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Summary

This report deals with the calculation of aperture field and radiation
pattern, from Fresnelfield measurements of both amplitude and phase

distributions radiated by large (D >> A) reflector antennas.

A microwave measurement system based on the concept of microwave complex

holograms is introduced.

The use of an existing antenna scanning system suggests measurements with
a spherical scan. Equations for the Fresnel field of a large reflector
antenna on a spherical surface will be derived. Also, the transformations

necessary to calculate aperture and far fields will be given.

The cross-polarisation properties in the Fresnel zone will be investigated,
For small boresight angles (large D/A) the co-polarised and cross-polarised
field distributions can be shown to result independently of co-polarised

and cross-polarised aperture fields respectively.

It will be shown that an antenna test range of about 15 times the diameter
of the reflector (D) is necessary to carry out Fresnel field measurements.
Equations defining the angular test interval and the sampling distance

will be derived.

In Ch. 4 results of measurements and calculations on the field of a

small reflector antenna (D=10A) will be given.

Finally the authors wishes to thank Mrs. v.d. Ven - Pellegrino for typing

the manuscript.



1.1 Introduction

The investigation of the far field characteristics of large reflector

antennas often encounters a lot of problems because of the long distance

and great altitudes at which a source (or receiver) has to be placed.

Several methods of obtaining these characteristics from measurements at

much shorter distances than ZDZ/A were proposed. An excellent review of

these methods 1s given by Ashton et al [1] and Hollis et al [2]}.

The three fundamental methods of obtaining the far field when measured in

the near field are by:

a) arranging for the antenna to be illuminated by a plane wave generated
within a short distance;

b} measuring the radiated fields in phase and amplitude of an antenna in
the near field and calculating the far field;

¢} changing the antenna to be tested in a prescribed way so that the field
over a certain area in the near field closely resembles that of the far
field of the true antenna.

Variations on these three methods have been developed, but all systems may

be classified among one or occasionally two of these methods.

The plane wave illumination methed (a), presently known as the compact range

method, can be used for antenna pattern measurements, radar reflectivity

measurements, etc. and yields accurate results [2].

The defocussing method (¢) yields a rough approximation of the required

far field pattern [1] and can only be used with systems that can be defocussed.

Method (b) uses phase and amplitude information of the near field to

calculate the far field. The field measured at some plane, cylindrical or

spherical surface is thereby transformed into the far field pattern. Use of

this Field Transform Method requires also measurement of the phase pattern

which was a prime difficulty at microwave frequencies. For this reason,

only little attention has been paid to the measurement of the phase patterns

in the past, hence calculations of aperture fields were not usually possible

and information regarding aperture blocking and aperture field deformatioms

was not obtained.

Using microwave holography and optical data handling, the Russian investigators

Bakhrakh and Kurochkin [3], were the first to reconstruct the optical analogon

of the radiation pattern of a large reflector antenna. Other authors proposed

numerical data handling [4,5]. It is the purpose of this report to present




the necessary transformations for the calculation of the far field and
aperture field measurements from Fresnel field 'measurements on a spherical
surface and to introduce a measurement bridge based on the principle of

microwave complex holograms.

1.2 Literature

[1] R.W., Ashton et al "A study of the prediction of antenna performances
from near field measurements", June 1975, Final Report Marconi Res.
Labs. ESA contract 2239/75/HP.

[2] Johnson et al, "Determination of far field antenna patterns from near

field measurements'", Proc. IEEE Dec. 1973.

3] L.D. Bakhrakh, A.P. Kurochkin, D.A. Dimitranko, W.M. Tseitlin and
D.L. Arutyunyan, ''Determination of the radiation pattern of a receiving
antenna by means of a source in the Fresnel zone using holography and

optical processing'", Sov. Phys. Doklady, Vol. 16 no. 1] pp. 1004,

{4] R.H.T. Bates, "Holographic approach to radiation pattern measurements",
pp. 1107-1208, Int. Jrnl Engng Sci., Vol. 9 - 1971,

[5] R.H.T. Bates and P.,J, Napier,"A suggestion for determining antenna
pattern phase from holographic type of measurement”, Austr. Electr. Comm.

p. 164, April 1971,



2. Field equations

2.1. Introduction

Radiation patterns of electrically large reflector antennas (D >> A) can
only be measured at distances greater than 2D2/A, i.e. sometimes several
kilometers. Measurements of the radiation patterns with the help of

sources in the very far field like radio stars [1] and satellites are very
well possible, but require accurate and often difficult tracking of these
sources. Measurement at much shorter distances, i.e. in the Fresnel regiom,
yield a Fresnel diffraction pattern instead of the Fraunhofer diffraction
pattern (or radiation pattern), in which we are mainly interested. However,
measurements of both phase and amplitude distributions in the Fresnel zone,
for instance with microwave holographic techniques, give a complete picture
of the radiating source under investigation, Therefore, with the use of
appropriate transformations, the field in any plane from aperture to far
field can be calculated accurately.

Measurements in the Fresnel region are very meaningful for large reflector
antennas (large D) which are used at very high frequencies (small A). The
cross-polarisation characteristics of these antennas, which are important
because of frequency re-use, will have to be investigated in the Fresnel
region, too.

The Fresnel diffraction field of a large reflector antenna can be calculated
by the scalar aperture method or by the current distribution method. The
latter is a vectorial method and can be used to calculate cross—polarisation.
The scalar aperture field method assumes a linearly polarised aperture field;
consequently, only co-polarisation can be calculated by it. Silver [2] states
that as a first approximation cross-polarisation can also be computed by
applying the scalar aperture field method to the cross-polarised aperture
field. Silver also shows that the radiation pattern calculated by the

current distribution method is essentially the same as thatrcalculated by
the aperture plane method. Co-polarised and cross-polarised Fresnel fields
can thus be calculated by using the current distribution method with the help
of approximations which are similar to those used in the aperture field
method. Using these methods, it will be shown that co-polarised and cross-
polarised fields in the Fresnel and Fraunhofer region can be treated

individually by applying the aperture field method to co-polarised and cross-



polarised aperture fields.

It is the purpose of this chapter to compare these two methods in order to
derive field equations for the co-polar and cross—-polar fields in the Fresnel
zone and Fraunhofer region. The relations between these fields are given,

and finally field reconstruction errors will be investigated.

Assuming an aperture diameter D which is much greater than wavelength A, and
a linearly polarised aperture field E(x,y), Silver [2] shows that the scalar
aperture field method can be used to calculate the diffraction field Ep in P
(Fig. 2.2.1, page 40).
—jkr]
E, = E?]r‘ ffE(x,y) e—r-l— [(Gk + 1[—]) e .e. + jk e, .e_ jdxdy (2.2.1.)
A
wiﬁh: E(x,y): the aperture field, which is linearly polarised in the aperture A
ry: distance from source point to field point
e : direction unit vector from source to field point
e : direction unit vector normal to the aperture
e : direction unit vector defining the direction of the magnetic
field H =-%— e  x E(x,y)
X,y: aperture coordinates
k: the wave number k = 2m/2,
The aperture field can be represented by its amplitude and phase distribution:

jw(x :Y)

E(x,y) = A(x,y)e (2.2.2.)

Silver [2, p. 161] shows that:

s (b3 1 S (3{;)2)) (2.2.3.)

and uniform phase distribution Y = constant then yields:

Depending on the mathematical approximations of the integral (2.2.1.), the

space for z > 0 can be divided into 3 zones: the near-field zone, the



Fresnel field zone and the Fraunhofer zone.

Again, Silver states that for the near zone region of points in the immediate
neighbourhood of the aperture no simplifying approximations can be made. This
region extends several wavelengths outward of the aperture,

In the Fresnel region, several simplifying approximations are possible:

- the term l/r1 in square brackets is negligible with respect to k.

-1/ = 1/R.

- the term Ez.ér can be approximated because R >> r where x2 + y2 = rz:
Re, - r.e :
- _ R r . =
e = TRE xS er (2.2.4.)
R r
50 e _.ep = COS 8 ~jkr
-~ the phase term e can be approximated uging:
iy = - = E -—
r] rler R R rer
2 - = 2 2 - =
= (rl.rl) = R” + r° - 2rR(er.eR).
Hence 2 _
rl2 - R2[1 i Znger.qR)]

R

A binomial expansion yields
2

. lﬂ(Q_Zrz(Er.gR))_ l(rz_ZrR(ErER)) ] (2.2.5.9
R

r
2 8 RZ

Neglecting all terms of the second and higher orders, this equation simplifies
to the Fresnel approximation:

2

r - -
r, = R + R r(er.eR) (2.2.6.)

with a maximum error of

r2
|ar, |= — (=
| 8R3

2 2 - -2 -
+ 4R (er.eR} - 4rR(er.eR)) (2.2.7.)
Applying spherical coordinates:
xp = R sinb cos¢ = Ra
yp = R sinB sing = RB

z = R cosB
P



the Fresnel approximation now yields

2
r, =R+ iﬁ - (xa + yB)
hence the Fresnel diffraction field yields ? 2
, +
-3k -Jk(-x—z——L = (xa + yB))
£ . ik (l + cose)e RFref].E(x ) e RFre dxd
pFre 21TRFre 2 24 : xay
(2.2.8.)
For large values of RFre the term r2/2R becomes negligible and the
Fresnel pattern transforms into the Fraunhofer or far field pattern.
E -k (1 + cose) e_ijFra[[E( ) + jk(xa + yB)dxd (2.2.9.)
pFra  2TR, 2 *s¥) € v e

2.3. The current distribution method
Using the current distribution method or physical optics approximation, it is
possible to calculate cross-polarised field components because here the field

has a vectorial character [Silver, p. 88} (Fig. 2.3.1, page 40)

-jkr2
= - - e
E, AWEI {J - (3. e .erz} —-—r-z— ds (2.3.1.)
The current density J is given by
J= 2(ﬁxﬁi) (2.3.2.)

n being the normal to the reflector surface and ﬁi the magnetic field

incident on the reflector
H. = QE)é.(E x E.) (2.3.3.)
1 H p 1 .3.3.
with

- (B ﬁiﬂi 5, w o e (2.3.4.)

where



. total radiated power

P
G¢

e, : polarisation vector.

