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Abstract— This paper presents two different algorithms for 
object tracking and pose estimation. Both methods are based on 
an appearance model technique called Active Appearance Model 
(AAM). The key idea of the first method is to utilize two instances 
of the AAM to track landmark points in a stereo pair of images 
and perform 3D reconstruction of the landmarks followed by 3D-
pose estimation. The second method, the AAM matching 
algorithm is an extension of the original AAM that incorporates 
the full 6 DOF pose parameters as part of the minimization 
parameters. This extension allows for the estimation of the 3D 
pose of any object, without any restriction on its geometry. We 
compare both algorithms with a previously developed algorithm 
using a geometric-based approach [14]. The results show that the 
accuracy in pose estimation of our new appearance-based 
methods is better than using the geometric-based approach. 
Moreover, since appearance-based methods do not require 
customized feature extractions, the new methods present a more 
flexible alternative, especially in situations where extracting 
features is not simple due to cluttered background, complex and 
irregular features, etc. 

I.  INTRODUCTION  
Determining the position and orientation (the 6 DOF 

pose) of an object plays an important role in many research 
areas such as robotics, computer graphics, computer vision, 
etc. In robotics applications, the exact pose of an object is 
crucial in order to control the robot end-effector to perform 
any specific task on that object. 

A classical approach for determining the pose of an object 
relies on the object geometrical features and is usually referred 
to as feature-based pose estimation [6, 7, 3]. The basic strategy 
in feature-based approaches is to match observed features 
(scene) and expected features (model). This match can be 
performed either by projecting the model features onto the 
image plane [6, 7] or by calculating the 3D coordinates of the 
observed features and determining the transformation that 
brings observed and expected features into registration [3]. 
Feature-based methods are usually very accurate because once 
a first match between observed features and expected features 
is obtained, the next matches can be constrained by the 
geometry of the object, and every match thereafter improves 
the accuracy by reducing the uncertainty in the matchings. 
However, due to the complexity of the object and the 
background, extracting and matching features can be daunting, 
and as an alternative, there are the appearance-based methods. 

In appearance-based approaches, a set of training images 
is used to calculate a covariance space (eigenspace). Future 
observed images are matched to the training data using many 
distance measurements. The matching between the observed 
image and trained appearances is key in the strategy used for 
either pose estimation or object recognition. In [4], it was 
proposed an appearance-based pose estimation method for 
robot positioning in 2 DOF. Later, [5] extended this idea to the 
full 6-DOF pose of an object but with limited accuracy.  

The main advantage of appearance-based methods is that 
no features – simple or complex – need to be extracted, which 
in feature-based methods needs to be done on a per object 
basis. The main drawback of the traditional appearance-based 
methods is in the initial object segmentation and subsequent 
2D alignment (translation) and scaling of the observed object 
in the image so that it can be compared to the model. Some 
authors [4, 5] have proposed a simple normalization and 
centering of the image samples before the appearance 
matching can be performed. However, there is no 
parameterization of the translation or scaling in these methods, 
and therefore this pre-processing can affect the accuracy of the 
pose estimation. Several other works [10, 11] resort to some 
type of 2D image warping, which is iteratively applied during 
matching. For obvious reasons, these methods are also not 
applicable to 6 DOF pose estimation.  

In [12], a more relevant method is introduced to solve the 
pose estimation of human heads in 6 DOF. In this case, an 
image warping is derived from the projection of the 3D model 
of the human head – represented by a standard-size cylinder. 
While this method is reasonable for human head tracking, it 
imposes various constraints on the shape of the object, making 
it hard to be applied to more generic objects – which is the 
main focus of this paper. 

Finally, there are the works derived from the Active 
Appearance Models paradigm (AAM) [8, 9]. In AAM, the 
problem of image warping is handled by defining a set of 
sparse landmark points around the object. Besides controlling 
the warping, these points play a key role in representing the 
object appearance – defined by the shape around the landmark 
points and the texture inside the shape. Therefore, the arbitrary 
choice of landmark points allows for the modeling of various 
shapes of objects. 

