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Abstract Meta-analysis is an influential evidence synthesis technique that summarizes a body

of research. Though impactful, meta-analyses fundamentally depend on the literature being suf-

ficiently large to generate meaningful conclusions. Power analysis plays an important role in de-

termining the number of studies required to conduct a substantive meta-analysis. Despite this,

power analysis is rarely conducted or reported in published meta-analyses. A significant barrier

to the widespread implementation of power analysis is the lack of available and accessible soft-

ware for calculating statistical power for meta-analysis. In this paper, I provide an introduction to

power analysis and present a practical tutorial for calculating statistical power using the R package

metapower. The main functionality includes computing statistical power for summary effect sizes,

tests of homogeneity, categorical moderator analysis, and subgroup analysis. This software is free,

easy-to-use, and can be integrated into a continuous work flow with other meta-analysis packages

in R.
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Introduction

Meta-analysis is a powerful statistical tool widely used

across a broad range of scientific disciplines to quanti-

tatively summarize an area of research. By identifying,

synthesizing, and summarizing empirical research find-

ings, meta-analyses increase generalizability and improve

effect size estimates of the existing literature. Evidence

synthesis methods like meta-analysis are widely regarded

as the highest form of scientific evidence, and routinely

inform policy decisions, clinical practice, and evidence-

based medicine (Gopalakrishnan & Ganeshkumar, 2013).

Although meta-analyses are highly influential, this tech-

nique is resource intensive and time-consuming, often tak-

ing at least a year to complete (Borah, Brown, Capers, &

Kaiser, 2017). In addition to logistical demands, conducting

ameta-analysis before enough studies are available can re-

sult in inaccurate and misleading conclusions, especially

when the number of studies is small (Jackson & Turner,

2017; Thorlund et al., 2011). Therefore, power analysis

plays an important role in the planning stage and is nec-

essary to determine the feasibility of a meta-analysis.

The goal of power analysis in primary and meta-

analytic research is to determine the number of partici-

pants or number of studies, respectively, needed to have

a reasonable chance at rejecting the null hypothesis given

a statistical test. For meta-analysis, these statistical tests

include estimating a summary effect size that is different

than zero (e.g., size of association between variables, group

differences on a variable), evaluating whether there are

group differences in effect size between different types

of studies (e.g., children vs. adult studies), or evaluat-

ing whether there are subgroup differences in effect size

within studies (e.g., men vs. women). By postulating what

we expect to find, it becomes possible to calculate statisti-

cal power - the probability of rejecting the null hypothesis

when, in fact, the alternative hypothesis is true.

For primary research, power analysis is used at the

planning and design stage of a study to determine the num-

ber of participants required to detect a substantive effect

given an expected effect size. Widely considered an es-

sential part of research design, apriori power analyses are
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often required for federally funded research grants and

randomized controlled trials (National Institute of Health,

2018). The inclusion of power analysis in evidence syn-

thesis methods like meta-analysis is also critical because

underpowered meta-analyses lack precision in estimating

a summary effect size - especially when individual stud-

ies vary considerably - which can lead to conclusions that

are incorrect (Thorlund et al., 2011; Pigott & Polanin, 2020;

Jackson & Turner, 2017). Although the necessary underly-

ing theoretical statistics, equations, and procedures have

been articulated (Hedges & Pigott, 2001, 2004; Jackson &

Turner, 2017; Pigott, 2012; Valentine, Pigott, & Rothstein,

2009), power analyses are rarely considered, conducted, or

reported in published meta-analyses.

A significant barrier to the widespread implementa-

tion of power analysis in meta-analysis is the lack of easy-

to-use software. While numerous software options like

G*power have been developed to compute power calcu-

lations for primary research, allowing for widespread im-

plementation of power analysis in primary research (Faul,

Erdfelder, Lang, & Buchner, 2007), analogous software op-

tions do not exist for meta-analysis, despite similarity in

procedure. This means that to compute statistical power

for meta-analysis, researchers must manually perform the

calculations, use an online calculator, or utilize a user-

defined script (e. g., Cafri, Kromrey, & Brannick, 2009).

Such resources can be limited in functionality and difficult

to integrate into a reproducible work flow.

To fill this methodological gap, I developedmetapower,

an R package for computing statistical power for meta-

analysis. This package supports power analysis for (1)

summary effect sizes; (2) tests of homogeneity; (3) mod-

erator analysis; and (4) subgroup analysis. Additionally,

power calculations are available for fixed- and random-

effects models and can accommodate multiple types of ef-

fect sizes (i. e., Cohen’s d, correlation coefficient, and odds

ratio). metapower was designed to be user-friendly (i. e.,

minimal coding) and accessible (i. e., free) to researchers

with various degrees of expertise including students, prin-

cipal investigators, applied researchers, non-statisticians,

and those with little programming experience. To com-

pliment this goal, I also developed a fully functional,

web-based application for users unfamiliar with R (jason-

griffin.shinyapps.io/shiny_metapower). In what follows,

I overview the major components of power analysis for

meta-analysis, provide guidance on how to make decisions

about anticipated parameter values, and provide a step-by-

step tutorial on how to conduct a power analysis for meta-

analysis usingmetapower.

Power analysis for meta-analysis

Like traditional power analysis, computing statistical

power for a meta-analysis requires making informed as-

sumptions about expected findings. In primary research,

this includes the effect size magnitude and sample size of

an individual study. For meta-analysis, the unit of analy-

sis is an individual study (rather than a participant); there-

fore, power is calculated based on expected values for ef-

fect size magnitude, sample size, the number of studies,

and the amount of between-study variability. Generally

speaking, power can be calculated with four values: effect

size magnitude, study sample size, number of studies, de-

gree of heterogeneity.