¢ gain of the feed
If the feed is linearly polarised in the Ex direction:
Ei(w,g) = cosf Ew - sinf ;E (2.3.5.)

Equation (2.3.1.) can be simplified using the Fresnel and Fraunhofer
approximations of section (2.2.).
Using (2.2.4.) with the vector Ep pointing to the reflector according to

Fig. 2.3.1., one can write

(TI.(REr - pEp))-(RER - p-Ep)

Y.e . =

ml

J.

- g |4
r2’ " Tr2 IR.ER p.epl
3|R- :R‘_ - 3. e e - —oR- e + 3 e . e
} (J.R& )Re = ( D?p)ReR (J eR)Dep ( pep) e, 2.3.6.3
- — + 3.0
IRER = poep[
With ]RER - pgp|—‘ = R this equation becomes
- - - - - - - ;R P
Jee ,)-e, = {(J.Rep) - (J.pep)} A—=-— ep}.
R R
2 2
Because p << R, one term can be neglected and
_' = 3 - T a e = 3 bnd T a - -p— T e o E T & -
J J (J.er)er J (J.eR)eR + R (J.ep)eR + R (J.eR)ep (2.3.7.)

The third term of J' only contributes to the longitudinal field. If, in

addition,
p << R, (2.3.8.)

the last two terms of (2.3.7.) can be neglected, and only the transversal

field components of J (i.e. the 6 and ¢ compoments) will contribute to It

J' = (0, Je, J¢) . (2.3.9.)

The exponent in (2.3.1.) can be approximated using (2.2.5.) by replacing r by p:



2 2
o - - o
T, = + - p(e .e ) — —— (e , e )
2 = Rre R, o R TIR__ “%prCR

The Fresnel field catt thus be calculated from
2 o 2,
k[ + P - ple e ) - o= (e.e )]
RFre ZRFre p° R ZRFrep R

- "'jk [[ -, e
E = J ds (2.3.10)
PFre 4MWE RFre

where
ds = pz sind sec %- dyidE

The current demsity J is given by Collin and Zucker [4]:

ey Py Ce D)

3 = 2[GP° 77 )

_jkp - - -
e .(n x(e, X ei))
with Ei defining the polarisation of the field incident on the paraboloidal
reflector, and n being the normal vector to this surface.

The vector product is given by [4]:
nxX(e xe)=nx (e x6,) =-costa, - (n.e,)e (2.3.11)
p X & z i 7 % -84 .3

Here Zi defines the polarisation of the ray reflected at the paraboloid, hence

Ei describes the polarisation of the field in the aperture plane.

The aperture distribution is [4]:
i

Poy O (0E)

= _ rrdad
Ep-—‘[[g].‘z"ﬁ‘ 5 :

a

The current density J can now be expressed in terms of the aperture field as
= £.4 jkpcosy Y= - = -
[ —— pam . + . R .
J Z(U) e [co 5 Eap {(n Eap)ez] (2.3.13)

The Fresnel field can be expressed in the aperture field using (2.3.9) to
(2.3.13).

The Ez term in (2.3.13) will not contribute to E, and its contribution to

¢

E8 is proportional to sinf which is nearly zero for the narrow beams we are

concerned with. Keeping in mind that J' can be replaced by J in (2.3.10) if

one does not account for the ER component of the electric field (2.3.10) this



- 10 -

substitution in (2.3.10) yields 2 2
k[T - p(e,.e )~
= _ ik _JkRFre ]]‘ +jk(2f—p) . 2Ryre 2 2RFre

(EDER)

EpFre 2TrRFr

Dropping the ER component, we obtain

]

- ' ‘
EPFre = (0, EpFree’ EpFre¢) (2.3.14)

Here S1 is the aperture plane and dS1 = ¢ dr d£ and r = psiny = 2 f tan %w
while 2f - p = pcosy is the definition of the paraboloid.

The inner product (ED.ER) is given by
(e .e.) = cosy cosd - siny sind cos(E-d) (2.3.15)

In Appendix I it is shown that for small angles 8, the Fresnel integral vields

2
» r * .
. kem—  Jk Bas(E-
_ L -
E' = —L e E_e .e r dr d§
pFre ZWRFre ap
R = (0, E’ E'__ ) (2.3.16)

EpFre 0 pFree' pFre¢

For large values of RFre the quadratic phase term becomes negligible and the

Fraunhofer or far field pattern is obtained

. -jk _ . . _
E - Jk a R‘Era/]'E eJkrsmecos(F’ q))rdrdE (2.3.17)
pFra ZWRFra ap

The true far field is then given by

- 1)
EpFra (0 EpFrae EpFra¢)




_1]....

The Fresnel field obtained with the aperture field method (2.2,8) can be

written as

2
. r . .
. Jkse——+jkrsinbecos(£-¢)
. -3k 2
E - jk o RWf"*.l:ea (1 + cose)./- E e Rl?re rdrdf
pFre Z“RFre 2 ap
(2.4.1)

Comparison of (2.4.1) with (2.3.16) shows that for small angles © the same
radiation patterns are obtained by the aperture field method (2.2.8)

applied to both aperture polarisations and with the aperture field approxi-
mation obtained from the P,0. method (2,3.16).

In general, a somewhat more accurate pattern is obtained from the surface
currents directly rather than by the use of the aperture field, which
involves a second application of Snell's law with its optical approximations
[4]1.

Again, for small 8, both methods lead to the same equation of the far field.
The aperture integrals (2.2.8) and (2.3.16) always yield far field components
which are parallel to the aperture plane; hence, the ER directed (1ongitudi-
nal) component does not vanish. This is inherent in the aperture field method
(2.2.8) because the basic equation (2,2.1) assumes a scalar field in the
aperture.

The aperture field method (2.,3,16) derived from the physical optics method

yvields an e component; however, this component may not be taken into

R
consideration when calculating the actual field. In fact (2.3.16) yields

(x,¥,2z) components of the calculated field since all (x,y,z) components of

J are unequal to zero. In spherical coordinates:

ER sinf cos¢ sinf sing cosb Ex
EB = cosf cos$p cosf sing -~ginb Ey
E¢ -sing cosd Ez

with



2
k(R * g - P(e,ep)]
o' °R
ﬁ-&ﬁ—ﬂa e “rre ds
€RFre S * (2.4.2)
1= (X,y,2)

Since the aperture field method (2.3.16) only takes into account Ex and Ey

(Ez was neglected in (2.3.13)), the values of Eﬁ and Eé calculated by this

method will be different from the actual field ER’ EG' However, because

Jﬁ = 0 (Eq. 2.3.9), also ER = 0, From (2.4.2.)
ER = sinf cosf . Ex + sginf sing . Ey + cosb ., Ez = (2.4.3)

and Eﬁ = gind cosd . Ex + 8inf sind . E

hence E_ = E' + cosB . E =0
R A

R
Hence,
-E!
R sind

Ez = =556 " " cosh {cosB E + sind E ) (2.4.4)
and

Ee = cosB cosd Ex + cosf sing Ey - sinf Ez (2.4.5)

- .
Ee cosf cosd Ex + cosf sing Ey (2.4.6)

E. = E! - sinb E
6 z

Substitution of (2.4.4) and (2.4.6) in Eq. (2.4.5) leads to a correction of
T .
Eqg
. . sin’®
0 9 cosf

(cosd Ex + sing Ey) (2.4.7)

The actual Eg g field can thus be calculated by the aperture field method

{2.3.19) if the resultant Eé, Eé fields are modified according to (2.4.7)

and (2.4.3). This correction then leads to:

sin 6
cos G)Sln¢ Ex

sin 8

(cos® + ) cosp  (cosH +

(]
]

- sing cosd E (2.4.9)
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with ER = 0.

Using

. 2
<o 4+ Sin 3] - |
co cosH cosfd

we may write

cos$ sing
6 cosh cosB X

(2.4.10)
E -sind cosg E
y
Here Ex and Ey are the components calculated by the aperture field method
(2.4.2),

The distant radiation field from a linearly polarised antenna can be
completely specified in terms of two spatially orthogonal vector components,
The definition of these vectors in terms of co-polarised and cross-polarised
components 1is to some extend an arbitrary one, and at least three different
definitions are commonly used in the literature., The definition employed here
has the particular advantage that the calculated field components at any point
in space, correspond directly to the components measured using standard
antenna-range techniques.

This definition given by Ludwig [5] depends on the antenna axis, giving the
principal electriec wvector, which is taken as reference polarisation.