Some work has also been done using AAM to track rigid 
objects [17] in the image plane. However, as far as we know, 
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AAM has never been applied to vision-guided robotics (e.g. 
visual servoing), where the pose of the object must be 
determined in all 6 DOF, and accuracy is a major requirement. 

In this paper, we propose two different algorithms using 
AAM to tackle the problem of object pose tracking in 6 DOF. 
The first algorithm uses stereo vision and two appearance 
models: one for the left and one for right images. The second 
algorithm uses only one camera and one appearance model. 

The rest of this paper is organized as follows: in Section II 
we present a brief review of Active Appearance Model, 
followed by a detailed explanation in Section III of our AAM-
based methods for tracking and pose estimation. Finally in 
Section IV we will discuss the results. 

 

II. REVIEW OF ACTIVE APPEARANCE MODELS (AAM) 
In this section, a brief review of AAM is presented1. In 

simple terms, the main idea in AAM is to learn a parametric 
function that governs the possible appearances of an object. 
That is, if we can learn how to change a set of parameters in 
order to synthesize any desired appearance of the object, then 
we can find a perfect match between observed appearance 
(current image) and expected appearance (model). This 
information can then be used to recognize the object and its 
pose.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a)    (b) 
Figure 1. (a) The object image with the landmark points (cross 
mark), (b) The image region covered by the landmark points 

 
 

A. Modeling the Appearance 
 

In AAM, the appearance of an object is defined by its 
shape and texture. The shape of the object is a set of 2D 
landmark points of the object image. That is, the shape is 
represented by a vector x = [x1 y1 .. xn yn]

T, where the element 
(xi yi) is the x-y coordinates of the ith landmark point. 
Similarly, the texture of the object is defined by the set of 
intensity values of the pixels lying inside the shape. That is, 
the texture of the object is a vector g =[g1 g2 .. gm]T, where gi is 
the intensity value of the ith pixel. For example, Figure 1a 
depicts our experimental target object, and Figure 1b shows 

                                                           
1 Because of the space limitation, we will discuss only the main concept that 
is required to understand our object pose tracking methods. For a more 
comprehensive explanation, we refer the reader to [9]. 
 

the corresponding texture pixels for the landmark points 
(shape) indicated in Fig. 1a. 

From this point on, AAM models the appearance of an 
object in a very similar way as in other appearance-based 
methods. In other words, a PCA analysis of the training 
samples is performed to obtain: the mean shape vector ( x ); 
the basis (eigenvectors) of the space defined by the covariance 
of the shapes Ps; the mean texture vector ( g ); and the basis of 
the covariance space of the textures Pg. Using these vectors 
and matrices, the appearance of an object can be described by: 

 
bPxx ss+=     (1) 

bPgg gg+=    (2) 

 
where bs, bg are respectively the set of shape and texture 
parameters that characterize a specific shape and texture 
sample. 

After a few mathematical manipulations, a single set of 
parameters c can be derived for both shape and texture. The 
combined model allows an object to be described by: 

 

cQxx s+=     (3) 

cQgg g+=     (4) 
 

Note that the coordinates of the shape vector x = [x1 y1 
..xn yn]

T are expressed in the model coordinated frame. In other 
words, a 2D rigid transformation T(.) with translation, 
orientation, and scaling parameters t = [tx, ty, s, Θ]T  is 
applied  to transform the points x to/from the pixel-coordinate 
points X. That same transformation allows the image warping 
that aligns the observed texture with the texture model. 
 
