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Abstract. Over the last years, several Multi-Document 

Summarization (MDS) methods have been presented in 
Document Understanding Conference (DUC), 
workshops. Since DUC01, several methods have been 
presented in approximately 268 publications of the state-
of-the-art, that have allowed the continuous 
improvement of MDS, however in most works the upper 
bounds were unknowns. Recently, some works have 
been focused to calculate the best sentence 
combinations of a set of documents and in previous 
works we have been calculated the significance for 
single-document summarization task in DUC01 and 
DUC02 datasets. However, for MDS task has not 
performed an analysis of significance to rank the best 
multi-document summarization methods. In this paper, 
we describe a Genetic Algorithm-based method for 
calculating the best sentence combinations of DUC01 
and DUC02 datasets in MDS through a Meta-document 
representation. Moreover, we have calculated three 
heuristics mentioned in several works of state-of-the-art 
to rank the most recent MDS methods, through the 
calculus of upper bounds and lower bounds. 

Keywords. Topline, multi-document summarization, 

genetic algorithms, upper bounds, significance. 

1 Introduction 

Extractive Text Summarization (ETS), is a task 
contemplated in Natural Language Processing 
(NLP), that allows to reduce the textual content of 
a document or a set of them, this reduction is 
performed through the selection of a set of most 
representative units (phrases or sentences), of 
original text obtained from a method or a 
computational tool, using supervised and 
unsupervised learning techniques  [1, 2, 7, 15, 30]. 

Nowadays, the ETS task is one of the most 
worked in NLP. Since 1958, the first advances has 
been attributed to the works of Luhn [28], and 
Edmunson [10]. According to [41], these works has 
been considered as pioneers of Automatic Text 
Summarization (ATS), and particularly, ETS. 
Nevertheless, the most recent advances of ATS 
were presented through Document Understanding 
Conferences (DUC), workshops. Since 2001 to 
2007, these workshops was organized by the 
National Institute of Standards and Technology 
(NIST), [9]. The main products of DUC workshops 
are the DUC datasets and are mainly used for two 
tasks: Single-Document Summarization (SDS), 
and Multi-Document Summarization (MDS), [37]. 
The first one consists in generate a selection of 
most important sentences from a single-document 
text, while the second task consist in generate a 
selection of the most important sentences of 
textual content of several documents [21]. 

In the last years, approximately 268 
publications have been reported in the state-of-the-
art using the DUC datasets [12]. In the most of 
these publications have been presented several 
methods for MDS task, using machine learning 
techniques through supervised and unsupervised 
methods [13, 15, 35], clustering-based methods for 
representing a set of clusters different relationships 
between sentences [14, 39, 55], algebraic 
reduction through Non-negative Matrix 
Factorization (NMF), [23, 24], and Latent Semantic 
Analysis (LSA), methods [18, 24, 51, 52], text 
representation with the use of graph-based 
algorithms [12, 33, 34], the use of optimization 
methods such as Genetic Algorithms (GA), [3, 17], 
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Memetic Algorithms (MA), [31, 32], Greedy Search 
(GS), and Dynamic Programming (DP), 
algorithms  [29]. 

In previous works [26, 27, 41], has been 
mentioned that one of the main challenges of ETS 
is to generate automatic extractive summaries that 
similar to summaries generated by humans (gold-
standard summaries). However, for several 
domains, the gold-standard summaries are made 
abstracting summaries by substituting some terms 
and phrases of the original text. For example, in the 
work of Verma and Lee [49], the gold-standard 
summaries of DUC01 and DUC02 employ 
approximately 9% of words not found in the original 
documents [37]. Consequently, the level of 
maximum similarity will be less than 100%, and 
even more, if compared from several gold-
standard summaries, the upper bounds will be 
lower for any ETS method. Therefore, this problem 
involves the search of the best combinations of 
sentences of a set of documents that best similarity 
to gold standard summaries. 

For SDS task, some heuristics have been used 
to compare several commercial tools and state-of-
the-art methods with the purpose to comparing the 
performance of several ETS methods [16, 21, 22]. 
These heuristics are known as Baseline-first, 
Baseline-random [21], and in recent works, the use 
of Topline heuristic has been introduced [43]; in the 
most recent work [41], these heuristics have been 
used for calculating the significance of SDS task. 
However, for MDS has not performed a significant 
analysis for comparing the best novel state-of-the-
art methods, because this task involves a mayor 
number of possible combinations to represent the 
best multi-document summary, and therefore for 
calculating the significant of several state-of-the-art 
methods requires some variants to the method 
presented in [41], for finding the best combinations 
of sentences. 

The use of several optimization-based methods 
in ETS has represented a viable solution to 
generating extractive summaries of superior 
performance. These types of techniques include 
the use of GA, MA and GS methods [17, 29, 31, 
32]. Therefore, the use of optimization-based 
algorithms, represents a viable solution to obtain 
extractive summaries closest to the human-written 
summaries. In this paper, a GA is used to obtain 
the combinations of sentences that best resemble 

selected by humans using the ROUGE-1.5.5 
system and some variants to the method 
presented in [41], were applied. Furthermore, 
some meta-document principles were applied to 
calculating the Topline for MDS. 

The rest of the paper is organized as follows: 
Section 2 present some related works that have 
used techniques based on exhaustive searches to 
determine the best combinations of extractive 
summaries and the calculus of significance for 
SDS. Section 3 describe the general process of 
GA. Section 4 describes the structure and 
development of the proposed GA for calculating 
the Topline for MDS using a meta-document 
representation. Section 5 shows the GA 
experimental configuration to determine the 
highest performance sentence combinations for 
calculating the Topline heuristic for DUC01 and 
DUC02 datasets. Moreover, we present a 
significant analysis to determine the best novel 
methods in the state-of-the-art with the use of three 
heuristics, such as Baseline-first, Baseline-random 
and Topline. Finally, Section 6 we describe the 
conclusions and future works. 

