University of
Twente, Twente, The Netherlands, Feb. 1992.

13. T. Johnsson. Lambda lifting: transforming programs to recursive equations. In
J.-P. Jouannand, editor, Functiona Programming Languages and Computer Archi-
tecture, vol. 201 of Lecture Notes in Computer Science, pages 190-203. Springer
Verlag, 1985.

14. R. B. Kieburtz and J. Lewis. Algebraic Design Language--Preliminary definition.
Technical report, Pacific Software Research Center, Oregon Graduate Institute of
Science & Technology, Jan. 1994.

15. G. Malcolm. Homomorphisms and promotability. In J. L. A. van de Snepscheut,
editor, Mathematics of Program Construction, vol. 375 of Lecture Notes in Com-
puter Science, pages 335-347. Springer-Verlag, June 1989.

16. L. Meertens. Algorithmics--towards programming as a mathematical activity. In
Proc. of the CWI Symbposium on Mathematics and Computer Science, pages 289-
334. North-Holland, 1986.

17. E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In Proe. of 5th ACM Conf. on Functzonal
Programming Languages and Computer Architecture, vol. 523 of Lecture Notes in
Computer Science, pages 124-144. Springer-Verlag, Aug. 1991.

18. R. Milner, M. Torte, and R. Harper. The Definition of Standard ML. MIT Press,
Cambridge, Massachusetts, 1990.

19. P. D. Mosses. Sis--semantics implementation system: reference manual and user
guide. Technical Report DAIMI MD-30, Computer Science Department, University
of Aarhus, 1979.

20. J. C. Reynolds. Definitional interpreters for higher-order programming languages.
In ACM National Conference, pages 717-740. ACM, 1972.

21. T. Shear& Optimizing algebraic programs. Technical Report OGI-CSE-94-004,
Oregon Graduate Institute of Science & Technology, Jan. 1994.

22. T. Sheard and L. Fegaras. A fold for all seasons. In Proceedings of the conference
on Functional Programming and Computer Architecture, Copenhagen, June 1993.

23. D. Volpano and R. B. Kieburtz. Software templates. In Proceedings Eighth In-
ternational Conference on Software Engineering, pages 55-60. IEEE Computer
Society, Aug. 1985.

24. D. Volpano and R. B. Kieburtz. The templates approach to software reuse. In
T. J. Biggersstaff and A. J. Perlis, editors, Software Reusability, pages 247-255.
ACM Press, 1989.

25. P. Wadler. Deforestation: Transforming programs to eliminate trees. In 2nd Eu-
ropean Symposium on Programming ESOP'88, vol. 300 of LNCS. pages 344-358,
Springer-Verlag, 1988.