Taking the x—axis as a reference, the co-polar (R-reference) and the cross-
polar (C-cross-polar) field components can be related to the field components

Ee and E¢ [5]:

R _ cos¢ -sing EB (2.5.1)
C sing cosd E¢
With (2.4.10) the co-polar and cross—-polar fields can be expressed in Ex

and E
Yy
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1 2 1 .
R 1o+ (3335 1) cos™ ¢ (cose 1) sind cosd Ex
"\ . 1 2 | (2.5.2)
C (cose - 1) sind cosd 1+ (g - 1) sin'd Ey

For small values of 0:

i
cosf

-1~0

and (2.5.2) yields around the boresight axis:

O 6

For 6 = 0, Eq. (2.5.3) is exact and the choise of the x—axis as a reference
now becomes obvious. Hence, if the y-axis was chosen as a reference, R and
C should be interchanged in (2.5.1) to (2.5.3).

The inversion of (2.5.2) vields

1 1) sin2¢ - !

E 1+ - 1} sin¢ cos¢ R

x cosb cosh
= cosb
1 ; 1 2
Ey (cose - 1) sind cosd 1+ (cose - 1) cos™¢ C
(2.5.4)
2.6. E&ELQ_EQEEE$QE§_§§E£E§§§§_}E_EEEEEEE_EE§E§§2£E§
Using the Fourier transform pair
7 —%-(ax + By) .8
f(x,y) = e(a,B) e dds = F {e(a,B)} (2.6.1)
-0 =00
Fr = (ax + By) i
e(a,B) = f(x,y) e dxdy = F {f(x,y)} (2.6.2)

-—00 -=00

the far f1e1d dlstrlbutlon (2.3.17) for one vector component can be written

as the 1nverse Fourler transform of the aperture dlstrlbutlon

E (a,Bﬁ - Ak _J RFra

- { ( )1 (2.6.3)
1:'If"ra 2TTRI?I:a. 7



_]5_

with Eap(x,y) = 0 outside the aperture,
From (2.6.3) it is apparent that Fourier transformation of the far field
yields the aperture distribution:
o
JkRFra

Eap(x,y) = -jkR, e F {Ep (a,B)} (2.6.4)

Fra

However, in the above Fourier integrals the integration limitsof a and P
are infinite, but in practice the observed far field pattern can only be

known for o and B with
uz + 32 = sinze < 1.

For this reason it is theoretically impossible to calculate the aperture
distribution from a measured far field pattern. In practice, however,
Fourier integration over limited o and B with az + Bz << 1, yields good
results if it can be shown that the contribution of the integrand is
negligible for values of o and B above the integration limits,

Similarly to (2.6.3) the Fresnel field can be calculated from

2 2
x + x +ty
. ~-jk _ 2
E, (a,B) = i_iE__ e “Fre F I{E (x,y) e “Fre } (2.6.5)
Fre 1TRFre ap

Thus the aperture field can be calculated from the Fresnel field:

. xz X I
E, (%) = ~iARp eJkRFre e ZRFre F{EPFre(u,B)} (2.6.6)
Substitution of (2.7.6) in (2.7.3) yields
x2 + y2

RFre J (RFre RFra) -1 2RFre

E (o,B) = F {F{EP (a,B) e

PFra RFra y Fre

} (2.6.7)

In Appendix II a two~dimensional convolution is derived from (2.6.7):



“ikRpre 42482y w w

: -ik
iR, C, —T1— JRpe 2.2
EP (0,8) = ;RF_ES-_I_e EP (ul’Bl)e-'_z—‘_ (a'“+B ).
Fra A Fre
ik (oo "+BB")
e “Fre da'dp’ (2.6.8)

The last term of (2.6.8) shows that this equation 1s an inverse Fourier

transform of the (0',B') domain to the (uRFre,BRFre) domain.

a'RFre

t=8 RFre and CZ - JRFre CI/A
(2.6.8) can be formulated as a Fourier transform:

Defining s

2
2 _ e

. 2
_ -3k (a7 + t7)
E, (0,B) = 5 F e S t “Fre

C -ijFre
2 (——— —) e
Fra RFre PFre R‘Fre ’ RFre

}
(2.6.9)

Instead of using a two-dimensional convolution, the far field can be calculated
from the measured Fresnel field with the help of an inverse two-dimensional
Fourier transform. Again, it must be stated that Fourier integration may be
limited to certain maximum angles o and B i1f the contribution of the field

beyond these angles is negligible,

In the previous sections it was stated that 6 must be small in order that the
aperture field method should yield good results.
Approximation of the phase factor exp(jkr) leads to a truncation of a
binomial (alternating) series with a waximum error of (2.2.7)

o = 55 (r - G2’

_r
8R>

Here we state

[ax | < a/128 (2.7.1)

as a reasonable criterion, because errors involved in phase measurements
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are of the same order.

T T - 2 Y
7% Gr ~ Cpe’| < 133
T - AR
[ AR <‘/
2R R 64r2
- AR r
|e | < - = (2.7.2)
r R 64r2 2R
Since Er'ER = sinf cos(E£-¢) an upper limit for|sin8|is found from (2.7.2)
. AR T
|sinB]| < \/———7 - 75 (2.7.3)
64r .

The minimum of the right-hand term of (2.6.3) is found for r = gu So

. AR D
|sin8| < ¢f—— - 7= (2.7.4)
anz 4R

If we define m as a ratio between RFre and the usual far field eriterion

2D2/A, equation (2.7.4) leads to

|sind| < \’3—1:1 - %(%) (2.7.5)

2p? (2.7.6)

o= ——
ARF]‘.‘E

In the far field the term r2/2RFra is neglected; thus the far field criterion

states a mimimum distance R . giving a maximum phase contribution for the

fa
neglected term of:
2 2 2
A
Kogp— | =81F({D "_"kg'( 2)=% 2.7.7)
" ""far max far 2D
with
2

RFra g Rfar = TR (2.7.8)
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In order to apply the field equations of section 6, the Fresnel field can
only be recorded for angles € satisfying Eq. (2.7.5). If the measurement

of the Fresnel field is truncated at some angle é, errors will occur in the
aperture field which has been reconstructed from the recorded data.

From the point of view of measurement and data processing the angle § should
be kept as small as possible, while the field transforms (2.6.6) and (2.6.9)
still yield accurate results., In order to find a lower limit for §, the
errors involved in the use of field transforms with truncated integration
limits, have to be calculated. ¥

It is convenient here to investigate only the one-dimensional case since in
the two-dimensional case the calculations become rather laborious without
yielding any fundamental new insight [6].

Truncation of the Fresnel field measurements to

a &
- g = .8,
> €a 5 (2.8, 1)
yields a measured Fresnel field:
EFre(u) = EFre(u) P&(u) (2.8.2)
with
- s
P5(0) = 1 for lof <3
P.(a) = } for |af = d (2.8.3)
& 2
f i
P=(0) = 0 for |a| > 5
Application of (2.6.6) in the one~dimensional case yields
jrx?
?.RF .
- - re +1kox
Eap(x) C.e ﬁFre(a) Pa(a) e g% (2.8.4)
)

With
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~

-1 '& sin(I%-x)
F {P&(a)} =y . —— (2.8.5)

o
Gjﬁ

and (2.6.5), a one-dimensional convolution yields:

gk’ ~jkx
Rere |,

ZRFre [

-~

sinc (1%5)] (2.8.6)

>R

Eap(x) = e Eap(x) e
For very large values of &, (2.8.5) approaches a &-function and (2.8.6)
yields the exact aperture distribution.
“ For small values of &, equation (2.8.6) cannot be evaluated analytically
(because of the quadratic phase factor); hence computer calculations should
be performed foravarious values of a, RFre and Eap(x) in order to find a
lower limit for o yielding enough information to reconstruct Eap(x) accurately
{see the next chapter for a computer reconstruction).
Here we are mainly interested in an analytic expression for the lower limit
of a, which can be obtained from the transform of the Fresnel field into
the far field, Calculation of the aperture field from the truncated far
field then yields an expression for the minimum number of side lobes which
are nécessary to calculate an accurate aperture field.
Assuming that the truncated far field was obtained exactly, a lower bound
of a,‘yielding an accurate aperture field, can be given.
With (2.6.8), the far field can be calculated from the truncated Fresnel
field [7].
z 3Ty

. 2
E, (a)=¢C fEP (@") P2(a") e @) 40 (2.8.7)
Fra Fre

Substitution of (2.6.5) yields

by 2 ' .
Jkx jZﬁg— x JﬂRFre

[++] o 2
- 2 A —T“(a '—at)
E () = C! E (x) .e RFre dx.P~(cNe do'
PFra ap o

where C and C' are important factors.

Because
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. x2 RF:l:‘e N2 o v
exp[-ik 7R, (a-a')"] exp[jka'x]=
re

k
exp[—J-é— RFre (!