2 Background and Related Works 

Over of the last two decades with the existence of 
the DUC workshops, many advances have been 
made in the development of ETS. Several 
problems have been worked in the ETS, some of 
them involve the segmentation of sentences [19, 
40], and automatic evaluation of summaries [20, 
25, 45, 47]. However, to know and determine the 
best extractive summaries, few studies have been 
carried out, and some of them use techniques 
based on exhaustive searches to determine the 
best combination of sentences that best represent 
the summaries made by humans [41]. One of the 
first works was presented by Lin and Hovy [26], in 
2003, where they developed a comprehensive 
search-based method to find the best sentence 
combinations of a document by taking the first 
100±5 and 150±5 words of the DUC01 dataset for 
SDS task, and evaluating sentence combinations 
through co-occurrence of bag-of-words of the 
ROUGE system [25]. Nevertheless, the main 
drawback that affected the performance of this 
procedure was exponential increase of the search 
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space that implies the number of sentences of 
each document. For example, if we use a 
document of 100 sentences and furthermore 
inferred that on average each sentence has a 
length of 20 words, then to find the best extractive 
summary of 100 words should take the best 5 

sentences of the 100 available (𝐶5
100), generating 

75,287,520 possible combinations of sentences to 
find the best. 

Seven years later, Ceylan [6], presented a 
similar exhaustive search-based method to obtain 
the best combinations of sentences in ETS. Unlike 
the work of Lin and Hovy [26], this method employs 
a probability density function (pdf), to reduce the 
number of all possible combinations using some 
metrics of ROUGE system, with the purpose to be 
applied from different domains (literary, scientific, 
journalistic and legal).  

As we mentioned in [41], the main problem of 
this method involves the modification of ROUGE-
1.5.5 Perl-based script to process several 
combinations of sentences in a cluster of 
computers to distribute the processing of the 
documents. Furthermore, in the news domain it 
was necessary to divide the original document in 
several sub-sections to reduce the processing of 
documents. The reduction of several combinations 
involves the discrimination of different possible 
combinations that can be generated. 

In 2017, Wang [54], presented a nine-
heuristics-based method to reduce the space of 
search that involves the combination of sentences 
for SDS and MDS tasks. This method is based to 
reduce the number of combination of sentences 
that present a low relation to gold-standard 
summaries from SDS and MDS. Subsequently, the 
remaining sentences are introduced through seven 
weighting methods to measure the similarity of the 
sentences in relation to gold-standard summaries. 
However, the use of several heuristics to 
determine the best combinations of sentences in 
different domains and different entries allows the 
increase of the computational cost to find the best 
sentence combinations. In addition, for SDS only a 
single gold-standard summary was used and in the 
case of MDS only 533 documents of 567 of the 
DUC02 dataset were used, generating more 
biased results. 

Finally, in 2018 we presented a calculus of 
significance for SDS task [41]. Using three different  

heuristics (Baseline-random, Baseline-first and 
Topline) that represent the lower bounds and 
upper bounds for ETS, it has been calculated the 
level of significance of several SDS methods. 
However, this calculus only was performed for 
SDS. In this paper, we propose the method based 
on the use of GAs to find the best combinations of 
sentences that can be generated from the multi-
document summaries of DUC01 and DUC02 
datasets and rank the MDS methods. 

3 Basic Genetic Algorithm 

The GAs [22, 38, 42, 54], is a technique of 
optimization and iterative, parallel, stochastic 
search inspired by the principles of natural 
selection proposed by Darwin in 1859 [8]. The GAs 
was proposed by John Holland in 1975 as a 
method that pretends to simulate the actions of 
nature in a computer to optimize a wide variety of 
processes [11]. Nowadays, the GA is the most 

 

Fig. 1. Basic stages of GA [4, 46] 
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widely used evolutive computing method in 
optimization problems [44]. 

A traditional GA is characterized by 
representing the solution of a problem in 
individuals, which are represented by variable bit 
strings and together form a population [4]. A GA 
begins with a population of 𝑁𝑝𝑜𝑝 individuals who 

share a set of 𝑛 characteristics for each generation 
𝑔, where each 𝑖―𝑡ℎ individual 𝑋𝑖 is randomly 
generated as shown in Eq. (1): 

𝑋𝑖(𝑔) = [𝑋𝑖,1(𝑔), 𝑋𝑖,2(𝑔), … , 𝑋𝑖,𝑛(𝑔)],  

𝑖 = 1,2, … , 𝑁𝑝𝑜𝑝. 
(1) 

Each individual 𝑋𝑟(𝑔), is evaluated from a 
specific adaptation value (fitness function), to 
determine the quality of individuals and its 
proximity to the optimal values of GA [11, 38].  

From the value obtained as a fitness function, a 
selection of individuals is performed, where each 
pair of parents 𝑋𝑝(𝑔) and 𝑋𝑚(𝑔), is chosen to 

participate in the cross-step forming individuals 
𝑌𝑖(𝑔), which have combined characteristics of 

𝑋𝑝(𝑔), and 𝑋𝑚(𝑔). Finally, the new individual 𝑌𝑖(𝑔), 

is introduced to the mutation stage, where partial 
and minimal modifications are made to generate 
an individual 𝑍𝑖(𝑔). As mentioned in [31], the 
mutation of individuals is based on a probability 𝑃, 
as shown in Eq. (2): 

𝑍𝑖(𝑔) =  {
𝑀𝑢𝑡𝑎𝑡𝑒(𝑌𝑖(𝑔))      𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑃,

𝑌𝑖                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 (2) 

where the function 𝑀𝑢𝑡𝑎𝑡𝑒(𝑌𝑖(𝑔)), modifies the 

order of one or more sentences selected as target 
from a random value 𝑟𝑎𝑛𝑑, included in a probability 

𝑃. Otherwise, the individual 𝑌𝑖(𝑔), is not modified. 
Finally, the population is updated according to the 
new individuals generated from the crossing and 
mutation stages of individuals. During the new 
generations, the average fitness function of each 
generation is improved because each generation 
produces individuals with better fitness function. 

