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Abstract: During the first year of the COVID-19 pandemic, governments only had access to non-
pharmaceutical interventions (NPIs) to mitigate the spread of the disease. Various methods have
been discussed in the literature for calculating the effectiveness of NPIs. Among these methods,
the interrupted time series analysis method is the area of our interest. To study the second wave,
we clustered countries based on levels of implemented NPIs, except for the target NPI (X) whose
effectiveness wanted to be evaluated. To do so, the COVID-19 Policy Response Tracker data-set
gathered by the “Our World in Data” team of Oxford University, and COVID-19 statistical data
gathered by the John Hopkins Hospital were used. After clustering, we selected a counterfactual
country from the countries that were in the same cluster as the target country, and implemented
NPI (X) at its lowest level. Thus, the target country and the counterfactual country were similar
in implementation level of other NPIs and only differed in the implementation level of the target
NPI (X). Therefore, we can calculate the effectiveness of NPI (X) without being concerned about
the impurity of the effectiveness values that might be caused by other NPIs. This allowed us to
calculate the effectiveness of NPI (X) using the interrupted time series analysis with the control
group. Interrupted time series analysis assesses the effect of different policy-implementation levels
by evaluating interruptions caused by policies in trend and level after the policy-implementation
date. Before the NPI-implementation date, the implementation levels of NPIs were similar in both
selected countries. After this date, the counterfactual country could be treated as a baseline for
calculating changes in the trends and levels of COVID-19 cases in the target country. To demonstrate
this approach, we used the generalized least square (GLS) method to estimate interrupted time series
parameters related to the effectiveness of school closure (the target NPI) in Spain (the target country).
The results show that increasing the implementation level of school closure caused a 34% decrease in
COVID-19 prevalence in Spain after only 10 days compared to the counterfactual country.

Keywords: interrupted time series analysis; COVID-19; public health; Non-Pharmaceutical
Intervention (NPI); counterfactual analysis

1. Introduction

The highly transmissible COVID-19 virus was announced as a variant of concern (VoC)
by the World Health Organization (WHO) on the 11 March 2020 [1]. During the first year
of the COVID-19 pandemic, governments used non-pharmaceutical interventions (NPIs) to
control the spread of COVID-19, in the absence of medications and vaccines.

Restrictive NPIs can be categorized at the individual level, such as face covering
mandates, and the social level, i.e., public transport restrictions, school closure, workplace
closure, public event cancelations, restrictions on gatherings, stay-at-home orders, and
international travel bans. Researchers have applied various methodologies to assess the

Eng. Proc. 2023, 39, 51. https://doi.org/10.3390/engproc2023039051 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2023039051
https://doi.org/10.3390/engproc2023039051
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0001-7246-0303
https://orcid.org/0000-0002-8388-8433
https://orcid.org/0000-0003-4666-9570
https://doi.org/10.3390/engproc2023039051
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2023039051?type=check_update&version=1


Eng. Proc. 2023, 39, 51 2 of 10

effectiveness of these NPIs. Previous research has shown that even after developing
and administering the COVID-19 vaccine and before achieving herd immunity, the NPIs
remained effective [1].

Navazi et al. [1] analyzed the effects of lockdown on the third wave of COVID-19 in
the province of Ontario, Canada, using the interrupted time series analysis (ITSA) method
considering vaccination percentage; however, they did not have a counterfactual baseline
to calculate lockdown effectiveness and only relied on predicting what would happen in
the future, based on pre-intervention trends. Conversely, having a counterfactual country
is more realistic. Saki et al. [2] found ITSA to be effective in estimating the effectiveness
of social distancing in Iran. However, a limitation of their work was that they assumed
the relationship between NPI implementation and COVID-19 confirmed cases to be linear,
while it is known that epidemics follow a non-linear trend. This led us to add some
non-linear terms to our model.