2] expljkox]

X
-l —

Rere

equation (2.8.8) can be formulated as

B, @ fr 0 I [rsenenicsh tpptar-argay 1w
PFra < ap / 2 xe RFra (2.8.9)
and with definition of
B~(@) = [ Pa(a') exp[-j= R._ (a-a')?]do' (2.8.10)
o o 2 P\Fre '
the Fraunhofer field yields
[+
EP (o) = C'fEa (x) B&-(u + — ) e']kmx dx (2.8.11)
Fra Y o P RFra
With the well-known Fresnel integrals [8]
x
C(x) = ~C(-x) = ﬁf cos t2 dt
' ° (2.8.12)
- X
S(x) = -8(-x) = v;rz-f sin tZ at :
o
formula (2.8.10) can be calculated:
_ A WRFre a ﬂRFre a -
B&(Ol) = TB;"'[{C(VT— (f"'OL)) + C(V—T— (2 a))}
re
. R .a a
~i{s(yf 1 G+ @) + s( %5 & - an}] (2.8.13)
Assuming that.
2
o 'RFre >> A (2.8.14)
then B~(x) is nearly constant if |ol %— .
Hence Bo-(u-t-l{-) =~ constant if
oL R
(2.8.15)

1_'1))

ol <Ch
RFre

to
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and with asymptotic expansion of the Fresnel integrals:

R
, 2 .
X - X eIt AD  exp(-jm ;&Frreszn
Byla + p ~ (I-3) TR o - 2R, o { A * B }
(2.8.16)
with
A= d_'+ %4' X
R‘Fre
o X
B=oa'-%-
2 Rppe
Using the fact that
1-1=1
B a
substitution of (2.8.16) in (2.8,11) yields
~ _ 14 & — TR a2
EFra(OL) - EFra(u') * VT RF T4 [EP ( -Z-)exp{ A (a + 5) }
re Fre
5 TR |2
+ 2, Oexpldd & -0)?)] (2.8.17)
PFre 2 A 2

From (2.8.17) it may be seen that the error in pattern reconstruction may

be small because of condition (2.8.14). Therefore in order to reconstruct
e ST
the pattern in the interval [- EE-, %iﬂ i1t is necessary to know the Fresnel

field in the interval [- % , E] with

jo3 )

D
+ 7R (2.8.18)

MR
W
hJLﬁ

or with &f = M(%), %1being the approximate number of sidelobes and (2.7.6):
-~ A m
a > 50+ ) (2.8.19)

The upper limit of 0 or sinf from equation (2.7.5) then gives
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1 A A m
ﬁ_ n@ > 201+ B (2.8.20)

The solution of this equation yields [6]:

2/
3 4
ms%-(%l) -—l-gM (2.8.21)

and the minimum value of RFre is then!

z 2
2D 1 . 2D 1
%re ? ( 7\- ) . 1 8D 2/3 4 = T . m (2.8-22)
(=) - — M max
254 15

In order to find a lower limit for &, the minimum number of side lobes M /2
yielding an accurate aperture field, has to be calculated using (2.8.6),
keeping in mind that the quadratic phase term is negligible in reconstructions
from the far field

. L a o Ee
Eap(x) Eap(x) 0y ginc( ) (2.8.23)
For a uniform aperture distribution
| A |k <3
=11 -
Eap(x) = {3 |x| = p/2 (2.8.24)
0 |x] > p/2
The reconstructed field is given by
-~ 1 _.ma D . ﬂ& D
Eap(x) E{Sl{—x 05 + x}} + Slfﬂx GE x)}H (2.8.25)
with
Yy . .
Si(y) =f S;n" dx (2.8.26)
©
Starting from a tapered aperture field
B ) = (1 - axd).E.(0) (2.8.27)
ap ap
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where Eap(x) is given by (2.8.24), the reconstructed field is:

E' (%) = (1 - ax?).E_ (x) + R(x,a,a) (2.8.28)
ap ) ap
where
~ ZaAZ D D D D
R{x,x,a) = ~3%5 {(sinB 7 65 CDSBEJCOSBX - Bxsin&i sinfx} (2.8.29)
m o
with R = %9

and where Eap(x) is given by Eq. (2.8.25).

fl

M(%D, then M/2 is the approximate number of sidelobes and
(2.8.28) becomes:

Putting o

B 00 = (0 - ) d 508G+ 01 + sitTE - 0

2
+ 23D {¢ inr - MU cosM—ﬂ) costmx _ MIx ;M sin——Mﬂx} (2.8.30)
M2H3 2 2 2 D D 2 D

Substitution of x = yD and

4

D2

a= {1 -2¢).
vields:

[SilMn(y + )} + SilMm(z-y)}]

B' D) = (1 - 4(1-c)vd L
Eap(yD) = (1 - 4(1-c)y" -

L 80 e

COQEE) cosMTy — Mnmy sinﬂﬁ-sinM Ty} (2.8.31)
M2 TT3 2 2 2

2

Hence ﬁ;p(yD) is only dependent on the edge illumination c and the number of
sidelobes M/2. Numerical evaluation of (2.8.31) shows a small oscillatory

error in the reconstructed field and a large overshoot of about 97 at the

edge known as the Gibbs effect (Fig. 2.8.1 - 2.8.4).

This overschoot always appears when reconstructing a discontinuous distribution
like (2.8.24) or (2.8.26) from their truncated spectra.

Apart from this unevitable overshoot at the edge, the aperture distribution

can be reconstructed accurately (Table 2.8.1 and 2.8.,2).
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A maximum relative error of 37 within 907 of the aperture yields M = 60

for uniform illumination as can be seen from Table (2.8.1).

The overshoot at the edge yields large relative errors, but it is of

minor importance when calculating the far field from this distribution

if the edge is weakly illuminated. This is due to the fact that in that

case the contribution éf the field at the edge to the far field is small,
Since the far field is calculated by performing (Fourier) integration

over the aperture and the fact that errors in reconstructing the aperture
field are oscillatory, the first lobes of the far field can be calculated
accurately for small values of M, (In factf here the true far field truncated

to M/2 1lobes yields the calculated aperture fieldl).

Figures (2.8.1) to (2.8.2) give some insight into the behaviour of the
reconstructed aperture field distribution for various values of M
assuming F(x) is uniform. Note that the amplitude of the error E(x)—F(x)
becomes smaller for larger values of M, and that the point of maximum
overshoot shifts to y = 0.5 for larger values of M,

In figures (2.8.3) to (2.8.4) the reconstructed field in the case of a
15 dB tapered aperture field (2.8.27) is given for M = 20 and M = 60

respectively.

Numerical calculations show a maximum overshoot of 9.5% for the uniformly
iliuminated aperture and a somewhat larger overshoot of 11.57 in the

tapered case (M = 20) due to the error term (2.8.29).

Finally it can be concluded that the Fresnel field for M = 6 yields enough
information to calculate a few sidelobes of the far field, but that for
calculating an accurate aperture field the value of M should be

approximately 60.
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Table 2.8.1 Absolute relative error €, for uniform aperture illumination

c = |F(x) ~ F(x)

F(x) | =100
D
F(x) = F(yf) = ]

M
y 20 40 60 80 100 120
0 <y <90.3 2.47% 1.6 0.9 0.7 0.5 0.4
0.3 - 0.35 - 4.2 2.0 1.1 0.8 0.8 0.5
0.35 - 0.40 5.4 2.8 1.3 1.0 1.1 0.7
0.40 - 0.45 7.8 2.9 2.2 2.7 1.6 1.2
0.45 - 0.46 9.5 5.2 3.5 2.6 2.1 1.8
0.46 - 0.47 7.1* 6.4 3.4 2.8 2.7 1.6
0.47 - 0.48 13.5 7.4% 4.0 1 3.4 0.7
0.48 - 0.49 3 13.5 7.4% 7.0 5.0 1.8
0.49 - 0.50 ~- - -- — o -

* Denotes the interval with maximum overshoot.

Table 2,8.2. Absolute relative error €, for -15 dB tapered illumination
' F(x) =1 - axz

F(x) = F(yg) =1 - axz; a = 0,822

7
y M 20 40 60 80 100 120
0 - 0.3 4.7 7 2.4 1.6 1.2 1.1 0.5
0.3 - 0.35 6.7 ‘ 2.8 2.2 1.7 1.3 .9
0.35 - 0.40 7.1 3.4 3.1 2.3 1.9 |

0.40 - 0.45 14 5.5 4.4 2.6 2.7 1.6
0.45 = 0.46 11.5% 7.3 5.1 3.9 3.1 2.6
0.46 - 0.47 7 5 5.4 3.9 3.7 2.4
0.47 = 0.48 15.7 9.9 7.2+ 1.8 6.6 1.5
0.48 - 0.49 - 138 9.7 5.6 5, 7% 6.4 8.3
0.49 - 0.50 20 15 - - —— -

Note: Since calculations were performed with y-steps of 0.01, some of the

given percentages are averages for the given interval.
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2.9. A lower limit to RFre

Since a given maximum truncation error in exp(jkr) yields a maximum value

of 8 for a particular value of RFre’ a truncation error of

A

[ar ] < T (2.9.1)

where v > 1.0 yields a more general result than (2.7.1) (where y = 8).

Then (2.7.5) changes into

. ’ i m,A
|Sln BI < m"-s-(ﬁ) _ (2.9.2)

Figure (2.9.1) gives some idea of emax for various m and y. Then (2.8.22)

yields
2
2D 1
Rere ~ ( X ) 8 D 2/4 1 4 (2.9.3)
e .
5 A 15
For values of A/D > 100 this equation can be approximated by
4/ 2
2 D 3 M
Rere 7 2 27, @ 7+ g
@ﬁ;;)
or
D M2
Rpe > 157 P’?-D-?’r+ Y1+ A (2.9.4)

(Figures 2.9.2 to 2.9.4).
Since (D/)\)]/3 varies slowly if (D/A) varies from 150 to 500, which is an

interesting range here, a rule of thumb for RFre can be derived from (2.9.4)

2
8M s
Rppe > 20D+ =g y=8
2 (2,9.5)
M
Rpre > 10D + 45 A 3y =1

Equations (2.9.5) would hold if they were derived for the aperture field
method; however, the aperture field method derived from the more accurate

physical optics method requires some terms containing p/R neglected.