The selection, crossing, and mutation of 
individuals are iterated until they meet a certain 
termination criterion, these criteria are based on 
the number of iterations, the convergence of 
individuals of a gene, and on a fitness function [22]. 

In summary, the general process that conducts a 
GA is presented in Fig. 1 [4, 46]. 

4 Proposed Method 

In general, the proposed method is based on the 
steps and procedures of the basic GA described in 
Section 3. The proposed GA evaluates several 
combinations of sentences in an optimized search 
space, which are candidates in representing the 
best extractive summary of one or multiple 
documents. In this section, the proposed GA is 
presented. 

4.1 Solution Representation 

In [41], the solution is presented using a coding of 
individuals considering the order of sentences that 
can appear in extractive summary. Therefore, each 
individual 𝑋𝑖  is represented in a vector of 𝑛 

positions [𝑃1, 𝑃2, … , 𝑃𝑛], where each position 

includes a sentence {𝑆1, 𝑆2, … , 𝑆𝑛}, of the original 
document 𝐷, and the union of all the sentences will 
represent the content of the original document, as 
shown in Eq. (3):  

⋃ 𝑆𝑖

𝑛

𝑖=1

= 𝐷. (3) 

For each coding to be considered as an 
extractive summary, the first sentences are 
considered from a set of words. For example, if we 
have a document with 𝑛=10 sentences and we 
generate an extractive summary of 100 words with 
an average of 20 words per sentence, then the 
position vector can use a sequence equivalent to 
[4, 1, 5, 6, 3, 2, 8, 7, 10, 9], indicating that the 
possible solution begins with sentences 4 and 1, 
ending with sentence 9, although only the first 5 
sentences will be considered to comply with first 
100 words as a summary.  

Nevertheless, for MDS, the search space 
involves a mayor number of combinations of 
sentences due to the increase of sentences from a 
set of documents. 

To represent the sentences of multi-documents 
we used the same genetic codification through the 
union of 𝑛 sentences in 𝑚 documents 
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{𝑆1,1, 𝑆1,2, … , 𝑆𝑛,𝑚}, to be considered as a meta-

document that contains all the 𝑖⎯𝑡ℎ sentences of 

each 𝑗⎯𝑡ℎ document, where the union of all 

sentences represent a set of documents 𝑆𝐷, as 
shown in Eq. (4): 

⋃ ⋃ 𝑆𝑖,𝑗

𝑛

𝑖=1

𝑚

𝑗=1

= 𝑆𝐷. (4) 

For each coding to be considered as an 
extractive summary, the first sentences are 
selected until they comply a certain number of 
words as constraint. For example, if we have a set 
of documents 𝑆𝐷 with 𝑚 = 5, where each one 

contains 𝑛 = 5 sentences and we have an average 
of 20 words per sentence and as constraint they 
must be generated extractive summaries with 100 
words, then the vector position can use a 
sequence equivalent to [4, 1, 5, …, 25], indicating 
that the possible solution begins with the 
sentences 4 and 1, ending with sentence 25 that 
corresponds to the last sentence of the last 
document, although only the first 5 sentences will 
be considered until to comply with first 100 words 
as a summary. 

4.2 Fitness Function  

The fitness function is an important stage for the 
performance of the GA and is the value by which 
the quality of the summaries is maximized with the 
passing of (𝑔 + 1), generations. To measure the 
quality of each summary, F-measure maximization 
based on the co-occurrence of bag-of-words and 
bigrams evaluated from ROUGE-1.5.5 system was 
used [25]. The maximum F-measure score of the 

individual 𝑋𝑘(𝑔), obtained from 𝑋𝑖(𝑔), population 

determine the best combination of sentences 
found in GA. This maximization is shown in Eq. (5): 

𝑀𝑎𝑥 (𝐹(𝑋𝑘(𝑔))) = 

∑𝑆 ∈ 𝑆𝑟𝑒𝑓
 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)

∑𝑆 ∈ 𝑆𝑟𝑒𝑓
 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)

, 
(5) 

where 𝑛 determine the size of n-gram for 
evaluating the sentence combinations of GA 
summary (𝑟𝑒𝑓), 𝐹 is the F-measure score of 
ROUGE system and 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛), is the 
number of n-grams that co-occurring between the 

GA summary and the set of gold-standard 

summaries. If the individual 𝑋𝑘(𝑔), have the 

greatest co-occurrence of n-grams from the all 

generations 𝑔 of populations 𝑋𝑖(𝑔), then it will 

have the best combination of sentences when 
obtaining the largest number of retrieved n-grams. 

4.3 Population Initialization  

The most common strategy for initializing the 
population (when 𝑔 = 0), must be generated with 
codifications of random real numbers for signature 

each sentence of the set 𝑆𝐷 =  {𝑆1,1, 𝑆1,2, … , 𝑆𝑛.𝑚}, 

in each position 𝑃𝑖 of [𝑃1, 𝑃2, … , 𝑃𝑛×𝑚]. Therefore, 

the first generation of individuals will be according 
to Eq. 6: 

𝑋𝑐(0) = [𝑋𝑐,1(0), 𝑋𝑐,2(0), … , 𝑋𝑐,𝑛(0)], 𝑋𝑐,𝑠 =  𝑎𝑠, (6) 

where 𝑎𝑠 represents a real integer number 
{1, 2, … , 𝑛 × 𝑚}, that corresponds to the number of 
selected sentence from the original set of 
documents 𝑆𝐷, 𝑐 = 1, 2, …, 𝑁𝑝𝑜𝑝, 𝑠 = 1,2, …, 𝑛 ×