Study-specific effect sizes and variances

Meta-analyses can be conducted using different types of ef-

fect sizes, including Cohen’s d, correlation coefficient, and

odds ratio (Pigott, 2012). Importantly, different effect size

metrics generally reflect specific types of research ques-

tions. For example, the mean difference between two inde-

pendent groups can be evaluated with Cohen’s d, whereas

a correlation coefficient reflects the within-group associa-

tion between two continuous variables. The logic for calcu-

lating statistical power is similar for each of these as the in-

put data formeta-analysis are the study-specific effect sizes

and variances. However, the distributional characteristics

for some effect sizes are unfavorable for quantitative syn-

thesis and must be transformed for meta-analysis and as a

consequence, for power analysis as well. Cohen’s d can be

used directly in meta-analysis as computed with

ESd =
M2 −M1

sp
(1)

vd =
n1 + n2

n1n2
+

ES2
d

2(n1 + n2)
(2)

whereM2 andM1 are the two group means and sp is the
pooled standard deviation. In contrast, the correlation co-

efficient, r, is not normally distributed; thus, meta-analysis

of correlation coefficients use Fisher’s r-to-z transforma-

tions and the respective variance given by

ESrz = 0.5ln

[

1 + r

1− r

]

(3)

vrz =
1

n− 3
(4)

Odds ratios are also not normally distributed and range

from 0 to∞. As a result, meta-analyses of odds ratios are
conducted using the log odds ratio, ESlog(OR), and respec-

tive variance, vlog(OR), given by

ESlog(OR) = ln

(

ad

bc

)

(5)
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vlog(OR) =
1

a
+

1

b
+

1

c
+

1

d
(6)

Throughout the remainder of this paper, equations will

refer to effect size, ES, and variance, v, whose values de-
pend on the type of effect size as shown above.

Power for summary effect size

In meta-analysis, input data reflects study-specific effect

sizes (ESi) and variances (vi) for ith study where i = 1,. . . ,
k, where k is the total number of studies. These input data

are statistically combined to estimate a weighted summary

effect size θ and variance v•. The goal of power analysis is
to determine the probability of correctly rejecting the null

hypothesis (e.g., θ = 0) in favor of an expected alterna-
tive, where the alternative is based on what researchers

expect to find (e.g., θ = 0.5). Since providing guesses about
each study-specific effect size and variance is nonviable, it

is assumed that overall effect size, ES = ESi, and overall

variance, v = vi, for ith study where i = 1,. . . ,k. Further-
more, since v depends on vi and within-study sample sizes
ni, power calculations also assume that studies have the

same sample sizes, such that n = ni for ith study where

i = 1,. . . , k. In other words, prior expectations should be
based on a “typical” study that is most characteristic of the

prospective meta-analysis (Hedges & Pigott, 2001; Jackson

& Turner, 2017).

Fixed-effects model

Fixed-effects models assume that a single common effect

size underlies all study-specific effect sizes in a meta-

analysis. To calculate power under this assumption, we

first posit a value for the expected overall effect size, ES,
within-study sample size, n, and the total number of stud-
ies to be included in the meta-analysis, k (Hedges & Pig-
ott, 2001). With these expected values, it is possible to de-

rive an alternative distribution representing the expected

outcome, which can be compared to the null distribution.

This alternative is given by the non-centrality parameter,

λ, which is based on the value of the expected summary ef-
fect size θ and variance v•. The weighted summary effect
size reflects the expected magnitude of the effect size such

that θ = ES, whereas the weighted variance v• = v/k,
where v reflects the the common variance (see Eq. 2, 4, &
6), and k is the total number of studies (Hedges & Pigott,

2001). With θ and v•, the non-centrality parameter λ can
be calculated with

λ =
θ − 0√

v•
(7)

This non-centrality parameter can then be compared to the

null distribution to derive the probability of rejecting the

null hypothesis in favor of the expected alternative. For a

summary effect size, the null hypothesis is that the sum-

mary effect size equals zero (H0 : θ = 0), and is based

on a standard normal distribution (M = 0, SD = 1), whereas

the expected alternative distribution has a mean equal to

λ and variance 1. The statistical power for this test is given
by calculating the area under the alternative distribution

that exceeds the critical value of the null distribution writ-

ten as

power = 1− Φ(cα − λ) (8)

where Φ(x) is the cumulative distribution function, cα is
the specified critical value, and λ is the non-centrality pa-
rameter. For a two-tailed test, the area under the curve

that is greater or less than |cα/2| is written as

power = 1− Φ(cα/2 − λ) + Φ(cα/2 − λ) (9)

Random-effects model

Power analysis for fixed-effects models relies on the strict

assumption that a single effect size underlies all individual

studies included in the meta-analysis. This strong assump-

tion is difficult to justify in the majority of cases because

studies vary considerably with regard to their population,

inclusion criteria, methodology, and measurement. Under

random-effects models, power analysis is more complex

because variation among effect sizes is the result of within-

study variance, v, and the estimated between-study vari-
ability, τ2. To account for this additional source of vari-
ation, the conventional approach has been to posit differ-

ent values of τ2 and incorporate into the weighted vari-
ance v• = (v + τ2)/k. However, τ2 is a parameter that is
estimated with some degree of uncertainty and the afore-

mentioned method does not account for this uncertainty.

Importantly, when τ2 is estimated with large uncertainty
(e.g., in the case of meta-analysis with few studies), statis-

tical power is reduced compared to when τ2 is estimated
with greater certainty. Considering the median number of

studies included in meta-analyses is estimated to be three

(Davey, Turner, Clarke, & Higgins, 2011), accounting for

the uncertainty of τ2 is important for obtaining accurate
power calculations (Jackson & Turner, 2017).