Auger et al. [3] also used ITSA to estimate the effectiveness of school closure. Although
they added some of the other NPIs as covariates to their model, the effectiveness of school
closure was not calculated independently and might depend on other NPI implementation
levels. Therefore, in this study, we used ITSA with a control group to isolate the effectiveness
of the NPI. Thayer et al. [4] used ITSA to investigate the effectiveness of lockdown in
India. They considered lockdown implementation levels and estimated the effectiveness
of different levels of lockdown. However, their research was limited to a single country,
whereas when several countries with similar NPI-implementation levels exist, they can
be used for ITSA with a control group. Emeto et al. [5] used ITSA with a matched-control
country to study the effectiveness of border closure in Africa. However, the multi-country
study by Ballard et al. [6] only considered the region as the ITSA model’s input variable, not
as a control group. Shah et al. [7] applied ITSA individually to three regions and compared
the impact of the first lockdown on non-COVID-19 patient hospital admission in these
three regions. In this case, they implemented single-group ITSA three times without an
accompanying counterfactual analysis.

There are some challenges in single-group interrupted time series analysis, such
as being unable to control for other competing factors [8], poor internal validity [8], or
using treatment group pre-intervention trends as counterfactuals [5]. To solve these is-
sues, we will use other ITSA designs, such as using a control group, to obtain valid and
causal results.

We developed a clustering-based counterfactual selection integrated with an inter-
rupted time series analysis with a control group to address the research gap. For example,
if we consider eight main restrictive NPIs to study, we will cluster countries based on
seven NPIs. The remaining NPI (X) is the one whose effectiveness we are interested in
studying. The selection mechanism of the control country was based on two criteria:
(1) being in the same cluster as the target country and (2) having the greatest difference
with the target country in implementing NPI (X) and implementing NPI (X) at a zero or
lower level. Having a comparable control group helps to implement a robust approach
that considers treatment effects [8]. This way, the change in COVID-19 prevalence resulting
from the pattern of a COVID-19 wave, rather than the intervention, is considered, and will
not lead to an underestimation or overestimation of the number of COVID-19 cases [8].

Regarding wave selection, if we are interested in studying the effectiveness of both
non-pharmaceutical interventions and pharmaceutical interventions such as vaccines, then
a wave during 2021 should be selected, whereas if we want to only study the effectiveness
of NPIs, we should select the first or second wave of COVID-19 during 2020. As the first
COVID-19 wave’s statistics have many uncertainties resulting from the shortage of test kits
and non-standard COVID-19 diagnosis methods [1], we will focus on a study of the second
wave of COVID-19.
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2. Materials

This study used time series data from 8 NPIs in the COVID-19 Policy Response Tracker
of Oxford University [9]. Effectiveness of the NPI that we are interested in studying is
school closure, which means students and teachers are not required to go to school for
in-person activities, and educational activities are provided online (except for some lab
research) [3]. The 8 NPI implementation levels are as follows:

1. Public event cancelation implemented at 3 levels: no measure (0), recommended
cancelation (1), and required cancelation (2).

2. Restrictions on gatherings, which limits the number of people in gatherings to less than
10 (4), 10 to 100 (3), 100 to 1000 (2), limiting only very large gatherings (>1000 people) (1),
no limit (0) (five levels).

3. Workplace closure implemented at four levels: no closure (0), recommended closure
(1), required closure for some (2), and required closure for all (3).

4. School closure implemented at four levels: no closure (0), recommended closure (1),
required closure for some (2), and required closure for all (3).

5. Restriction on internal movement is implemented at three levels: no measure (0),
recommend movement restriction (1), and required movement restriction (2).

6. International travel ban implemented at five levels: no measures (0), screening (1),
quarantining of arrivals from high-risk regions (2), banning high-risk regions (3), and
total border closure (4).

7. Public transport closure implemented at three levels: no measures (0), recommend
closing (or significantly reduced volume/route/means of available transport) (1),
required closure (or prohibiting most people from using it) (2).

8. Stay-at-home requirements implemented at four levels, including no measure (0), rec-
ommending not leaving the house (1); requiring not leaving the house, with exceptions
for grocery shopping, essential trips, etc. (2); requiring not leaving the house with
minimal exceptions like once every few days, etc. (3).

The COVID-19 statistical data, including COVID-19 prevalence provided by John
Hopkins Hospital [10], was also used. Additionally, we calculated a date column showing
how many days had passed since the start of the second wave.

3. Methods

Interrupted time series analysis is a statistical methodology used to study intervention
effects that can cause both level and trend changes [1]. When only one group is exposed to
the policy, researchers use a “pre-post” observational study design. However, if we have
two groups and only one is exposed to the policy, we can use a “pre-post with control”
observational study design. One group without exposure to the policy works as a control
group for the other. This method is also called a difference in differences study. Having
a control country helps to capture the change in trend caused by policy instead of the
nonlinearity (curvilinear) of the outcome wave. Since adding a control group solidifies the
study, we will use this research design.

