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CALCULATING THE SINGULAR VALUES AND PSEUDO-INVERSE
OF A MATRIX*

G. GOLUB AND W. KAHAN:
Abstract. A numerically stable and fairly fast scheme is described to compute the

unitary matrices U and V which transform a given matrix A into a diagonal form
U*A V, thus exhibiting A’s singular values on 2:’s diagonal. The scheme first

transforms A to a bidiagonal matrix J, then diagonalizes J. The scheme described
here is complicated but does not suffer from the computational difficulties which
occasionally afflict some previously known methods. Some applications are men-
tioned, in particular the use of the pseudo-inverse A VZxU to solve least squares
problems in a way which dampens spurious oscillation and cancellation.

1. Introduction. This paper is concerned with a numerically stable and
fairly fast method for obtaining the following decomposition of a given
rectangular matrix A"

(1.1) A UV*,
where U and V are unitary matrices and 2 is a rectangular diagonal matrix
of the same size as A with nonnegative real diagonal entries. These diago-
nal elements are called the singular values or principal values of A; they are
the nonnegative square roots of the eigenvalues of A*A or AA*.
Some applications of the decomposition (1.1) will be mentioned in this

paper. In particular, the pseudo-inverse A of A will be represented in the
form

(1.2) A VU *,

where 2 is obtained from 2 by replacing each positive diagonal entry by
its reciprocal. The properties and applications of AX are described in papers
by Greville [15], Penrose [25], [26], and Ben-Israel and Charnes [3]. The
pseudo-inverse’s main value, both conceptually and practically, is that it
provides a solution for the following least-squares problem.
Of all the vectors x which minimize the sum of squares b Ax [[, which is

the shortest (has the smallest x ]12 x’x)?
The solution is x A%. If there were only one vector x which minimized
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206 G. GOLUB AND W, KAHAN

IIb Ax we would save a bit of work by using

A (A*A)-IA*
instead of (1.2), and this is what we often try to do. But if A*A is (nearly)
singular then there will be infinitely many vectors x which (nearly) mini-
mize b Ax d the last formula will have to be modified in a way
which takes A.’s rank into account (ef. [4], [6], [7]). The methods considered
in this paper simplify the problem of assigning a rank to A.

In the past the conventional way to determine the rank of A was to con-
vert A to a row-echelon form, e.g.,

IX X X X X

0 x x x x
0 x x x
0 0 0 0
0 0 0 0

(rank 3),

in which x’s represent nonzero elements and O’s represent zeros. The trans-
formation was accomplished by premultiplying A by a succession either of
elementary matrices (cf. [5]) or of unitary matrices (cf. [17]) designed to
liquidate the subdiagonal elements of each column in turn. In order to
obtein a simple picture like the one above it would have been necessary to
perform column-interchanges to ensure that the largest possible numbers
were being left on the diagonal (cf. "complete pivoting" as described by
Wilkinson [33]). It is certainly possible to arrange that in the row-echelon
form of A each row will have its largest element on the diagonal. Conse-
quently the rank of A is just the number r of consecutive nonzero terms on
the diagonal of its row-echelon form; all rows after the rth are zero. And N,
correspondingly, should have just r nonzero singular values on its diagonal.
But in floating-point calculations it may not be so easy to decide whether

some number is effectively zero or not. Rather, one will try to determine the
rank r by observing whether all rows after the rth are negligible in com-
parison to the first r, with the expectation that the same will be true of the
singular values. Even this criterion is hard to apply, as the following ex-
ample shows:

1 --1 --1

0

1 --1
1

If this matrix, already in row-echelon form, has a sufficiently large number
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CALCULATING SINGULAR VALUES OF A MATRIX 207

of rows and columns, then, although it may not appear to the naked eye to
be deficiett in rank, it is violently ill-conditioned (it has a very tiny singular
value), as can be seen by applying the matrix to the column vector whose
elements are, in turn,