To account for uncertainty in the estimation of τ2, Jack-
son and Turner (2017) developed an approach to com-

pute statistical power for random-effects meta-analysis

that only requires researchers to posit values for the sum-

mary effect size, within-study sample size, total number

of studies, and degree of between-study variability (i. e.,

τ2). However, numerical estimates of τ2 are difficult to
interpret by themselves especially apriori; therefore, it is

recommended to think about between-study variability in

terms of the percent of variation that is due to heterogene-

ity among effect sizes rather than sampling error (i. e., I2).
Values equal to 25%, 50%, and 75% are thought to reflect

small, moderate, and large degrees of heterogeneity re-

spectively (Higgins & Thompson, 2002) and can be written
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as

I2 =
τ2

τ2 + v
(10)

With this information, the non-centrality parameter λ

can be calculated (see Eq. 7) and the cumulative distribu-

tion function of the test statistic can be obtained (Jackson

& Turner, 2017). Specifically, the cumulative distribution

function of θ is given by

P (T ≤ t) = Γ1

(

df

2
,
df(1− I2)

2

)

Φ
(

(t− λ)
√

1− I2
)

+ 2df

∫

∞

√
(1−I2)

xΦ
(

tx− λ
√

1− I2
)

χ2
df (dfx

2)dx (11)

where I2 = τ2/(v + τ2), λ = ES/
√

v/k is the non-
centrality parameter, and χ2

df (x) is the probability density
function of the chi distribution with degrees of freedom,

df = k − 1 (Jackson & Turner, 2017).1 Since the probabil-
ity of accepting the null hypothesis is given by P (T ≤ cα),
power is given by subtracting this value from 1, which is

simply written as

power = 1− P (T ≤ cα) (12)

For a two-tailed test, the logic is similar such that we

evaluate the area under the curve that is either greater or

less than |cα/2| written as
power = 1− P (T ≤ cα/2)− P (T ≤ −cα/2) (13)

Power for test of homogeneity

Meta-analysis software commonly reports a measure of

homogeneity among the individual study effect sizes. The

homogeneity statistic, Cochrane’s Q, evaluates whether the

amount of variation in individual effect sizes is greater

than expected from just sampling error alone for fixed-

effects models (Cochran, 1954). For random-effects mod-

els, Q evaluates whether between-study variability τ2 is
greater than 0. As a result, statistical power can be com-

puted for these tests given expectations about the amount

of variation within (fixed-effects) and between (random-

effects) a group of studies.

Fixed-effects model

Computing power for a test of homogeneity requires an

expectation of how much the individual effect sizes differ

from the overall effect size (Pigott, 2012). This expectation

can be instantiated as an alternative distribution, which

can be compared to the null distribution to calculate the

statistical power of the test. This alternative distribution is

given by a non-centrality parameter, λ, written as

λ =

k
∑

i=1

wi(θi − θ)2 (14)

where θ is the overall effect size, θi are the study-specific
effects sizes, and w is common inverse variance weight,
w = 1/v. In this context, λ depends on the difference be-
tween the study-specific effect sizes and the overall effect

size (i. e., θi − θ). Since this is unknown prior to data col-
lection, values for this difference must be provided. Pig-

ott (2012) shows this can be done by positing the average

difference between the study-specific effect sizes and the

overall effect size in terms of standard deviation units (i. e.,√
v•). In this case, λ can be rewritten replacing θi − θ

with the expected standard deviation, sd, which ultimately
becomes just the square of the standard deviation shown

here

λ =
k

∑

i=1

w(sd
√
v•)

2

= kwv•(sd)
2

=
kv•(sd)

2

v

=
k

v
× v

k
(sd)2

= sd2

(15)

The test of homogeneity is based on Q, which follows a

chi-square distribution and evaluates the amount of vari-

ation across study-specific effect sizes (Hedges & Pigott,

2004). Here, the null hypothesis is that all effect sizes es-

timate a common effect (H0 : θ1 = ... = θk = θ). An
alternative is that the study-specific effect sizes differ by

some value of sd, which is reflected in the computation of
λ (see Eq. 15). Therefore, the statistical power for this test
is the area under the alternative distribution with mean

λ that that exceeds cα from a non-central chi-square distri-
bution with a non-centrality parameter λ and k−1 degrees
of freedom written as

power = 1− F (cα | k − 1;λ) (16)

1The lower incomplete gamma function is defined as Γ1(a, x) =
1

Γ(a)

∫
x

0 ta−1e−tdt.

❚he ◗uantitative ▼ethods for Psychology 272

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.p024


¦ 2021 Vol. 17 no. 1

Random-effects model

For random-effects models, the test of homogeneity eval-

uates whether there is significant between-study variabil-

ity among the study-specific effect sizes (i. e., τ2 6= 0).
Given that τ2 and I2 are related, Eq. 10 can be rewritten
as τ2 = I2v/1 − I2 to derive values of τ2 from different
values of I2 based on the expected degree of heterogeneity
among effect sizes. Like fixed-effects models, the Q statistic

has a chi-square distributionwith k−1 degrees of freedom;
however, when the null hypothesis is false, the Q distribu-

tion is a weighted combination of chi-square distributions,

whichmust be approximated. Hedges and Pigott (2004) de-

rived one way of approximating this distribution. First, the

mean of the Q distribution is given by

µQ = cτ2 + (k − 1) (17)

where c is derived from the fixed-effects weights given by

c =

k
∑

i=1

wi −
∑k

i=1 w
2
i

∑k
i=1 wi

(18)

The variance of the Q distribution is given by

σ2
Q = 2df + 4

(

∑

wi −
∑

w2
i

∑

wi

)

τ2 + 2

(

∑

w2
i − 2

∑

w3
i

∑

wi
+

(
∑

w2
i )

2

(
∑

wi)2

)

τ2 (19)

To compute the correct approximation with a central

chi-square distribution with non-integer degrees of free-

dom, we must also compute r and s with

r = σ2
Q/µQ (20)

s = 2(µQ)
2/σ2

Q (21)

For this statistical test, the null hypothesis is that there

is zero between-study variability (i. e., H0 : τ2 = 0). The
alternative (H1 : τ2 > 0) is derived based on the ex-
pected degree of heterogeneity (i. e., I2). Therein, statis-
tical power is the area under the alternative distribution

that exceeds the critical value when τ2 = 0, given by

power = F (cα/r | s; 0) (22)

where F (x) is the cumulative distribution function of the
central chi-square distribution with s degrees of freedom,
and cα is the 100(1− α) percentile point of the chi-square
distribution with (k − 1) degrees of freedom (Pigott, 2020).

Power for moderator analysis

Heterogeneity in meta-analysis is inevitable because stud-

ies are methodologically diverse. A recent study estimated

that across 200meta-analyses, including 12,065 effect sizes,

the mean I2 value was 74%, which reflects a high degree
of heterogeneity (Stanley, Carter, & Doucouliagos, 2018).

