
Calculating the 3D-Pose of Rigid-Objects
Using Active Appearance Models

Pradit Mittrapiyanuruk, Guilherme N. DeSouza, Avinash C. Kak
{mitrapiy,gdesouza,kak}@ecn.purdue.edu

Robot Vision Laboratory, School of Electrical and Computer Engineering, Purdue University

Abstract— This paper presents two different algorithms for
object tracking and pose estimation. Both methods are based on
an appearance model technique called Active Appearance Model
(AAM). The key idea of the first method is to utilize two instances
of the AAM to track landmark points in a stereo pair of images
and perform 3D reconstruction of the landmarks followed by 3D-
pose estimation. The second method, the AAM matching
algorithm is an extension of the original AAM that incorporates
the full 6 DOF pose parameters as part of the minimization
parameters. This extension allows for the estimation of the 3D
pose of any object, without any restriction on its geometry. We
compare both algorithms with a previously developed algorithm
using a geometric-based approach [14]. The results show that the
accuracy in pose estimation of our new appearance-based
methods is better than using the geometric-based approach.
Moreover, since appearance-based methods do not require
customized feature extractions, the new methods present a more
flexible alternative, especially in situations where extracting
features is not simple due to cluttered background, complex and
irregular features, etc.

I. INTRODUCTION
Determining the position and orientation (the 6 DOF

pose) of an object plays an important role in many research
areas such as robotics, computer graphics, computer vision,
etc. In robotics applications, the exact pose of an object is
crucial in order to control the robot end-effector to perform
any specific task on that object.

A classical approach for determining the pose of an object
relies on the object geometrical features and is usually referred
to as feature-based pose estimation [6, 7, 3]. The basic strategy
in feature-based approaches is to match observed features
(scene) and expected features (model). This match can be
performed either by projecting the model features onto the
image plane [6, 7] or by calculating the 3D coordinates of the
observed features and determining the transformation that
brings observed and expected features into registration [3].
Feature-based methods are usually very accurate because once
a first match between observed features and expected features
is obtained, the next matches can be constrained by the
geometry of the object, and every match thereafter improves
the accuracy by reducing the uncertainty in the matchings.
However, due to the complexity of the object and the
background, extracting and matching features can be daunting,
and as an alternative, there are the appearance-based methods.

In appearance-based approaches, a set of training images
is used to calculate a covariance space (eigenspace). Future
observed images are matched to the training data using many
distance measurements. The matching between the observed
image and trained appearances is key in the strategy used for
either pose estimation or object recognition. In [4], it was
proposed an appearance-based pose estimation method for
robot positioning in 2 DOF. Later, [5] extended this idea to the
full 6-DOF pose of an object but with limited accuracy.

The main advantage of appearance-based methods is that
no features – simple or complex – need to be extracted, which
in feature-based methods needs to be done on a per object
basis. The main drawback of the traditional appearance-based
methods is in the initial object segmentation and subsequent
2D alignment (translation) and scaling of the observed object
in the image so that it can be compared to the model. Some
authors [4, 5] have proposed a simple normalization and
centering of the image samples before the appearance
matching can be performed. However, there is no
parameterization of the translation or scaling in these methods,
and therefore this pre-processing can affect the accuracy of the
pose estimation. Several other works [10, 11] resort to some
type of 2D image warping, which is iteratively applied during
matching. For obvious reasons, these methods are also not
applicable to 6 DOF pose estimation.

In [12], a more relevant method is introduced to solve the
pose estimation of human heads in 6 DOF. In this case, an
image warping is derived from the projection of the 3D model
of the human head – represented by a standard-size cylinder.
While this method is reasonable for human head tracking, it
imposes various constraints on the shape of the object, making
it hard to be applied to more generic objects – which is the
main focus of this paper.

Finally, there are the works derived from the Active
Appearance Models paradigm (AAM) [8, 9]. In AAM, the
problem of image warping is handled by defining a set of
sparse landmark points around the object. Besides controlling
the warping, these points play a key role in representing the
object appearance – defined by the shape around the landmark
points and the texture inside the shape. Therefore, the arbitrary
choice of landmark points allows for the modeling of various
shapes of objects.