1,2-1,2.2,2-3,..-,2-n, ....
On the other hand, when all the -l’s in the matrix are replaced by -t-l’s
then the resulting matrix is quite docile. Therefore, it would be very hard
to tell, by looking at only the diagonal elements of the row-echelon form,
whether or not the original matrix A had a singular value sufficiently small
to be deleted during the calculation of A. In other words, without looking
explicitly at the singular values there seems to be no satisfactory way to
assign a rank to A.
The singular values of a matrix A are the nonnegative square roots of

the eigenvalues of A*A or AA*, whichever has fewer rows and columns
(see [1]). But the calculation of A*A using ordinary floating point arith-
tactic does serious violence to the smaller singular values as well as to the
corresponding eigenvectors which appear in U and V in (1.1). A discussion
of these points can be found in a paper by Osborne [24], which also contains
a nice proof of the existence of the decomposition (1.1). Since the columns
of U are the eigenvectors of AA* and the columns of V are the eigenvectors
of A’A, there is some possibility that a simple calculation of the decompo-
sition (1.1) could be accomplished by using double-precision arithmetic to
deal with A*A and AA* directly in some way. Such a scheme would be con-
venient with a machine like the IBM 7094 which has double-precision
hardware. But for most other machines, and especially when a programming
language deficient in double-precision facilities is used, the complicated
scheme described in this paper seems to be the best we have.

Kogbetliantz [18], Hestenes [16], and Forsythe and Henrici [9] have
proposed rotational or Jacobi-type methods for obtaining the decomposition
(1.1). Kublanovskaja [19] has suggested a QR-type method. These methods
are accurate but are slow in terms of total number of operations.
Our scheme is based upon an idea exploited by Lanczos [20]; the matrix

has for its eigenvalues the singular values of A, each appearing with both a

positive and a negative sign. The representatio could not be treated
directly by a standard eigenvalue-vector program without dealing with the
problems which we shall discuss in detail in what follows.

2. A matrix decomposition. In order to facilitate the computation of the
singular values nd the pseudo-inverse of the complex m X n matrix A, we
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208 G. GOLUB AND W. KAHAN

describe a convenient matrix decomposition. We assume throughout our
discussion that m => n without any loss of generality.
THEOREM 1. Let A be any m X n matrix with complex elements. Then A can

be decomposed as
A PJQ*,

where P and Q are unitary matrices and J is an m X n bidiagonal matrix of
the form

Oll 1 0 0
a2 2 0

(m- n) X n

Proof. The proof will be a constructive one m which Householder trans-
formations (see [17], [21], [32]) are used. Let A A () and let A (a/2),
A(2) A (’) A(’+I/) be defined as follows"

A (k-l]2) p(k)A(k), k 1, 2, n,

A (k+l) A(+I/2)Q(), k= 1,2, ...,n-- 1.

P() and Q() are hermitian, unitary matrices of the form

p(k) I 2X(k)X(k)*, x(k)*x() 1,

Q() I- 2y(k)y()*, y()*y() 1.

The unitary transformation P() is determined so that

and Q(k) is determined so that

i,k O,

and A(k+l) has the form

0

A (k+l)

k,j O,

a . 0

Olk

0

0

i= k+l,...,m,

j tA-2,...,n,
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CALCULATING SINGULAR VALUES OF A MATRIX 209

We illustrate the derivation of the formula for P(). In order not to disturb
those elements which hve lready been nnihilted we set

x() 0, i= 1,2,.-.,/c- 1.

Since P(*) is unitary transformation, length is preserved nd consequently

(2.1)
i=k

Also, since P() is hermitian,

P()A(+) A

so that

and hence

with

(say),

(2.2) Ix (k) =1--1 ,},
.(k)

(2.3) x

Equations (2.1), (2.2), and (2.3) define two possible vectors x() to within
scalar factors of modulus one. In the interest of numerical stability, let us
choose sgn a so that x is as large as possible. Thus

’ ()
i,k 12

Summarizing, we have

A(+l/) A ()
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210 G. GOLUB AND W. KAHAN

and

x() ca, for i > k.

(If s 0, just set a 0 and x() 0.) Similarly,

A (/+1) A (+1/2) 2(A(+/)y()).y()*,
with

and

//2t

a(k+/2),k+

(k+1/2)
Ck,k+

for j =<

[( a(C+/2) )]1/2

+1 1 -- t
(say),

y.() d, for j > lc + 1.