𝑚, 𝑛 is the number of 𝑛⎯𝑡ℎ sentence of 𝑚 
document. Therefore, each sentence has the same 
probability of being included as part of an 
extractive summary respecting a number 𝑊 of 
requested words as condition, as shown in Eq. (7): 

∑ 𝑙𝑖,𝑗𝑆𝑖,𝑗 ∈ 𝑆𝑢𝑚𝑚𝑎𝑟𝑦 ≤ 𝑊, (7) 

where 𝑙𝑖,𝑗 is a length of the sentence 𝑆𝑖,𝑗 (measured 

in words), and 𝑊 is the maximum number of words 
allowed for generating an extractive summary. For 
each generation, Eq. (8), was used to generate a 
dynamic number of individuals depending on the 
number of sentences of 𝑆𝐷: 

𝑁𝑃𝑜𝑝 =  𝑁𝑆𝐷𝑜𝑐 × 𝑀 × 5, (8) 

where 𝑁𝑆𝐷𝑜𝑐 is the number of sentences of each 

document and 𝑀 is the number of documents in 
each set.  

In this way, all the set of documents 𝑆𝐷 can 
generate different number of individuals because 
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the number of sentences of each set involves 
different space of search. 

4.4 Selection  

The selection is the GA stage that allows to take a 
set of individuals 𝑋𝑐 , from a generation g to obtain 
the greatest fitness values with the purpose of 
obtain best individuals in g + 1, generations. One 
of the operators of selection most known of GA is 
the elitism operator, which has the feature to 
choose a set of individuals of best aptitude in the 
generation g to pass to the generation 𝑔 + 1. 

According to [31], if we have 𝑃𝑜𝑏(𝑔) =
{𝑋1(𝑔), 𝑋2(𝑔), … , 𝑋𝑁𝑝𝑜𝑝

(𝑔)}, as a population of 

individuals ordered from greater to lesser fitness 
value, then the set of individuals that will be pass 
to the next generation will be 𝐸(𝑔 + 1) =
{𝑋1(𝑔), 𝑋2(𝑔), … , 𝑋𝑒(𝑔)}, where 𝐸(𝑔 + 1) ⊆
𝑃𝑜𝑏(𝑔), 𝑒 <  100%, and 𝑒 is a parameter that 
specifies the percentage of individuals to be 
selected by elitism. However, for the selection of 
individuals it is required to use at least one 
selection operator to maintain 𝑁𝑝𝑜𝑝, individuals for 

each generation. 

To select the remaining individuals from each 
generation, we propose to generate new offspring 
from the tournament selection operator by taking 

several subsets of 𝑁𝑇𝑜𝑟, randomly selected 

individuals to obtain the individual with the best 
fitness value, as shown in Eq. (9): 

𝑋𝑏(𝑔) = 

𝑀𝑎𝑥 (𝐹(𝑋1(𝑔)), 𝐹(𝑋2(𝑔)), … , 𝐹 (𝑋𝑁𝑇𝑜𝑟
(𝑔))), 

(9) 

where 𝑋𝑏(𝑔) is the individual with the best fitness 
value and 𝐹 is the F-measure score of ROUGE-N 
metric. To integrate the selection stage, we 
propose to use the elitism operator to choose the 
best individuals of each generation 𝑔, using a 
percentage of individuals. Finally, the remaining 
individuals are obtained from the tournament 
selection operator using samples of 2 and 3 
randomly obtained individuals. 

4.5 Crossover  

For the crossover of individuals, we use the cycle 
crossover operator (CX). The operator CX has the 
capacity to generate new offspring from the genetic 
coding of each pair of parents, considering their 
hereditary characteristics [11]. For the CX operator 
to be started, is necessary considering a crossover 
probability 𝑃 to determine the subset of individuals 
who will perform the genetic exchange. Therefore, 

if 𝑏𝑟𝑎𝑛𝑑 is a random number between 0 and 𝑃, then 

the operator must select a starting point for genetic 

exchange of parents 𝑋𝑝1(𝑔), and 𝑋𝑝2(𝑔), which 

represent pairs of parents to cross, this starting 
point is randomly generated to generate a new 

individual 𝑌𝑖(𝑔), as shown in Eq. (10): 

𝑌𝑖,𝑠 =  

{
𝑋𝑝1,𝑠(𝑔) −      𝑖𝑓 𝑠 ≤ 𝑝𝑡𝐶 ∧  0 < 𝑏𝑟𝑎𝑛𝑑 ≤ 𝑃,

𝑋𝑝2,𝑠(𝑔)                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

(10) 

where 𝑋𝑝1,𝑠(𝑔), represents the parent gene 𝑋𝑝1(𝑔), 

𝑋𝑝2,𝑠(𝑔), represents the parent gene 𝑋𝑝2(𝑔), and 

𝑝𝑡𝐶 is an integer value representing a start point 
selected randomly in a range of [1, 𝑛], where n is 
the size of the individual. To generate a second 
offspring, the roles of 𝑋𝑝1(𝑔) and 𝑋𝑝2(𝑔) are 

exchanged with the first parent being individual 
𝑋𝑝2(𝑔). 