B. AAM Matching 
 

For the matching phase, AAM defines a parameter vector  
 

p = (c | t)T   (5) 
 

where c is the set of appearance parameters and t is the 2D 
rigid transformation parameters; 

a texture-difference vector function  
 

r(p) = gs(p) – gm(p)   (6) 
 

where gs(p) is the observed texture vector and gm(p) is the 
model texture vector; 

and finally an error function  
 

e(p) = r(p)T r(p) = || r(p) ||2  (7) 
 
The matching algorithm consists of an iterative 

minimization process to find the set of new parameters p that 
minimizes e(.). That is,  

 

∆p*=argmin∆p e(p+∆p)   (8) 
 

which after applying the Taylor series and solving for ∆p*, 
leads to: 

 

∆p* = -R(p)*r(p)    (9) 
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where R(p) is the pseudo-inverse of the gradient (Jacobian) 
matrix )( pr

p∂
∂   

 

The AAM matching algorithm is quite simple and it states 
that at each iteration, a set of parameters p is used to generate 
the model shape vector x and the texture vector gm(p) of the 
object according to Eq. 3 and 4. The model shape is then 
projected on the image plane and the current texture gs(p) is 
sampled from the image. Next, the two textures are compared, 
that is, the difference between model texture and observed 
texture is calculated according to Eq. 6 and the value of the 
error function e(p) is determined by Eq. 7. Finally, a new set 
of parameters p = p + ∆p* can be calculated from Eq. 9. The 
process above repeats until the error function e(p) converges 
to a small value. 

As it will be explained in Section 3, to speed up the 
process, the original AAM algorithm assumes a fixed value for 
the matrix R(p) in Eq. 9. However, in our method we observed 
that this approximation causes a large error and instead we 
decided that a new value of R(p) must be calculated at each 
iteration. 

 

III. POSE ESTIMATION METHODS USING AAM 
As mentioned earlier and explained in detail in [1, 2], our 

main application for this work is to servo the end-effector with 
respect to an object (visual servoing). In order to do that, we 
must first find the pose of the object with respect to the end-
effector – given by the homogenous transformation2 eHo. 
Since a pair of stereo cameras is mounted onto the end-effector, 
this pose can be decomposed into:  

eHo= eHc * cHo    (10) 

where eHc is a constant HTM that is calculated during the 
“hand-eye” calibration [1] and c represents either the left or 
right camera, while cHo is the actual pose of the object, which 
we want to estimate. 

In the next two subsections we will describe two methods 
for pose estimation using AAM. Both our methods start with an 
off-line training phase to create simultaneously the appearance 
models and a 3D representation of the object. This 3D 
representation consists of a list of 3D points of the object with 
respect to its own coordinate frame. In other words, we 
developed a simple tool that allows a human to choose the 
landmark points that define the shape vector from a set of 
training stereo images. As the human selects the landmark 
points, the corresponding list of 3D coordinates of the 
landmarks is also generated. The tool guarantees that a series of 
constraints, e.g. epipolar constraint, is imposed on top of the 
human selections. As it will be explained later, these 3D model 
points are necessary to calculate the actual pose of the object in 
space.  

                                                           
2 In this paper, we assume the Denavitt-Hartenberg notation for HTMs 
 

A. The first method: Stereo AAM 

The key idea in our first method, Stereo AAM, is to apply 
the AAM algorithm to do image tracking in both left and right 
images, and use the stereo pair of tracked landmark points to 
calculate the 3D pose of the object. Our complete Stereo AAM 
algorithm can be divided in three steps (Figure. 2):  

• Stereo AAM matching;  
• 3D Reconstruction; and  
• 3D Registration. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 2. Block diagram of our first method 
 

In the first step, two independent AAM matching 
algorithms are applied: one for the right and one for the left 
image. To apply the AAM matching, we rely on the above-
mentioned appearance models that were built during the 
training phase. Moreover, since each landmark point that was 
annotated on the training images has a unique correspondence 
in the generated 3D model, a simple ordering of the landmark 
points in the left and right images can be established. This 
ordering will be necessary during the 3D Reconstruction step 
of our algorithm. 