An alternative approach to bidiagonalizing A is to generate the columns
of P and Q sequentially as is done by the Lanczos algorithm for tridiagonal-
izing a symmetric matrix. The equations

AQ PJ and P*A JQ*
can be expanded in terms of the columns p of P and q of Q to yield

Aql alp,

Aq _lp_ -t- ap,
* *pi-A oi-lqi- -- i-;qi*,

pn*A anq*.
These lead to the following algorithm.

i 2, 3, ,n,

Choose q arbitrarily with Ilql 1; then set w Aq
$

w II, , ()-w.t z* *A ,- z II,
qi+ (fl)-zifor i 1, 2, n 1; set w Aq i_pi_,

a) wfori= 2,...,n.
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CALCULATING SINGULAR VALUES OF A MATRIX 211

Of course if a (/k) equals zero, one nmst choose a new vector pk (q) which
is orthogonal to the previously computed p’s (qi’s). It is easy to show then
by an inductive proof that the p’s and qi’s generated by (2.4) are the first
n columns of the desired unitary matrices P and Q.

Unless an a or vanishes, the vector ql will completely determine the
rest of the vectors p and q. Consequently ql could be so chosen that the
Lanczos-type algorithm would be mathematically identical to the House-
holder-type algorithm except for a diagonal unitary similarity transforma-
tion. But the Lanczos-type algorithm is unstable in the presence of rounding
error unless reorthogonalization along the lines suggested by Wilkinson
[30] is used. That is, one must restore the orthogonality of the generated
vectors by using the Gram-Schmidt method to reorthogonalize each newly
generated vector p or q to the previously generated vectors pi or q, re-
spectively. With the extra work involved in this reorthogonalization, the
Lanczos-type algorithm is noticeably slower than the previously described
Householder algorithm except possibly if A is a sparse matrix.

3. Computation of the singular values. The singular values of A and of J
are the same; they are the positive square roots of J*J. Let them be called,
in order,

These are the numbers which appear on the diagonal of the matrix 2; which
was introduced in (1.1), i.e.,

0-1

0"2

0
0-3

0

0
O"

Analogous to (1.1) is the decomposition

(3.l) J XY,Y*
in which X and Y are unitary matrices which, when they have been calcu-
lated, will lead via Theorem 1, A PJQ*, to the desired decomposition
1.1 ), namely,

A UY,V*,
with U PX, V QY.
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212 G. GOLUB AND W. KAHAN

Evidently the last m n rows of zeros in J do not contribute to the
singular values, nor do they have more than a trivial effect upon the de-
termination of X and Y. Therefore it is convenient to delete J’s last m n
rows and write

without introducing any new notation to distinguish this n X n matrix J
from the m X n matrix J. This can be done because the previous equations
remain valid after the following process of "abbreviation":

(i) delete the last m n rows of zeros in J and 2;;
(ii) delete the last m n columns of P and U;
(iii) delete the last m n rows and columns of X; these coincide with

the last rows and columns of an m X m unit matrix. In this section and the
next we deal only with the abbreviated matrices.
The singular values ai ofJ are known (cf. [20]) to be related to the eigen-

values of the 2n X 2n matrix

(0,0)J= j,

whose eigenvalues are just q-zi and - for i 1, 2, n. The calcu-
lation of the eigenvalues of ] is simplified conceptually by a transformation
to tridiagonal form via a permutation similarity which will be exhibited
now.

Consider the matrix equation

(3.2) X X

which, when expanded, takes the form

Jy ax, J*x y,

that is, aiy - y+l axe, alxl zyl anyn (rXn i-lXi-1 - liXi ay
Now the substitution