4.6 Mutation  

Remembering Eq. (2) of Section 3, the mutation 
stage takes a set of individuals 𝑌𝑖(𝑔), to generate 

individuals 𝑍𝑖(𝑔), modifying some features for each 
generation g. We used the insertion mutation 
operator to select a pair of genes of the individual 

𝑌(𝑖,𝑡)(𝑔), and 𝑌(𝑖,𝑟)(𝑔), randomly to insert the gene 

𝑌(𝑖,𝑡)(𝑔), in the gene 𝑌(𝑖,𝑟)(𝑔) [4], as shown in 

Eq.  (11): 

𝑍𝑖,𝑠(𝑔) = 

{

𝑌𝑖,𝑡(𝑔) = 𝑌𝑖,𝑟(𝑔), 𝑌𝑖,𝑡±1(𝑔) = 𝑌𝑖,𝑡(𝑔), … , 𝑌𝑖,𝑟(𝑔) = 𝑌𝑖,𝑟±1(𝑔);   

  𝑖𝑓 0 < 𝑟𝑎𝑛𝑑 ≤ 𝑃,

𝑌𝑖,𝑠(𝑔)                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
 

(11) 

where 𝑟 is the variable that relates the gene to be 

inserted, the variable 𝑡 represents the target gene 
to be inserted, which are a subset of numbers 𝑠 =
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{1, 2, … , 𝑛}, and 𝑛 identifies the sentence 𝑆𝑖,𝑗 of 

each document. Therefore, if the random value 
rand is between the value 0 and 𝑃, then the 
mutation of individuals is performed by insertion 
operator, otherwise the individual is not modified. 

4.7 Replacement of Individuals 

For the replacement of individuals, we propose to 
integrate the set of individuals generated by elitist 
selection (𝐸(𝑔 + 1)) and the set of individuals 
𝑍𝑖(𝑔), from the mutation stage, to integrate the 
population of the next generation 𝑋𝑖(𝑔 + 1), as 
shown in Eq. (12): 

𝑋𝑖(𝑔 + 1) =  𝐸(𝑔 + 1) + 𝑍𝑖(𝑔). (12) 

4.8 Termination Criterion 

The termination criterion used to halt GA iterations 
is determined by several generations established 
as an execution parameter. 

5 Experiments and Results 

In this section, we present the experiments 
performed to generate the best extractive 
summaries by the proposed GA, using DUC01 and 

DUC02 datasets. Moreover, the performance of 
some MDS methods and heuristics was presented 
through a calculus of significance for determine the 
best MDS methods in the state-of-the-art. 

5.1 Datasets 

Remembering some ideas from Section 1, the 

DUC datasets are the most common used for SDS 

and MDS task researches. In the state-of-the-art, 

approximately 89 publications in DUC01 and 

DUC02 has been reported. Due to this, we used 

DUC01 and DUC02 datasets to calculate the upper 

bounds for MDS. DUC01 and DUC02 are products 

of workshops organized by the National Institute of 

Standards and technology (NIST), for the 

development of ETS. The documents of these 

datasets are based on news articles from some 

agencies such as The Financial Times, The Wall 

Street Journal, Associated Press and others 

[36, 37]. 

DUC01 dataset consist of 309 English 
documents grouped into 30 collections, each 
collection contains an average of 10 documents 
based on news articles addressing natural disaster 
issues, biographical information, and others [36].  

This dataset is divided for two tasks, the first 
task consists in generate summaries of single-
documents with a length of 100 words and these 

Table 1. Datasets main characteristics 

 DUC01  DUC02 

Number of collections 30  59 

Number of documents 309  567 

Number of gold-standard summaries per 
collection/document 

2 
 

1-2 

Multi-document gold-standard extractive/abstractive 
summaries 

50, 100, 200, 400 
abstracts 

 10, 50, 100, 200 
abstracts 

200, 400 extracts 

Table 2. GA parameters to calculate Topline of DUC01 and DUC02 for MDS 

Generations Selection Crossover Mutation 

60 
Elitism Tournament CX Insertion 

𝑒 10% 𝑁𝑇𝑜𝑟 2 𝑃 85% 𝑃 12% 
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summaries were compared with two gold-standard 
summaries.  

For MDS, consist in generate summaries of 
multiple newswire/newspaper documents 
(articles), on a single subject with 50, 100, 200, and 
400 words. Moreover, for evaluation step, two 
abstracts were generated for each collection, 
generating 60 abstract summaries with the same 
lengths. 

DUC02 dataset consist of 567 news articles in 
English grouped into 59 collections, each collection 

contains between 5 and 12 documents dealing with 
topics of technology, food, politics, finance, among 
others. Like DUC01, this dataset is mainly used for 
two tasks, the first is to generate summaries of a 
document, and each document has one or two 
gold-standard summaries with a minimum length of 
100 words.  

For MDS, consist in generate summaries of 
multiple documents, one and two abstracts were 
generated as gold-standard summaries for each 
collection, generating 118 abstracts/extracts with 

Table 3. Results of ROUGE-1 and ROUGE-2 methods and heuristics on DUC01 and DUC02 for summaries of 100 

words (evaluated from abstractive gold-standard summaries) 

 DUC01 DUC02 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 47.256 18.994 49.570 18.998 

R2N2_ILP 36.910 7.870 37.960 8.880 

R2N2_GA 35.880 7.640 36.840 8.520 

Ur 34.280 6.660 34.160 7.660 

Sr 34.060 6.650 34.230 7.810 

Ur+Sr 33.980 6.540 35.130 8.020 

LexRank 33.220 5.760 35.090 7.510 

Baseline-first 31.716 6.962 33.385 7.042 

Baseline-random 26.994 3.277 28.637 3.798 

Table 4. Results of ROUGE-1 and ROUGE-2 methods and heuristics on DUC02 for summaries of 200 words (evaluated 

from extractive gold-standard summaries) 

 DUC02 

Method ROUGE-1 ROUGE-2 

Topline 75.163 66.512 

Baseline-first 50.726 26.979 

Centroid 45.379 19.181 

LexRank 47.963 22.949 

NMF 44.587 16.280 

FGB 48.507 24.103 

BSTM 48.812 24.571 

FS-NMF 49.300 24.900 

WFS-NMF-1 49.900 25.800 

WFS-NMF-2 49.100 25.200 

Baseline-random 38.742 9.528 
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lengths of 10, 50, 100 and 400 words [37]. Table 1 
shows the general data for each dataset. 