Some work has also been done using AAM to track rigid
objects [17] in the image plane. However, as far as we know,

This paper appears in: IEEE International Conference in Robotics and Automation, 2004

AAM has never been applied to vision-guided robotics (e.g.
visual servoing), where the pose of the object must be
determined in all 6 DOF, and accuracy is a major requirement.

In this paper, we propose two different algorithms using
AAM to tackle the problem of object pose tracking in 6 DOF.
The first algorithm uses stereo vision and two appearance
models: one for the left and one for right images. The second
algorithm uses only one camera and one appearance model.

The rest of this paper is organized as follows: in Section II
we present a brief review of Active Appearance Model,
followed by a detailed explanation in Section III of our AAM-
based methods for tracking and pose estimation. Finally in
Section IV we will discuss the results.

II. REVIEW OF ACTIVE APPEARANCE MODELS (AAM)
In this section, a brief review of AAM is presented1. In

simple terms, the main idea in AAM is to learn a parametric
function that governs the possible appearances of an object.
That is, if we can learn how to change a set of parameters in
order to synthesize any desired appearance of the object, then
we can find a perfect match between observed appearance
(current image) and expected appearance (model). This
information can then be used to recognize the object and its
pose.

(a) (b)
Figure 1. (a) The object image with the landmark points (cross
mark), (b) The image region covered by the landmark points

A. Modeling the Appearance

In AAM, the appearance of an object is defined by its
shape and texture. The shape of the object is a set of 2D
landmark points of the object image. That is, the shape is
represented by a vector x = [x1 y1 .. xn yn]

T, where the element
(xi yi) is the x-y coordinates of the ith landmark point.
Similarly, the texture of the object is defined by the set of
intensity values of the pixels lying inside the shape. That is,
the texture of the object is a vector g =[g1 g2 .. gm]T, where gi is
the intensity value of the ith pixel. For example, Figure 1a
depicts our experimental target object, and Figure 1b shows

1 Because of the space limitation, we will discuss only the main concept that
is required to understand our object pose tracking methods. For a more
comprehensive explanation, we refer the reader to [9].

the corresponding texture pixels for the landmark points
(shape) indicated in Fig. 1a.

From this point on, AAM models the appearance of an
object in a very similar way as in other appearance-based
methods. In other words, a PCA analysis of the training
samples is performed to obtain: the mean shape vector (x);
the basis (eigenvectors) of the space defined by the covariance
of the shapes Ps; the mean texture vector (g); and the basis of
the covariance space of the textures Pg. Using these vectors
and matrices, the appearance of an object can be described by:

bPxx ss+= (1)

bPgg gg+= (2)

where bs, bg are respectively the set of shape and texture
parameters that characterize a specific shape and texture
sample.

After a few mathematical manipulations, a single set of
parameters c can be derived for both shape and texture. The
combined model allows an object to be described by:

cQxx s+= (3)

cQgg g+= (4)

Note that the coordinates of the shape vector x = [x1 y1
..xn yn]

T are expressed in the model coordinated frame. In other
words, a 2D rigid transformation T(.) with translation,
orientation, and scaling parameters t = [tx, ty, s, Θ]T is
applied to transform the points x to/from the pixel-coordinate
points X. That same transformation allows the image warping
that aligns the observed texture with the texture model.

B. AAM Matching

For the matching phase, AAM defines a parameter vector

p = (c | t)T (5)

where c is the set of appearance parameters and t is the 2D
rigid transformation parameters;

a texture-difference vector function

r(p) = gs(p) – gm(p) (6)

where gs(p) is the observed texture vector and gm(p) is the
model texture vector;

and finally an error function

e(p) = r(p)T r(p) = || r(p) ||2 (7)

The matching algorithm consists of an iterative

minimization process to find the set of new parameters p that
minimizes e(.). That is,

∆p*=argmin∆p e(p+∆p) (8)

which after applying the Taylor series and solving for ∆p*,
leads to:

∆p* = -R(p)*r(p) (9)

This paper appears in: IEEE International Conference in Robotics and Automation, 2004

where R(p) is the pseudo-inverse of the gradient (Jacobian)
matrix)(pr

p∂
∂

The AAM matching algorithm is quite simple and it states
that at each iteration, a set of parameters p is used to generate
the model shape vector x and the texture vector gm(p) of the
object according to Eq. 3 and 4. The model shape is then
projected on the image plane and the current texture gs(p) is
sampled from the image. Next, the two textures are compared,
that is, the difference between model texture and observed
texture is calculated according to Eq. 6 and the value of the
error function e(p) is determined by Eq. 7. Finally, a new set
of parameters p = p + ∆p* can be calculated from Eq. 9. The
process above repeats until the error function e(p) converges
to a small value.

As it will be explained in Section 3, to speed up the
process, the original AAM algorithm assumes a fixed value for
the matrix R(p) in Eq. 9. However, in our method we observed
that this approximation causes a large error and instead we
decided that a new value of R(p) must be calculated at each
iteration.

III. POSE ESTIMATION METHODS USING AAM
As mentioned earlier and explained in detail in [1, 2], our

main application for this work is to servo the end-effector with
respect to an object (visual servoing). In order to do that, we
must first find the pose of the object with respect to the end-
effector – given by the homogenous transformation2 eHo.
Since a pair of stereo cameras is mounted onto the end-effector,
this pose can be decomposed into:

eHo= eHc * cHo (10)

where eHc is a constant HTM that is calculated during the
“hand-eye” calibration [1] and c represents either the left or
right camera, while cHo is the actual pose of the object, which
we want to estimate.

In the next two subsections we will describe two methods
for pose estimation using AAM. Both our methods start with an
off-line training phase to create simultaneously the appearance
models and a 3D representation of the object. This 3D
representation consists of a list of 3D points of the object with
respect to its own coordinate frame. In other words, we
developed a simple tool that allows a human to choose the
landmark points that define the shape vector from a set of
training stereo images. As the human selects the landmark
points, the corresponding list of 3D coordinates of the
landmarks is also generated. The tool guarantees that a series of
constraints, e.g. epipolar constraint, is imposed on top of the
human selections. As it will be explained later, these 3D model
points are necessary to calculate the actual pose of the object in
space.

2 In this paper, we assume the Denavitt-Hartenberg notation for HTMs

A. The first method: Stereo AAM

The key idea in our first method, Stereo AAM, is to apply
the AAM algorithm to do image tracking in both left and right
images, and use the stereo pair of tracked landmark points to
calculate the 3D pose of the object. Our complete Stereo AAM
algorithm can be divided in three steps (Figure. 2):

• Stereo AAM matching;
• 3D Reconstruction; and
• 3D Registration.

Figure 2. Block diagram of our first method

In the first step, two independent AAM matching
algorithms are applied: one for the right and one for the left
image. To apply the AAM matching, we rely on the above-
mentioned appearance models that were built during the
training phase. Moreover, since each landmark point that was
annotated on the training images has a unique correspondence
in the generated 3D model, a simple ordering of the landmark
points in the left and right images can be established. This
ordering will be necessary during the 3D Reconstruction step
of our algorithm.

A typical problem in AAM is to obtain an initial guess for
the parameters used in the matching algorithm. In our visual
servoing system, another subsystem called Coarse Control
provides this initial guess for the first frame [2]. Thereafter, the
Stereo AAM method is applied to all subsequent frames and
the initial guess for each frame is derived from the estimated
parameters calculated for the previous frames. This not only
solves the initialization problem, but also helps the AAM
matching converge quickly.

