
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/226495155

Calculating the maximum execution time of real-time programs

Article in Real-Time Systems · January 1989

DOI: 10.1007/BF00571421 · Source: DBLP

CITATIONS

623
READS

895

2 authors, including:

Peter P. Puschner

TU Wien

172 PUBLICATIONS 5,849 CITATIONS

SEE PROFILE

All content following this page was uploaded by Peter P. Puschner on 02 June 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/226495155_Calculating_the_maximum_execution_time_of_real-time_programs?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/226495155_Calculating_the_maximum_execution_time_of_real-time_programs?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter-Puschner?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter-Puschner?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/TU-Wien?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter-Puschner?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Peter-Puschner?enrichId=rgreq-30db10c3c49f76a1e9dfa672888f5a47-XXX&enrichSource=Y292ZXJQYWdlOzIyNjQ5NTE1NTtBUzoxMDM1MTU1MTkxOTMxMDJAMTQwMTY5MTQzMTk0NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Calculating the Maximum

Execution Time of

Real�Time Programs

P� Puschner�� Ch� Koza

Institut f�ur Technische Informatik

Technische Universit�at Wien

peter�vmars�uucp� koza�vmars�uucp

Version �� April �� ��	�

Abstract

In real�time systems the timing behaviour is an important property of
each task� It has to be guaranteed that the execution of a task does not
take longer than the speci�ed amount of time� Thus� a knowledge about the
maximum execution time of programs is of utmost importance�

This paper discusses the problems for the calculation of the maximum
execution time �MAXT � � �MAximum eXecution Time�� It shows the pre�
conditions which have to be met before the MAXT of a task can be calculated�
Rules for the MAXT calculation are described� Triggered by the observation
that in most cases the calculated MAXT far exceeds the actual execution
time� new language constructs are introduced� These constructs allow pro�
grammers to put into their programs more information about the behaviour
of the algorithms implemented and help to improve the self checking prop�
erty of programs� As a consequence� the quality of MAXT calculations is
improved signi�cantly� In a realistic example� an improvement factor of ��
has been achieved�

�This work has been supported by Digital Equipment Corporation under contract EERP�AU�
���

�

� Introduction

The signi�cant di�erence between real�time systems and other computer systems
is the importance of correct timing behaviour� Each hard real�time task has a
deadline that has to be met� otherwise the real�time system fails� As a consequence

in a real�time system it has to be guaranteed that each task �nishes before its
deadline� even in worst case� i�e� when the task�s execution takes a maximum
amount of time�

Obviously the worst case execution time of a task � we call it maximum

execution time � is of signi�cant importance for the construction and veri�cation
of real�time systems�

In many articles about scheduling in real�time systems the maximumexecution
times of tasks are assumed to be known� One example is the classic article about

scheduling in hard real�time systems by Liu and Layland 	Liu
��� They assume
that the run�time for each task is constant� i�e� that it does not exceed a known
amount of time� In 	Mok �� the properties and impacts of the use of semaphores�

rendezvous constructs� and monitors on real�time systems are discussed� Mok�s
work is also based on the assumption that the maximumexecution time of program
blocks is known�

Kligerman and Stoyenko 	Klig ��� 	Stoy
� address the problem of a worst

case analysis of tasks� run�time properties� They discuss the real�time program�
ming language Real�Time Euclid� Real�Time Euclid is de�ned in a way that allows
the calculation of the maximum execution time for every program� We will come
back to some of the language�s concepts later�

In Leinbaugh�s papers 	Lein ��� 	Lein ��� and 	Lein �� one can �nd discus�
sions on guaranteeing response times in hard real�time systems� Leinbaugh takes
into account task priorities� mutual exclusion� resource con�icts� task communi�
cations� and interrupt handling� The MAXT of tasks is expected to be known�

It is the main focus of the MARS �MAintainable Real�time System� research
group at the Technical University in Vienna to build a distributed real�time system

with a deterministic� guaranteed timing behaviour 	Kope ��� The design system
of MARS 	Senf �� integrates all steps from system design to programming in the
small� Tasks are scheduled statically by a pre run�time scheduler� The scheduler
takes into account the precedence constraints describing synchronization needs

and dependencies among tasks� the maximum execution time of tasks� and their
activation frequencies and produces a dispatch table which is interpreted at run�
time 	Fohl �� The maximum execution time is provided by a special tool based
on an analysis of task source codes�

�

In this paper the di�erent aspects of the maximum execution time calculation
of real�time programs are discussed�

First we will show that the maximum execution time cannot be calculated
for an arbitrary program� Problems for the MAXT calculation are described�
This leads to some restrictions for analyzable programs and to the introduction
of bounded loops�

In the following a description of some simple rules for the calculation of the
maximum execution time of programs which obey the restrictions is presented�
Discussing the quality of the results of the MAXT calculation� it will be seen that

it is necessary to introduce new programming language constructs which provide
a means to state more information about the application context of programs in
order to be able to compute a bound for the maximum execution time which is
much closer to the real maximum execution time� Language constructs called

markers� scopes� and loop sequences are described�

� Preconditions for the MaximumExecution Time

Calculation

In this article we analyze the software aspects of the calculation of the maxi�
mum execution time of programs� We make the assumption that the behaviour of
the underlying hardware and operating system is deterministic and known �this

framework is provided by our MARS system 	Kope ���� This implies that the
timing behaviour of all hardware components and the e�ects of caching� pipelining
and DMA on task performance are predictable� On the other hand the operat�

ing system must provide static memory management �no paging with statistical
behaviour�� system calls with a calculable timing behaviour� and the absence of
asynchronous interrupts� Task synchronization is provided by the pre run�time
scheduler and thus does not produce any overhead at run time�

We de�ne the technical terms application speci�c maximum execution time
and calculated maximum execution time as follows�

De�nition � �Application Speci�c Maximum Execution Time � � �MAXTA�

The Application Speci�c Maximum Execution Time of a program is the time it
maximally takes to execute this program in the given application context� provided
that all needed resources are available� the program is not interrupted and the
performance of the hardware is known�

�

Note that the application speci�c maximum execution time of a task is the
maximum CPU time that the task can actually consume� Trying to get a value
for the timing behaviour of a task by an analysis of its source code � this is

what can be done by a software tool � one can often derive only a high upper
bound for the maximal time consumption of a task� This is due to the fact that
the program code does not contain the full information about the application
context of a task �for more details see section ��� Hence� we de�ne the term of

the calculated maximum execution time�

De�nition � �Calculated Maximum Execution Time � � �MAXTC� The
Calculated Maximum Execution Time of a task is the least upper bound for the
MAXTA of this task that can be derived from the task�s program code�

In order to calculate the maximum execution time of a task the MAXT �for
better readability we will use this abbreviation instead of MAXTC in the rest of the
paper� of all parts of that task � sequences� loops� etc� � must be computable�
This suggests that full information about the control �ow and constraints for the

control �ow in the worst case� i�e� when every program part executes as long
as possible� have to be known for all language constructs of the programming
language used�

The main problem is that the control �ow of a program at run�time depends

on the input data and the current variable settings� The values of variables used in
conditions �loop conditions or conditions of alternatives� and the values of pointers
to functions determine the control �ow and as a consequence the timing proper�
ties of each task� Since it is impossible to simulate the execution of a task for all

its possible variable settings and to determine if the task terminates or how long
it takes to execute �termination problem�� some restrictions have to be made in
order to get analyzable programs�

The problems in detail are�

� In most current programming languages the programmer does not have to
declare the maximum number of iterations or a time limit for the loops he
programs� This imposes a problem on the MAXT calculation� because the

maximum iteration number or a time limit for the loop execution generally
cannot � or only with great e�ort � be extracted from the loop condition�
Thus the time maximally spent in a loop cannot be calculated in most cases�

� The usage of recursions leads to a similar problem� The maximal depth of
recursive procedure calls� and consequently the MAXT for recursions� cannot

�

be determined statically� since these attributes depend on the variable state
at program execution time�

A related problem of using recursions in real�time applications is that the
demand of stack space cannot be determined before run�time� Therefore�
the maximal amount of stack space needed at run�time cannot be allocated
statically as is done in many real�time systems�

� Parameters and pointers to functions can reference functions of distinct tim�
ing properties� Because of the dependence of the MAXT on the di�erent
functions it does not make sense to assign the maximum time it takes to

evaluate a function to the MAXT for a function referenced�

Furthermore the use of pointers to functions provides a means for the im�
plementation of recursions �see above for more details��

� The danger of goto usage is that one can write programs which lack any
structure in the sense of structured programming� These programs cannot
be analyzed by an automated software analysis tool�

We make the following restrictions in order to eliminate the problems listed
above �some are mentioned in 	Klig ����

� Programs must not contain any �direct or indirect� recursions� Recursive
algorithms have to be either replaced by iterative ones or transformed into

non recursive schemes by applying program transformation rules 	Darl
��

� The absence of function variables and parameters is enforced in programs
that the MAXT has to be calculated for� Calls of subroutines via variables

or parameters have to be substituted by explicit subroutine calls�

� In third generation programming languages every semantic that can be pro�

grammed with gotos can also be achieved with the standard language con�
structs � sequences� loops� and iterations� As a consequence� the elimina�
tion of gotos does not result in any restrictions on programming�

� Since loops are fundamental for the implementation of almost every algo�
rithm� one cannot eliminate loop constructs from programming languages�
Nevertheless it has to be guaranteed that every loop terminates within a
speci�ed amount of time� As a consequence loop constructs which force the

programmer to give some information about the time spent in a loop have
to be introduced� Loops of this kind are called bounded loops�

We di�erentiate two kinds of bounded loops�

�

�� loops with a speci�ed limit for the number of iterations and

�� loops which are bounded by a time limit that must not be overrun at
run�time�

The bound of each loop depends on its particular application context� It
is speci�ed using the appropriate language construct� Both limits for the
maximal number of iterations and time limits have to be known at compile

time to make the computation of the maximum execution time possible�

��� Bounded Loops

The constructs for bounded loops look very similar to conventional loop constructs�
They di�er from the usual loop constructs in two ways�

� All loop constructs enforce that a loop bound is speci�ed � this has �rst
been demanded in 	Ehre �� and 	Hala ��� A loop bound can either be a

limit for the maximum number of iterations or a time limit for the termina�
tion of the loop� Loop bounds have to be known at compile time�

� If a loop bound is overrun a speci�ed action is started� The default for
this action is the activation of the operating system�s exception handler �see
section ����� However the programmer may override this default and specify
a di�erent treatment for this case��

The bene�t of using bounded loops is twofold� On the one hand they are neces�
sary for MAXT calculation� on the other hand they serve as a control mechanism
for checking iteration limitations at run�time�

Examples for bounded loop constructs are demonstrated below� The constructs
are presented in the C like syntax as used in a prototype implementation of MARS�
In contrast to the original C loop constructs the keywords of bounded loops are
written in capital letters� We provide FOR� WHILE and DO�WHILE loops which

are derivates of the respective C loops�

FOR�expr��expr��expr� � MAX COUNT�const expr�

�It is a conceptual decision whether the action provided for an overrun of a loop is treated as
an exception handler or as a feature for expressing a special timing behaviour of a program� The
timing behaviour of the overrun action is only of interest in the latter case � when the action
is part of the regular program �this is our interpretation�� In case of an exception the timing
behaviour cannot be guaranteed �see Exceptions��

�

stmt�

�ON OVERRUN stmt��

FOR�expr��expr��expr� � MAX TIME�const texpr�

stmt�

�ON TIMEOUT stmt��

The statements of the loop body are executed as long as the evaluation of
the running condition �expr�� returns true and the loop bound � de�ned with
MAX COUNT or MAX TIME � is not exceeded� If the running condition re�

turns false the loop terminates and the program execution continues after the loop
statement� If the running condition is true and the loop bound is found violated
then either the statement in the ON OVERRUN or ON TIMEOUT clause or �
if such statements do not exist � an operating system exception will be executed�

In our implementation the bounds of loops with an iteration limit are checked
by a counter� In order to guarantee that the limits of time bounded loops are
met we determine the maximal amount of time it takes to perform exactly one

iteration� Every time a new iteration is to be started it is tested whether another
iteration of maximal duration can be �nished within the time limit or not�

We prefer this approach to the solution described in 	Klig ��� In 	Klig �� the

time limit is transformed into an iteration bound at compile time� If the time
needed for the single iterations is short compared to the maximal duration� the
loop executes only a fraction of the speci�ed time� We consider this a disadvantage�
because in many cases the actual timing behaviour of loops will substantially di�er

from the behaviour speci�ed in the program�

��� Exceptions

An exception is an abnormal situation during the execution of a program� We

distinguish two kinds of exceptions � recoverable and non�recoverable exceptions�
Exceptions which are recoverable� i�e� an exception handler is provided� are

considered part of the program� Their timing behaviour has to be taken into

account in the timing analysis the same way as the timing behaviour of all program
parts 	Hala ���

Non�recoverable we call exceptions which the system is not prepared for� i�e� if a

non�recoverable exception is raised the speci�ed behaviour of the system cannot be
guaranteed� Thus the occurrence of a non�recoverable exception leads to a system
failure� All that can be done in this case is to try to minimize the resulting damage�

The system has to be transferred into a save state and shut down afterwards�

� Calculating an Upper Bound for the Maxi�

mum Execution Time

Programs which do not violate the conditions of section � and contain only simple
constructs can be analyzed by an automated MAXT analysis tool� The maximum

execution time can be calculated recursivlely using a small set of formulae for
the simple language constructs� The simple language constructs for which formu�
lae have to be provided are simple statements� statement sequences� alternatives�
bounded loops� and subroutines�

The maximum execution time of a simple language construct �e�g� simple con�
struct or simple expression� is the time required for the sequential execution of
the corresponding machine instructions on the given processor� It can be obtained

from the hardware speci�cations of the processor�
In order to calculate the MAXTC for sequences �construct�� construct�� � � � �

constructn�� we only have to sum up the maximum execution times of the single
constructs� If we have to determine the maximal amout of time consumed by an

alternative �if condition then construct�� else construct���� we have to add the
maximal time for the evaluation of the condition and the time maximally spent
in one of the branches� The same rule can be used to calculate the maximum

execution time for multiple branch instructions �switch in C� case in Pascal��
When calculating the maximum execution time for loop constructs� we have

to distinguish between loops with a limited iteration number and loops which are
bounded by a time limit� Dealing with the �rst kind the number of iterations has

to be multiplied with the execution times of loop condition and body�� For loops
with the running condition at the heading �FOR� WHILE� we have to add the
time for one more evaluation of the condition� In the case of a FOR loop the time
for initializations also has to be taken into account�

The maximum execution time of a time bounded loop is simply the timing
constraint of the loop�

�Note that for bounded loops the overhead for testing the bounds also has to be regarded in
the calculation of the maximum execution time

construct MAXT

primitive maxt�primitive� � � �primitive�

sequence maxt�sequence� �
X

i

maxt�constructi�

alternative maxt�alternative� � maxt�condition��
max�maxt�construct���maxt�construct���

loopnumber maxt�loophead� � maxt�init� �maxt�condition��
count � �maxt�body� �maxt�condition���
maxt�overrun statement�

maxt�looptail� � count � �maxt�body� �maxt�condition���
maxt�overrun statement�

looptime maxt�looptime� � time�maxt�timeout statement�

subroutine maxt�subroutine� � � �organization� �maxt�body�

Table �� Formulas for the calculation of the maximum execution time

For both kinds of loops we have to consider the case that the loop bound is
exceeded� which means that the loop has consumed its maximum time and the
overrun or timeout statement is activated� Hence we have to add the maximum

execution time for this statement�
The maximal time used up by a subroutine is the sum of the time for orga�

nization �copying parameters� jump� return from subroutine� plus the maximal
amount of time for executing the subroutine body�

Table � summarizes the rules for the MAXT calculation for all constructs�

The function � takes a simple action � simple statement� simple expression

or subroutine organization whose MAXT is directly derived from the number of
machine instruction cycles � as an argument and returns the amount of time it
takes to execute this action in accordance to the prerequisites of de�nition �� The

maxt function is de�ned to calculate an upper bound for the execution time of its
argument�

�

� Adding Knowledge to Programs in order to

Improve the MAXT Computation

Using the rules introduced so far we are able to compute an upper bound for the
MAXTC of programs� We will demonstrate this in the following example� The

example shows that our results can be improved if we add some more information
about constraints on the control �ow to the program� This will encourage us to
introduce new language constructs�

��� An Example

An enterprise specializes in the production of goods that are �lled into tin cans�
The fabrication is automated and robots are involved in the job� In the last
production step the cans are packed into boxes� We observe the following scenario�

The tin cans are transported on a conveyor belt� A robot arm seizes the cans and
puts them into the boxes� The computer controlling the robot arm is connected
to a video camera in order to determine the position of the can on the belt�

The program for the localization of the can has to regard the speci�cations

listed below�

� The image read by the camera is presented in an array of ��� � ��� pixels�

� The colors of the tin cans and the conveyor belt are contrasting� Due to
shape and size� cans produce an image that covers a maximum of ����

pixels�

� There may be some noise in the image data� The maximal noise ratio which
is tolerated is speci�ed with one per cent �i�e� ��� pixels� of the array�

� In order to steer the robot arm to the right location the program has to
calculate the center of the marked area� The in�uence of noisy data on the
result has to be minimized�

The programwhich performs as described is given by the Nassi�Schneidermann

diagram shown in �gure ��

A listing for the camera application is shown on page �� �the keyword SCOPE

and the statement MAX COUNT�MAX AREA�� should be ignored at this time� They
will be described later in this paper�� The execution times for all parts of the pro�
gram calculated from the machine instructions generated by a UNIX C compiler

are provided in comments�� They are given in number of CPU cycles�

�The program has been compiled with the portable C compiler on a 	
��� machine

��

initializations� set variables to zero

y coord ������

x coord ������

object point	y coord�	x coord� �
t f

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh��
�
��
��
�

MAX COUNT�����������

weight � calc weight�� � � ��

x center �� x coord � weight�

y center �� y coord � weight�

weight sum �� weight�

x center �� weight sum�

y center �� weight sum�

Figure �� Nassi�Schneidermann diagram for the camera example

We can calculate an upper bound for the maximum execution time for the
calc center�subroutine by applying the introduced rules �see �gure ���

Looking at the program speci�cations we realize that the number of pixels
that may be set is limited to � ���� � ��� � � ���� This knowledge is not
contained in the program because currently we have no means to state that the
respective program part can be executed a maximum of � �� times� Hence� the

above calculation does not make use of this knowledge but assumes that each of
the �� ��� pixels might be set� which results in a MAXTC high above a realistic
execution time for this subroutine�

��� New Constructs� Markers and Scopes

The above example demonstrates that we can only determine an extremely high

upper bound for the MAXTA� if we are content with the language constructs
introduced so far� The unsatisfactory results are due to the fact that we cannot
express our full knowledge about the control �ow of a program by means of the
existing constructs� Thus we de�ne new language constructs � markers and

scopes � in order to reduce the di�erence MAXTC � MAXTA�

De�nition � �Scope� A Scope is a part of a program�s instruction code� lim�
ited by a special scope language construct� that is embedded into the syntax of a

��

�define MAX�ROWS ��� �� CPU cyles ��

�define MAX�COLS ���

�define MAX�AREA 	�
�

int calc�weight�image� x�coord� y�coord �� �� ��

char image�MAX�ROWS��MAX�COLS��

int x�coord� y�coord�

�

int x�lim� y�lim� i� j� count��� �� �� ��

x�lim � x�coord � ��

y�lim � y�coord � ��

FOR�i�y�coord���i��y�lim�i�� MAX�COUNT�	 �� loop� �� �� �������
��	� ��

FOR�j�x�coord���j��x�lim�j�� MAX�COUNT�	 �� loop� �� �� �������
��	� ��

if �image�i��j� count��� �� alt� �� �� ���� �� ��

count��� �� Number of neighbours �� �� ��� ��

return count � count �� ��

�

int calc�center�image� x�center� y�center �� �� ��

char image�MAX�ROWS��MAX�COLS��

int �x�center� �y�center�

�

int pixel�count� x�coord� y�coord� x�sum� y�sum� �� �
 ��

pixel�count � x�sum � y�sum � ��

FOR�y�coord � �� y�coord � MAX�ROWS� y�coord�� SCOPE MAX�COUNT�MAX�ROWS �� ����������	� ��

� �� loop	 ��

FOR�x�coord � �� x�coord � MAX�COLS� x�coord�� MAX�COUNT�MAX�COLS �� ����������	� ��

� �� loop� ��

if �image�x�coord��y�coord� �� alt� �� �� ��� ��

�

int weight�

MAX�COUNT�MAX�AREA� �� marker �� �� �� ��

weight � calc�weight�image� x�coord� y�coord� �� 	�� � ��

x�sum �� x�coord � weight�

y�sum �� y�coord � weight�

pixel�count �� weight�

�

�

�

if �pixel�count �� alt	 �� �� �� ��

�

�x�center � x�sum � pixel�count� �� ��� ��

�y�center � y�sum � pixel�count�

�

else

�x�center � �y�center � �� �� �� ��

return �� �� �� ��

�

Figure �� Listing of the camera example program

��

maxt�calc center� � �� � � �maxt�loop�� �maxt�alt�� � �� �
� ��� �
� ���

maxt�loop�� � �� �
� � ��� � ��maxt�loop�� � ��� �
�� � �� �

� ��� �
� ���
maxt�loop�� � �� �
� � ��� � ��maxt�alt�� � ��� �
�� � �� �

� �
�
 ���

maxt�alt�� � ��� �max���� �maxt�calc weight�� �� � � ���
maxt�alt�� � �� �max����� ��� � ���

maxt�calc weight� � �� �
� �maxt�loop�� � ��� � �
��

maxt�loop�� � �� � � � � � ��maxt�loop�� � ��� � �� � �� � � ���
maxt�loop�� � �� � � � � � ��maxt�alt�� � ��� � �� � �� � ��
maxt�alt�� � ��� �max���� �� � ���

Figure �� MAXT calculation for the camera example

programming language�

De�nition � �Marker� A Marker is a special mark located within a scope� It
speci�es the maximal number the marked position in the program may be passed

by the program �ow between entering and leaving the scope�

Using markers we can state the maximal number of times the control �ow can
pass through a speci�ed position within a special part of a program designated by
the scope construct� An arbitrary number of markers may be set in each scope�

Markers are mainly used to state that the number of executions of one or more

paths through a loop can be bounded� It does not make sense to locate a marker
in a sequence or a branch of an alternative which does not lie in a loop� because
these program parts could be passed at most once within the scope� Hence� we
design our scope language constructs to coincide with loop constructs�

We have to make a restriction for the use of markers inside scopes in order
to avoid a complexity explosion as it might happen if all language constructs
could be used within a scope arbitrarily� In loops� in which the maximal number
of iterations is limited� markers ��� must not lie inside a piece of code which is

contained by a loop ��� that is part of an alternative ��� �see �gure ��� They can
only be used in statement sequences or randomly nested alternatives which are
only embedded in arbitrarily nested loops �limited by an iteration�bound� inside

the scope ����

��

H
H
H
HH�

�
�
��

���
���

Q
Q
Q
Q��

��
��
��

���

���

���

���

marker scope

Figure �� Example for validly ��� and invalidly ��� set markers �each of the dia�

grams represents a scope��

In time bounded loops markers may only be used at the highest level� This
means that it is not allowed to set a marker inside nested loops which are bound
by a time limit� An implementation of this feature would necessitate complex
tests and thus evoke a substantial overhead at run�time�

Scopes are embedded in MARS�C� our programming language� which is a
descendant of the C programming language� as an extension of the syntax of
bounded loop constructs� The programmer de�nes a scope containing a bounded
loop writing the SCOPE keyword into the loop�s head� The extended syntax of

FOR loops is shown below �the extensions for WHILE and DO�WHILE loop are
equivalent�� As the syntax suggests scopes can be nested arbitrarily� In the case
of nested scopes a marker always refers to the innermost scope it is contained in�

FOR�expr��expr��expr� ��SCOPE� MAX COUNT�const expr�

stmt�

�ON OVERRUN stmt��

FOR�expr��expr��expr� ��SCOPE� MAX TIME�const texpr�

stmt�

��

�ON TIMEOUT stmt��

If a marker is to be set� there must always be an explicitly de�ned scope that
it is contained in� We prefer this approach to the solution of a global� implicitly
de�ned scope which contains all markers that are not inside any explicitly de�ned
scope� since it leads to a more transparent behaviour and helps to detect errors�

Furthermore� we favour the homogenous concept that every scope has to be de�ned
explicitly with its contained loop�

To set a marker we simply have to write

MAX COUNT�const expr��

The constant expression const expr can be evaluated at compile time� It is the
maximal number of times the marker may be passed inside its scope� Markers are

checked at run�time in order to verify that the calculated timing behaviour can
be met� If the bound of a marker is violated an exception is raised�

Let us have another look at our example� We can improve the result of the code

analysis by the use of markers and scopes� Now we need the code fragments which
have been ignored when �rst looking at the listing on page ��� We de�ne a scope
which contains the loop in the calc center�subroutine with the keyword SCOPE�

Furthermore we set a marker MAX COUNT�MAX AREA��� The MAXT calculation for
the new program is sketched in �gure �� section � �for MAXT calculation rules
for markers and scopes see section ���

��� Loop Sequences

Many programs use sequences of loops whose maximal iteration numbers com�

plement each other� i�e� the sum of the iterations of the loops does not exceed a
constant value at execution time� This kind of behaviour becomes interesting if
the bound for the iteration sum is smaller than the sum of the maximal iteration
numbers of the single loops� We can reach a better result for the MAXT calcula�

tion in such cases� if we are able to inform the MAXT analysis tool about loops
that belong together�

De�nition � �Loop Sequence� A Loop Sequence is a series of loops �limited
by an iteration limit� which have the property that the sum of the iterations of the
single loops does not exceed a given constant value at run�time�

��

Loop sequences are marked by an additional construct which is embedded into
the extended C syntax�

LOOP SEQUENCE ITERATION SUM�const expr �

stmt�

�ON OVERRUN stmt��

The body of the loop sequence �stmt�� contains the loops that are part of the
sequence and arbitrary other constructs � even loops � that may be programmed

between the single loops� Loops which are members of a loop sequence are iden�
ti�ed by the keyword IN SEQUENCE� These loops must not be scoped since this
would raise the complexity of programs immensely both for programmers and the
MAXT analysis tool as well� The syntax de�nition for bounded loops� occuring

in loop sequences� is a modi�cation of the known constructs �see below��

FOR�expr��expr��expr� �fIN SEQUENCE� SCOPEg
MAX COUNT�const expr�

stmt�

A bounded loop inside a loop sequence must not contain an ON OVERRUN clause�
since a violation of a loop bound inside the sequence is treated as an exception of
the whole loop sequence� Loop sequences may provide an ON OVERRUN statement�

� Calculating the MAXT of Programs Using the

Language Constructs Introduced

The gain of markers� scopes� and loop sequences is obvious by intuition� Here we
want to give de�nite formulae for the calculation of the maximum execution time

of these constructs�

��� MAXT Calculation for Scopes Containing Markers

In the following we provide some formulas for the calculation of the MAXTC of a
scope containing n nested loops loop�� � � � � loopn with the innermost loop contain�

��

ing an arbitrary set of markers�� Each loop loopi contains all loopj with i � j � n�
The maximal number of iterations of the loops are speci�ed by bound�� � � � � boundn�
loop�j speci�es the whole loop loopj except for the loops loopj��� � � � � loopn in it�

The maximum execution time calculation for scopes with markers can be per�
formed in two steps�

�� In the �rst step we calculate the maximum execution time of the loop parts

�loop�j� that do not contain markers� i�e� the time for the evaluation of
loop conditions� loop organization and statement sequences between nested
loops��

�� In the other step we treat the constructs of the innermost loop�s body which
may contain paths that are restricted by markers�

For both steps the maximum number the innermost loop body can actually
be entered � gmax � is needed� This �gure can be calculated out of the bounds
�counti� of the n single loops and the restriction that markers place on the number

of iterations �mmax��

gmax � min�
nY

i��

counti� mmax�

�� The loops have to be passed in a way that makes the execution time of the
loops maximal� Hence� in our calculation we have to assume that the outer
loops are passed as often as possible� All inner loops are executed in each
iteration of a loop surrounding them�

Deriving the contribution of the j�th loop to the MAXT of a scope we have

to distinguish between three situations��

�
Qj

i�� counti � gmax

This means that the loop is an �outer loop � In the worst case it will
be entered

Qj��
i�� counti times� every time performing countj iterations�

The maximal time consumption for this loop is

j��Y

i��

counti � maxt�loop�j�countj��

�Note that this is a special case� More generally the single loops may contain an arbitrary
number of loops with markers� and markers may be set at any level� The calculation model for
this generalization however is only a slight variation of the model provided�

�For simplicity the time consumed by OVERRUN�statements has been neglected
�If mmax � gmax all loops belong to the �rst group

�

�
Qj��

i�� counti � gmax �
Qj

i�� counti � gmax

If this condition holds for a loop� the loop will both iterate more than

once and less than a maximal number of times at least once in the
worst case� The MAXT of this loop � obviously only one such loop
can occur in each scope � can be calculated with the formula

X

��k�
Qj��

i��
counti	

P
k
countjk�gmax	countjk�countj

maxt�loop�j �countjk��

We consider it essential to mention that the maximal time for the over�

head of loopj cannot be simply calculated as maxt�loop�j �gmax��� This
is due to the fact that it makes a di�erence whether a loop is entered
Qj��

i�� counti times or only once� A FOR�loop� for example� has to be
initialized every time it is entered�

Also note that we do not have to care about the number of iterations
of the single instances of the loop � countjk� For a constant number
of loop instances the MAXTC is all the same if the sum total of the
iterations �

P
k countjk� is constant �gmax�� It should be mentioned

that the condition countjk � countj can be omitted� It has been in�
troduced in order to establish a parallel to the loop�s execution model�

�
Qj��

i�� counti � gmax

In this case the surrounding loops reach the maximal possible num�
ber of iterations� This means that in the worst case loopj can iterate
maximally once each time it is executed� Consequently the contribution
of loop�j to the MAXT is

gmax � maxt�loop�j ����

�� In order to calculate the MAXT of a loop body with markers we build a
graph which re�ects its timing behaviour� Constructing the graph� program
constructs that do not contain a marker are reduced � the MAXT for these
constructs is calculated applying the known rules�

The resulting graph consists of nodes representing branches or joins of pro�
gram paths and edges which are marked with the MAXT of the appropriate
program parts and execution restrictions imposed by markers�

�

The MAXT for the graph is calculated in a repeated execution of the two
steps outlined below�

� The graph is searched for the longest path that has not been marked

by the algorithm yet�

� The path which has been found in the �rst step is marked and the
MAXT of the path is added to the MAXT of the whole graph�

��� Calculating the MAXT for Loop Sequences

In order to compute the maximum execution time for loop sequences we have to
distribute the global maximal iteration number among the single loops� maximiz�
ing the sum of the MAXTs of the loops� We can apply the formula

maxt�loop sequence� � max�
X

countj�boundj �
P

j
countj �boundseq

maxt�loopj �countj���

where boundseq is the global maximal number of iterations in the loop sequence�
boundj are the upper iteration bounds of the single loops and countj the actual
bounds� loopj�countj� stands for the time it maximally takes to execute countj
iterations of loop loopj �

� Bene�ts and Costs of the New Constructs

On page �� we introduced some changes to the example of section ���� We put a

scope around the main loop and introduced two markers in the program listing�
Based on the rules for the MAXT calculation of these constructs that have been
described� we want to give a demonstration of their bene�ts� Figure � shows the
steps in the calculation of the maximum execution time for the modi�ed program

fragment�

The main gain is due to the marker� With the marker we express that the
time consuming procedure calc weight�� � � � is not called in every iteration ��� ���
times� but at most � �� times �this is the maximal number of pixels which may
be set according to the speci�cations�� Thus the portion of the MAXTC which is

contributed by the statement sequence containing the procedure call is immensely
reduced in comparison to the �rst version of calc center�� � � ��

The upper bound value calculated for the maximum execution time of the

original example was about ��� million CPU cycles� When analyzing the new

��

maxt�calc center� � �� � � �maxt�scope� �maxt�alt�� � �� �
� �� �� ���

maxt�scope� � maxt�loop��� �maxt�body�� � �� �� ��

maxt�loop��� � �� � �� �
� � ��� � ��maxt�loop�� � ����
�
�� � �� � ��
� ���

maxt�loop��� � �� �
� � ��� � ��� � ��� �
�� � �� � �� ���

maxt�body�� � ��� � ��� � ��� � ��� � ��� � ��� �maxt�calc weight�� �
� �� ��� ���

maxt�calc weight� � �
��
maxt�alt�� � �� �max����� ��� � ���

Figure �� MAXT calculation for the enhanced camera example

version we derive a bound of only �
 million cycles for the program execution�

So the calculated MAXT is reduced by a factor of more than �� by the use of
a scope and a marker� Although this result is remarkable we cannot generalize
it� This is due to the fact that the reduction depends on the complexity of the
program parts involved �the complexity of calc weight has a signi�cant impact on

the improvement factor in our example��
It is also interesting to remember that markers are a means not only for an

improvement of the calculation of the MAXT but also for the supervision of the
correct program behaviour� As the example shows plausibility checks which are

based on application speci�c knowledge can be built into programs� In this way
failures in the program logic may be detected at run time so that the self checking
property of programs can be improved�

Every marker is a kind of cheap investment that pays for itself� Checking a

marker costs �� CPU cycles every time the marker is passed� These �� cycles have
to be invested only as often as the marker is passed� not for the other iterations
of the loop� The time for a marker�s evaluation will be outweighed by the bene�ts

its information brings for MAXT calculation� The gain will be the greater the
more a marker restricts the number of iterations through a program part and the
longer this program part takes to execute�

When calculating the time overhead for the markers of our example we got a
number of less than ��� ��� cycles which is only about �! of the total overhead

in the example� The gain of introducing these constructs can be extracted from
�gures � and � and is summarized in table � � ��� million CPU cycles could
be saved and a processor idle time of ��! could be prevented by reducing the

��

MAXTC of the two versions of the example�

bounded loops only ��� �
� ���
bounded loops and markers �� �� ���

Overhead for bounded loops and markers�

bounded loops �calc weight� � ��� ��
bounded loops �calc center� �
� ��
marker ��� ���

bounded loops and markers
 ��� ��� cycles

Table �� CPU cycles and overhead for the camera example

calculated maximum execution time to a realistic value� So the investment has
proved worth while�

	 A Concept for a MAXT Analysis Tool

In the previous sections we introduced some new language constructs for real�
time programming languages� The costructs were de�ned in a C like syntax as
we use them in MARS�C� which is an extension of the C programming language

	Kern
�� Besides the constructs mentioned in this paper MARS�C also provides
statements for sending and receiving messages in the distributed real�time system
MARS 	P�"u ���

The calculation of the maximumexecution time of a MARS�C program is done
in two steps� a compilation and an analysis step� In the �rst phase the program
is compiled with the MARS�C precompiler� The result of the precompilation is a
program in C source code with some additional information about loop bounds�

markers� and loop sequences� The C program then is compiled into assembler
code�

In the analysis step �the tool for the calculation of the MAXT is in develope�
ment� the real calculation of the upper bound for the applicaton speci�c maximum

execution time of the program takes place� This calculation also consists of two
parts�

��

� In a �rst run information about program structure and timing behaviour
has to be combined� In this step the result of the precompiled MARS�C
source code and the assembler source are parsed� As an intermediate result

a �le is created that includes full information about the program structure
�alternatives� loops� loop limits� markers� scopes� and loop sequences� and
the execution time for all parts� derived from the execution times of the
single assembler instructions�

� In the second step of the analysis the intermediate �le is read and the MAXT

of the program is calculated� The calculation is based on the formulae
described in this paper�

Representing the intermediate results of the analysis step in a �le has two
advantages� In the developement phase of the tool the �le can easily be read so

that results can be veri�ed� When the tool is in use the �le gives the programmer
detailed information about the timing properties of all parts of his program�

 Summary

In this paper we discussed the aspects of a source code based calculation of the
maximum execution time of tasks� We introduced restrictions for analyzable pro�
grams and presented formulae for the MAXT calculation for the fundamental

language constructs of third generation programming languages�
Comparing the calculated maximumexecution time of tasks to the actual max�

imum execution time we observed large di�erences in some cases� The calculated
upper bound for the maximum execution time of programs was much higher than

the actual maximum execution time� We managed to reduce this gap by the in�
troduction of new programming language constructs � markers� scopes and loop
sequences � that allow programmers to utilize knowledge about the execution of
their algorithms�

It has also been pointed out that markers can be used as a means of �ow
monitoring� Application speci�c knowledge can be expressed in the program code
directly so that the self checking property of programs can be improved�

A simple example demonstrated the gains of the new programmingmeans� The
MAXT value for the example programwas decreased by a factor of ��� Considering
that the example is relativly simple we expect that the new constructs can yield
even greater gains when the complexity of the application increases�

��

References

	Darl
� J� Darlington� R� M� Burstall
A System which Automatically Improves Programs
in

David Gries
Programming Methodology
Springer� New York� ��

	Ehre �� W� Ehrenberger

Softwarezuverl	assigkeit und Programmiersprache
Regelungstechnische Praxis� ��� Jhrg�� Nr� �� ���� pp� �����

	Fohl � G� Fohler and Ch� Koza
Scheduling eines verteilten Echtzeitsystems mittels heuristischer Such�
strategien

Research Report No� ��� Institut f"ur Technische Informatik� Techni�
cal University of Vienna� Jan� ��

	Hala �� W� A� Halang
A Proposal for Extensions of PEARL to Facilitate the Formulation of

Hard Real�Time Applications
Proceedings Fachtagung Proze#rechner ��� � Karlsruhe� Sept� ���
Informatik�Fachberichte �� Springer� Berlin�Heidelberg�New York�
Tokyo� ���� pp� �
����

	Hala �� W� A� Halang
A Priori Execution Time Analysis for Parallel Processes
Proceedings of the Euromicro Workshop on Real�Time� Como�
June ���� Washington� IEEE Computer Society Press� ���

	Kern
� B� W� Kernighan� D� M� Ritchie

The C Programming Language
Prentice Hall� New Jersey� ���

	Klig �� E� Kligerman� A� D� Stoyenko
Real�Time Euclid
 A Language for Reliable Real�Time Systems

IEEE Transactions on Software Engineering� Vol� SE���� Number ��
Sept� ���� pp� �������

	Kope �� H� Kopetz� A� Damm� Ch� Koza� M� Mulazzani� W� Schwabl� Ch� Senft�
R� Zainlinger

��

Distributed Fault�Tolerant Real�Time Systems
 The MARS Approach
IEEE Micro� Feb� ���

	Lein �� D� W� Leinbaugh
Guaranteed Response Times in a Hard�Real�Time Environment
IEEE Transactions on Software Engineering� Vol� SE��� Number ��

Jan� ���� pp� ����

	Lein �� D� W� Leinbaugh� M��R� Yamini
Guaranteed Response Times in a Distributed Hard�Real�Time Environ�
ment
Proceedings of Real Time Systems Symposium� IEEE Press� Dec� ����

pp� ��
����

	Lein �� D� W� Leinbaugh� M��R� Yamini

Guaranteed Response Times in a Distributed Hard�Real�Time Environ�
ment
IEEE Transactions on Software Engineering� Vol� SE���� Number ���
Dec� ���� pp� ���������

	Liu
�� C� L� Liu and J� W� Layland
Scheduling Algorithms for Multiprogramming in a Hard�Real�Time En�

vironment
Journal of the ACM� Vol� ��� Number �� Jan� ��
�� pp� �����

	Mok �� A� K� Mok
The Design of Real�Time Programming Systems based on Process Mod�
els

Proceedings of Real Time Systems Symposium� IEEE Press� Dec� ����
pp� ����

	P�"u �� M� P�"ugl� A� Damm� W� Schwabl
Interprocess Communication in MARS
Proc� of the ITG�GI Conference on Communication in Distributed Sys�
tems� Stuttgart� Feb� ���

	Senf �� Ch� Senft� R� Zainlinger
A Graphical Design Environment for Distributed Real�Time Systems

Proceedings of the ��nd IEEE Conference on System Science� Kailua�
Kona� Jan� ���� Washington� IEEE Computer Society Press� ����
pp�
���

��

	Stoy
� A� D� Stoyenko
A Real�Time Language with a Schedulability Analyzer
Technical Report CSRI����� Computer Systems Research Institute�

University of Toronto� Dec� ��

��

View publication statsView publication stats

https://www.researchgate.net/publication/226495155