Fig. 2,9.1, An upper limit to 8 as function of the number of reductions m
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From (2.3.7)
| —L [G.ep)e | << [T - (J.e)e (2.9.6)
and from appendix I, for small 6 and small p/R:

A(B) ~ 0 (2.9.7)
which leads to the Fresnel integral (2.3.16).
Hence, if RFre = 10 D, maximum errors of about 5% are introduced in the
integrand of the Fresnel field equation (2.3.10), as can readily be seen
from (2.9.6). Also, because Bmin is generally smaller for smaller values of
m (Eq. 2.8.19), (2.9.7) will be satisfied better for larger values of RFre’

hence

Ryre > 20D

will give better results,

o e P . e A e g S o e o S e Y S e P e A e T S . Y Sl S PR e s S e i . e o B et i . e e o i S o e

If only one aperture polarisation is considered (x-~polarised), the gain

funection is given by Silver [2]:

| Af B, Gey) oM B yay)?
gx(u..f&) ==3 5 (2.10.1)
A fIEx(x.y)l dxdy
A

Taking cross~polarisation into account, the power per unit solid angle in
the far field is given by

1/

oy e Mo 2
Piot P v B, - AT Rrra {| JE (x,y) e
A

jklax + By)dxdylz N

+ |~/rEy(x,y) eJk(ax * By) dxdylz} (2.10.2)
A

and the power transmitted through the aperture
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P = 1(f‘-)”?' (E, ) |2+ |E (xy) | °) dxd (2.10.3
ap _2-u x ’y Y ly y . -)
A
Hence the gain becomes

[_’.Ex(x,y)ejk(xu * By}dxdy|2 + ]J.Ey(x,y)ejk(xa ¥ By)dxdyiz
4w A
_2"' .

A f {IEx(x,y)I2 + |E_(x,y)| % Jaxdy
4 y

axy(a,B) =

(2.10,4)

The maximum gain generally occurs at the main axis o = f = O,where the far

field cross—-polar component is also zero:

&
IfEx(x,V) dxdﬂz
_hm A
gmax(0,0) = (2.10.5)

W2 fle, G |® ¢ [5Gy | jendy
A y

The gain calculated from the reconstructed aperture field thus becomes

~ 2
a E_(x,y) dxdy]
4w ‘ J; x

LR e [P [E o] axdy
A y

g(0,0) = (2.10.6)

Because the reconstructed field Eap is the aperture field as ''seen" from a
distance RFre before the aperture, this‘equation takes into account aperture
blocking and phase errors, but alsoc the introduced reconstruction errors,
Fortunately the latter errors will largely cancel out hecause integration is
performed over the whole aperture as was already stated in section 2.8,
Using (2.6.3)

EP (a,B) = C(RFra)lerEa (x,¥) éjk(xa * By)dxdy (2.10.7)
Fra P

with

- jkenijFra

C(RFra) ZWRFra

The gain (2.10.1) or (2.10.5) can also be calculated from the Fraunhofer

field distribution, using Parsevals theorem:
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_mEap(x,y)|2 dxdy = IC(R; )Iz-ZZIEP (0,5)12 é%‘if- (2.10.8)
A ra Fra

Substitution of (2.10.7) and (2.10.8) in (2.10.1) then leads to

B, (e |
g, (@,B) = ETZ» _FreX (2.10.9)
A do d
JI ey a(a,B)lz copd
—Ctr) rad, . x

Similarly, (2.10.6) leads to

|E (0,0)|2
~ 4 Prra,x
g(0,0) = — ——0g : — (2.10.10)
~ 2 2, d
VISR e lE e RE
~00 -~ Fra,x Fra,y

Since the side lobes of the far field contain little power, the integral in
the denominator of (2.10,10) can be approximated by integration over the main
lobe and a few side lobes, instead of integrationm to infinity.

The Fresnel field gain for one polarisation for ¢ = B = 0 can be derived from
(2.10.2) and (2.10.3) using (2.6.5):

-jk(xz + y2)
,fEap x(:,c,y) e 2RFre dxdy[2
]
Bpre (0500 = '4‘% 2 5 (2.10.11)
A [(E  (x,y)]° dxdy
ap,x

A

From (2.6.5) and (2.6.3) it can be seen that the gain reduction factor:

E (0,0) 2 2
y = gFre(O’O) - PFra RFre (2.10.12)
2(0,0) EP {0,0) ' RFra e
) Fre
With (2.7.6):
Rrra
m -
RFre
this equation reduces to
y = — | Fra | (2.10.19)
2 |E (0,0} R
m P

Fre
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For a tapered circular aperture field:
2 2
Eap(x,y) =1=-a(x +7y)

the gain reduction is easily shown to be

- . m .168, . ll‘l:l___ m 2
(2-a) 51nGTg + J{—EE 91n(16) a.cos(le)}

T
7 ¢

1
v ;5 1_ 2y
2 4
For a uniform illumination a = 0, which leads to
. mm, |2
sin (—1-6-)
Tm

16

as was already stated by Silver [2].

(2.10.20)

(2.10.21)

For m = 16, 32, 48, ete., the value of ¥ = 0 because the Fresnel field on

axis is then zero. From (2.10.21) it can also be seen that for m

40, 56 the value of Yy reaches relative maxima.

0, 24,

Fig. (2.10.1) shows the value of vy, for tapered illuminations, to have a

similar behaviour.

Evaluation of the Fresnel field outside the z-axis (o or B # 0) requires

numerical calculation of (2.6.5). Analytical evaluation of (2.3.16) in case

of the circular, uniformly illuminated aperture leads to a Hankel transform,

which in turn leads to Lommel functions, as was shown by Papoulis [9]. From

these functions it can be seen that the Fresnel field on the z-axis is not

always a maximum, as is the case in the far field.

Application of the gain reduction factor y which is derived on the z-axis,

thus not always yields maximum recieved power.

Since evaluation of Hankel transforms, is difficult for nonuniform aperture

distributions and only restricted to circularly symmetrical aperture fields,

the Fourier integrals from section 2.6 are preferred for further analysis.




~14 |

F(r) =1 - ar

vy c.f.

eq.

2

(2.10.20)

L J
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Gain reduction factor y as a function of edge illumination and the reduction factor m
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Appendix I

The exponent of (2.3.16) can be evaluated using (2.3.14) and (2.3.15):

2
exp{ik[2f - p -p(cosP cos® - siny sind cos(E-¢)) + ZRF"
re
2
- (cos w cos 8 - l51n2wc0528 cos (E-¢) + sin w sin B cos (E $))1}
RFre
= exp{jk[2f - p -p(cosy + cosP(cosb~1) - siny sinb cos(E-¢))
2
+ gR { - (coszw + coszw(cosze-l) - %sinzw cos28 cos{(E-¢)
Fre
+ sinzw sin28 cosz(E—¢))]}

Since p + p cosy = 2f

expl{} = exp{jk[-p(cosp(cosd-1) - sind sinb cos(§-4))

2
{cos ¢(c0526— 1)y - lﬁanw 8in208 cos(E-d)

2RFre 2RFre 2
+ sin w sin28 cosz(E—¢))]}

+

(1-cos ¢) +
With £ = psiny

exp{} =.exp{jk[+ pcos (l-cosB) + rsinf cos(E-¢)

2 . 2

+ 2§Fre + 2R§re (coszw(cosze-l) - %-sin2w sin26 COS(E‘é))
+ ZR;je sin28 cosz(5—¢)]}
exp{} = exp{jk[rsinfcos(E-¢) + ZR;re]} exp{jkA(8)}
2
With A(B) = ZRira (—sinzecoszw - %ﬂin2w51n28c05(5—¢))
2
+ ZRFre (51n ecos (E-$)

For small angles,@ and p << RFre A(e)le >0 0.
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Hence

exp{} = exp{Jk[ZRF + rsinBeos(E-¢)1}.
re
Appendix IIT

The Fraunhofer field can be expressed as

k(?i_i}l._)
~1 2R'E're
Ep =C, F {F{EP (,B)}.e }
Fra Fre

Since the inverse Fourier transform of a product of two Fourier transforms

can be expressed as a convolution we calculate
( +y ) 2T

J5—(ax+By)
F RFre } = Z RF‘Ie e )\. dxdy

T 0 o =
= exp[-] P}fre (on2+82>] ffexp[j{(‘/?i;'— x +‘1-T—;”’e a)2+(‘!ﬁl;...—y +
o e re re
’n -
RFre B)}]dxdy

A ,
= exp[- J:\{E- ©2+8%)7. —%53 li.feJS as)®

With the well known Fresnel integral:

2 :
fejs ds = v/ exp(j%)

—00

this equatlon y1elds -3 WR‘E‘
l;_i.!__ e———r—E (Ot2+82)
re .
F - JAR'Fre

Using the definitions (2.6.1) and (2.6.2), it is not hard to show that

~J R'Fre

- -1 . (? +B )
Bora = C].F .{F{EPFre(oa,B)}.F{JAB.Fr e A 1
‘-JTTRFre 2 .2
_ 1 s —_—= (a"+R°)
EP = C]. —_ . EP (o, B) J?\RFre e A

Fra A Fre
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Hence

7 —j“RFre 2 N2
EP ,B) = C2 f EP (@',B') e o [(—a')}" + (B-B') ]du'dB'
Fra Fre

-
with C, = JRFreQI/h
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3. Computer simulations of Fresnel field measurements

3.1. Introduction

Fresnel field integrals can be evaluated with the well-known Fourier trans-
froms, which can be calculated at equidistant points with the use of discrete
Fourier transform techniques. In this chapter a short review of this trans-
form will be given in order to explain the calculated bandwidth and sampling
distaunce. The Fresmel field distribution will be given for the special case

of a circular symmetric illuminated aperture. In order to simulate measurements,
the calculated distribution will be truncated to some "measurement” interval,
in order to reconstruct aperture and far field distributions.