To investigate heterogeneity, moderator analyses are con-

ducted to understand variation in the summary effect size.

Moderator variables are defined for different groups of

studies (e.g., studies that used different types of tasks).

When the primary goal is moderator analysis, power anal-

ysis is esepcially relevant to study feasibility because mod-

erator analyses require more studies than simply estimat-

ing a summary effect size.

For moderator analysis, the goal is to compare the ef-

fect sizes for between different types of studies p (e.g., chil-

dren studies vs. adult studies; Hedges & Pigott, 2004; Pigott,

2012). In this case, the number of studies, k, can be divided

into different groups of studies: k = mi + ...+mp, where

i = 1,. . . , p. Here,mi represents the number of studies that

contribute to each level of amoderator variable. For power

analysis, the individual values formi are unknown; there-

fore, it is commonly assumed that an equal number of stud-

ies contribute to each group (e.g., the number of studies are

divided evenly among levels of the moderator variable). In

meta-analysis, moderator analysis is, in essence, analogous

to a one-way analysis of variance, where the null hypoth-

esis is that the overall effect size is equal across all groups

(θ1 = θ2, ...,= θp), whereas the alternative is that at least
one group differs (Pigott, 2012). Power can be computed

for a between-groups omnibus test of homogeneity to de-

tect this alternative hypothesis. This requires posited val-

ues for the number of groups defined by the moderator ef-

fect sizes for each group, within-study sample size, total

number of studies, and degree of between-study variabil-

ity.

To compute power, the first step is to specify the num-

ber of groups, p, defined by a moderator variable. Meta-
analyses commonly evaluate moderator variables related

to age group (e.g., children, adolescents, and adults). Since

moderator analyses evaluate between-study differences in

effect sizes,mi designates the number of studies in the ith

group so that k = m1+m2+ ...+mp. Next, all group effect
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sizes θi must be specified for ith group where i = 1, ..., p,
and the overall effect size (θ) should be calculated. For
example, if is was expected that effect sizes were differ-

ent for children, adolescents, and adults (θchildren = 0.2,
θadolescents = 0.4, θadults = 0.8), the overall effect size θ
would be equal to (0.2 + 0.4 + 0.8)/3 = 0.47 across these three

groups. We must also assume that that each group is rep-

resented equally across studies (Pigott, 2012). For example,

for a meta-analysis of 30 studies, each group would be di-

vided evenly among the total number of studies, k, where

mchildren = madolescent = madult = 10.
The next step is to compute the inverse-variance

weights for each group separately computed with

wi =

mi
∑

j=1

wij (23)

where i = 1, . . . , p, and j = 1,. . . , mi, and wij = 1/vij .
With these values, an expected alternative (i. e., at least

one group effect size is different) can be derived by calcu-

lating the non-centrality parameter λ given by

λ =

p
∑

i=1

wi(θi − θ)2 (24)

where p is the number of groups, wi are the summed

weights, θi are the expected group effect sizes, and θ is the
overall effect size. Subsequently, the power for this test is

written as

power = F (cα | p− 1;λ) (25)

where F(x) is the cumulative distribution of the non-

central chi-square with p− 1 degrees of freedom and non-
centrality parameter λ. Statistical power for this test re-
flects the area under the curve that exceeds the critical

value cα.

Random-effects model

The same sequence of steps applies to random-effects mod-

els with one exception. The between-study variability, τ2

must be incorporated into the variance estimate. The con-

ventional method for this is to represent the variance as

the sum of the variance, v2ij , and between-study variabil-

ity, τ2 (Pigott, 2012). Here, the inverse variance weights
can be written as

wi =

mi
∑

j=1

1

(v2ij + τ2)
(26)

Subsequently, the non-centrality parameter and power

can be computed in the same way as the fixed-effects

method (see Eq. 24 & 25).

Subgroup analysis

In addition to evaluating group differences between stud-

ies, group differences within studies are commonly evalu-

ated with subgroup analysis. For instance, meta-analysts

may be interested in how the summary effect differs

among different subgroups of study samples, like men and

women. To evaluate power for subgroup analysis, the ba-

sic logic is similar to that of power for moderator analysis

(Pigott, 2020). The main difference is that the number of

groups, p, now reflects the number of subgroups within a
study. As a result, the common variance v is now calcu-
lated for both subgroups instead of the entire study sam-

ple. For parsimony, we make the simplifying assumption

that the subgroups are represented equally in each study

(N = 40; nmen = 20, nwomen = 20). Additionally, since the

subgroup differences are within-study comparisons, the

number of studies k is not divided among groups as in the

moderator analysis; therefore, k = m1 = m2 = ... = mp.

Aside from these specifications, power analysis for sub-

groups can be calculated using the same sequence as the

moderator analysis (see Eq. 23-26).

Determining parameter values for power analysis

As outlined above, calculating statistical power is a com-

plex procedure that requires postulations about expected

values such as the effect size, study size, number of stud-

ies, and degree of statistical heterogeneity. Importantly,

these values have a large impact on statistical power and

should not be arbitrarily selected. Instead, these expected

values should be informed decisions based on experience

and previous literature. Furthermore, expected values are

reasonable guesses which are not always correct; it is thus

important to be transparent and open about the process of

arriving at these expected values. In what follows, I pro-

vide guidance on making these informed decisions.

Effect Size Magnitude

The expected effect size has a significant impact on statisti-

cal power such that large effect sizes require fewer studies

to obtain the same power as small effect sizes. Instead of

selecting arbitraily, the expected effect size should be in-

formed by likelihood constraints, previous literature, and

experience. For example, although Cohen’s d ranges from 0

to∞, the average effect size in psychology is 0.4 with 87%
of all effects being less than 0.8 (Cumming, 2014). There-

fore, inmost psychology applications, the suggested bench-

marks of small (Cohen’s d = 0.2), moderate (Cohen’s d = 0.5),

and large (Cohen’s d = 0.8) are good starting points. How-

ever, the expected effect size should be directly informed

by previous literature when possible.