The second step of the algorithm is the 3D Reconstruction.
As we mentioned above, the Stereo AAM Matching provides a
simple order for the landmarks in the left and right images.
After the match is obtained, we can calculate the 3D

3D model points
m=[m1, … ,mn]T

Right-camera
Appearance

 model

Left-camera
image

Left-camera
Appearance

 model
AAM

Matching
AAM

Matching

Right-camera
image

3D reconstruction

(set of landmark points from shape vectors)
Xleft=[xl1

yl1
 … xln

 yln
]T Xright=[xr1

yr1
 … xrn

 yrn
]T

3D scene points s=[s1, . ,sn]T

3D Registration

Estimated object pose (cHo)

This paper appears in: IEEE International Conference in Robotics and Automation, 2004

coordinates of the landmark points trivially using the stereo
correspondence provided by the order of the landmarks. That
is, from the right shape vector Xright=[xr1

yr1
 … xrn

 yrn
]T and

the left shape vector Xleft=[xl1
yl1

 … xln
 yln

]T we reconstruct the

3D scene points si from the pairs ((xli
, yli

), (xri
 yri

)) using a

simple linear 3D reconstruction method [15].
For the final step of our first method, 3D Registration, we

used a 3D absolute orientation algorithm [13]. Basically the
goal of the absolute orientation algorithm is to determine the
transformation that relates two different sets of 3D points.
That is, given the 3D model points in the object coordinate
frame and the 3D scene points in the camera coordinate frame
the absolute orientation algorithm calculates the object pose
given by cHo – the homogeneous transformation that relates
the camera coordinate frame and the object coordinate frame.

In other words, given the 3D model points mi and the 3D
scene points pi, we can find the rotation R and translation T that
define cHo and satisfy:

si = R*mi + T + ei (11)

where ei is the summation of all expected errors: the 2D
landmark localization obtained by the AAM matching; the
accuracy of 3D-reconstruction; pose calculation; etc.

The rotation and translation above are obtained by solving
a minimization problem defined by:

∑
=

−−=
n

i
ii

tR
optopt TmRsTR

1

2

,
||*||minarg, (12)

For that, we used a closed-form solution method based on
unit-quartenions [13].

B. The second method: AAM using a 3D-pose
parametrization

Our second method3 is a generalization of the AAM
algorithm. As we mentioned in Section II, the original AAM
uses a parameter vector p:

p= (c | t)T

where t = [tx ty s Θ] is a vector describing the 2D
transformation: translation, rotation, and scaling. In our
method, we extended this definition to include all 6 DOF
translation and rotation of the object. Therefore, the new t
becomes:

t = (tx ty tz rx ry rz)

Another modification with respect to the original AAM is
in the combined texture and shape parameter vector c. In the
original AAM, this parameter vector is used to determine both
the shape and the texture vectors. That is, the shape defined by

3 A similar method using AAM and a 3D-pose parameterization for t is
employed in [18]. However, in their approach the texture parameter bg is not
included in the final parameterization p. Instead, they approximate the model
texture using the current observed texture vector, which from our experience
can produce errors in the AAM matching.

the landmark points x and the texture (intensities of points that
lie inside the shape) g. In our approach, the 3D translation and
rotation above – given by t – together with the intrinsic
parameter of the camera provide the shape vector. This is done
by projecting the 3D model points onto the image plane. Once
the shape vector is determined, the observed texture points, gs,
can be sampled from the image. Consequently, since we do
not need to determine the landmark points and the texture
points from equations 3 and 4 any longer, and since we only
need to determine the model texture points from Eq. 2, we
only use bg in the parameter vector p. That is, we use p=(t |
bs) instead of p=(t | c).

Figure 3. Block diagram of our second method

In order to explain our algorithm step by step we refer the

reader to Figure 3. From the top left box, the process begins by
providing a set of initial values for p, given by:

p = [tx ty tz rx ry rz bg]

These rotational and translational parameters are used to
project the model points mi onto the image plane to obtain the
set of landmark points Xi – the shape vector in image
coordinates. With the shape vector, we can sample the texture
points inside the observed image and calculate gs, just as it is
done in the original AAM algorithm. Next a texture model gm
is generated using the current bg in Eq. 2, and the texture error
is calculated using Eq. 6. Finally, a new set of parameters p
can be obtained using Eq.9. The process above repeats until
the difference between model texture and observed texture,
measured by e(p) in Eq. 7, converge to a small value.

