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Abstract

In real�time systems the timing behaviour is an important property of
each task� It has to be guaranteed that the execution of a task does not
take longer than the speci�ed amount of time� Thus� a knowledge about the
maximum execution time of programs is of utmost importance�

This paper discusses the problems for the calculation of the maximum
execution time �MAXT � � �MAximum eXecution Time�� It shows the pre�
conditions which have to be met before the MAXT of a task can be calculated�
Rules for the MAXT calculation are described� Triggered by the observation
that in most cases the calculated MAXT far exceeds the actual execution
time� new language constructs are introduced� These constructs allow pro�
grammers to put into their programs more information about the behaviour
of the algorithms implemented and help to improve the self checking prop�
erty of programs� As a consequence� the quality of MAXT calculations is
improved signi�cantly� In a realistic example� an improvement factor of ��
has been achieved�

�This work has been supported by Digital Equipment Corporation under contract EERP�AU�
���
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� Introduction

The signi�cant di�erence between real�time systems and other computer systems
is the importance of correct timing behaviour� Each hard real�time task has a
deadline that has to be met� otherwise the real�time system fails� As a consequence

in a real�time system it has to be guaranteed that each task �nishes before its
deadline� even in worst case� i�e� when the task�s execution takes a maximum
amount of time�

Obviously the worst case execution time of a task � we call it maximum

execution time � is of signi�cant importance for the construction and veri�cation
of real�time systems�

In many articles about scheduling in real�time systems the maximumexecution
times of tasks are assumed to be known� One example is the classic article about

scheduling in hard real�time systems by Liu and Layland 	Liu 
��� They assume
that the run�time for each task is constant� i�e� that it does not exceed a known
amount of time� In 	Mok �� the properties and impacts of the use of semaphores�

rendezvous constructs� and monitors on real�time systems are discussed� Mok�s
work is also based on the assumption that the maximumexecution time of program
blocks is known�

Kligerman and Stoyenko 	Klig ��� 	Stoy 
� address the problem of a worst

case analysis of tasks� run�time properties� They discuss the real�time program�
ming language Real�Time Euclid� Real�Time Euclid is de�ned in a way that allows
the calculation of the maximum execution time for every program� We will come
back to some of the language�s concepts later�

In Leinbaugh�s papers 	Lein ��� 	Lein ��� and 	Lein �� one can �nd discus�
sions on guaranteeing response times in hard real�time systems� Leinbaugh takes
into account task priorities� mutual exclusion� resource con�icts� task communi�
cations� and interrupt handling� The MAXT of tasks is expected to be known�

It is the main focus of the MARS �MAintainable Real�time System� research
group at the Technical University in Vienna to build a distributed real�time system

with a deterministic� guaranteed timing behaviour 	Kope ��� The design system
of MARS 	Senf �� integrates all steps from system design to programming in the
small� Tasks are scheduled statically by a pre run�time scheduler� The scheduler
takes into account the precedence constraints describing synchronization needs

and dependencies among tasks� the maximum execution time of tasks� and their
activation frequencies and produces a dispatch table which is interpreted at run�
time 	Fohl �� The maximum execution time is provided by a special tool based
on an analysis of task source codes�
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In this paper the di�erent aspects of the maximum execution time calculation
of real�time programs are discussed�

First we will show that the maximum execution time cannot be calculated
for an arbitrary program� Problems for the MAXT calculation are described�
This leads to some restrictions for analyzable programs and to the introduction
of bounded loops�

In the following a description of some simple rules for the calculation of the
maximum execution time of programs which obey the restrictions is presented�
Discussing the quality of the results of the MAXT calculation� it will be seen that

it is necessary to introduce new programming language constructs which provide
a means to state more information about the application context of programs in
order to be able to compute a bound for the maximum execution time which is
much closer to the real maximum execution time� Language constructs called

markers� scopes� and loop sequences are described�

� Preconditions for the MaximumExecution Time

Calculation

In this article we analyze the software aspects of the calculation of the maxi�
mum execution time of programs� We make the assumption that the behaviour of
the underlying hardware and operating system is deterministic and known �this

framework is provided by our MARS system 	Kope ���� This implies that the
timing behaviour of all hardware components and the e�ects of caching� pipelining
and DMA on task performance are predictable� On the other hand the operat�

ing system must provide static memory management �no paging with statistical
behaviour�� system calls with a calculable timing behaviour� and the absence of
asynchronous interrupts� Task synchronization is provided by the pre run�time
scheduler and thus does not produce any overhead at run time�

We de�ne the technical terms application speci�c maximum execution time
and calculated maximum execution time as follows�

De�nition � �Application Speci�c Maximum Execution Time � � �MAXTA�

The Application Speci�c Maximum Execution Time of a program is the time it
maximally takes to execute this program in the given application context� provided
that all needed resources are available� the program is not interrupted and the
performance of the hardware is known�
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Note that the application speci�c maximum execution time of a task is the
maximum CPU time that the task can actually consume� Trying to get a value
for the timing behaviour of a task by an analysis of its source code � this is

what can be done by a software tool � one can often derive only a high upper
bound for the maximal time consumption of a task� This is due to the fact that
the program code does not contain the full information about the application
context of a task �for more details see section ��� Hence� we de�ne the term of

the calculated maximum execution time�

De�nition � �Calculated Maximum Execution Time � � �MAXTC� The
Calculated Maximum Execution Time of a task is the least upper bound for the
MAXTA of this task that can be derived from the task�s program code�

In order to calculate the maximum execution time of a task the MAXT �for
better readability we will use this abbreviation instead of MAXTC in the rest of the
paper� of all parts of that task � sequences� loops� etc� � must be computable�
This suggests that full information about the control �ow and constraints for the

control �ow in the worst case� i�e� when every program part executes as long
as possible� have to be known for all language constructs of the programming
language used�

The main problem is that the control �ow of a program at run�time depends

on the input data and the current variable settings� The values of variables used in
conditions �loop conditions or conditions of alternatives� and the values of pointers
to functions determine the control �ow and as a consequence the timing proper�
ties of each task� Since it is impossible to simulate the execution of a task for all

its possible variable settings and to determine if the task terminates or how long
it takes to execute �termination problem�� some restrictions have to be made in
order to get analyzable programs�

The problems in detail are�

� In most current programming languages the programmer does not have to
declare the maximum number of iterations or a time limit for the loops he
programs� This imposes a problem on the MAXT calculation� because the

maximum iteration number or a time limit for the loop execution generally
cannot � or only with great e�ort � be extracted from the loop condition�
Thus the time maximally spent in a loop cannot be calculated in most cases�

� The usage of recursions leads to a similar problem� The maximal depth of
recursive procedure calls� and consequently the MAXT for recursions� cannot
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be determined statically� since these attributes depend on the variable state
at program execution time�

A related problem of using recursions in real�time applications is that the
demand of stack space cannot be determined before run�time� Therefore�
the maximal amount of stack space needed at run�time cannot be allocated
statically as is done in many real�time systems�

� Parameters and pointers to functions can reference functions of distinct tim�
ing properties� Because of the dependence of the MAXT on the di�erent
functions it does not make sense to assign the maximum time it takes to

evaluate a function to the MAXT for a function referenced�

Furthermore the use of pointers to functions provides a means for the im�
plementation of recursions �see above for more details��

� The danger of goto usage is that one can write programs which lack any
structure in the sense of structured programming� These programs cannot
be analyzed by an automated software analysis tool�

We make the following restrictions in order to eliminate the problems listed
above �some are mentioned in 	Klig ����

� Programs must not contain any �direct or indirect� recursions� Recursive
algorithms have to be either replaced by iterative ones or transformed into

non recursive schemes by applying program transformation rules 	Darl 
��

� The absence of function variables and parameters is enforced in programs
that the MAXT has to be calculated for� Calls of subroutines via variables

or parameters have to be substituted by explicit subroutine calls�

� In third generation programming languages every semantic that can be pro�

grammed with gotos can also be achieved with the standard language con�
structs � sequences� loops� and iterations� As a consequence� the elimina�
tion of gotos does not result in any restrictions on programming�

� Since loops are fundamental for the implementation of almost every algo�
rithm� one cannot eliminate loop constructs from programming languages�
Nevertheless it has to be guaranteed that every loop terminates within a
speci�ed amount of time� As a consequence loop constructs which force the

programmer to give some information about the time spent in a loop have
to be introduced� Loops of this kind are called bounded loops�

We di�erentiate two kinds of bounded loops�
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�� loops with a speci�ed limit for the number of iterations and

�� loops which are bounded by a time limit that must not be overrun at
run�time�

The bound of each loop depends on its particular application context� It
is speci�ed using the appropriate language construct� Both limits for the
maximal number of iterations and time limits have to be known at compile

time to make the computation of the maximum execution time possible�

��� Bounded Loops

The constructs for bounded loops look very similar to conventional loop constructs�
They di�er from the usual loop constructs in two ways�

� All loop constructs enforce that a loop bound is speci�ed � this has �rst
been demanded in 	Ehre �� and 	Hala ��� A loop bound can either be a

limit for the maximum number of iterations or a time limit for the termina�
tion of the loop� Loop bounds have to be known at compile time�

� If a loop bound is overrun a speci�ed action is started� The default for
this action is the activation of the operating system�s exception handler �see
section ����� However the programmer may override this default and specify
a di�erent treatment for this case��

The bene�t of using bounded loops is twofold� On the one hand they are neces�
sary for MAXT calculation� on the other hand they serve as a control mechanism
for checking iteration limitations at run�time�

Examples for bounded loop constructs are demonstrated below� The constructs
are presented in the C like syntax as used in a prototype implementation of MARS�
In contrast to the original C loop constructs the keywords of bounded loops are
written in capital letters� We provide FOR� WHILE and DO�WHILE loops which

are derivates of the respective C loops�

FOR�expr��expr��expr� � MAX COUNT�const expr�

�It is a conceptual decision whether the action provided for an overrun of a loop is treated as
an exception handler or as a feature for expressing a special timing behaviour of a program� The
timing behaviour of the overrun action is only of interest in the latter case � when the action
is part of the regular program �this is our interpretation�� In case of an exception the timing
behaviour cannot be guaranteed �see Exceptions��
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stmt�

�ON OVERRUN stmt��

FOR�expr��expr��expr� � MAX TIME�const texpr�

stmt�

�ON TIMEOUT stmt��

The statements of the loop body are executed as long as the evaluation of
the running condition �expr�� returns true and the loop bound � de�ned with
MAX COUNT or MAX TIME � is not exceeded� If the running condition re�

turns false the loop terminates and the program execution continues after the loop
statement� If the running condition is true and the loop bound is found violated
then either the statement in the ON OVERRUN or ON TIMEOUT clause or �
if such statements do not exist � an operating system exception will be executed�

In our implementation the bounds of loops with an iteration limit are checked
by a counter� In order to guarantee that the limits of time bounded loops are
met we determine the maximal amount of time it takes to perform exactly one

iteration� Every time a new iteration is to be started it is tested whether another
iteration of maximal duration can be �nished within the time limit or not�

We prefer this approach to the solution described in 	Klig ��� In 	Klig �� the

time limit is transformed into an iteration bound at compile time� If the time
needed for the single iterations is short compared to the maximal duration� the
loop executes only a fraction of the speci�ed time� We consider this a disadvantage�
because in many cases the actual timing behaviour of loops will substantially di�er

from the behaviour speci�ed in the program�

��� Exceptions

An exception is an abnormal situation during the execution of a program� We

distinguish two kinds of exceptions � recoverable and non�recoverable exceptions�
Exceptions which are recoverable� i�e� an exception handler is provided� are

considered part of the program� Their timing behaviour has to be taken into

account in the timing analysis the same way as the timing behaviour of all program
parts 	Hala ���

Non�recoverable we call exceptions which the system is not prepared for� i�e� if a






non�recoverable exception is raised the speci�ed behaviour of the system cannot be
guaranteed� Thus the occurrence of a non�recoverable exception leads to a system
failure� All that can be done in this case is to try to minimize the resulting damage�

The system has to be transferred into a save state and shut down afterwards�

� Calculating an Upper Bound for the Maxi�

mum Execution Time

Programs which do not violate the conditions of section � and contain only simple
constructs can be analyzed by an automated MAXT analysis tool� The maximum

execution time can be calculated recursivlely using a small set of formulae for
the simple language constructs� The simple language constructs for which formu�
lae have to be provided are simple statements� statement sequences� alternatives�
bounded loops� and subroutines�

The maximum execution time of a simple language construct �e�g� simple con�
struct or simple expression� is the time required for the sequential execution of
the corresponding machine instructions on the given processor� It can be obtained

from the hardware speci�cations of the processor�
In order to calculate the MAXTC for sequences �construct�� construct�� � � � �

constructn�� we only have to sum up the maximum execution times of the single
constructs� If we have to determine the maximal amout of time consumed by an

alternative �if condition then construct�� else construct���� we have to add the
maximal time for the evaluation of the condition and the time maximally spent
in one of the branches� The same rule can be used to calculate the maximum

execution time for multiple branch instructions �switch in C� case in Pascal��
When calculating the maximum execution time for loop constructs� we have

to distinguish between loops with a limited iteration number and loops which are
bounded by a time limit� Dealing with the �rst kind the number of iterations has

to be multiplied with the execution times of loop condition and body�� For loops
with the running condition at the heading �FOR� WHILE� we have to add the
time for one more evaluation of the condition� In the case of a FOR loop the time
for initializations also has to be taken into account�

The maximum execution time of a time bounded loop is simply the timing
constraint of the loop�

�Note that for bounded loops the overhead for testing the bounds also has to be regarded in
the calculation of the maximum execution time





construct MAXT

primitive maxt�primitive� � � �primitive�

sequence maxt�sequence� �
X

i

maxt�constructi�

alternative maxt�alternative� � maxt�condition��
max�maxt�construct���maxt�construct���

loopnumber maxt�loophead� � maxt�init� �maxt�condition��
count � �maxt�body� �maxt�condition���
maxt�overrun statement�

maxt�looptail� � count � �maxt�body� �maxt�condition���
maxt�overrun statement�

looptime maxt�looptime� � time�maxt�timeout statement�

subroutine maxt�subroutine� � � �organization� �maxt�body�

Table �� Formulas for the calculation of the maximum execution time

For both kinds of loops we have to consider the case that the loop bound is
exceeded� which means that the loop has consumed its maximum time and the
overrun or timeout statement is activated� Hence we have to add the maximum

execution time for this statement�
The maximal time used up by a subroutine is the sum of the time for orga�

nization �copying parameters� jump� return from subroutine� plus the maximal
amount of time for executing the subroutine body�

Table � summarizes the rules for the MAXT calculation for all constructs�

The function � takes a simple action � simple statement� simple expression

or subroutine organization whose MAXT is directly derived from the number of
machine instruction cycles � as an argument and returns the amount of time it
takes to execute this action in accordance to the prerequisites of de�nition �� The

maxt function is de�ned to calculate an upper bound for the execution time of its
argument�
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� Adding Knowledge to Programs in order to

Improve the MAXT Computation

Using the rules introduced so far we are able to compute an upper bound for the
MAXTC of programs� We will demonstrate this in the following example� The

example shows that our results can be improved if we add some more information
about constraints on the control �ow to the program� This will encourage us to
introduce new language constructs�

��� An Example

An enterprise specializes in the production of goods that are �lled into tin cans�
The fabrication is automated and robots are involved in the job� In the last
production step the cans are packed into boxes� We observe the following scenario�

The tin cans are transported on a conveyor belt� A robot arm seizes the cans and
puts them into the boxes� The computer controlling the robot arm is connected
to a video camera in order to determine the position of the can on the belt�

The program for the localization of the can has to regard the speci�cations

listed below�

� The image read by the camera is presented in an array of ��� � ��� pixels�

� The colors of the tin cans and the conveyor belt are contrasting� Due to
shape and size� cans produce an image that covers a maximum of ����

pixels�

� There may be some noise in the image data� The maximal noise ratio which
is tolerated is speci�ed with one per cent �i�e� ��� pixels� of the array�

� In order to steer the robot arm to the right location the program has to
calculate the center of the marked area� The in�uence of noisy data on the
result has to be minimized�

The programwhich performs as described is given by the Nassi�Schneidermann

diagram shown in �gure ��

A listing for the camera application is shown on page �� �the keyword SCOPE

and the statement MAX COUNT�MAX AREA�� should be ignored at this time� They
will be described later in this paper�� The execution times for all parts of the pro�
gram calculated from the machine instructions generated by a UNIX C compiler

are provided in comments�� They are given in number of CPU cycles�

�The program has been compiled with the portable C compiler on a 	
��� machine
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initializations� set variables to zero

y coord ������

x coord ������

object point	y coord�	x coord� �
t f

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh��
�
��
��
�

MAX COUNT�����������

weight � calc weight�� � � ��

x center �� x coord � weight�

y center �� y coord � weight�

weight sum �� weight�

x center �� weight sum�

y center �� weight sum�

Figure �� Nassi�Schneidermann diagram for the camera example

We can calculate an upper bound for the maximum execution time for the
calc center�subroutine by applying the introduced rules �see �gure ���

Looking at the program speci�cations we realize that the number of pixels
that may be set is limited to � ���� � ��� � � ���� This knowledge is not
contained in the program because currently we have no means to state that the
respective program part can be executed a maximum of � �� times� Hence� the

above calculation does not make use of this knowledge but assumes that each of
the �� ��� pixels might be set� which results in a MAXTC high above a realistic
execution time for this subroutine�

��� New Constructs� Markers and Scopes

The above example demonstrates that we can only determine an extremely high

upper bound for the MAXTA� if we are content with the language constructs
introduced so far� The unsatisfactory results are due to the fact that we cannot
express our full knowledge about the control �ow of a program by means of the
existing constructs� Thus we de�ne new language constructs � markers and

scopes � in order to reduce the di�erence MAXTC � MAXTA�

De�nition � �Scope� A Scope is a part of a program�s instruction code� lim�
ited by a special scope language construct� that is embedded into the syntax of a
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�define MAX�ROWS ��� �� CPU cyles ��

�define MAX�COLS ���

�define MAX�AREA 	�
�

int calc�weight�image� x�coord� y�coord �� �� ��

char image�MAX�ROWS��MAX�COLS��

int x�coord� y�coord�

�

int x�lim� y�lim� i� j� count��� �� �� ��

x�lim � x�coord � ��

y�lim � y�coord � ��

FOR�i�y�coord���i��y�lim�i�� MAX�COUNT�	 �� loop� �� �� �������
��	� ��

FOR�j�x�coord���j��x�lim�j�� MAX�COUNT�	 �� loop� �� �� �������
��	� ��

if �image�i��j� count��� �� alt� �� �� ���� �� ��

count��� �� Number of neighbours �� �� ��� ��

return count � count �� ��

�

int calc�center�image� x�center� y�center �� �� ��

char image�MAX�ROWS��MAX�COLS��

int �x�center� �y�center�

�

int pixel�count� x�coord� y�coord� x�sum� y�sum� �� �
 ��

pixel�count � x�sum � y�sum � ��

FOR�y�coord � �� y�coord � MAX�ROWS� y�coord�� SCOPE MAX�COUNT�MAX�ROWS �� ����������	� ��

� �� loop	 ��

FOR�x�coord � �� x�coord � MAX�COLS� x�coord�� MAX�COUNT�MAX�COLS �� ����������	� ��

� �� loop� ��

if �image�x�coord��y�coord� �� alt� �� �� ��� ��

�

int weight�

MAX�COUNT�MAX�AREA� �� marker �� �� �� ��

weight � calc�weight�image� x�coord� y�coord� �� 	�� � ��

x�sum �� x�coord � weight�

y�sum �� y�coord � weight�

pixel�count �� weight�

�

�

�

if �pixel�count �� alt	 �� �� �� ��

�

�x�center � x�sum � pixel�count� �� ��� ��

�y�center � y�sum � pixel�count�

�

else

�x�center � �y�center � �� �� �� ��

return �� �� �� ��

�

Figure �� Listing of the camera example program
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maxt�calc center� � �� � � �maxt�loop�� �maxt�alt�� � �� �
� ��� �
� ���

maxt�loop�� � �� � 
� � ��� � ��maxt�loop�� � ��� � 
�� � �� �

� ��� �
� ���
maxt�loop�� � �� � 
� � ��� � ��maxt�alt�� � ��� � 
�� � �� �

� � 
�
 ���

maxt�alt�� � ��� �max���� �maxt�calc weight�� �� � � ���
maxt�alt�� � �� �max����� ��� � ���

maxt�calc weight� � �� � 
� �maxt�loop�� � ��� � � 
��

maxt�loop�� � �� � � � � � ��maxt�loop�� � ��� � �� � �� � � ���
maxt�loop�� � �� � � � � � ��maxt�alt�� � ��� � �� � �� � ��
maxt�alt�� � ��� �max���� �� � ���

Figure �� MAXT calculation for the camera example

programming language�

De�nition � �Marker� A Marker is a special mark located within a scope� It
speci�es the maximal number the marked position in the program may be passed

by the program �ow between entering and leaving the scope�

Using markers we can state the maximal number of times the control �ow can
pass through a speci�ed position within a special part of a program designated by
the scope construct� An arbitrary number of markers may be set in each scope�

Markers are mainly used to state that the number of executions of one or more

paths through a loop can be bounded� It does not make sense to locate a marker
in a sequence or a branch of an alternative which does not lie in a loop� because
these program parts could be passed at most once within the scope� Hence� we
design our scope language constructs to coincide with loop constructs�

We have to make a restriction for the use of markers inside scopes in order
to avoid a complexity explosion as it might happen if all language constructs
could be used within a scope arbitrarily� In loops� in which the maximal number
of iterations is limited� markers ��� must not lie inside a piece of code which is

contained by a loop ��� that is part of an alternative ��� �see �gure ��� They can
only be used in statement sequences or randomly nested alternatives which are
only embedded in arbitrarily nested loops �limited by an iteration�bound� inside

the scope ����
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Figure �� Example for validly ��� and invalidly ��� set markers �each of the dia�

grams represents a scope��

In time bounded loops markers may only be used at the highest level� This
means that it is not allowed to set a marker inside nested loops which are bound
by a time limit� An implementation of this feature would necessitate complex
tests and thus evoke a substantial overhead at run�time�

Scopes are embedded in MARS�C� our programming language� which is a
descendant of the C programming language� as an extension of the syntax of
bounded loop constructs� The programmer de�nes a scope containing a bounded
loop writing the SCOPE keyword into the loop�s head� The extended syntax of