Z2i Xi Z2i--1 "+-Yi
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CALCULATING SINGULAR YALUES OF A MATRIX 21

leads to the equation

T z

in which T is a 2n X 2n tridiagonal matrix

0
an 0

0

"0 si

si 0
tl

(3.3) DTD*= S

ti 0
0
82

yields a tridiagonal matrix S whose elements

are all real and nonnegative.
There are a number of methods for obtaining the eigenvalues of a tri-

diagonal symmetric matrix. One of the most accurate and effective methods
is to use Sturm sequences; an ALGOL program is given by Wilkinson [35].
One can simplify the algorithm, of course, by taking advantage of the fact
that the diagonal elements of T are zero.
Another method of computing the singular values ofJ is to compute the

eigenvalues of

j*J
02 2

0

Note again that since J*J is a tridiagonal hermitian matrix there exists

sn 0

Clearly there exists a unitary diagonal matrix D such that the similarity
transformation
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214 G. GOLUB AND W. KAHAN

diagonal unitary matrix A such that

8i 8i ti
si ti s2 -Jr- ti

s2 t2
A(J*J)A* K

0

82 t2

where s a land t Ch I. Hence K is a real, symmetric, positive semi-
definite, tridiagonal matrix and its eigenvalues can be computed by the
Sturm sequence algorithm.
Although the smaller eigenvalues of A*A are usually poorly determined,

a simple error analysis shows that all the eigenvalues of K are as well-
determined as those of T. The reason for this is that the computation of the
Sturm sequences is algebraically the same for both T and K. Thus to use K
is preferable since the total number of operations in calculating its eigen-
values is certainly less than in computing the eigenvalues of T.

4. Orthogonal vectors properly paired. We consider now the calculation
of the unitary matrices X and Y which were introduced in (3.1)"

J XZY*.

As pointed out in 3, J can be transformed into a real matrix by means of
unitary diagonal transformations, and we shall assume henceforth that this
has been done (cf. (3.3)).
To each singular value a corresponds a column x of X and y of Y satis-

fying

(4.1) Jyi ax, jtx o-y.

Since jtjy a Y one could, in principle, calculate yi as the normalized
eigenvector of J] corresponding to the eigenvalue , and x could be ob-
rained fore the vector Jy either by dividing it by or by normalizing it.
However, if a is small but not quite negligible, then Jy will be so much
contaminated by the roundoff errors left over after cancellation that the
calculated x may well be neither normalized nor orthogonal to the previ-
ously calculated x’s.

Another way to calculate X and Y might be to obtain the eigenvectors
x and y of jjr and jtj independently, and then to order the vectors ac-
cording to the ordering of the corresponding singular values. But if some
of the singular values are too close together then the equations (4.1) are
unlikely to be satisfied.
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CALCULATING SINGULAR YALUES OF A MATRIX 215

A third way, which seems at first to be free from the objections in the two
preceding paragraphs, is to obtain the eigenvectors zi of the 2n X 2n
tridiagonal matrix S of (3.3). Then the odd-numbered components of zi

would constitute a vector y and the even-numbered components a vector
x which would satisfy (4.1). But in practice trouble shows up here in two
ways. First, the facts that (4.1) is very nearly satisfied and that z has been
normalized so that ztz 2 do not, in practice, though they should in
theory, ensure that xtx yity 1. Fortunately, unless is nearly
negligible, one can normalize x and y separately without causing serious
extra error. And if r is negligible one can find x and y separately and ensure
that they are normalized. The claims in the last two sentences can be proved,
but there is no point in doing so because the second source of trouble is more
drastic; if the z’s are not orthogonal then neither will the x’s be orthogonal,
nor will the y’s. The problem of ensuring that the zi’s are orthogonal is, in
the present state of the art of computation, a serious one.
One way to ensure the orthogonality of calculated eigenveetors of a sym-

metric matrix is to use Jacobi’s method [13], but this is slow. Another way
is to reorthogonalize the calculated eigenvectors obtained, say, by inverse
iteration with a tridiagonal matrix (cf. [30]); but the extra work done here
is no guarantee that the vectors after orthogonalization will still be
ceptable as eigenvectors. A third method, and one which seems very promis-
ing, involves the use of deflation to "remove" each eigenvector as it is ob-
rained and thereby ensure orthogonality. We shall digress to discuss de-
flation methods suitable for use with symmetric tridiagonal matrices, and
then adapt them to our bidiagonal matrix.