A typical problem in AAM is to obtain an initial guess for 
the parameters used in the matching algorithm. In our visual 
servoing system, another subsystem called Coarse Control 
provides this initial guess for the first frame [2]. Thereafter, the 
Stereo AAM method is applied to all subsequent frames and 
the initial guess for each frame is derived from the estimated 
parameters calculated for the previous frames. This not only 
solves the initialization problem, but also helps the AAM 
matching converge quickly. 

The second step of the algorithm is the 3D Reconstruction. 
As we mentioned above, the Stereo AAM Matching provides a 
simple order for the landmarks in the left and right images. 
After the match is obtained, we can calculate the 3D 
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coordinates of the landmark points trivially using the stereo 
correspondence provided by the order of the landmarks. That 
is, from the right shape vector Xright=[xr1

yr1
 … xrn

 yrn
]T   and 

the left shape vector Xleft=[xl1
yl1

 … xln
 yln

]T  we reconstruct the 

3D scene points si from the pairs ((xli
, yli

), (xri
 yri

)) using a 

simple linear 3D reconstruction method [15]. 
For the final step of our first method, 3D Registration, we 

used a 3D absolute orientation algorithm [13]. Basically the 
goal of the absolute orientation algorithm is to determine the 
transformation that relates two different sets of 3D points. 
That is, given the 3D model points in the object coordinate 
frame and the 3D scene points in the camera coordinate frame 
the absolute orientation algorithm calculates the object pose 
given by cHo – the homogeneous transformation that relates 
the camera coordinate frame and the object coordinate frame. 

In other words, given the 3D model points mi and the 3D 
scene points pi, we can find the rotation R and translation T that 
define cHo and satisfy: 

 

si = R*mi + T + ei   (11) 
 

where ei is the summation of all expected errors: the 2D 
landmark localization obtained by the AAM matching; the 
accuracy of 3D-reconstruction; pose calculation; etc. 

The rotation and translation above are obtained by solving 
a minimization problem defined by: 

 

∑
=

−−=
n

i
ii

tR
optopt TmRsTR

1

2

,
||*||minarg,  (12) 

 

For that, we used a closed-form solution method based on 
unit-quartenions [13]. 

 

B. The second method: AAM using a 3D-pose 
parametrization 
 

Our second method3 is a generalization of the AAM 
algorithm. As we mentioned in Section II, the original AAM 
uses a parameter vector p: 

 

p= (c | t)T  
 

where t = [tx ty s Θ]  is a vector describing the 2D 
transformation: translation, rotation, and scaling. In our 
method, we extended this definition to include all 6 DOF 
translation and rotation of the object. Therefore, the new t 
becomes:  

 

t = ( tx ty tz rx ry rz) 
 

Another modification with respect to the original AAM is 
in the combined texture and shape parameter vector c. In the 
original AAM, this parameter vector is used to determine both 
the shape and the texture vectors. That is, the shape defined by 

                                                           
3 A similar method using AAM and a 3D-pose parameterization for t is 
employed in [18]. However, in their approach the texture parameter bg is not 
included in the final parameterization p. Instead, they approximate the model 
texture using the current observed texture vector, which from our experience 
can produce errors in the AAM matching. 

the landmark points x and the texture (intensities of points that 
lie inside the shape) g. In our approach, the 3D translation and 
rotation above – given by t – together with the intrinsic 
parameter of the camera provide the shape vector. This is done 
by projecting the 3D model points onto the image plane. Once 
the shape vector is determined, the observed texture points, gs, 
can be sampled from the image. Consequently, since we do 
not need to determine the landmark points and the texture 
points from equations 3 and 4 any longer, and since we only 
need to determine the model texture points from Eq. 2, we 
only use bg in the parameter vector p. That is, we use p=( t | 
bs) instead of p=( t | c). 