5.2 Parameters 

To determine the upper bounds (Topline), of 
DUC01 and DUC02, different tests were carried 
out with some adjustments of parameters with the 
objective of obtaining the best extractive 
summaries. Table 2, shows the best tuning 
parameters applied to GA proposed to calculate 
the best extractive summaries of multiple 
documents. 

The fitness value of each solution is obtained 
from the n-gram specification to be evaluated by 
the ROUGE system. In this paper, the unit of 

evaluation based on the co-occurrence of bag-of-
words and bigrams (ROUGE-1 and ROUGE-2), 
was used, to compare the performance of the most 
state-of-the-art methods in relation to set of gold-
standard summaries [25]. 

5.3 Comparison to State-of-the-Art Methods 
and Heuristics 

As we have mentioned in Section 1, the 

importance of knowing the best multi-document 

extractive summaries consist in determining the 

Topline from the extractive summaries of several 

set of documents and calculating the significance 

of several state-of-the-art methods. In this section, 

we present a performance comparison of the state-

Table 5. Results of ROUGE-1 and ROUGE-2 methods and heuristics on DUC02 for summaries of 50, 100 and 200 

words (evaluated from abstractive gold-standard summaries) 

 DUC02 

 50 words abstracts 100 words abstracts 200 words abstracts 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 42.967 16.084 49.570 18.998 56.120 23.682 

ILP 28.100 5.800 34.600 7.200 41.500 10.300 

Knapsack 27.900 5.900 34.800 7.300 41.200 10.000 

Baseline-first 26.939 5.241 33.385 7.042 41.118 10.362 

GS 26.800 5.100 33.500 6.900 40.100 9.500 

Baseline-random 21.599 2.298 28.637 3.798 36.074 6.308 

Table 6. Ranking of state-of-the-art methods and heuristics on DUC01 and DUC02 for summaries of 100 words 

 DUC01 DUC02 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 100% 100% 100% 100% 

R2N2_ILP 48.94% 29.22% 44.54% 33.43% 

R2N2_GA 43.86% 27.76% 39.19% 31.07% 

Ur 35.96% 21.52% 26.38% 25.41% 

Sr 34.87% 21.46% 26.72% 26.39% 

Ur+Sr 34.48% 20.76% 31.02% 27.78% 

LexRank 30.73% 15.80% 30.83% 24.42% 

Baseline-first 23.30% 23.45% 22.68% 21.34% 

Baseline-random 0% 0% 0% 0% 
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of-the-art methods and their advances with respect 

to performance obtained from Baseline-first, 

Baseline-random and Topline heuristics. The 

methods and heuristics involved in this comparison 

are the following: 

– Baseline-first: It is an heuristic that allows to 

use the first sentences of an original text 

according to a length of words to present as a 

summary to the user [16]. The performance of 

this heuristic generates good results in the 

ETS. However, this heuristic must be 

overcome by state-of-the-art methods [21]. To 

perform this heuristic in MDS, the summary is 

generated from the first sentences of each 

document until the determined number of 

words is met. 

– Baseline-random: It is an heuristic in the 

state-of-the-art that selects random sentences 

to present them as an extractive summary to 

the user [21]. In addition, this heuristic allows 

us to determine how significant is the 

performance of ETS methods are in the state-

of-the-art [22]. To perform this heuristic in 

MDS, we generate ten summaries for each set 

of documents with randomly selected 

sentences until the number of words is met.  

– Topline: It is an heuristic that allows to obtain 

the maximum value that any state-of-the-art 

method can achieve due to the lack of 

Table 7.  Ranking of state-of-the-art methods and heuristics on DUC02 for summaries in 200 words 

 DUC02 

Method ROUGE-1 ROUGE-2 

Topline 100% 100% 

Baseline-first 32.90% 30.62% 

Centroid 18.22% 16.94% 

LexRank 25.32% 23.55% 

NMF 16.05% 11.85% 

FGB 26.81% 25.58% 

BSTM 27.65% 26.40% 

FS-NMF 28.99% 26.98% 

WFS-NMF-1 30.64% 28.56% 

WFS-NMF-2 28.44% 27.50% 

Baseline-random 0% 0% 

Table 8. Ranking of state-of-the-art methods and heuristics on DUC02 for summaries in 50, 100 and 200 words 

 DUC02 

 50 words abstracts 100 words abstracts 200 words abstracts 

Method ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 ROUGE-1 ROUGE-2 

Topline 100% 100% 100% 100% 100% 100% 

ILP 30.42% 25.40% 28.49% 22.38% 27.07% 22.98% 

Knapsack 29.49% 26.13% 29.44% 23.04% 25.57% 21.25% 

Baseline-first 24.99% 21.35% 22.68% 21.34% 25.16% 23.33% 

GS 24.34% 20.33% 23.23% 20.41% 20.08% 18.37% 

Baseline-random 0% 0% 0% 0% 0% 0% 
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concordance between evaluators [43], since it 

selects sentences considering one or several 

gold-standard summaries. As mentioned in 

Section 2, efforts have been made in the state-

of-the-art to know the scope of the ETS. 

– Ur, Sr, ILP: In the work of [5], several machine 

regression models has been presented, the 

method Ur uses a bag-of-words regression 

with GS-based selection. The method Sr uses 

a sentence regression method with GS-based 

selection. Finally, the method Integer Linear 

Programming (ILP), is implement for MDS. 

These methods wezre considered as baseline 

methods.  

– R2N2_ILP and R2N2_GA: In [5], a method for 

ranking the sentences for MDS is proposed. 

Through a ranking framework upon recursive 

neural networks (R2N2), based on a 

hierarchical regression process the most 

important sentences of each document are 

selected. 