In this digression let K be some real symmetric tridiagonal matrix,

al bl
bl a b2

_
52

0

of which we already know an eigenvalue X and its eigenvector v. Rutishauser
[27] shows how, in principle, to construct an orthogonal Hessenberg matrix
H from the vector v so that K HtKH will have zero in place of bn_.
After deleting the last row and column of the tridiagonal matrix K,
another eigenvalue, eigenveetor and deflation would be calculated, and so
on. The eigenveetors ofK would be the columns of an orthogonal matrix ob-
tained by multiplying together all the H’s. The orthogonality of the eigen-
vectors would be guaranteed (to within the limits of acceptable rounding
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216 G. GOLUB AND W. KAHAN

error) irrespective of the closeness of some eigenvalues of K. Rutishauser’s
method needs some modification because, as Wilkinson [34, p. 189] has
shown, the effect of rounding errors in the transformation K. HtKH could
destroy K’s tridiagonal form if v’s first few components were too small.

In Rutishauser’s deflation the matrixH can be interpreted as a product of
2 X 2 Jacobi-like rotations applied in succession to the first and second,
second and third, third and fourth,..-, (n 1)th and nth rows and
columns of K. After the first rotation, each rotation is chosen to annihilate
a spurious term which was introduced by the previous rotation. For ex-
ample, an asterisk in the following figure marks the spurious term which the
third rotation must annihilate:

x x x *

0 oooJ
The first rotation, which fixes all the subsequent ones, can be determined
from the first two elements of K’s eigenvector v as suggested by Rutishauser
[28, p. 226] or else from the first two elements of K hi. In effect, the de-
flatio of the tridiagonal matrix K is equivalent to a QR-transformation
applied to K },I in the manner suggested by Ortega and Kaiser [22].
Unfortunately, this method also can be shown to be numerically unsatis-
factory whenever v’s last few components are abnormally small, because
then the element in K1 which replaces b_l inK remains too large, in general,
to be ignored. Wilkinson [34, p. 187] hints at another method analogous to
the one he described in [31, pp. 351-353]; we shall outline this method
briefly because we believe it to be an effective compromise between
Rutishauser’s two schemes.
Having found an eigenvalue of K we calculate the corresponding eigen-

vector v and normalize it so that its largest component lies between 1/2 and 2,
say. The calculation of v can be accomplished using the inverse iteration
described by Wilkinson [30]; but since there is no way to prove that, in
general, one of his inverse iterations will suffice to provide an adequately
accurate v, we describe the following method whose properties can be estab-
lished rigorously. We require that ), be chosen to be the algebraically greatest
or else the least eigenvalue of K; this is no inconvenience since in the course
of K’s successive deflations each of its eigenvalues will be at some time the
greatest or the smallest of the current matrix on hand. Next we apply
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Gaussian elimination to K hi without pivotal interchanges; there will be
no trouble here (cf. [33, pp. 285-286]) provided floating point calculation is
used and provided ,, if not exactly right, is larger than K’s largest or smaller
than K’s smallest eigenvalue by perhaps a unit or so in },’s last place. The
point here is that each nonzero pivot u in the elimination process must be
of the same sign as (K hI)’s diagonal elements. The result of the elimi-
nation process is to expressK ,I LU, where

1 012 1
13

Ul 51
u2 b 0

U3

Here ul al- k and l b/u, u+ a+-- lb for i 1, 2,...,
n 1. Next we attempt the solution of (K kI)v r using for r a vector
whose elements all have the same magnitude but signs chosen to maximize
the elements of v. The choice of sign is accomplished by first solving
L s r as follows:

sl -t-l,

8i/1 (--ls) - sgn (--ls), i 1, 2,..., n 1.

The solution of Uv s for v and the subsequent normalization of v com-
plete the calculation. Provided no two pivots u have opposite signs one can
show that the elements of v each have the same signs as the corresponding
elements of the desired eigenvector despite the rounding errors committed
during v’s calculation. Furthermore, the elements of r exhibit the same signs
as those of +v or -v, depending upon the sign of the u’s. Consequently the
cosine of the angle between r and the correct eigenvector is at least N-1 in
magnitude, and finally we conclude that Kv must differ from kv by no more
than a few units in the last place (cf. the argument in [30]). Now even if v
is contaminated by components of the eigenvectors corresponding to other
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218 G. GOLUB AND W. KAHAN

eigenvalues pathologically close to X, it will look enough like a true eigen-
vector to permit the deflation process to proceed. This I)roeess for calculat-
ing v is simpler and a little faster than Wilkinson’s.
Now that we have v we proceed to the deflation along the lines outlined

by Wilkinson. Each 2 X 2 rotation is embedded in an n X n matrix

1 0

with c- for its jth and (j + 1
Suppose the products

PP-I"’" PI(K XI)PI

have the forms

Pi Pj-t PI(K- XI)Pt

At the start we can take

j= 1,2,... ,n- 1,

)th diagonal elements, where c.2 -t- s? 1.