An important difference with respect to our previous
method – Stereo AAM – is that this method does not require
the 3D-reconstruction phase. Therefore, we can use only one
set of images, that is, from a single camera. Nevertheless, we
still use both pair of images to create the 3D model as
explained in the beginning of Section III.

Yes

Observed texture
 vector gs

2D projected shape
X=[X1, . ,Xn]T

t=[rx ry rz tx ty tz]

p=[rx ry rz tx ty tz bg]T

bg

r(p)=gs-gm

e(p)= ||r(p)||2

Model texture
 vector gm

Perspective projection
with 3D model points

m=[m1, . ,mn]T

Update the parameters
∆p*=-R(p)* r(p)

p = p +∆p*

Sample the
observed image
inside shape X

Synthesize the model texture
bPgg gg+=

Converge?

Estimated object pose (cHo) = t* = [rx ry rz tx ty tz]

This paper appears in: IEEE International Conference in Robotics and Automation, 2004

IV. RESULTS AND DISCUSSION

In order to evaluate our methods4, we set up a workspace
to simulate an automotive assembly cell. The workspace
consists of a target object (the engine cover shown in Figure
1.), a Kawasaki UX-120 robot, and two stereo cameras
mounted onto the robot end-effector. The end-effector can
move freely around the target object, which remains still while
the cameras grab image sequences from various viewpoints.
This way we can determine the exact relative pose of the
object, which will be used as the ground truth, as we will
explain shortly.

In order to obtain the experimental data, we moved the
robot end-effector on five arbitrary paths around the target
object. While the end-effector was moving we acquired the
stereo image sequence as well as the end-effector position at
the time when each stereo image was acquired.

We stored two different stereo sequences: one for training
and one for testing. For the training sequence, we selected 26
stereo images from different viewpoints, and on each image
we selected 26 landmark points as shown in Figure 1a. After
running a PCA analysis of the training images, we constructed
both the left and right appearance models, with each model
reaching a dimensionality of 10 – which represents 98% of the
variation determined from the PCA analysis. In other words,
the size of parameter vector c was chosen to be 10.

Finally we tested both our methods on 217 frames of the
testing data. Since our second method, the 3D-pose
parameterization, only requires monocular camera, we used
only the left-camera images and the left appearance model in
this algorithm.

As we mentioned earlier, we compared both algorithms to
our previously developed algorithm using geometric features
(circular shapes). This algorithm was shown [14] to be
sufficiently accurate for our applications and it seemed to be a
good reference to compare our new algorithms.

In order to measure the accuracy of the algorithms, we
calculated the eiHe0 transformations. This homogenous
transformation matrices represent the end-effector position
“ei” with respect to the reference end-effector position “e0” –
where e0 is an arbitrarily provided pose of the end-effector and
“i” is the instant when an image frame was sampled. Since it is
the end-effector that moves while the object remains
stationary, we can obtain the ground truth for each frame by
reading the robot controller and obtaining the transformation
eiHb (direct kinematics). The ground truth is then easily
obtained by:

(eiHe0)ref = eiHb* (e0Hb)
-1 (13)

Meanwhile, using both our methods, we estimated the
same HTM by calculating the pose of the object with respect
to the end-effector eHo at each frame ‘i’, that is:

(eiHe0)est =(eiHo)*(e0Ho)
-1 (14)

4 Our methods were implemented using the AAM-API toolkit [16].

Finally we calculated the accuracy of the algorithms by
comparing (eiHe0)ref – derived from the groundtruth – and
(eiHe0)est, – derived from the algorithms.

Figure 4. Groundtruth pose (black) and estimated pose of 1st method

(red), 2nd method (blue) and geometrical-based method [14] (green).

In Figure 4, we show the accuracy measured in the

experiments by plotting eiHe0 in terms of tx, ty, tz, rx, ry, and rz.
The figure also shows the results obtained from the ground
truth, from the two new methods, and from the geometric-
based method.