Information concerning the required dynamic range of the measurement equipment
will be obtained from reconstructions of the aperture distributions from
simulated low dynamic range Fresnel field measurements.

3.2, A_short review of the discrete Fourier tramsform
Fouriex ihteg;éls can be approximated accurately with the use of the discrete
Fourier transform {1,2].
Consider .a periodically continued time function f(t) with the two side band-
width B and periode'T. The Fourier spectrum of f£(t) is then given by
T
F(£) =f £(e) e 12y, (3:2.1)
o

According to the sampling theorem the function f(t) is uniquely defined by

N = B.T equidistant samples at a time distance

T 1
E o = e 2
L (3.2.2)
The time function can be represented by a Fourier series
= jomg ¢ |
f(t) = E A(m)e (3.2.3)
o ‘
with
\ p _ —jZW% t
A{m) = &—f £(t) e dt (3.2.4)

o
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Hence, samples in the time domain can be expressed in samples from the
frequency domain

N-1 mn

- j2m—
:E :1 m N
f(nTs) = T F (T> e (3.2.5)
)
Similarly, using the periodically continued frequency functionm,
N-1 ._mn
m, _ 1 E : 1, TATy
Fﬁf) =3 f(nia e (3.2.6)
P .

If we define the discrete Fourier transform as
N-1 jz-n-El.
f (n) = 1 F (m)e N (3.2.7)
o] N 0 *
o
and the inverse discrete Fourier transform as
Sad —j2nE§
Fo(m) = E fo(n)e (3.2.8)
o
then (3.2.7) and (3.2.8) form a discrete Fourier transform pair as can be
seen from the substitution of (3.2.8) in (3.2.7).
The inverse discrete Fourier transform Fo(m) of fo(n) = f(nTS) equals the

sample value of the Fourier integral (3.2.1) apart from a factor B L.

F(—E—E) = B.F_(m) | (3.2.9)

n=m

Apart from a factor T/N the discrete Fourier transform (D.F.T) fo(n) of

F_(m) = F(%) is equal to f(t?)l:

OB = £ () (3.2.10)
A time-limited function is not band-limited; hence, application of the discrete
Fourier transform yields samples which are approximately equal to samples from
the Fourier integral. This approximation is all the better as overlap owing to
periodic continued spectra is less [1]. The error, called alaising distortion
will be exactly zero for band-limited spectra. In order to apply D.F.T., the
spectrum of the time limited function has to be so truncated that the contri-

bution of the truncated part of the spectrum to the inverse transform yields
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a negligible error [2].

Computer routines performing the discrete Fourier transform in a fast way
are called "Fast Fourier Transform Procedures'. The number of samples of
these routines is generally a power of two, while the samples lie in the
interval [0, N-1]. Application of F.F.T.-routines to N samples of a time
function in the interval [0, N-1] always yields N samples in the frequency
domain that also lie in the interval [0, N-1].

If the time function has non-zero values for the negative values of the
argument, then with the use of the periodically continued function a new
time function can be defined in the interval 0 £ t < T, yielding the same
Fourier transform., Since the (F.F.T.) frequency spectrum is also one period
of a periodically continued spectrum, the samples for negative frequencies
are in the interval [N/2, N-1].

A two-dimensional F.F.T.

M-1 N-1 1n]

23 M +
X[k,1] EZX[m nle (3.2.11)

can be performed with the one-dimensional F.F.T, applied to all rows of
matrix X, followed by a one dimensional F.F.T. performed on all columns of
the matrix (this is equal to a sequential summation over two different indices

in a double sum).

——— e e e e s e o il v e i P e et e e et e et . T e o e et e

The Fourier transform of the Fresnel field distribution equals the aperture
field (apart from a phase factor). According to the sampling theorem of
Shannon, the sample distance (of the Fresnel field) should be thus that no
overlap of spectré_(aperture field) occurs. Because the aperture field is
zero outside the aperture, its '"bandwidth" is limited to D, the aperture
diameter.

The Fourier integral

Gxx + By)
E(0,B) = ff F(x,v) e dxdy (3.3.1D
can be approximated with D.F.T. as
N=-1 M~1 28 oml

=5 ) '
‘ E (kAct, 1AR) =ZZ F(m‘.\x mAy) e A (3.3.2)
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In the sample point the exponent of (3.3.2) can be written as

exp[jZW{kAxknAx + mAyllAB}] = exp[jZﬂ{E% + E§}]

hence

NAx = (3.3.3)

&>

and

MAy

[>] >
™

(3.3.4)

The sampling theorem now states that

NAx > D
NAy » D

which leads to

Ao
AB g

(3.3.5)
(3.3.6)

UN
g > >

From these equations it can be seen that the sample distance in the Fresnel
field, may not exceed the far-field beamwidth.
Once the values of An and AR are chosen, the values of M and N determine the
resolution Ax and Ay in the aperture. Calculation of the far field from this
aperture field yields poor resolution since Ad and AR are the same as in the
Fresnel field.
An increase in the values of M and N yields smaller values of Ax and AR in
the far field as can be seen from (3.3.3) and (3.3.4). This increase, by
merely adding zero samples outside the aperture, unfortunately also increases
computer time.which is proportional to the number of complex multiplications
F(M,N). If M and N are each a power of two [3]:

F(M,N) = MN 21og MN ' (3.3.7)

Transfofmation_of an 128 x 64 matrix by the author's Algol 60 FFT routine,



- 48 -

tock nearly 100 seconds of computer time. An increase in M and N by a
factor of 2 leads to more than 400 secs computer time for a twice better
resolution,

Since data reduction depends on the sample distance Ax, the quantity of
data within the measurement interval yields the value of NAx, giving only
meaningful results for NAx & D. Because there is no optimum value of Ax,
computer time can only be a compromise between resolution in the Fresnel

field and resolution in the calculated aperture field.

In section 2.8 it was already stated that general insight into Field
transforms can only be obtained by computer calculations of two-dimensional
field distributions of various parameters like aperture diameter, frequency,
measurement interval, sample distance, aperture field distribution and the
number of reductions. This, however, would consume too much computer time.
Computer simulations for a particular aperture field, aperture diameter and
wavelength yield enough insight into and confidence in the equations described
in chapter 2,

Recent Russian work [4] on far field reconstruction errors in the one-dimen—
sional case yields a somewhat larger value of the minimal Fresnel field
angular sectorrﬁ then is given by (2.8.19) if a 1-37 inaccuracy of the main
lobe is required. A larger value of the minimum 0 always yields more accurate
results as was to be expected. Because the Fast Fourier transform of the
Fresnel field requires the number of samples to be a power of two, extra
samples of the Fresnel field taken outside the absolute minimum sector &

can replace the zero samples without increasing computer time,

Data reduction thus leads to measurement of the Fresnel field within the
minimum sector &,-yiélding a2 minimum number of samples, while measurement
ocutside this sectof leads to more samples and a more accurate far field
pattern in the game proéessor time (if N was chosen large enough).

For the computer simulations an 128 x 64 matrix was chosen. The computer
program, written in Algol 60, is given by [5].

In the present example we consider a circular aperture with diameter D=3 m

and with a tapered aperture distribution
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E(r)
E(r)

1 - ar , |r| < ps2
, -|r| > p/2

L}
o

A 15-dB taper yields a = (1 - 1175).(%)2 = 0.365

The far field criterion now gives

2D2

T = 1800 m.

According to (2.8.21) the maximum number of reduction is

2/
1 ,8D 3 4 4
m = 5—(§X0 s M= 30.65 ~ TE-M.

For our calculations: m = 10
then RFre = 180 meters.
The upper limit of the angle from boresight is (2.7.5)

arcsind;—m - %‘l(%)) = 6.179°

while the lower limit is given by
.2 [M+m o .
arcsln(5-~i~ ) = 1.43 if M= 3§

Because angles from boresight in the Fresnel field and far field are small,
equation (2.5.3) is valid; hence the copolar field can be calculated directly
from Fresnel or Fourier transforms of the aperture field without the use of
the coordinate transform (2.5.2).

In ordexr to veriﬁy computer calculations, the field on the main axis will

now be given (2.3.17):

_ jk _ijFra jk rsinfcos (E-d)
Efar(9,¢) = HF: e ffﬂ(r) e rdrdf

Substitution of u = k%-sine

and
rt = 2r/D

yields



_ijF 2m 1 ,

_ jk ra ,D,2 _.Dy2 a2 jurcos{(E-$) 44+

c (6,9) = ZTTRF e (-2—) ff [l a(-2—) r ] e r'dr'dE
ra o Jo

T

Jo(ur‘) _ ejur'c05(5-¢)d5

this equation leads to a Hankel transform of the aperture field:

—ijFra 2 J, (u) 2 Ju
jke 7 D, 2 [ D 1 D" "2 j
R D | + 2.8, — (3.4.1)
Z“RFra 2

where J (u) and J (u) are the Bessel functions of the first and the second

B, (0:0) =

order. Note that the far field is a function of u only; therefore, the far
field is circularly symmetric. The illumination efficiency n , defined by
the relation [6]

JOMCRY axdy|®
eff
A

(3.4.2)

>>I—'

f[E (x,y)lz dxdy

can be calculated with the help of (3.4.1), since the numerator of (4.3.2)
equals the square of the far field modulus on the main axis, apart from a
constant factor.

