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In this paper an iterative algorithm has been presented for calculating the square root of a real 
number with arbitrary order of convergence using formulae derived by applying binomial 
theorem. The primary objective is to reduce the number of division operations required. 
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1. INTRODUCTION 

In real time digital signal processing, hgh performance modules for 
division and square root operations are essential for implementing many 
powerful algorithms. So VLSI array architectures have been proposed in 
[5] to implement division and square root operations. Schwarz and Flynn 
[8] have proposed a hardware starting approximation for the square root 
operation. Moreover, efficient algorithms for solving quadratic equations 
have been proposed by Morii and Yoshizu [6] and Ebrahimpour, Dorsy 
and Demko [I]. In general computation, the frequency of occurrence of 
division and square root operations are lower than that of multiplica- 
tion and addition. So, many arithmetic processors do not provide any hard- 
ware support for them. That is why, these operations need to be emulated 

*Corresponding author. e-mail: shaikat@bdonline.com 
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by software, which is considerably slower than hardware implemented 
operations. Software routines for division operation can be up to an order 
of magnitude slower than multiplication operation. Again, since iterative 
methods for calculating square root generally rely on division operation 
at each iteration step, they become more time consuming. The amount 
of time consumed can be reduced by eliminating the need for a division 
operation at each step of iteration or by using a method of higher order 
of convergence and thus reducing the number of iterations required. In 
this paper, we take the second approach. 

2. ALGORITHMS 

In this section we discuss the well-known Newton-Raphson method for 
calculating square roots of a real number, and then present how it can 
be generalized to obtain an algorithm for solving the same problem with 
arbitrary order of convergence. 

2.1. Newton-Raphson Method 

There are many iterative methods for calculating the square root of a 
number [2,3,9]. The most commonly used one is the Newton-Raphson 
method, which is described as follows: 

where, 4% is the n-th approximation to the root. The Newton-Raphson 
method converges quadratically since the absolute error of the n + 1-th 
iteration is described as follows: 

EL 
&,+I = 3 

2 ~ n  
If 0.25 5 x 5 1.0 

then 0.5 < yn 5 1 
2 and &,+I < E, 

This method uses 1 multiplication and 1 division per iteration. There are 
several other algorithms with shorter latency since they do not require a 
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SQUARE ROOT CALCULATIONS 299 

division operation at each step [7]. There are also algorithms of higher 
convergence [4]. 

In this paper we present a generalisation of Newton-Raphson's method. 

2.2. New Algorithm 

Let, y, be the n-th approximation to JG and m (2 2) be an integer. Now, 
expanding (yn - &)m using binomial theorem we get, 

(y ,  - fi)" = " coy; - " ~ , y ; - ~ f i  + " ~ 2 y ; - ~ x  

- " c ~ ~ ; - ~ x &  + . . . + (-1)" "C,(fi)" 

&" 
+&,+I = where, ~i = Jyi  - &( 

lqnll  

= absolute error in i-th approximation 

Hence, if our current approximation to & be yn, then ( x o s i , ~  
m-2i i 

T 2 i ~ n  /xo5i5 191 mc2i+lym-2i-1Xi ) will be the next approximation with 

convergence of order m. 
Now, for m = 2, 

1 
Yn+l = - 2 (Yn + X) which is the Newton-Raphson approximation. 
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For m = 3. 

Here, kl and k2 are constants for particular x. 
Now, for example, suppose, the absolute error in our initial approxima- 

tion is 0.1 and we wish to find the square root correct up to 240 decimal 
places. In this case, if we use Newton-Raphson method, we will require 
8 iterations and hence 8 divisions and 8 multiplications. But with the 
approximation of order 3, we will be able to reach the goal in just 5 itera- 
tions using only 5 divisions and 10 multiplications. 

In this method, we will require n - 1 multiplications at each step of 
iteration. But the number of multiplication operations required for high- 
er order approximations can be reduced to about 141 + 3, using Belaga pa- 
rameters [4] in a slightly modified form. 

For example, for m = 16, we will have the following iterative equation: 

Assuming t, = (xly;), we get, 

Now, using Belaga parameters for evaluating the polynomials in the 
numerator and the denominator, we arrive at the following scheme: 

Modified Belaga Parameters: 
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Iterative Steps: 

Result: 

3. CONCLUSION 

Here, we have described a simple but powerful technique to achieve 
arbitrary order of convergence in the iterative process of determining the 
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square root. By increasing the order of convergence it will be possible to 
reduce arbitrarily the number of division operations required. This is 
important in the context that division operations are still costlier than 
multiplication operations. We have also shown how to reduce the number 
of multiplication operations for higher order of convergence. 
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