Unlike primary research, previous literature is a pre-

❚he ◗uantitative ▼ethods for Psychology 292

https://www.tqmp.org
https://crossmark.crossref.org/dialog/?doi=10.20982/tqmp.17.1.p024


¦ 2021 Vol. 17 no. 1

requisite to meta-analysis; therefore, access to previous es-

timates of a particular effect from individual studies are

always available. For example, while planning a meta-

analysis, a brief examination of the literature can provide

some estimates of a particular effect. Note that studies will

not always report effect size information, but they can be

calculated manually (see Eq. 1, 3, 5). If numerous stud-

ies report a Cohen’s d between 0.2 and 0.6, 0.5 would be

a reasonable guess for the expected effect size of a meta-

analysis. In contrast, in some areas of psychology, like psy-

chopharmacology, effect sizes can be considerably larger

(Cohen’s d = 5). It is also important to consider that the

published literature tends to overestimate the true mag-

nitude of effects due to publication bias, or the tendency

for articles to be published based on statistical significance

(Gelman & Carlin, 2014). In sum, researchers evaluating

the feasibility of a prospective meta-analysis can make in-

formed judgments based on previous estimates and gen-

eral knowledge of the published literature.

Study Size

Power analysis also requires expected values of the “typ-

ical” sample size of a study to be included in the meta-

analysis, which varies considerably across different re-

search areas (e.g., Hedges & Pigott, 2001; Jackson & Turner,

2017). For this expected value, area-specific contextual

knowledge can provide reasonable guesses about the typ-

ical study size. For example, for research questions that

can be addressedwith standard questionnaires in large on-

line studies, study sizes may be considerably large (e.g., N

= 500); however, research questions related to those with

neurodevelopmental disorders are likely much smaller

(e.g., N = 40). Furthermore, there can be considerable vari-

ability in study sizes among studies in a specific area of re-

search. For example, studies of neurodevelopmental disor-

ders are generally small (e.g., N = 40), but studies evaluat-

ing specific subgroups of the population (e.g., those with a

co-morbid condition) or using a specific methodology (e.g.,

eye-tracking) can be even smaller (e.g., N = 20). There-

fore, the expected study size should be highly specific to

the meta-analytic research question.

Number of Studies

How many studies are needed to conduct a meta-analysis?

The answer lies at the core of power analysis: to deter-

mine if a given research question has enough published

studies to warrant conducting a meta-analysis. As shown

in the previous section of the paper, the number of stud-

ies required for adequate meta-analytic power depends on

the expected effect size, study size, Type 1 error probabil-

ity, test directionality (1-tailed vs. 2-tailed), type of statis-

tical test (e.g., summary effect size, moderator analysis),

and model assumptions (fixed- vs. random-effects model).

For instance, under a fixed-effects model, which assumes

that variability in effect sizes is purely due to sampling

error, the number of studies needed to conduct a meta-

analysis that has more power than an individual study

is two (Valentine et al., 2009). However, in psychology,

the fixed-effects assumption is rarely justified and difficult

to defend; therefore the random-effects model, which as-

sumes that effect size variability is due to sampling vari-

ability and between-study differences, is widely used. Un-

der the random-effects model, Jackson and Turner (2017)

proposed a general rule of thumb that at least five studies

are required for a meta-analysis that is more informative

than the largest individual study of that meta-analysis.

Fortunately, before researchers conduct a meta-

analysis, there is generally some notion regarding the size

of the published literature. For instance, published narra-

tive or systematic reviews of the literature make estimat-

ing the total number of published studies trivial. However,

for newer areas of research, where fewer studies have

been published, it can be difficult to anticipate the total

number of published studies on a given research question.

If a previous systematic review of the literature included

40 empirical studies, it is reasonable to assume that at least

40 studies will be included in a meta-analysis. However,

in a new area of research where the meta-analyst is only

aware of 5 empirical studies, and no previous reviews have

been conducted, it may be reasonable to assume that 5-10

studies will be included in the meta-analysis. For random-

ized controlled trials, which are commonly registered pub-

licly (e.g., clinicaltrials.gov), researchers can proactively

search these databases to get an idea of how many stud-

ies would be included in a meta-analysis. Likewise, a pre-

liminary search of journal databases can provide an ap-

proximation for the number of total studies. In sum, deter-

mining the size of a literature pertinent to a specific meta-

analytic research question may require extensive knowl-

edge of the field or a brief search of the literature to arrive

at a reasonable guess for the anticipated number of stud-

ies.

Statistical Heterogenity

In addition to these expected quantities, statistical power is

greatly impacted by between-study variation in effect sizes

(i. e., τ2). For example, more data are required for meta-
analyses with highly variable effect sizes to achieve the

same statistical power as those with highly homogeneous

effect sizes. Theoretically, between-study variation can be

incorporated to estimate statistical power, but values of τ2

are difficult to interpret and anticipate. As a result, esti-

mates of τ2 can be estimated from another index of het-
erogeneity (i. e., I2; Higgins & Thompson, 2002). The I2
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statistic is a simple and intuitive index of statistical hetero-

geneity that quantifies the percentage of variation across

studies that is not due to sampling variability (see Eq. 10).

For fixed-effects models, all variation in effect sizes is

attributed to sampling error and thus I2 = 0. However, this
assumption is only justified in very specific situations. In

the wake of the replication crisis, there has been increased

emphasis on conducting direct replications. Replication

studies attempt to replicate the methodology and results

of a previous study in a new sample. Here, it may be rea-

sonable to assume that all studies were measuring a single

common effect size, and calculate statistical power under

a fixed-effects model (i. e., assuming that I2 = 0). Another
example may be the meta-analysis of multiple randomized

controlled trials of the same treatment. It is common for

there to bemultiple studies evaluating the efficacy of a spe-

cific treatment for a specific medical condition; in these sit-

uations, a fixed-effects model may also be justified given

the homogeneity in methodology and implementation.