– ClusterCMRW and ClusterHITS: The 

methods of [55], uses an Cluster-based 

Conditional Markov Random Walk Model 

(ClusterCMRW) and the Cluster-based HITS 

Model (ClusterHITS), to fully leverage the 

cluster-level information. Through these 

methods, relationships between sentences in 

a set of documents are associated. 

– LexRank: It is a common stochastic graph-

based method to generate extractive 

summaries through a centrality scoring of 

sentences. A similarity graph is constructed 

that provides a better view of important 

sentences from source text using a centroid 

approach [12]. 

– Centroid: In [39], a multi-document 

summarizer (MEAD) is presented. This 

method uses a centroid-based algorithm to 

score each sentence of each document 

through a linear combination of weights 

computed using the following features: 

Centroid based weight, sentence position and 

first sentence similarity. 

– GS, Knapsack and ILP algorithms: In the 

work of [29] three inference global algorithms 

are proposed for MDS. Through the GS, 

Knapsack and ILP algorithms it was performed 

a study global of performance in MDS. The first 

is a greedy approximate method, the second a 

dynamic programming approach based on 

solutions to the Knapsack problem, and the 

third is an exact algorithm that uses an Integer 

Linear Programming formulation problem. 

– NMF: The method of [52], uses an NMF to 

measure the relevance of document-terms and 

sentence-term matrices to ranks the 

sentences by their weighted scores. 

– FGB: In [52], the clustering-summarization 

problem is translates into minimizing the 

Kullback-Leibler divergence between the given 

documents and model reconstructed terms for 

MDS. 

– BSTM: The BSTM (Bayesian Sentence-based 

Topic Models), explicitly models the probability 

distributions of selecting sentences given 

topics and provides a principled way for the 

summarization task. BSTM is similar to the 

FGB summarization since they are all based 

on sentence-based topic model [53]. The 

difference is that the document-topic allocation 

matrix is marginalized out in BSTM. 

– FS-NMF: The work of [50], considers a 

selection of theoretical and empirical features 

on a document-sentence matrix, and selects 

the sentences associated with the highest 

weights to form summaries.  

– WFS-NMF-1, WFS-NMF-2: In [50], the NMF 

model is extended and provides a framework 

to select sentences with the highest weights to 

perform extractive summaries. 

ClusterCMRW and ClusterHITS methods do 
not participate in the following comparisons, 
because in their evaluation stage was performed 
with a lower version of ROUGE system (ROUGE-
1.4.2) and their results can differ of ROUGE-1.5.5 
version. 

For comparing and reweigh the performance of 
the methods previously described with the 
heuristics of the state-of-the-art, we used the 
evaluation based on the statistical co-occurrence 
of bag-of-words and bigrams (ROUGE-1 and 
ROUGE-2), of the ROUGE system [25], using the 
function of Eq. (13) to establish the performance of 
each state-of-the-art method respect to the best 
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extractive summaries obtained by the 
proposed GA: 

𝑅𝑂𝑈𝐺𝐸⎯𝑁 = 

 
∑𝑆 ∈ 𝑆𝑢𝑚𝑚𝑟𝑒𝑓

 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡𝑚𝑎𝑡𝑐ℎ(𝑔𝑟𝑎𝑚𝑛)

∑𝑆 ∈ 𝑆𝑢𝑚𝑚𝑟𝑒𝑓
 ∑𝑔𝑟𝑎𝑚𝑛 ∈ 𝑆 𝐶𝑜𝑢𝑛𝑡(𝑔𝑟𝑎𝑚𝑛)

. 
(13) 

Table 3, 4 and 5, shows the average results of 
ROUGE-1 and ROUGE-2 when calculating the 
Topline for MDS of 30 document sets in DUC01 
dataset and 59 document sets in DUC02 dataset 
using the limit of 50, 100 and 200 words as 
constraint of GA parameters presented in Table 2. 
The performance of the state-of-the-art methods 
are shown in this comparison. 

According to the results presented in Tables 3, 
4 and 5, Topline performance is substantially 
distant from other state-of-the-art methods, as 
mentioned by [43]. For DUC01 with 100 words, 
Topline obtained a performance equivalent to 
47.256 with ROUGE-1 and 18.994 with ROUGE-2, 
while the best state-of-the-art method is R2N2_ILP 
obtaining 7.870 with ROUGE-2. For DUC02 with 
100 words, Topline obtained a performance 
equivalent to 49.570 with ROUGE-1 and 18.998 
with ROUGE-2, in the same way, R2N2_ILP is the 
best state-of-the-art method obtaining 37.960 with 
ROUGE-1 8.880 with ROUGE- 2 (see Table 3). 

For DUC02 with 200 words, Topline obtained a 
performance equivalent to 75.163 with ROUGE-1 
and 66.512 with ROUGE-2, while the best state-of-
the-art method is WFS-NMF-1 obtaining 49.900 with 
ROUGE-1 and 25.800 with ROUGE-2. Moreover, 
the heuristic Baseline-first outperforms all state-of-
the-art methods (see Table 4). 

For DUC02, Topline obtained a performance 
equivalent to 42.967 with ROUGE-1 and 16.084 
with ROUGE-2 for summaries in 50 words. For 
summaries in 100 words, Topline obtained a 
performance equivalent to 49.570 with ROUGE-1 
and 18.998 with ROUGE-2. For summaries in 200 
words, Topline obtained a performance equivalent 
to 56.120 with ROUGE-1 and 23.682 with ROUGE-
2. The best state-of-the-art methods are the 
methods ILP obtaining 28.100 with ROUGE-1 in 50 
words, 41.500 with ROUGE-1 and 10.300 with 
ROUGE-2 in 200 words. The method based of in 
the Knapsack problem obtained 5.900 with 
ROUGE-2 in 50 words, 34.800 with ROUGE-1 and 

7.300 with ROUGE-2 for summaries in 100 words. 
Furthermore, the Baseline-first heuristic 
outperform to the GS-based method in several 
scores (see Table 5).  

