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Use of a simple semiclassical estimate of Bessel function phase for arbitrary argument
avoids the modulo p errors which the conventional approach tends to introduce into the
calculation of absolute quantal phase shifts for high partial waves. This has significant
implications for the direct quantum mechanical calculation of second virial coefficients at high
temperatures.

1. Introduction

Scattering phase shifts are central to a quantum
mechanical description of scattering cross-sections and
a host of dilute gas virial and transport properties which
are governed by molecular collision behaviour [1–3].
For an intermolecular collision at energy E with angular
momentum quantum number ‘ between two particles
with reduced mass � which interact through the
intermolecular potential energy function V(r), the
effective radial Schrödinger equation is
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If the zero of energy is set at the asymptote of the
potential energy function, so that limr!1 ½VðrÞ� ¼ 0,
the asymptotic form of the radial wavefunction is

 ðrÞ ’ sin ðkrþ �‘ � ‘p=2Þ ð2Þ

in which k ¼ ð2�E=�hh2Þ1=2 and �‘ ¼ �‘ðE Þ is the scatter-
ing phase shift [4–6].
The quantum mechanical expressions for the cross-

sections associated with elastic scattering and most
non-ideal gas properties only depend on terms such as
sinð2�‘Þ or sin

2
ð�‘Þ, and hence only require an accurate

knowledge of phase shifts to within a modulo of p.
A noteworthy exception, however, is the interaction
second virial coefficient (for non-identical particles),

which is given by the expression [1, 3, 7]
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in which the double sum over v and ‘ runs over all truly
bound vibration-rotation levels (with energies Ev, ‘)
supported by the potential, x ¼ E=ðkBT Þ, NA½mol�1�
is Avogadro’s number and L ¼ 2½p�hh2=ð2�kBT Þ�

1=2 is
the thermal de Broglie wavelength of the system. This
dependence on the absolute phase shift qualitatively
differentiates second virial coefficients from other
non-ideal gas properties. This note addresses problems
that may arise in accurate quantum mechanical virial
coefficient calculations due to modulo p errors which
can arise in certain applications of standard broadly
accepted procedures for calculating quantal phase shifts.

2. Quantal phase shift calculations

For all positive energies, at distances large enough that
the effective interaction potential ð2�=�hh2ÞVðrÞ is much
smaller than the centrifugal term ‘ð‘þ 1Þ=r2, the exact
solution to equation (1) takes on the form [4]

 ‘ðrÞ ’ kr j‘ðkrÞ cosð�‘Þ � y‘ðkrÞ sinð�‘Þ½ � ð4Þ

in which j‘ðzÞ and y‘ðzÞ are spherical Bessel functions
of the first and second kind, respectively [8].*Corresponding author. Email: leroy@uwaterloo.ca
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The asymptotic form of the spherical Bessel functions
means that for the normal case in which V(r) dies off
faster than 1/r2, as r!1 equation (4) collapses to
equation (2). A quantal calculation of �‘ðkÞ requires one
to numerically integrate the radial Schrödinger
equation, equation (1), outward from r ¼ 0 while using
comparisons of that exact numerical solution with
equation (4) to determine a converged value for �‘ðkÞ.
The conventional procedure for doing this stops the
integration each time the wavefunction changes sign
and interpolates to determine the precise position
rn, ‘ ¼ rn, ‘ðE Þ of that node, where n is a node counter.
If the potential V(r) were precisely zero for all r � rn, ‘
then the wavefunction in that region would be given by
equation (4) and an associated apparent ‘local’ estimate
of the phase shift would be obtained by setting
equation (4) equal to zero and solving for �‘:

�ðnÞ, loc‘ ¼ arctan j‘ðkrn, ‘Þ=y‘ðkrn, ‘Þ
� �

: ð5Þ

If these apparent phase shifts for two or three successive
nodes agree to within a given tolerance, the phase shift
is assumed to be converged [9].
This basic method of calculating quantal phase shifts

usually requires the numerical integration of equation (1)
to propagate to fairly large distances, which increases
the computational expense and amplifies problems
arising from cumulative errors in the numerical integra-
tion procedure. Munn et al. [10] showed that such
problems are minimized if these purely quantal local
phase shifts were supplemented by a semiclassical
estimate of the additional phase correction due to the
residual non-zero V(r) function at distances beyond rn, ‘.
This yields the semiclassically corrected, total (relative)
nodal phase shift expression
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While Munn et al. approximated this semiclassical phase
integral by a simple analytic expression based on a single
inverse-power-term approximation for the potential [10],
it was later shown that a much better approach was to
perform a direct numerical quadrature, and that as few
as four quadrature points gave greatly accelerated
convergence [11]. However, the net effect was the
same as that of the basic quantal approach: overall
relative phase shifts �ðnÞ, rel‘ are calculated at successive
wavefunction nodes until convergence is achieved.