The vast majority of meta-analyses are conducted un-

der a random-effects model, which assumes that some per-

centage of between-study variation is not due to sampling

error (i. e., I2 > 0). Anticipating values of I2 can be diffi-
cult, but standard conventions of I2 values equal to 25%,
50%, and 75% reflect small, moderate, and large degrees

of heterogeneity have been established (Higgins & Thomp-

son, 2002). In addition, recent evidence across 200 meta-

analyses in psychology, including 12,065 effect sizes, show

that the average I2 value was 74% (Stanley et al., 2018), in-
dicating large heterogeneity among effect sizes was com-

mon. Thus, unless researchers have a strong prior belief

that heterogeneity will be small, a conservative approach

would be to expect a moderate to high degree of hetero-

geneity as reflected in I2 values of 50% or 75%. In sum, all
of aforementioned parameter values should be informed

by previous literature when possible, but there are some

general rules of thumb when informed decisions cannot

be made.

Tutorial: Using metapower to calculate statistical

power for meta-analysis

metapower is a freely available open source R pack-

age. All power analysis calculations were derived

from the most recent theoretical statistics and method-

ology. This includes power analysis for summary effect

sizes (Hedges & Pigott, 2001; Jackson & Turner, 2017),

test of homogeneity (Pigott, 2012), moderator analysis

(Hedges & Pigott, 2004), and subgroup analysis (Pigott,

2020). All source code is publicly available on github

(github.com/jasonwgriffin/metapower). metapower can

be downloaded in R (cran.r-project.org) or Rstudio (rstu-

dio.com). Users must have R version 3.6.0 or later. Because

metapower is hosted on the Comprehensive R Archive Net-

work (CRAN.R-project.org/package=metapower), it can be

downloaded and attached directly in Rstudio using

install.packages("metapower")

library(metapower)

Example Research Question

Researchers are often interested in using meta-analysis to

quantify the group difference in some outcome (e.g., work-

ing memory, face recognition, processing speed) between

two independent groups (e.g., clinical population vs. typ-

ically developing, men vs. women). Since this type of re-

search question reflects the mean difference between two

independent groups on some outcome measure, it would

be most appropriate to compute power based on Cohen’s

d. For this example, we will assume a previous review

of relevant literature included 20 studies, that had study

sizes around 40, and routinely reported effect sizes around

0.4. In addition, the outcome was measured across a wide

variety of tasks; therefore, there is likely to be consider-

able statistical heterogeneity across studies (e.g., I2 = 75%).
With this contextual knowledge, we can compute statistical

power given these expected values.

Summary effect size

To calculate statistical power for detecting a mean differ-

ence between between the two groups, use the mpower()

function with the aforementioned expected values while

specifying the effect size type (es_type = d) as shown

below

my_power <- mpower(effect_size = 0.4,

study_size = 40,

k = 20 ,

i2 = 0.75,

es_type = "d")

summary(my_power)

## Power Analysis for Meta-analysis

##

## Effect Size Metric: d

## Expected Effect Size: 0.4

## Expected Study Size: 40

## Expected Number of Studies: 20

##

## Estimated Power: Mean Effect Size

##

## Fixed-Effects Model 0.9998643

## Random-Effects Model (i2 = 75%): 0.7956667

The first section of the output shows information about

the user-specified input parameters. Note that for Cohen’s

d the study size reflects the entire sample, which are di-
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vided equally per group. The second section presents the

summary of the power analysis. Statistical power is shown

under a fixed- and random-effects model. In this example,

there appears to be adequate power to detect a meaningful

summary effect size (i. e., 99.99%) according to standard

power conventions (i. e., 80%). Under a random-effects

model (I2 = 75%), statistical power is 79.57%, indicating
even with the expectation of considerable between-study

variation, the published literature is likely sufficiently ma-

ture to reliably detect a statistically significant difference

between the two groups.

Test of homogeneity

To compute statistical power for the test of homogeneity,

which is often conducted by default in meta-analysis soft-

ware, use homogen_power() with the same expected

parameter values as before

my_homogen_power <- homogen_power(

effect_size = 0.4,

study_size = 40,

i2 = .75,

k = 20,

es_type = "d")

summary(my_homogen_power)

## Power Analysis for Test of Homogeneity

## in Meta-analysis

##

## Effect Size Metric: d

## Expected Effect Size: 0.4

## Expected Study Size: 40

## Expected Number of Studies: 20

##

## Estimated Power: Test of Homogeneity

##

## Fixed-Effects Model (SD = 1) 0.0717026

## Fixed-Effects Model (SD = 2) 0.1612124

## Fixed-Effects Model (SD = 3) 0.3672535

## Fixed-Effects Model (SD = 4) 0.660215

## Fixed-Effects Model (SD = 5) 0.8901375

##

## Random-Effects Model (i2 = 75%): 1

The results of this power analysis are reported sepa-

rately for fixed- and random-effects models. This is be-

cause under fixed-effects models, the test of homogeneity

evaluates if all effect sizes measure the same underlying

true effect. Here, statistical power is presented for dif-

ferent standard deviations among the overall and study-

specific effect sizes. As shown for this example, if effect

sizes are highly variable (i. e., SD = 4), the power for test
of homogeneity is large (66.02%); however, if effect sizes

are less variable (i. e., SD = 1), then power is considerably
lower (7.17%). This is because power to detect heterogene-

ity is increased when study-specific effects sizes are on av-

erage 4 standard deviations from the overall mean effect

size.

For random-effects models, this test evaluates if

between-study variability is greater than zero. As shown,

under assumptions of large heterogeneity (I2 = 75%)
there is 100% power to detect significant heterogeneity

(i. e., τ2 > 0). Taken together, this summary output allows
users to view power calculations under different model

assumptions, varying within-study homogeneity, and for

user-specified heterogeneity.

Moderator analysis

For this example, researchers are interested in the group

difference in some outcome between two independent

groups, which is expected to be moderate in magnitude

(Cohen’s d = 0.4). However, they may also want to eval-

uate if this group difference is moderated by the type of

stimuli (e.g., verbal vs. visual). Specifically, researchers an-

ticipate that the effect size will be smaller for verbal (Co-

hen’s d = 0.2) compared to visual (Cohen’s d = 0.6) stimuli.