A comparison of the level of advance of the 
most recent state-of-the-art methods is shown in 
Tables 6, 7 and 8. To determine this performance, 
we use the Eq. (14) based on the premise that the 
performance of Topline heuristic is 100% and 
Baseline-random is 0%. 

𝑅𝑂𝑈𝐺𝐸⎯𝑁 = 
(𝑅𝑂𝑈𝐺𝐸⎯𝑁𝑂𝑀 − 𝑅𝑂𝑈𝐺𝐸⎯𝑁𝐵𝑅)  ×  100

𝑅𝑂𝑈𝐺𝐸⎯𝑁𝑇𝐿 −  𝑅𝑂𝑈𝐺𝐸⎯𝑁𝐵𝑅
, 

(14) 

where 𝑅𝑂𝑈𝐺𝐸⎯𝑁 specifies the F-measure score of 

bag-of-words and bigrams, 𝑂𝑀 is the performance 

of other methods, 𝑇𝐿 is the performance of Topline 
heuristic and 𝐵𝑅 is the performance of Baseline-
random heuristic. 

The best state-of-the-art method from the Table 
6 presents an advance equivalent to 48.94% for 
ROUGE-1 and 29.22% for ROUGE-2 in DUC01, 
and DUC02 presents an advance equivalent to 
44.54% for ROUGE-1 and 33.43% for ROUGE-2 
for summaries of 100 words. Therefore, it follows 
that for the development of the MDS task there is 
51.06% for ROUGE-1 and 70.78% for ROUGE-2 
in DUC01, and 55.46% for ROUGE-1 and 66.57% 
for ROUGE-2 in DUC02 to be explored in 
summaries of 100 words. In the other hand, it is 
observed that the performance of Baseline-first 
heuristic is overcome by all state-of-the-art 
methods (see Table 6). 

The best state-of-the-art methods present an 
advance equivalent to 30.64% for ROUGE-1 and 
28.56% for ROUGE-2 (see Table 7). Therefore, it 
follows that for the development of the MDS task in 
summaries of 200 words, there is a 69.36% for 
ROUGE-1 and 71.44% for ROUGE-2 to be 
explored. In the other hand, the performance of 
Baseline-first heuristic is outperforming to best 
state-of-the-art method with 32.90% for ROUGE-1 
and 30.62% for ROUGE-2. 

For summaries of 50, 100 and 200 words, the 
best state-of-the-art methods were ILP-based 
method with a percentage equivalent to 30.42% for 
ROUGE-1 (50 words), 27.07% for ROUGE-1 and 
22.98% for ROUGE-2 (200 words), while the 

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 11–26
ISSN 1405-5546
doi: 10.13053/CyS-22-1-2903

Jonathan Rojas Simón, Yulia Ledeneva, René Arnulfo García-Hernández22



 

Knapsack problem-based method obtained a 
percentage equivalent to 26.13% for ROUGE-1 (50 
words), 29.44% for ROUGE-1 and 23.04% for 
ROUGE-2 (100 words), (see Table 8). In general, 
the best state-of-the art methods presents an 
average percent of advance equivalent to 28.97% 
for ROUGE-1 and 24.05% for ROUGE-2. 
Therefore, it follows that for the development of the 
MDS task in summaries of 50, 100 and 200 words 
in DUC02, there is an average 71.03% for 
ROUGE-1 and 75.95% for ROUGE-2 to be 
explored. In the other hand, the performance of 
GS-based method is closer than Baseline-first in 
several ROUGE metrics. 

6 Conclusions and Future Works 

In previous works, the upper bounds for SDS and 
MDS has been calculated on exhaustive search-
based methods to obtain the best extractive 
summaries. However, determine the best 
extractive summaries through this method was 
inadequate and expensive due to increase of 
documents and sentences. In this paper, we 
propose the use of GAs for calculating the upper 
bounds (Topline heuristic), to reweigh the 
performance of MDS methods. 

Some GA operators were used to obtain the 
best extractive summaries. In the fit-ness function 
stage, it was proposed to use ROUGE-N method 
of ROUGE-1.5.5 system to evaluate the quality of 
GA combinations. Through ROUGE-N, we 
obtained several patterns features from gold-
standard summaries. 

In the state-of-the-art, the maximum possible 
performance value of MDS in DUC01 and DUC02 
were unknown. However, it was possible to 
approximate the performance of the best extractive 
summaries with the use of GAs, to know the scope 
of MDS methods. In the other hand, we propose 
identifying several patterns of sentence features 
obtained from the best sentence combinations 
through supervised and unsupervised machine 
learning models to improve the performance of 
MDS methods.  

In general, the best state-of-the-art methods 
(reported in Table 6, 7 and 8), are R2N2_ILP, 
R2N2_GA, WFS-NMF-1, ILP and Knapsack in 
different metrics. However, it was not possible 

perform a ranking of all state-of-the-art methods 
because several methods were not implemented in 
different subsets of documents of DUC01 and 
DUC02 datasets. In the other hand, the 
performance of Baseline-first is overcome in 
several subsets of documents (see Table 6 and 8), 
except for summaries in 200 words (from DUC02). 

With the new reweight of MDS methods 
(reported in Table 6, 7 and 8), it was possible to 
determine the advance percentages of the best 
state-of-the-art methods. In several subsets of 
documents (see Table 6, 7 and 8), it is observed 
that the percentage of significance is much closer 
to several methods of the state-of-the-art, so it will 
be very important to analyze the quality of the 
summaries generated by means of a Turing test, to 
demonstrate if the level of achieved performance 
of extractive summaries is confounded with 
summaries created by humans. Finally, we 
propose the use of GA-based method for 
calculating the upper bounds in several languages 
for determining the ranking of significance for 
several multilingual ETS methods. 
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