 
 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 

Figure 3. Block diagram of our second method 
 
In order to explain our algorithm step by step we refer the 

reader to Figure 3. From the top left box, the process begins by 
providing a set of initial values for p, given by: 

 

p = [tx ty tz rx ry rz bg] 
 

These rotational and translational parameters are used to 
project the model points mi onto the image plane to obtain the 
set of landmark points Xi – the shape vector in image 
coordinates. With the shape vector, we can sample the texture 
points inside the observed image and calculate gs, just as it is 
done in the original AAM algorithm. Next a texture model gm 
is generated using the current bg in Eq. 2, and the texture error 
is calculated using Eq. 6. Finally, a new set of parameters p 
can be obtained using Eq.9. The process above repeats until 
the difference between model texture and observed texture, 
measured by e(p) in Eq. 7, converge to a small value. 

An important difference with respect to our previous 
method – Stereo AAM – is that this method does not require 
the 3D-reconstruction phase. Therefore, we can use only one 
set of images, that is, from a single camera. Nevertheless, we 
still use both pair of images to create the 3D model as 
explained in the beginning of Section III. 
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IV. RESULTS AND DISCUSSION 
 

In order to evaluate our methods4, we set up a workspace 
to simulate an automotive assembly cell. The workspace 
consists of a target object (the engine cover shown in Figure 
1.), a Kawasaki UX-120 robot, and two stereo cameras 
mounted onto the robot end-effector. The end-effector can 
move freely around the target object, which remains still while 
the cameras grab image sequences from various viewpoints. 
This way we can determine the exact relative pose of the 
object, which will be used as the ground truth, as we will 
explain shortly. 

In order to obtain the experimental data, we moved the 
robot end-effector on five arbitrary paths around the target 
object. While the end-effector was moving we acquired the 
stereo image sequence as well as the end-effector position at 
the time when each stereo image was acquired. 

We stored two different stereo sequences: one for training 
and one for testing. For the training sequence, we selected 26 
stereo images from different viewpoints, and on each image 
we selected 26 landmark points as shown in Figure 1a. After 
running a PCA analysis of the training images, we constructed 
both the left and right appearance models, with each model 
reaching a dimensionality of 10 – which represents 98% of the 
variation determined from the PCA analysis. In other words, 
the size of parameter vector c was chosen to be 10.  

Finally we tested both our methods on 217 frames of the 
testing data. Since our second method, the 3D-pose 
parameterization, only requires monocular camera, we used 
only the left-camera images and the left appearance model in 
this algorithm. 

As we mentioned earlier, we compared both algorithms to 
our previously developed algorithm using geometric features 
(circular shapes). This algorithm was shown [14] to be 
sufficiently accurate for our applications and it seemed to be a 
good reference to compare our new algorithms. 

In order to measure the accuracy of the algorithms, we 
calculated the eiHe0 transformations. This homogenous 
transformation matrices represent the end-effector position 
“ei” with respect to the reference end-effector position “e0” – 
where e0 is an arbitrarily provided pose of the end-effector and 
“i” is the instant when an image frame was sampled. Since it is 
the end-effector that moves while the object remains 
stationary, we can obtain the ground truth for each frame by 
reading the robot controller and obtaining the transformation 
eiHb (direct kinematics). The ground truth is then easily 
obtained by:  

(eiHe0)ref = eiHb* ( e0Hb )
-1   (13)  

 

Meanwhile, using both our methods, we estimated the 
same HTM by calculating the pose of the object with respect 
to the end-effector eHo at each frame ‘i’, that is: 

 

(eiHe0)est =( eiHo )*( e0Ho )
-1  (14) 

 

                                                           
4 Our methods were implemented using the AAM-API toolkit [16]. 

Finally we calculated the accuracy of the algorithms by 
comparing (eiHe0)ref – derived from the groundtruth – and 
(eiHe0)est, – derived from the algorithms. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Groundtruth pose (black) and estimated pose of 1st method 

(red), 2nd method (blue) and geometrical-based method [14] (green). 
 
In Figure 4, we show the accuracy measured in the 

experiments by plotting eiHe0 in terms of tx, ty, tz, rx, ry, and rz. 
The figure also shows the results obtained from the ground 
truth, from the two new methods, and from the geometric-
based method. 