/)t 1
"’-1 and PjPj-t"" Pry

Pi-1 pit

X X

X X X

x h. w.
h. x x

W" X X X

X X

3; X

0
0
0

j-kl

V./+2

ho at- X, Wo bl, 1 Yl.

D
o
w

n
lo

ad
ed

 0
4
/3

0
/1

4
 t

o
 1

3
0
.1

4
9
.1

5
.2

4
9
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



CALCULATING SINGULAR VALUES OF A MATRIX 219

To continue the deflation we must so determine P+I that its application will
simultaneously annihilate the spurious element w. in the jth row and column
of the matrix as well as the vector’s (j -t- 1 )th element 4+1 But in practice
the accumulation of rounding errors will prevent the exact annihilation of
both elements; instead we shall have to be satisfied with a P+I which leaves
negligible residuals in place of w. and .+1. Wilkinson, having scaledK XI
so that its largest element lies between 1/2 and 2, would use whichever of the
equations

wc]+ hs+, 4)+c+

contained the largest coefficient w. I, h I, 4+ I, or vj+21 to determine,
in conjunction with c.+l q- sj+l 1, the values c.+1 and s+. This method
seems to be effective nd we believe that it should always work, but since
we cannot prove the method’s infallibility, our work is incomplete.
Now we can show how to construct a deflation process for the bidiagonal

matrix J. The first step is to obtain J’s largest singular value ; is the
lrgest eigenvalue of the tridiagonal matrixJ (see 3). The next step
requires the corresponding vectors x and y which can be obtained either by
solvingJy zy for y and setting x a-ljy, or by calculating z’s eigen-
vector z of S in (3.3) and hence obtaining x and y from z’s even nd odd
components respectively. Both methods for getting x and y are numerically
stable when performed in floating point. The deflation ofJ is accomplished
by a sequence of 2 2 rotations applied in succession to its first and second
columns, its first and second rows, its second and third columns, its second
and third rows, its third and fourth columns, its (n 1)th and nth
rows. The ith rotation applied to rows i and i + 1 of J must simultaneously
annihilate a spurious subdiagonal elelnent, introduced into row i + i by the
previous column rotation, and the ith element in the current x-vector. The
ith column rotation, except for the first, must annihilate a spurious term
introduced by the previous row rotation into the (i + 1)th column just
above the first superdiagonal, and simultaneously the transpose of the ith
column rotation must liquidate the ith element of the current y-vector. The
first column rotation would when appliedtoJ aI annihilate the element
in its first row and second column. At the end of the deflation process J’s
element bn_l should have been replaced by zero. Of course, rounding errors
will prevent the rotations from performing their roles exactly upon both the
matrixJ and the vectors x and y, but just as in the deflation of a tridiagonal
matrix we are able so to determine the rotations that negligible residuals are
left behind in place of the elements we wished to liquidate.

After deflatingJ we delete its last row and column and repeat the process
until J is deflated to a 1 X 1 matrix or the deflated J becomes negligibly
small. At the end we multiply the rotations in reverse order to construct the
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220 . GOLUB AND W. KAHAN

matrices X and Y which putJ into the form (3.1)

J XZY.

(IfJ was complex, a unitary diagonal transformation should be incorporated
here. Finally the matrices P and Q of Theorem 1 are multiplied thus:

U PX, V QY,

to exhibit the decomposition (1.1)

A UV.

The two matrix multiplications PX and QY take most of the work.

5. Applications. The basic decomposition given by (1.1) has many
plications in data analysis and applied mathematics. Suppose the matrix A
arises from statistical observation, and we wish to replace A by another
matrix fl (say) which has lower rank p and is the best approximation to A
in some sense. If we use the Frobenius norm (i.e., AII trace A’A) then
the problem has been solved [8] as follows.
THEOREM 2. Let A be an m X n matrix of rantcr which has complex

elements. Let Sv be the set of all m n matrices of rank p < r. Then for all
BSv,

where

UV*
and is obtained from the of (1.1) by setting to zero all but its p largest
singular values ai.