The statistics of the error over the whole testing sequence
are shown in Table 1. As it can be observed from the table, the
average translational error (tx, ty and tz) for both our methods
was less than 10mm. While for the geometric-based method
[14] it was over 14mm. Similarly, the maximum error for each
of these methods was 27.7mm, 20.6mm, and 52.3mm for the
first, second, and the geometric-based methods respectively,
and the standard deviations: 0.0057, 0.0036, and 0.0112,
respectively.

In terms of rotational error, both our methods also proved
to be superior to our previous geometric-based method, with
the second method showing an even better result than the first
one – maximum rotational error in the first method was 1.77
degrees, while in the second method it was only 0.73 degrees.

50 100 150 200
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

m
et

er

Frame number

tx

50 100 150 200
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

m
et

er

Frame number

ty

50 100 150 200
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

m
et

er

Frame number

tz

50 100 150 200
-20

-15

-10

-5

0

5

10

15

20

de
gr

ee

Frame number

ry

0 50 100 150 200 250
-6

-4

-2

0

2

4

6

8

de
gr

ee
Frame number

rz

50 100 150 200
-10

-5

0

5

10

15

de
gr
ee

Frame number

rx

This paper appears in: IEEE International Conference in Robotics and Automation, 2004

From the results, we can conclude that the accuracy in pose
estimation of our both methods is quite similar, with the
second method being slightly better than the first one. Clearly
our new methods outperform the geometric-based method,
especially if we consider the maximum errors. Furthermore,
we found that the stability of the estimation in both new
methods is better than the one in [14]. That fact can be
observed in the graphs in Figure 4 in the high frequency noise
on top of the curve for the geometric-based method. This
noisy estimation in the geometric-based approach can be
harmful in our servoing system because it may cause the end-
effector to move jerkily.

TABLE 1.

Error

Stat.

1st method

2nd method

Geometric

method [14]

Mean 0.0059 0.0098 0.0147
Std 0.0055 0.0036 0.0112

tx
(m.)

Max 0.0277 0.0206 0.0523
Mean 0.0097 0.0041 0.0079
Std 0.0057 0.0019 0.0064

ty
(m.)

Max 0.0249 0.0095 0.0290
Mean 0.0039 0.0042 0.0042
Std 0.0029 0.0027 0.0045

tz
(m.)

Max 0.0133 0.0143 0.0230
Mean 0.6721 0.3857 0.4819
Std 0.4048 0.1412 0.4002

rx
(deg.)

Max 1.5073 0.5638 1.6300
Mean 0.4395 0.5507 0.9510
Std 0.3570 0.0777 0.8083

ry
(deg.)

Max 1.7666 0.7285 3.7862
Mean 0.5273 0.3246 0.2286
Std 0.2564 0.1329 0.1808

rz
(deg.)

Max 1.0338 0.6639 0.9958

V. CONCLUSION
We presented two methods for tracking and pose

estimation of generic objects using Active Appearance
Models. Feature-based methods, which impose geometric
constraints to calculating the pose of the object, tend to be
very accurate, and therefore very useful for robotic
applications. However, when we compare both our
appearance-based methods to a third method based on the
geometric features, both methods proved to be a lot better. The
error in pose estimation using our second method with 3D
parameterization produced a translational error of less than
10mm and a rotational error of little over one half of a degree.

Moreover, geometric-based methods require customized
algorithms that usually need extensive adaptations when
applied for a different object. On the other hand, the creation
of appearance models for different objects is a mechanical task
that can be easily performed. Another major advantage of
appearance-based methods over feature-based methods is in
situations where extracting features is not simply done due to
cluttered background, complex and irregular features, etc.

On the downside, like any other appearance-based method,
our methods cannot be applied when large variations of the
object appearance are observed; for example, when the object
is observed from a very different angle, or in the presence of
occlusions, etc. In these cases, the learnt view of the object
may be well hidden for a good match with the model to take
place. We are currently developing a strategy that consists of
learning different appearance models of the same object when
observed from different angles. This multiple AAMs can then
be tracked simultaneously while the object is observed from
radically different views in the image sequences.

ACKNOWLEDGMENT
The authors would like to thank Ford Motor Company for

supporting this project.