For the given illumination it is easily shown [5] that

G% --aDz)z .

n=2 5 5% (3.4.3)
(_]..—.a..g._.-q--aD)
2 A 96

Substitution of a = 0.365 yields
n = 0.85975

From (3.4.1) it follows that the field strength on the main axis in the far
field is:

| far(o ,0 ] =0.23

and in the Fresnei field, using (2.10.2)
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]EFre(O,O)|m=]0 = 1.2943

The Fresnel field of Fig., 3.4.1 was calculated from an aperture distriburion

with sample spacing

Ax
Ay

3 cm

6 cm

With M = 64 and N = 128, the Fresnel field sample spacing is then:

- '
B = $h= = 0.0026 or 8.95
LA 8.95"
AR = g5 = 0.0026 or 8.95

In Fig. 3.4.2 the same distribution, truncated at -50 dB,is given with a
dB scale. '

The rotation symmetry of the aperture field also yields rotation symmetry
in the Fresnel field. From Fig. 3.4.2 a good symmetry is observed for
amplitudes larger than about ~45 dB, Sample values below -45 dB show that

symmetry is disturbed owing to aliasing distortion.

Fig. 3.4.3. shows the phase distribution in the Fresnel region which
oscillates strongly because of constructive and destructive interference in

this region.

The calculated Fresnel field is now truncated from -2°23" to +2°23' in
azimuth and elevation in order to simulate measurements over an interval for
M = 40, yielding 32 x 32 samples, From this distribution, the aperture dis-
tribution is reconstructed in Fig. 3.4.4. Fig. 3.4.5. shows the reconstructed

phase in the aperture.

Numerical output of the program yields the relative construction error €.
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Table 3.4.1. Relative construction error in relation to taper and radius

lelaterval |oc)y|<135|135¢</ek 144 | 144<jk 150 | £| =150 Taper
M = 40 <0.9% <5.6% <16.9% 11.47% 15 dB
M = 40 <0.15% <3.37 <12.3% 827 30 dB
M =15 <6.3% <25.5% <73 Z 83.77% 0 dB

Table 3.4.2. Absolute reconstruction error

The phase error was:
taper :szzﬁﬁffrval 0<|r|<96| 96<|x[<138 | 138<|x|<147]x|=150
M=40 15 dB : <0.0039 rad[<0.0193 rad { <0.02 0.079
M=40 30 dB <0.0014 rad|<0.0097 rad | <0.0116 0.053
M=15 0 dB <0.0224 <0.0490 <0.0678 0.19

In Fig. 3.4.6 is given the amplitude of the far field reconstructed from
the truncated Fresnel field. Owing to aliasing distortion the circular
symmetry of the sidelobes is disturbed.

In order to calculate the far field for a twice larger bandwidth, the
Fresnel field resolution has to be twice better in the case of an equally
large (128 x 64) matix.

Truncation of this Fresnel field to la] < 2°23' and (8] < 2°23" then yields
the far field distributions of Figs. 2.4.7 to 2.4.9. The numerical results
of the computer'éalculations show that:

. {5t

sidelobe level is at -23.3 dB versus -23.6 dB being the true level
from Eq. (3.4.1)
nd | idelobe level is at -31.3 dB versus =31.5 dB.

-2
- the max. amplitude at R = 1800 m, is 0.23, which value is in perfect

far
agreement with (3.4.1)

~ the calculated illumination efficiency is
n = 0.863 versus 0.85975 exactly.

In order to simulate a 20 dB dynamic range in Fresnel field measurements,

the samples smaller than 20 dB below the maximum were replaced by zeroes.




- 53 -

Figs. 3.4.10 to 3.4.12 now yield calculated aperture distributions in
the case of 20, 30 and 40 dB dynamic range measurements. From these
figures it can be concluded that disturbances outside (and also inside)
the aperture vanish as the dynamic rangé of measurements increases.
This behaviour can be understood from Figs. 3.4.] and 3.4.2, showing a
fast decay of amplitude for larger azimuth and elevation angles. Hence
low dynamic range measurements have here the same effect as truncation

of the measurement interval to (too) small angles.

The Fresnel field distribution for m=2 (RFre = DZ/A) in Fig. 3.4.13 already
shows a concentration of a main beam and a few sidelobes around the z~axis

in the case of the far field.

Fig. 3.10.14 shows the Fresnel field for m=10, calculated from a uniformly

circular aperture distribution. This field distribution was truncated for

m=15 or from -1.19° to 1.19° in azimuth and elevation. The aperture field

that was calculated from this "measured" Fresnel distribution is given in

Fig. 3.10.15. The Gibb's effect is again clearly demonstrated. Owing to

this effect, large amplitude and phase errors occur c.f. Fig. 3.10.16.

The far field calculated from this Fresnel field, Fig. 3.10.17 yields

reasonable circular symmetry for the first two sidelobes. Owing to aliasing

distortion and reconstruction errors, higher lobes are disturbed. ‘

Numerical results show that:

- the first sidelobe level is carrying from -17.2 dB to -17.9 dB and it
should be -17.6 dB

- the second sidelobe level is from -23.3 to -24.7 dB versus the real value
of -24.6 dB

- the calcuiate& illumination efficiency was n = 1.000.

This equals exactly the theoretical value, which clearly shows that the far

sidelobes contain very little power and hence their contribution to the

calculated gainland illumination effiéiency may be nepglected (see section

2.10).



MODULUS

azimuth angle o

Fig. 3.4.1. Amplitude distribution of the Fresmel field {m

10)

- g -



azimuth angle o

Fig. 3.4.2, Amplitude distribution of the Fresnel field (m = 10)



180" _.

e TP

~ 180°

+9%g"

~9%28

azimuth angle o
Fig. 3.4.3. Phase distribution of the Fresnel field



—
SN

'0

e
SR
»3’:’3‘\\\%%\
X i
e e T
e RN
otosos iyt Y
RN

D

Y

0 . +190,5cm
w >
Fig. 3.4.4, Amplitude distribution of the reconstructed aperture field

i
un
~

|



"

@
-
: r ' -
= = T e == "-189 cm
L90,5 ¢cm 0 x + +190,5 cm

Fig. 3.4.5. Phase distribution of the reconstructed aperture field

+189 cm

!
wn
w

I




| MODULUS

0,23~

azimuth angle o

Fig. 3.4.6, Amplitude distribution of the far field, calculated from the truncated

Fresnel

field



J

MODULUS -

azimuth angle o

Fig. 3.4.7. Fraunhofer distribution, calculated from the truncated Fresnel field

_09.-.




modulus +

azimuth angle @&

Fig. 3.4.8. Far field distribution, calculated from the truncated Fresnel

field

9 -



MUAULAE
1
i

504B .~

el e T

36,51

azimuth angle

Fig. 3.4.9. Far field distribution of Fig. 3.4.8 with dB-scale



),995

-381 cm

381 cm’ - o 0 - ' +381 cm

Fig. 3.4.10. Modulus of the recomstructed aperture field as calculated from

Fresnel field measurements with a 20 dB dynamic range



., 034

—
o |
5 —
B

f= [
a+t

=

Fig. 3.4.11., Modulus of the aperture field, calculated from 30 dB dynamic range
Fresnel field '"measurements”



0

o
— L2

Fig. 3.4.14.

azimuth angle o .

Fresnel field distribution of a uniformly illuminated aperture

_Lg_



581 cm

apnitidue

X >

ield

g. 3.4.15, Reconstructed aperture f

Fi




[,

. 0,993

PR

->

4
t

! MODULUS

Fig. 4.3.12, Modulus of the aperture field as

calculated from 40 dB dynamic range measurements



- 99 =~

azimuth angle o

2
Fig. 3.4.13. Fresnel field distribution for R, =D /X




180

phase

Qo

-180

Sl

N S
e —— =Sy
L3 \ < e
N e N
N
A \>—-\ > ~
AT s
=T P
-
st

.//’

—

“—Q
A —
il
e 9
—
Prad
»'/
,/’ o
o
P
-
P
P
. =
-

Fig. 3.4.16, Phase distribution

of the reconstructed aperture field

_69..



,38
—
'}_
{
i
L

@ |

gr
-
L

o

o'.' ’

1 11

k

azimuth angle o

Fig. 3.4, { i 1 1
ig. 3 17. Far field distribution as calculated from the truncated Fresnel field.



—.7]-

3.5 Literature

! W.T. Cochran et al.: "What is the fast Fourier transform"
Proc. IEEE, Vol. 55, nr. 10, p. 1664, Oct. 1967.

2 W.C. van Etten: "De diskrete Fourier transformatie", Intern Rapport
T.H.E., Nov. 1971.

3 J.A. Glassmann: "A generalisation of the fast Fourier Transform",

IEEE Trans. on Comp., Vol. C 19, nr. 2, 1970.