3. Determining absolute phase shifts

The one significant shortcoming of the above procedure
is that it only yields relative phase shifts defined to
within a modulo of p, since the domain of the arctan
function is only ð�p=2, þp=2Þ. Equation (3) shows that
this can present problems for virial coefficient calcula-
tions, since the integrand in the last term of equation (3)
depends on the magnitude of �‘, and not merely on
sin2ð�‘Þ or sinð2�‘Þ. The standard method of determining
the multiple of p to add to the converged value of �ðnÞ, rel‘

to give the correct absolute phase shift is to
use a comparison of the exact absolute wavefunction
phase (of np) at node n, with an estimate for the phase
in the modulus/phase expression for Bessel functions
(see equations (9.2.17)–(9.2.20) of [8]) at that distance,
Y‘ðkrn, ‘Þ, corrected by the (relative) apparent local
phase shift:
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where ‘int’ is a function which rounds its argument to the
nearest integer.

The conventional way of estimating Y‘ðkrÞ is to
approximate it by the first few terms of an asymptotic
series expansion in 1/k using equation (9.2.29) of [8],
yielding values denoted herein as Yae

‘ ðkrÞ. That
approach usually gives satisfactory results. However,
in the course of performing calculations of interaction
virial and diffusion coefficients for the D2–Xe
system [12], we found that for high partial waves this
approach can break down. For example, at a collision
energy corresponding to a wavenumber of 1645 cm�1,
the absolute phase shifts obtained in this way have
the behaviour illustrated by the dotted curves in
figure 1; the implication of this (mis)behaviour for
calculated virial coefficients is shown by the deviation
between the solid and dotted curves in figure 2. This
misbehaviour was only discovered because efforts to
achieve very high precision led the calculations to be
pushed to include very high numbers of partial waves;
if a less restrictive convergence criterion had been
applied, the existence of this problem would not have
been evident.

In retrospect, the errors arising from use of the
above approximation could have been foreseen by
examining the behaviour of the error associated with
the finite (to order 1=ðkrÞ7) expansion for Yae

‘ ðkrn, ‘Þ of
equation (9.2.29) of [8]. For small n and ‘ these errors
are very small, but for ‘ > 13 they are always negative
and grow monotonically in magnitude. For a wide
range of angular momenta ‘ and node numbers n,
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the dotted curves in figure 3 plot the magnitude of the
errors in this approximation at a number of Bessel
function nodes. The (dimensionless) values of krn, ‘
defining the exact positions of these nodes were
determined by solving the Bessel differential equation
numerically. When values of these errors
jerrfYae

‘ ðkrn, ‘Þgj become greater than p=2, the ‘int’
function in equation (7) will introduce an incorrect
multiple of p into the resulting absolute phase shift.
Figure 3 shows that this always occurs at high values of
‘, so the type of problem illustrated by figures 1 and 2
would only be avoided if the partial wave sum in
equation (3) were truncated before the onset of this
breakdown.
To address this problem, the present work examined

the efficacy of an alternate method of estimating the
Bessel function phase. Using standard semiclassical
methods [13] it is readily shown that the first-order

semiclassical expression for the phase of a spherical
Bessel function at a distance r is
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in which k‘ðrÞ ¼ ½k
2 � ‘ð‘þ 1Þ=r2�1=2, r0, ‘ ¼

½‘ð‘þ 1Þ�1=2=k is the location of the zero of k‘ðrÞ and
r > r0, ‘. The integral in equation (8) may be evaluated
in closed form, yielding the expression (for ‘ > 0)
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2
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For the special case of ‘ ¼ 0, we of course have the trivial
(exact) result that Y0ðkrÞ ¼ kr.

Differences between the predictions of equation (9)
and the exact Bessel function phase of np at the nth node
are shown as solid curves in figure 3 for a range
of n values. The errors yielded by this semiclassical
approximation are always positive, monotonically
decrease as ‘!1 or n increases, and are always less
than the value of 0.141 rad which all the solid curves
approach as ‘! 1. Since these errors are always much
less than p=2, it is clear that use of this approximation
for Y‘ðkrn, ‘Þ in equation (7) can never give rise to
modulo p errors in the determination of the absolute
phase shift.

4. Conclusions

We have seen that a problem associated with the
conventional way of estimating the phase of a spherical
Bessel function of a given argument can give rise
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Figure 3. Error (in radians) in approximate estimates of
Bessel function phase at the node number n: errfYsc
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Figure 1. Absolute phase shifts for D2–Xe collisions at a
collision energy of 1645 cm�1 on the isotropic part of the
potential energy surface of [12], calculated using two different
methods of determining the modulo of p in equation (7).
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Figure 2. Virial coefficients for D2–Xe implied by the
isotropic part of the potential energy surface of [12], as
calculated from equation (3) using two different methods
of determining the modulo of p in the absolute phase shifts
of equation (7).
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to anomalous errors of multiples of p in numerically
calculated absolute quantal phase shifts, and that these
in turn can give rise to massive errors in predictions for
second virial coefficients. The present work shows that
use of a simple first-order semiclassical estimate of
that phase completely removes such problems. A robust
FORTRAN subroutine for calculating quantal phase
shifts which implements the above procedure may be
downloaded from the ‘computer programs’ link on the
www site http://leroy.uwaterloo.ca. The result reported
herein is a small further illustration of the essential
role of semiclassical methods in providing insight
and methodology for understanding and predicting
molecular phenomena, a field in which Mark Child
and his collaborators have been leading innovators
for the past four decades [13–15].
This research has been supported by a Discovery

Grant to RJL provided by the Natural Sciences and
Engineering Research Council of Canada.
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