Since the number of moderator categories is 2 (i. e., ver-

bal, visual), it is assumed that these types of studies are

represented equally (i. e., kverbal = 20; kvisual = 20) among
the total number of studies (ktotal = 40). To calculate sta-
tistical power to detect the difference between these two

tasks, use mod_power() with at least five arguments: (1)

number of groups (n_groups = 2), (2) effect sizemagni-

tudes (effect_sizes = c(.2,.6), (3) study size, (4)

total number of studies, and (5) effect size metric.

my_mod_power <- mod_power(n_groups = 2,

effect_sizes = c(.2,.6),

study_size = 40,

k = 20,

i2 = .75,

es_type = "d")

summary(my_mod_power)

## Power Analysis for Moderator Analysis:

##

## Effect Size Metric: d

## Number of Categorical Groups: 2

## Groups:

## Expected Effect Sizes: 0.2 0.6

## Expected Study Size: 40

## Expected Number of Studies: 20

##

## Esimated Power: Moderator Analysis

##

## Fixed-Effects Model: 0.7997139

## Random-Effects Model (i2 = 75%): 0.2882369

There is 79.97% power to detect a meaningful group
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difference in effect sizes between verbal and visual task

paradigms under a fixed-effects model. Under a random-

effects model (I2 = 75%), power is considerably lower
(i. e., 28.82%). Therefore, if the primary goal of the meta-

analysis was to test the difference between verbal and vi-

sual task paradigms, more studies would be needed to have

reasonable power at detecting these between-study differ-

ences.

Subgroup analysis

Researchers may also wish to test within-study group dif-

ferences or subgroup differences. For example, in addi-

tion to the task paradigm, researchers may expect group

differences between men and women within a study. In

this case, researchers may expect that the summary effect

size is larger for men (Cohen’s d = 0.7) than women (Co-

hen’s d = 0.1). To compute power to detect these subgroup

differences, use the expected parameter values from be-

fore such that the number of studies is 20, the study size

is 20 (i. e., 10 men, 10 women), and the overall effect is

0.4. Also, we must specify that the number of subgroups is

2 (n_groups = 2) and specify both subgroup effect sizes

(effect_sizes = c(.7,.1)) for men andwomen re-

spectively. To do this, use subgroup_power() with the

aforementioned values

my_subgroup_power <- subgroup_power(

n_groups = 2,

effect_sizes = c(.7,.1),

study_size = 40,

k = 20,

i2 = .75,

es_type = "d")

summary(my_subgroup_power)

## Power Analysis for Subgroup analysis:

##

## Effect Size Metric: d

## Number of Subgroups: 2

## Groups:

## Expected Effect Sizes: 0.7 0.1

## Expected Study Size: 40

## Expected Number of Studies: 20

##

## Esimated Power to detect subgroup differences

##

## Fixed-Effects Model: 0.987483

## Random-Effects Model (i2 = 75%): 0.5558747

Under these assumptions, there is reasonable power to

detect subgroup differences between men and women un-

der a fixed-effects models (i. e., 98.75%). However, there

is considerably less power under a random-effects model

(i. e., 55.59%). Therefore, like the calculated power for

moderator analysis, the literature may not be sufficiently

mature to test these within-study group differences.

Visualizing power analysis

Power analysis require researchers to make numerous as-

sumptions about effect sizes, sample sizes, number of stud-

ies, and degree of heterogeneity that they expect to find.

However, this information can sometimes be very difficult

to know before data collection, and even if researchers

have a good estimation informed by experience and previ-

ous literature, these assumptions can often be wrong. As a

result, it is extremely informative to evaluate power curves

across a range of values so that researchers can make

informed decisions about the feasibility of a prospective

meta-analysis. To facilitate this, metapower uses four plot-

ting functions for each type of power analysis described

above.

These functions include plot_mpower(),

plot_homogen_power(), plot_mod_power(), and

plot_subgroup_power(). To use these, simply wrap

the power analysis object with these plotting functions

(e.g., plot_mpower(my_power)). As shown in Figure 1,

power curves under a fixed- and random-effects model for

the summary effect size are presented as a function of the

total number of studies. For the test of homogeneity, power

curves are shown for fixed- and random-effects separately

since the former tests within-study homogeneity, whereas

the latter evaluates between-study variability (see Figure

2). Moderator and subgroup power analyses display power

curves under fixed- and random-effects models for the re-

spective between-study or within-study group differences

(see Figures 3 and 4).

Visualization in power analysis is an essential tool for

determining the feasibility of a meta-analysis. This is be-

cause statistical power is conditional on what we expect to

find. However, our expectations can be wrong. In our ex-

ample, we anticipated that the summary effect size would

be 0.4, total number of studies would be 20, and average

sample size would be 40. However, it is completely plau-

sible that when conducting the meta-analysis, we find 40

studies. As shown in Figure 1, this would have a major

impact on statistical power. By understanding statistical

power across a range of possible outcomes, researchers

can make informed decisions on the feasibility of a meta-

analysis by being more or less conservative based on plau-

sible range of outcomes.

Shiny Application

To maximize accessibility for users that are unfamiliar

with the R programming environment, I developed a

fully functional shiny application for metapower (https://

jason-griffin.shinyapps.io/shiny_metapower/). Here, users
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Figure 1 Power curves generated from plot_power() for estimating a summary effect size. Power curves reflect

statistical power as a function of the number of studies, k. By default, power curves are shown for the user-specified

effect size under a fixed- and random-effects model. The range of values for the number of studies axis is 5 times that

specified by the user. The point along the power curve reflects the current power estimate given the user-specified input

parameters. The dashed horizontal line reflects 80% power.

can access the web-based application to set parameters ac-

cording to their research question and calculate statistical

power for each of the statistical tests described here as well

as visualize the respective power curves (see Figure 5).

Discussion

Power analysis plays an important role in determining

the feasibility of prospective meta-analyses. Despite this,

power analyses are rarely conducted in published meta-

analyses. Two major barriers to the routine inclusion of

power analyses in meta-analysis include: the complexity

of calculating statistical power and the absence of avail-

able software for carrying out such power calculations.