FOR loops is shown below �the extensions for WHILE and DO�WHILE loop are
equivalent�� As the syntax suggests scopes can be nested arbitrarily� In the case
of nested scopes a marker always refers to the innermost scope it is contained in�

FOR�expr��expr��expr� ��SCOPE� MAX COUNT�const expr�

stmt�

�ON OVERRUN stmt��

FOR�expr��expr��expr� ��SCOPE� MAX TIME�const texpr�

stmt�

��



�ON TIMEOUT stmt��

If a marker is to be set� there must always be an explicitly de�ned scope that
it is contained in� We prefer this approach to the solution of a global� implicitly
de�ned scope which contains all markers that are not inside any explicitly de�ned
scope� since it leads to a more transparent behaviour and helps to detect errors�

Furthermore� we favour the homogenous concept that every scope has to be de�ned
explicitly with its contained loop�

To set a marker we simply have to write

MAX COUNT�const expr��

The constant expression const expr can be evaluated at compile time� It is the
maximal number of times the marker may be passed inside its scope� Markers are

checked at run�time in order to verify that the calculated timing behaviour can
be met� If the bound of a marker is violated an exception is raised�

Let us have another look at our example� We can improve the result of the code

analysis by the use of markers and scopes� Now we need the code fragments which
have been ignored when �rst looking at the listing on page ��� We de�ne a scope
which contains the loop in the calc center�subroutine with the keyword SCOPE�

Furthermore we set a marker MAX COUNT�MAX AREA��� The MAXT calculation for
the new program is sketched in �gure �� section � �for MAXT calculation rules
for markers and scopes see section ���

��� Loop Sequences

Many programs use sequences of loops whose maximal iteration numbers com�

plement each other� i�e� the sum of the iterations of the loops does not exceed a
constant value at execution time� This kind of behaviour becomes interesting if
the bound for the iteration sum is smaller than the sum of the maximal iteration
numbers of the single loops� We can reach a better result for the MAXT calcula�

tion in such cases� if we are able to inform the MAXT analysis tool about loops
that belong together�

De�nition � �Loop Sequence� A Loop Sequence is a series of loops �limited
by an iteration limit� which have the property that the sum of the iterations of the
single loops does not exceed a given constant value at run�time�

��



Loop sequences are marked by an additional construct which is embedded into
the extended C syntax�

LOOP SEQUENCE ITERATION SUM�const expr �

stmt�

�ON OVERRUN stmt��

The body of the loop sequence �stmt�� contains the loops that are part of the
sequence and arbitrary other constructs � even loops � that may be programmed

between the single loops� Loops which are members of a loop sequence are iden�
ti�ed by the keyword IN SEQUENCE� These loops must not be scoped since this
would raise the complexity of programs immensely both for programmers and the
MAXT analysis tool as well� The syntax de�nition for bounded loops� occuring

in loop sequences� is a modi�cation of the known constructs �see below��

FOR�expr��expr��expr� �fIN SEQUENCE� SCOPEg
MAX COUNT�const expr�

stmt�

A bounded loop inside a loop sequence must not contain an ON OVERRUN clause�
since a violation of a loop bound inside the sequence is treated as an exception of
the whole loop sequence� Loop sequences may provide an ON OVERRUN statement�

� Calculating the MAXT of Programs Using the

Language Constructs Introduced

The gain of markers� scopes� and loop sequences is obvious by intuition� Here we
want to give de�nite formulae for the calculation of the maximum execution time

of these constructs�

��� MAXT Calculation for Scopes Containing Markers

In the following we provide some formulas for the calculation of the MAXTC of a
scope containing n nested loops loop�� � � � � loopn with the innermost loop contain�

��



ing an arbitrary set of markers�� Each loop loopi contains all loopj with i � j � n�
The maximal number of iterations of the loops are speci�ed by bound�� � � � � boundn�
loop�j speci�es the whole loop loopj except for the loops loopj��� � � � � loopn in it�

The maximum execution time calculation for scopes with markers can be per�
formed in two steps�

�� In the �rst step we calculate the maximum execution time of the loop parts

�loop�j� that do not contain markers� i�e� the time for the evaluation of
loop conditions� loop organization and statement sequences between nested
loops��

�� In the other step we treat the constructs of the innermost loop�s body which
may contain paths that are restricted by markers�

For both steps the maximum number the innermost loop body can actually
be entered � gmax � is needed� This �gure can be calculated out of the bounds
�counti� of the n single loops and the restriction that markers place on the number

of iterations �mmax��

gmax � min�
nY

i��

counti� mmax�

�� The loops have to be passed in a way that makes the execution time of the
loops maximal� Hence� in our calculation we have to assume that the outer
loops are passed as often as possible� All inner loops are executed in each
iteration of a loop surrounding them�

Deriving the contribution of the j�th loop to the MAXT of a scope we have

to distinguish between three situations��

�
Qj

i�� counti � gmax

This means that the loop is an �outer loop � In the worst case it will
be entered

Qj��
i�� counti times� every time performing countj iterations�

The maximal time consumption for this loop is

j��Y

i��

counti � maxt�loop�j�countj��

�Note that this is a special case� More generally the single loops may contain an arbitrary
number of loops with markers� and markers may be set at any level� The calculation model for
this generalization however is only a slight variation of the model provided�

�For simplicity the time consumed by OVERRUN�statements has been neglected
�If mmax � gmax all loops belong to the �rst group

�




�
Qj��

i�� counti � gmax �
Qj

i�� counti � gmax

If this condition holds for a loop� the loop will both iterate more than

once and less than a maximal number of times at least once in the
worst case� The MAXT of this loop � obviously only one such loop
can occur in each scope � can be calculated with the formula

X

��k�
Qj��

i��
counti	

P
k
countjk�gmax	countjk�countj

maxt�loop�j �countjk��

We consider it essential to mention that the maximal time for the over�

head of loopj cannot be simply calculated as maxt�loop�j �gmax��� This
is due to the fact that it makes a di�erence whether a loop is entered
Qj��

i�� counti times or only once� A FOR�loop� for example� has to be
initialized every time it is entered�

Also note that we do not have to care about the number of iterations
of the single instances of the loop � countjk� For a constant number
of loop instances the MAXTC is all the same if the sum total of the
iterations �

P
k countjk� is constant �gmax�� It should be mentioned

that the condition countjk � countj can be omitted� It has been in�
troduced in order to establish a parallel to the loop�s execution model�

�
Qj��

i�� counti � gmax

In this case the surrounding loops reach the maximal possible num�
ber of iterations� This means that in the worst case loopj can iterate
maximally once each time it is executed� Consequently the contribution
of loop�j to the MAXT is

gmax � maxt�loop�j ����

�� In order to calculate the MAXT of a loop body with markers we build a
graph which re�ects its timing behaviour� Constructing the graph� program
constructs that do not contain a marker are reduced � the MAXT for these
constructs is calculated applying the known rules�

The resulting graph consists of nodes representing branches or joins of pro�
gram paths and edges which are marked with the MAXT of the appropriate
program parts and execution restrictions imposed by markers�

�



The MAXT for the graph is calculated in a repeated execution of the two
steps outlined below�

� The graph is searched for the longest path that has not been marked

by the algorithm yet�

� The path which has been found in the �rst step is marked and the
MAXT of the path is added to the MAXT of the whole graph�

��� Calculating the MAXT for Loop Sequences

In order to compute the maximum execution time for loop sequences we have to
distribute the global maximal iteration number among the single loops� maximiz�
ing the sum of the MAXTs of the loops� We can apply the formula

maxt�loop sequence� � max�
X

countj�boundj �
P

j
countj �boundseq

maxt�loopj �countj���

where boundseq is the global maximal number of iterations in the loop sequence�
boundj are the upper iteration bounds of the single loops and countj the actual
bounds� loopj�countj� stands for the time it maximally takes to execute countj
iterations of loop loopj �

� Bene�ts and Costs of the New Constructs

On page �� we introduced some changes to the example of section ���� We put a

scope around the main loop and introduced two markers in the program listing�
Based on the rules for the MAXT calculation of these constructs that have been
described� we want to give a demonstration of their bene�ts� Figure � shows the
steps in the calculation of the maximum execution time for the modi�ed program

fragment�

The main gain is due to the marker� With the marker we express that the
time consuming procedure calc weight�� � � � is not called in every iteration ��� ���
times� but at most � �� times �this is the maximal number of pixels which may
be set according to the speci�cations�� Thus the portion of the MAXTC which is

contributed by the statement sequence containing the procedure call is immensely
reduced in comparison to the �rst version of calc center�� � � ��

The upper bound value calculated for the maximum execution time of the

original example was about ��� million CPU cycles� When analyzing the new
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maxt�calc center� � �� � � �maxt�scope� �maxt�alt�� � �� �
� �� �� ���

maxt�scope� � maxt�loop��� �maxt�body�� � �� �� ��

maxt�loop��� � �� � �� � 
� � ��� � ��maxt�loop�� � ����
� 
�� � �� � �� 
� ���

maxt�loop��� � �� � 
� � ��� � ��� � ��� � 
�� � �� � �� ���

maxt�body�� � ��� � ��� � ��� � ��� � ��� � ��� �maxt�calc weight�� �
� �� ��� ���

maxt�calc weight� � � 
��
maxt�alt�� � �� �max����� ��� � ���

Figure �� MAXT calculation for the enhanced camera example

version we derive a bound of only �
 million cycles for the program execution�

So the calculated MAXT is reduced by a factor of more than �� by the use of
a scope and a marker� Although this result is remarkable we cannot generalize
it� This is due to the fact that the reduction depends on the complexity of the
program parts involved �the complexity of calc weight has a signi�cant impact on

the improvement factor in our example��
It is also interesting to remember that markers are a means not only for an

improvement of the calculation of the MAXT but also for the supervision of the
correct program behaviour� As the example shows plausibility checks which are

based on application speci�c knowledge can be built into programs� In this way
failures in the program logic may be detected at run time so that the self checking
property of programs can be improved�

Every marker is a kind of cheap investment that pays for itself� Checking a

marker costs �� CPU cycles every time the marker is passed� These �� cycles have
to be invested only as often as the marker is passed� not for the other iterations
of the loop� The time for a marker�s evaluation will be outweighed by the bene�ts

its information brings for MAXT calculation� The gain will be the greater the
more a marker restricts the number of iterations through a program part and the
longer this program part takes to execute�

When calculating the time overhead for the markers of our example we got a
number of less than ��� ��� cycles which is only about �! of the total overhead

in the example� The gain of introducing these constructs can be extracted from
�gures � and � and is summarized in table � � ��� million CPU cycles could
be saved and a processor idle time of ��! could be prevented by reducing the

��



MAXTC of the two versions of the example�

bounded loops only ��� �
� ���
bounded loops and markers �� �� ���

Overhead for bounded loops and markers�

bounded loops �calc weight� � ��� ��
bounded loops �calc center� � 
� ��
marker ��� ���

bounded loops and markers 
 ��� ��� cycles

Table �� CPU cycles and overhead for the camera example

calculated maximum execution time to a realistic value� So the investment has
proved worth while�

	 A Concept for a MAXT Analysis Tool

In the previous sections we introduced some new language constructs for real�
time programming languages� The costructs were de�ned in a C like syntax as
we use them in MARS�C� which is an extension of the C programming language

	Kern 
�� Besides the constructs mentioned in this paper MARS�C also provides
statements for sending and receiving messages in the distributed real�time system
MARS 	P�"u ���

The calculation of the maximumexecution time of a MARS�C program is done
in two steps� a compilation and an analysis step� In the �rst phase the program
is compiled with the MARS�C precompiler� The result of the precompilation is a
program in C source code with some additional information about loop bounds�

markers� and loop sequences� The C program then is compiled into assembler
code�

In the analysis step �the tool for the calculation of the MAXT is in develope�
ment� the real calculation of the upper bound for the applicaton speci�c maximum

execution time of the program takes place� This calculation also consists of two
parts�

��



� In a �rst run information about program structure and timing behaviour
has to be combined� In this step the result of the precompiled MARS�C
source code and the assembler source are parsed� As an intermediate result

a �le is created that includes full information about the program structure
�alternatives� loops� loop limits� markers� scopes� and loop sequences� and
the execution time for all parts� derived from the execution times of the
single assembler instructions�

� In the second step of the analysis the intermediate �le is read and the MAXT

of the program is calculated� The calculation is based on the formulae
described in this paper�

Representing the intermediate results of the analysis step in a �le has two
advantages� In the developement phase of the tool the �le can easily be read so

that results can be veri�ed� When the tool is in use the �le gives the programmer
detailed information about the timing properties of all parts of his program�


 Summary

In this paper we discussed the aspects of a source code based calculation of the
maximum execution time of tasks� We introduced restrictions for analyzable pro�
grams and presented formulae for the MAXT calculation for the fundamental

language constructs of third generation programming languages�
Comparing the calculated maximumexecution time of tasks to the actual max�

imum execution time we observed large di�erences in some cases� The calculated
upper bound for the maximum execution time of programs was much higher than

the actual maximum execution time� We managed to reduce this gap by the in�
troduction of new programming language constructs � markers� scopes and loop
sequences � that allow programmers to utilize knowledge about the execution of
their algorithms�

It has also been pointed out that markers can be used as a means of �ow
monitoring� Application speci�c knowledge can be expressed in the program code
directly so that the self checking property of programs can be improved�

A simple example demonstrated the gains of the new programmingmeans� The
MAXT value for the example programwas decreased by a factor of ��� Considering
that the example is relativly simple we expect that the new constructs can yield
even greater gains when the complexity of the application increases�
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