Proof. Since A UZV* and the Frobenius norm is unitarily invariant,

IIA-BII I1- U’BVII.
Let U*BV C. Then

Now it is convenient to order the singular values in such a way that
ai >- i+1. Thus, A B is minimized if c, for i 1, 2, ..-, p,
and c 0 otherwise, i.e., for C . Obviously,

Finding the vector x of shortest length which minimizes b Ax is
equivalent to finding the vector y of shortest length which minimizes
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C Jy II, where c P*b and y Q*x. Here a natural question arises: is
there any method which bypasses the complicated scheme in 3 and 4 for
exhibiting J’s singular values explicitly, and instead takes advantage of J’s
simple bidiagonM form to solve the least squares problem or to calculateJ?
Such a method, if it exists, must retain provision for intentional perturba-
tions designed to delete, in effect, negligible singular values without in-
ducing too large a discrepancy in J or A. Unfortunately, J’s simple form is
deceptive; even J’s rank is hard to estimate without further calculation. For
example, if J’s rank r is less than n, then at least n r of the a’s, and pos-
sibly more, should vanish; but in practice none of the a’s may be negligible
even though several may be very small compared with adjacent ’s and, in
consequence, a few ofJ’s singular values may be negligible.
Perhaps the recurrence described by Greville [15] can be modified by the

introduction of pivoting and then applied to J to cMculate J. Until this
scheme is worked out, the best method we can suggest for solving the least
squares problem together with controllable perturbations is the following.
Compute explicitly the representation

A UY,V*,
decide which of the singular values are small enough to ignore, replace the
remaining singular values by their reciprocals to obtain 2 *, and finally use

A= VY/U*

to obtain the least squares solution x A*b. Once again, to ignore some
singular values at+l, zr+., is equivalent to perturbing A by a matrix

2)1/2.whose norm is (i=r+l ai

In some scientific calculations it is preferable that a given square matrix A
be perturbed as little as possible (just rounding errors), but instead a
perturbation tib in the right-hand side b of the equation Ax b is per-
missible provided tib does not exceed a given tolerance e. The substi-
tution

y V’x, c U’b, c U*5b,
transforms the perturbed equation Ax b + tib into an equivalent diagonal
system

2y c+tic,

in which the permissible perturbation tic still satisfies

(5.1) <
Subject to this constraint, tic may be chosen to optimize some other criterion.
For example, suppose we wish to minimize x Y ]1. Then ideally tic
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222 G. GOLUB AND W. KAHAN

should satisfy 2;2tic -[- X(c -t- tic) 0 with some suitable positive value of the
Lagrange multiplier ), sufficiently small so that (5.1) is satisfied too. But
for most practical purposes it is sufficient to use trial and error to determine
X to within a factor of two so that tic -(I + X-122)-1c will satisfy
tic*tic < e. The use of such a technique in. least squares problems tends to
suppress violent oscillation and cancellation which might otherwise detract
from the usefulness of the solution x.
A similar technique is valuable for the solution of the sets of linear equa-

tions which approximate integral equations of the form

f A(i,j)x(j) dj b(i).

Here the numerical treatment of the integral equation, in using singular
values, is similar to the theoretical treatment found in [29]. Once again, the
use of the decomposition A U2V* aids the suppression of spurious oscil-
lations in the function z.
We close with a warning; diagonal transformations can change A’s

singular values and A in a nontrivial way. Therefore some sort of equilibra-
tion may be necessary to allow each row and column of A to communicate
its proper significance to the calculation. Two useful forms of equilibration
are:

(i) scale each row and column of A in such a way that all the rows have
roughly the same norm and so have all the columns;

(ii) scale each row and column of A in such a way that the absolute un-
certainty in each element of A does not vary much from element to element.
On least squares problems such equilibration is accomplished by weighting
each residual in the sum of squares (see [2], [10], [11], [23] on equilibration
algorithms, and [14]).
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