In order to determine what would have happened if there had been no NPI X (target
NPI to study its effectiveness), we needed a counterfactual country that did not implement
NPI X but implemented the rest of the NPIs at a similar level with the target country.
This method is called counterfactual analysis. Therefore, we developed a hybrid method-
ology with clustering-based counterfactual selection to find a suitable control group for
interrupted time series analysis with control, as hybrid methodologies are well known for
covering the shortcomings of a methodology with a second method [11].

First, we clustered all countries with their data based on all studied NPIs except for
NPI X. The K-Means clustering algorithm [12] was used for this purpose. This identifies
which countries are in the same cluster as the target country. Among these countries, we
determined pairs of countries that implemented NPI X at different levels. We then looked
at the countries paired with the target country and selected the country which could work
as a control group. A control country must have implemented NPI X at zero or lower levels
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for a period before and after NPI X implementation level changes in the target country.
After selecting the control country estimate, we could use interrupted time series with
counterfactual analysis for the control group to determine the effectiveness of NPI X. The
methodology’s steps are illustrated in Figure 1.
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Figure 1. Developed hybrid methodology.

We have data from several populous European countries, including Austria, Belgium,
Czechia, Denmark, Finland, France, Germany, Italy, Netherlands, Norway, Poland, Portugal,
Romania, Russia, Spain, Switzerland, United Kingdom, available to select the target and
control countries.

In this study, the second wave of COVID-19, which occurred at the end of 2020
and the beginning of 2021 in most countries, was studied. This is because COVID-19
vaccines, developed at the beginning of 2021, affected immunization, while we want to
study NPIs, not pharmaceutical interventions. Moreover, clustering by considering vaccine
administration percentage is difficult given vaccine shortages at the beginning of 2021,
countries varied in vaccine administration percentage, and it is hard to cluster countries
based on pharmaceutical interventions and NPIs at the same time.

The target country of this study is Spain, and the target NPI whose effectiveness is
investigated is school closure. We focused on finding a control country that implemented
school closure at a lower level by clustering countries based on other NPIs.

We clustered countries based on NPIs mentioned in the Materials section, except for
school closure. Since the data related to each NPI are time series data during the second
wave of COVID-19, the problem was clustering time series data. One of the methods
for clustering time series data is considering each time point as a data column (feature)
for clustering. Figure 2 illustrates how the data frame was transformed for time series
clustering purposes. We considered just the first 60 days of the second wave because the
performance of K-Means depends on the number of features, and it cannot perform well
when the number of features is increased [13]. Moreover, the minimum duration for the
second COVID-19 wave was 65 days in Poland.

The time series clustering was coded in Python 3.8, and the K-Means algorithm from
Python’s Scikit-learn library was used. Since we wanted to cluster time series data, dynamic
time wrapping (DTW) distance [13] was used for calculating the distance among points
and cluster centroids instead of simple Euclidean distance in the body of the K-Means
algorithm. Euclidean distance ignores the time dimension of data and cannot take into
account time shifts, whereas dynamic time wrapping can handle these features [13].
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One of the limitations of K-Means clustering is that the number of clusters (K) is not
determined. Several ways exist to determine the number of clusters, like elbow law or
Silhouette score. Here, we used Silhouette score, which measures how well the items
(countries) in one cluster are separated from items (countries) in another cluster. The maxi-
mum Silhouette score is one, and it assigns higher values to better clustering results [13].
Figure 3 illustrates the Silhouette metrics for different numbers of clusters. Since we had 17
countries to cluster, the maximum number of clusters was set to 9 because we needed at
least one pair of countries in each cluster in order to select the control country. Since K = 2
has the highest Silhouette score, we set the number of clusters at 2.
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The K-Means algorithm clustered the given countries in 2 clusters, as illustrated in
Figure 4.
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In order to select the counterfactual country from the cluster that Spain is in, a loop
was coded in Python that paired all countries in the cluster with Spain. Then, this loop
checked for a significant difference between the mean [14] of NPI X implementation levels
in each pair. Statistical paired t-test was used to check the mean difference [11]. This helped
to select the counterfactual country. Table 1 shows all countries paired with Spain, the
mean difference in school closure implementation level, and the p-value of the t-test.