REFERENCES
[1] R.Hirsh, G.N. DeSouza, and A.C. Kak, “An iterative approach to the hand-

eye and base-world calibration problem,” in Proceedings of 2001 IEEE
International Conference on Robotics and Automation, Vol. 1, pp.2171-2176,
May 2001.

[2] G.N. DeSouza, A Subsumtive, Hierarchical, and Distributed Vision-based
Architecture for Smart Robotics, Ph.D. Dissertation., School of Electrical and
Computer Engineering, Purdue University, May 2002.

[3] A.Kosaka and A.C. Kak, “Stereo vision for Industrial application,” Handbook
of Industrial Robotics, edit. S.Y. Nof, pp. 269-294, John Wiley & Son, Inc.,
NY, 1999.

[4] S.K. Nayar, H. Murase, and S.A. Nene, “Learning, Positioning, and Tracking
Visual Appearance,” in 1994 IEEE International Conference on Robotics and
Automation, Vol. 4, May 1994, pp.3237-3244.

[5] J.L. Edwards, “An Active, Appearance-based approach to the Pose
Estimation of Complex Objects,” in 1996 IEEE/RSJ International Conference
on Intelligent Robots and System , Vol. 3, Nov. 1996, pp. 1458-1465.

[6] D.Gennery, “Visual tracking of known three-dimensional objects,” IJCV,
7:243-270, 1992.

[7] D.Koller, K.Daniilidis, and H.H. Nagel, “Model-based object tracking in
monocular image sequences of road traffic scenes,” IJCV, 10:257-281, 1993.

[8] T.F. Cootes, G.J. Edwards, C.J. Taylor, “Active appearance models,” in Proc.
European Conference on Computer Vision 1998 (H.Burkhardt & B.
Neumann Ed.s). Vol. 2, pp. 484-498, Springer, 1998.

[9] T.F. Cootes, C.J. Taylor, Statistical models of appearance for computer
vision, in WWW publication, October 2001, Available from
http://www.isbe.man.ac.uk/bim/refs.html

[10] G.D. Hager, and P.N. Delhumeur, “Efficient Region Tracking with
Parameteric Models of Geometry and Illumination,” IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. 20, pp. 1025-1039, Oct. 1998.

[11] M. Gleicher, “Projective Registration with Difference Decomposition,” in
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Jun 1997, pp.331-337

[12] M.L. Cascia, S.Sclaroff, and V. Athitsos, “Fast, Reliable Head Tracking
under Varying Illumination: An Approach Based on Registration of Texture-
Mapped 3D Models,” IEEE Trans. Pattern Analysis and Machine
Intelligence, Vol.22, pp. 322-336, Apr 2000.

[13] B.K.P. Horn, “Closed-form solution of absolute orientation using unit
quarternions,” Journal of Optical Soc. Am. , Vol. 4, pp. 629-642, 1987.

[14] Y.Yoon, G.N. DeSouza, and A.C. Kak, “Real-time Tracking and Pose
Estimation for Industrial Objects using Geometric Features,” in 2003 IEEE
International Conference on Robotics and Automation, Sep 2003, pp.3473-
3478.

[15] O.D. Faugeras, Three-Dimensional Computer Vision, MIT Press, 1993.
[16] M. B. Stegmann, B.K. Ersboll, R. Larsen, “FAME--A Flexible Appearance

Modeling Environment,” IEEE Trans. Medical Imaging, Vol. 22, No. 10, pp.
1319-1331, Oct 2003.

[17] M. B. Stegmann, “Object tracking using active appearance models,” Proc.
10th Danish Conference on Pattern Recognition and Image Analysis, vol. 1,
pp. 54-60, DIKU, 2001.

[18] J. Ahlberg, “Using the active appearance algorithm for face and facial feature
tracking,” in IEEE ICCV workshop on Recognition, Analysis, and Tracking
of Faces and Gestures in Real-Time Systems, 2001, pp. 68-72.

This paper appears in: IEEE International Conference in Robotics and Automation, 2004