The statistics of the error over the whole testing sequence 
are shown in Table 1. As it can be observed from the table, the 
average translational error (tx, ty and tz) for both our methods 
was less than 10mm. While for the geometric-based method 
[14] it was over 14mm. Similarly, the maximum error for each 
of these methods was 27.7mm, 20.6mm, and 52.3mm for the 
first, second, and the geometric-based methods respectively, 
and the standard deviations: 0.0057, 0.0036, and 0.0112, 
respectively. 

In terms of rotational error, both our methods also proved 
to be superior to our previous geometric-based method, with 
the second method showing an even better result than the first 
one – maximum rotational error in the first method was 1.77 
degrees, while in the second method it was only 0.73 degrees.  
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From the results, we can conclude that the accuracy in pose 
estimation of our both methods is quite similar, with the 
second method being slightly better than the first one. Clearly 
our new methods outperform the geometric-based method, 
especially if we consider the maximum errors. Furthermore, 
we found that the stability of the estimation in both new 
methods is better than the one in [14]. That fact can be 
observed in the graphs in Figure 4 in the high frequency noise 
on top of the curve for the geometric-based method. This 
noisy estimation in the geometric-based approach can be 
harmful in our servoing system because it may cause the end-
effector to move jerkily. 

 
TABLE 1. 

 

 
Error 

 
Stat. 

 
1st method 

 
2nd method 

 
Geometric 

method [14] 
 

Mean 0.0059 0.0098 0.0147 
Std 0.0055 0.0036 0.0112 

tx 
(m.) 

Max 0.0277 0.0206 0.0523 
Mean 0.0097 0.0041 0.0079 
Std 0.0057 0.0019 0.0064 

ty 
(m.) 

Max 0.0249 0.0095 0.0290 
Mean 0.0039 0.0042 0.0042 
Std 0.0029 0.0027 0.0045 

tz 
(m.) 

Max 0.0133 0.0143 0.0230 
Mean 0.6721 0.3857 0.4819 
Std 0.4048 0.1412 0.4002 

rx 
(deg.) 

Max 1.5073 0.5638 1.6300 
Mean 0.4395 0.5507 0.9510 
Std 0.3570 0.0777 0.8083 

ry 
(deg.) 

Max 1.7666 0.7285 3.7862 
Mean 0.5273 0.3246 0.2286 
Std 0.2564 0.1329 0.1808 

rz 
(deg.) 

Max 1.0338 0.6639 0.9958 
 

V. CONCLUSION 
We presented two methods for tracking and pose 

estimation of generic objects using Active Appearance 
Models. Feature-based methods, which impose geometric 
constraints to calculating the pose of the object, tend to be 
very accurate, and therefore very useful for robotic 
applications. However, when we compare both our 
appearance-based methods to a third method based on the 
geometric features, both methods proved to be a lot better. The 
error in pose estimation using our second method with 3D 
parameterization produced a translational error of less than 
10mm and a rotational error of little over one half of a degree.  

Moreover, geometric-based methods require customized 
algorithms that usually need extensive adaptations when 
applied for a different object. On the other hand, the creation 
of appearance models for different objects is a mechanical task 
that can be easily performed. Another major advantage of 
appearance-based methods over feature-based methods is in 
situations where extracting features is not simply done due to 
cluttered background, complex and irregular features, etc. 

On the downside, like any other appearance-based method, 
our methods cannot be applied when large variations of the 
object appearance are observed; for example, when the object 
is observed from a very different angle, or in the presence of 
occlusions, etc. In these cases, the learnt view of the object 
may be well hidden for a good match with the model to take 
place. We are currently developing a strategy that consists of 
learning different appearance models of the same object when 
observed from different angles. This multiple AAMs can then 
be tracked simultaneously while the object is observed from 
radically different views in the image sequences. 
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