Table 1. t-test results for the mean difference of NPI (X).

Country Pairs Mean Difference p-Value of t-Test

(Spain and Belgium) 1 0

(Spain and Denmark) 1 0

(Spain and Italy) 0.8276 <0.001

(Spain and Germany) 0.6897 <0.001

(Spain and UK) 0.5517 <0.001

(Spain and Portugal) 0 NA

(Spain and Russia) 0 NA

Belgium and Denmark had the highest difference in implementing school closure.
Between these two countries, we found Belgium to be the more suitable country as a control
group. While Spain changed the school closure implementation level from 2 to 3 on day
101 of the second wave, Belgium changed its level from 1 to 2 on day 109 of the second wave.
However, in Denmark, the school closure implementation level changed from 2 to 1 on day
24 of the second wave, again from 1 to 0 on day 105 of the second wave, and from 0 to 2 on
day 124 of the second wave. As there was more fluctuation in school closure implementation
levels in Denmark, Belgium seemed a better option for counterfactual analysis. Moreover,
at least one level difference exists between school closure implementations in Spain and
Belgium. This allowed us to investigate the effectiveness of higher-level school closure
implementations using interrupted time series analysis with Belgium as a control country.

Interrupted time series analysis was implemented using NLME [15] and CAR [16]
libraries of the RStudio software version 1.4.1106. The interrupted time series model that
we wanted to analyze is as follows:

COVID − 19 prevalence ∼ time + TC + TC × time + level change
+trend change + TC × level change + TC × trend change
+(trend change)2 + TC × (trend change)2

TC is the Target Country, a binary variable showing whether it is an intervention coun-
try (1) or a control country (0). By integrating clustering-based counterfactual analysis with
interrupted time series analysis, we could overcome some of the drawbacks of interrupted
time series stated in [17], such as the difficulty of isolating one policy’s effect. So, it is
effective to have a control group.

We found the periods of the autoregressive residual and moving average by doing
a preliminary interrupted time series analysis. The ordinary least squares (OLS) method
was used for preliminary interrupted time series analysis. R squared of the GLS model
was 72%, which meant that 72% of COVID-19 prevalence could be explained by the input
variables, including days passed since the beginning of the second COVID-19 wave and the
NPI implementation levels. Since OLS assumes the error terms are independent, we found
suitable periods for autoregression or moving averages by checking for autocorrelation.

To check for autocorrelation, the auto correlation function (ACF) plot and partial
ACF (PACF) plot of the OLS model residuals are illustrated in Figure 5. We considered
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the maximum 23-day possible lag. Since ACF shows exponential decay, we utilized
autoregression (AR). AR means that the error term is related to the error term in previous
periods. Since PACF does not show an exponential decay, considering the moving average
was not necessary. We examined the PACF plot to determine the AR order and pick the
highest violation from the 95% two-way confidence interval (dashed lines). As the PACF
for number 7 was larger, AR = 7 was considered for the model.
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The second method for checking autocorrelation was the Durbin–Watson test. The
Durbin–Watson test which used to check autoregressive residuals confirmed AR (7). The
ideal value for the statistical Durbin–Watson test is 2. If the statistics are above 2, it shows a
positive correlation; if they are below 2, it shows a negative correlation [16]. Results of the
Durbin–Watson test reported in Table 2 confirms 7 days of lag for autoregression with the
lowest absolute statistics (0.9090) and zero p-value (p-value < 0.01).

Table 2. Durbin–Watson test results.

Lag (Days) Statistics p-Value Lag (Days) Statistics p-Value

1 1.4840 0.000 8 2.0052 0.806

2 1.9166 0.292 9 2.1426 0.180

3 1.7634 0.024 10 1.8629 0.514

4 1.8283 0.104 11 1.8383 0.394

5 2.0698 0.674 12 1.8948 0.746

6 1.7943 0.082 13 1.7339 0.180

7 0.9090 0.000 14 1.0369 0.000

4. Results and Discussion

After preliminary analysis, we used the generalized least square (GLS) method, which,
is an extension of the OLS model that considers both moving average and autoregressive
errors [16]. The GLS model’s coefficients and their p-values are reported in Table 3. The
residual standard error for this model is 217.9.
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Table 3. GLS results with AR = 7.