As demonstrated, power calculations are conditional on a

number of different values, which include the total num-

ber of studies, study sizes, effect size magnitude, effect size

metric, model assumptions, test directionality, Type 1 error

probability, and degree of statistical heterogeneity. These

values must be used in a complex series of formulas and

equations for power to be calculated. metapower provides

a tool for researchers to instantiate this complexity in just

a single line of code.

In this tutorial, I have shown how metapower can be

used to appropriately plan a meta-analysis by conduct-

ing an apriori power analysis without necessitating a deep

knowledge of statistics or programming. Furthermore,

metapower offers an effective and efficient solution to ad-

dress the common question, “Is the literature large enough

to warrant the time and effort it takes to conduct a meta-

analysis?” It accomplishes this in a way that is compu-

tationally simple, easy-to-use, and entirely reproducible.

metapower can also be integrated into a single workflow

with other R packages. For example, numerous packages

exist for the major steps of any meta-analysis, which in-

clude searching the literature, screening articles, and an-

alyzing the data. metapower is another tool used to de-

termine when a meta-analysis is warranted. As an added

bonus, users unfamiliar with R can access a fully func-

tional, web-based shiny application to implement the core

functions of metapower using a graphical user interface.

This shiny application requires no programming experi-

ence and can be opened in any web browser.
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Figure 2 Power curves generated from plot_homogen_power(). Power curves reflect statistical power as a function

of the number of studies, k. The top panel displays power curves under a fixed-effects model. Power curves are shown

for various levels of variation among effect sizes (i. e., SD among study-specific effect sizes). The bottom panel reflects

the power curve under a random-effects model with the user-specified heterogeneity. The points along the power curve

reflects the current power estimate given the user-specified input parameters The dashed horizontal line reflects 80%

power.

Limitations

Statistical power fundamentally depends on expecting the

actual presence of an effect. That is, primary studies are

conducted with the expectation of finding a significant dif-

ference between two groups or a significant association be-

tween two variables. However, in meta-analysis, we may

actually expect that a summary effect size will not be sta-

tistically different than zero. In this way, meta-analyses

sometimes demonstrate that an effect size is not distin-

guishable from zero despite individual studies suggesting

otherwise. Currently, metapower is not capable of com-

puting statistical power for tests of equivalence, which are

are used to statistically reject the presence of an effect (Go-

ertzen & Cribbie, 2010; Lakens, 2017; Lakens, Scheel, & Is-

ager, 2018). Given that equivalence tests are simply a refor-

mulation of the standard null-hypothesis significance test-

ing framework, it is possible to calculate statistical power

for these types of statistical tests for primary research (e.g.,

Shieh, 2016; Lakens, 2017). In theory, these power calcula-

tions could be adapted for meta-analysis in the future.

Similarly, statistical power is inextricably associated

with specific statistical tests that are focused on rejecting

the null hypothesis (e.g., H0 = 0). However, researchers
may not be interested in simply showing that an effect size

is different than zero. For instance, it can be valuable to

power a study capable of estimating an effect size within

a specific margin of error. One reason for this would be

that a clinically significant effect in some context would

only be one that was at or above a certain value. In this

case, it would be useful to power a meta-analysis for pre-

cision - as opposed to statistical power - in order to esti-

mate a confidence interval that was above a certain value.

Given that these methods are being developed in primary

research (see Goulet-Pelletier & Cousineau, 2018), theymay

be adapted to meta-analysis in the future.

As it relates to moderator and subgroup analyses,

metapower assumes that categorical groups (e.g., moder-

ator or subgroup analyses) are equal in number of studies

and sample size. For situations where there are unequal

group sizes, the power estimates provided by metapower

will overestimate statistical power. However, given that
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Figure 3 Power curves generated from plot_mod_power(). Power curves reflect statistical power as a function of

the number of studies, k. Power curves reflecting the power to detect between-study differences (categorical modera-

tors) among studies are presented under a fixed- and random-effects model. The points along the power curve reflects

the current power estimate given the user-specified input parameters The dashed horizontal line reflects 80% power.

power analyses are conducted apriori, it is untenable to

make guesses about howmany studies will comprise a par-

ticular category. In addition, metapower is limited in that

all calculations assume that each study contributes a single

effect size to the meta-analysis. For meta-analyses that in-

corporate hierarchical structure (i. e., multiple effect sizes

from a study), power cannot currently be calculated for

these more complex data structures.

Future Development

metapower currently accommodates the three most com-

monly used effect sizes in meta-analysis (i. e., Cohen’s d,

correlation, and odds ratio); however, future versions of

metapower plan to incorporate additional effect size met-

rics to handle these research designs (see Goulet-Pelletier

& Cousineau, 2018). For example, metapower currently

handles Cohen’s d for between-subject designs, but fu-

ture developments can include calculations for Cohen’s d

in one-sample or correlated measurements (e.g., Lakens,

2013). Additionally, multilevel modeling (e.g., two- and

three-level models) is becoming an increasingly popular

method for meta-analysis since it can include multiple ef-

fect sizes from source studies while modeling the statisti-

cal dependence among observations (Assink & Wibbelink,

2016). These models achieve more statistical power than

traditional methods, but there is no agreed upon method

for calculating statistical power for these more complex

models. Future versions of metapower will incorporate

these more advanced power caluclations as the methods

become available and validated.

Conclusion

The influence of meta-analyses in the scientific commu-

nity is ubiquitous. Given their impact, high-quality meta-

analyses should be conducted when there are a sufficient

number of published studies given a particular research

question. To do this objectively, power analysis specific

to the research question (summary effect size, modera-

tor analysis, subgroup analysis) should be conducted dur-

ing the planning phase of a prospective meta-analysis. To

my knowledge, metapower is the first freely available and

easy-to-use software package that allows researchers to do

this.
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Figure 4 Power curves generated from plot_subgroup_power(). Power curves reflect statistical power as a func-

tion of the number of studies, k. Power curves reflecting the power to detect within-study differences (subgroups) among

studies are presented under a fixed- and random-effects model. The points along the power curve reflects the current

power estimate given the user-specified input parameters The dashed horizontal line reflects 80% power.
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