Name of Component Coefficient Estimates p-Value

Intercept −130.2954 0.3478

time 8.4291 0 ***

TC 137.2721 0.4841

TC × time −6.1002 0.0208 *

level change 434.8590 0 ***

trend change 14.9470 0.3280

TC × level change −511.7353 0 ***

TC × trend change 10.6900 0.6206

(trend change)2 −2.6273 0 ***

TC × (trend change)2 1.9237 0.0132 *
*** at 0.001 level; * at 0.05 level.

In the following, we provide the interpretation of the significant coefficients with a
p-value less than 0.05. The COVID-19 prevalence in the control group increased (8.4 units per
time period). However, in the target group, it was 6.1 units less, which means 2.3 (8.4–6.1)
units per time period. In other words, Spain had a −6 cases per million decrease per time
period compared to Belgium.

Moreover, the level coefficient shows a significant and positive level change in the
control group (434). However, the level change coefficient caused by intervention in the
target country was −511. Since it is a differential level change, it means that intervention
caused an approximately −77 (−511 + 434) decrease in the level of COVID-19 prevalence
in the intervention country.

As COVID-19 prevalence follows an exponential pattern in each wave, the trend2

term was added to the model, and its coefficients were significant. This means that the
COVID-19 prevalence pattern followed an exponential trend. For the control country, this
coefficient was −2.6, and for the target country, it was −0.7 (−2.6 + 1.9); although it was
less, it was still negative.

Overall, the school closure intervention led to a reduction in the time coefficient, a
negative trend2 coefficient, and a decrease in the level of COVID-19 prevalence; therefore,
it was effective. On the other hand, the trend change coefficients in both target and control
countries were insignificant.

In Figure 6, the blue line is the Spain data, and the red line is the Belgium data (control
group). The dashed blue line shows the counterfactual for Spain based on the control group
data (without the time-squared term). The blue line after the vertical black dashed line
shows the COVID-19 prevalence after stricter intervention implementation in the target
country. As shown in Figure 6, one level stricter school closure decreased the COVID-19
prevalence level and caused a negative trend2.

In order to approximate the effectiveness of one level increase in school closure
implementation, we predicted the COVID-19 prevalence 10 days after the school closer
level increase, considering intervention (using the main model) and without considering
intervention (using the counterfactual model). Ten days were selected, as it takes at
least five days (COVID-19 incubation period [18]) to observe the NPI effect on COVID-
19 prevalence. The predicted COVID-19 prevalence was 385.5, while its counterfactual
equivalent, considering the trend2 coefficient, was 587. This means that one level of school
closure increase caused an approximately 34% decrease in COVID-19 prevalence after
10 days, which is significant. Therefore, school closure was an effective NPI.
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5. Conclusions

Interrupted time series analysis has been used in the COVID-19 literature to investigate
the effectiveness of NPIs. However, the single-group interrupted time series analysis
has poor internal validity as well as other shortcomings. In this study, a new statistical
methodology was developed and shown to be able to handle these shortcomings. By
combining a clustering algorithm with conventional single-group interrupted time series
analysis, we found an appropriate control country for our target country and changed
the research design to ITSA with a control group. This counterfactual country acted as a
baseline for the post-intervention period. Here, a K-Means algorithm was used to cluster
countries based on all NPIs except the target NPI with two clusters (K = 2), which had the
highest Silhouette score. In our case, Belgium was selected as a control group for Spain, to
assess the effectiveness of school closure during the second wave of COVID-19, because it
was in the same cluster as Spain and had one of the highest differences in implementing
school closure compared with Spain. The interrupted time series with control group results
showed that increasing one level of the “School closure” NPI effectively reduced the level
and time coefficient of COVID-19 prevalence and maintained the negative trend2 coefficient.

In addition, the ITSA with counterfactual analysis showed that school closure caused
a 34% reduction in COVID-19 prevalence 10 days after increasing the level of school closure
in Spain. This means that school closure was an effective policy, and adherence to it was
important in mitigating the spread of COVID-19. Extending the interrupted time series
model to consider adherence to an implemented NPI is an opportunity for future research.
Furthermore, improving the performance of the clustering aspect using complex time series
clustering methodologies is another future research opportunity. All in all, depending on
how many samples are available for clustering, the methodology we developed can also be
applied to assessing other public health policies.
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