4 V.I. Turchin et al.: "Errors in reconstruction of radiation aptterns
of antennas on the basis of near field phase measurements" RE & EP April 1974,

5 C.A.M. Geus: "Antennemetingen m.b.v. microgolfholografie”,
M.Sc. Thesis Eindhoven University of Technology, 1975.

6 J. Dijk, J.M. Berends, E.J. Maanders: "Aperture blockage in dual
reflector antenna systems', THE Report 71-E-23. |




_72.-.

4, Fresnel field measurements and results of field reconstructions

4.1. Introduction

Early in 1967, Bakhrakh and Kurohkin [1,2] investigated the use of holo-
graphic techniques in order to record Fresnel field distributions totally.
From the recorded field distribution, called a microwave hologram, an
optical analogon was produced. Holographic reconstruction then yielded the
optical analogon of the radiation pattern of the microwave antenna.

Because of the low dynamic range of films used for the optical hologram,
and the difficulty of obtaining phase distributions, optical reconstruction
of the aperture and the far field distributions did not seem very suitable.
Napier and Bates [3-7] proposed in 1971 to use the computer for simulating
the (optical) holographic reconstruction process. Since then microwave
holographic techniques have been used widely for mapping microwave field
distributions, while computer reconstruction was mostly used in order to

simulate the holographic reconstruction process [8-23].

The holographic recording process is basically a method of encoding spatial
phase variations in an intensity modulation. The computer holographic re-
construction process can then be seen as a demodulation process, which,
however, requires some inherent approximations [3,4,12].

A much more straightforward method based on the principle of complex micro-
wave holograms will be presented here. Some problems encountered in Fresnel
field measurements will be treated and measurement results on an electrically

small reflector antenna will be given.

Dechamps [20] showed that product detectors, also called correlators in radio
astronomy and interferometry, can be used for mapping microwave fields com-
pletely. With two harmonic time functions, with complex amplitudes R and S,

such a product detector is defined as Re(R™S).

R *
S

Fig. 4.2.1, Product detector or correlator,
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Here # denotes the complex conjugate, and Re the real part. Applocation of
an extra 90° phase shift of the R signal then yields Re([+jRJ*.S) = Im(R*S).
A system yielding the real and imaginary parts of RS gives a complete

recording of the S-gignal if R is taken as the known reference.

S ——/;2\ I1 = Re(R*S)
R @e , = Im(R"S)

Fig. 4.2.2. Recording of a complex hologram.

With

s = |s]el%s
and )

R = [R|eI?R

the amplitude and phase distribution of S can be calculated from I.  and I,:

1 2
22
| s| ='j§ﬁ{r—- (4.2.1.)
I1
¢S = ¢R + arctan(i—o + 2Tn (4.2.2)
2

For the purpose of Fresnel field measurements, amplitude and phase distri-
butions are not very suitable since Fast Fourier transform~algorithme require
real and imaginary parts of the field. The use of the measurement set-up of
Fig. (4.2.2) is then obvious.

Quadrature hybrids (Q) Fig., (4.2.3) can be combined to make a correlator,

and with the use of an in-phase power devider (D) a complex hologram-—

measurement set—up is obtained.

p — —.R-jS

Q

Fig, 4.2.3. Quadrature or 90° hybrid.
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P3 P4
Fig. 4.2.4. Measurement set—up for complex microwave holograms.

In the set-up of Fig. 4.2.4, the complex amplitudes a, are given by:

a} =5 -R

32=S+R

ay = S + jR (4.2.1)
a4 =85 - jR

The power of the signals with complex amplitudes a; is then proportional to

P, = [S—R| = |s[ +|R] -2|SR]cos(¢S )
P, = |s+R| = |s] +|R1 +2|SR|cos(¢S-¢R (4.2.2)
P, = |S+_‘|Rl = |s] +|R[ —2|SR|51n(¢S-¢ )
P, = |s- _]RI = [s| +[R[ +2|SR|sm(¢ ~¢)

The difference of the detected powers then yields:

PZ - P
P4 - P

4| RS} cos(pgdp) ~ Re (R'S)
4| RS| sin(pgpg) ~ Im(R'S)

1
3

(4.2.3)

The use of diodes with identical quadratic characteristics yields output

voltages proportional to the incident microwave power Pi i=1, 2, 3, 4).
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The voltage difference at the ocutput of these microwave detectors then
gives the wanted real and imaginary part of the S—signal if R is taken as a

fixed reference signal.

With the use of short slot hybrids as quadrature hybrids and an E-plane T,

a waveguide measurement set-up according to Fig. 4.2.4, was realised by

the author [27]. The inherent difference in the diode characteristics was
solved by applying a large reference signal yielding linear detector output
giving a real time output signal with a small dynamic range of 23 dB.
Another disadvantage of the system was the small bandwidth of the X-band
waveguide structure of approximately 100 MHz,

A solution to these problems is given by the use of co-axial components
yielding a large frequency range, and the use of real time computer proces-—
sing of the various diode characteristics [26]. The main advantage of this
concept is that components are commercially available up to 200 GHz, yielding
a relatively cheap and simple set—up capable of accurate amplitude and phase
measurements in a frequency range where network analysors are not yet
available (above 40 GHz).

o e e S i S i g Y T s S B S Bt e ey B it e ey P et e B i Y L S A e Y S ot e R S S . e e e S S B e S S e e et S

The field equations derived in chapter 2, assume a coordinate system which
is centered in the aperture plane., In practice, however, it is not possible
to rotate a test antenna around the aperture centre or focal point. As a
result, in the measured Fresnel field distribution a quadratic phase error
is included due to the additional pathlength between the aperture centre

and the test probe.

04 = Rpre
00' = 00" = L

. A >_
/\%”’,— Probe

Fig. 4.3.]. Geometry with centre of rotation behind the aperture.
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In all formulae the distance Rpre has to be replaced by the distance 0O'A

if the antenna rotates at 0" instead of at 0. Simple geometry then yields:

, 2 2 . 2,12
0'A = [(LsinB)” + (L ~ L cosfBcoso+ RFre) + (L sinocosB)”]

A binominal expansion then yields:

L2

2RFre

+ coszB cosza - 2 cosBf cosol}

{1 + sin28 + sinza COSZB +

A = -
0'A RFre + L(l-cosfcosa) +

2 . .
Usually L~ << RFre giving
1 = -
0'A RFre + L(1 cosBeosd)

for small values of o and B, a quadratic phase error is apparent from:

0'A =R, _ + L(%az + %82) (4.3.1)

The angles o' and B' of the line 0"0' with the line 0'A do not equal the
q

values o and B as can be seen from the one-dimensional case.

L 0

Fig., 4.3.2. Geometry for calculating B'.
It can easliy been seen that
B' =B + &

where

L sin B) . LsinB LB

re RFre ) RFre

§ = arctan ¢(
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if L sin B << Rove and B ~ sin B giving

-~ L L
B' T B o+ B = B+ 1 (4.3.2)
RFre RFre
for L << RFre the error becomes negligible.
The two-dimensional case is much more difficult, but for small angles it can

be seen from the one-~dimensional case that

L
)
Fre

o' T a(l + {4.3.3)

and again for small values of o

If the errors are too large, the sample distances Aa'and AB' are easily

corrected using (4.3.2) and (4.3.3).

——— e e et v . s e e et e e e e e S o e e B e e

Generally the test antenna is capable of rotating and then it is obvious
that the test antenna will receive instead of send because in that case a

reference signal can easily be received too.

data
logger

measurement
bridge

reference probe

Fig. 4.4.1. Fresnel field measurement set-up,
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In the case that the test antenna is used as a transmitter, the sampling probe
should be small enough to neglect the averaging effect of the aperture éince
sampling requires measurement of the field in a point of space,

Kurochkin [8] showed that Fresnel field measurements on a linear test antenna
with length D, require a linear probe with maximum dimension 1max in order to

neglect the influence of the finite dimensions of the probe:

1 A
1 < i (ﬁo'RFre (4.4.1)

max

The proof of (4.4.1) in [8], yields for the two-dimensional case that (4.4.1)
is also a good criterion if 1max is the maximum dimension of the two-
dimansional probe,
Relation (4.4.1) shows that the maximum angular dimension of the probe as
seen from the centre of the antenna being investigated, should be
approximately one order of magnitude smaller than the width of the lobes
of this antenna. Because of reciprocity the probe should have the same
dimensions, if used as a transmitter. In order to perform Fresnel field
measurements within an anechoic chamber of 2.5 m length, a small reflector
antenna was chosen. This antenna rotated at the aperture centre and:
= 25 em

- f =09,2 GHz () = 3.26 cm)

- dipole feed
The far field is at:

2
- Rfar =2D"/A = 3.83 m (4.4.2)

Calculation of M = 5 lobes requires

1,80.2/3 4 _
ms @R - %= 2,43 (4.4.3)

The angle of measurement is limited (2.8.19 & 2.8.21) to

[
Hn
i

= 1.5 or RFre = 2. 54 m
2 or R.Fre = 2,04 m

H-

h

B
n

The sample distance in the Fresmel field is limited to A/D:
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Ao or AB <

o >
Ik
~!
wn

o}

Here we chose: Ad 2
A = 4

and measurements were performed for

o

m=1.5and m= 2
-30° < a < 30°
-32° < g < 32°

The prcbe was an open—ended X-band waveguide, as chosen in agreement with

(4.4.1). The measurements were carried out with an H.P. network analyser,

yielding amplitude and phase distribution of the Fresnel field.

The Fresnel field measured at 2.54 m was used to calculate the amplitude

and phase distribution in the aperture, Figs. 4.4.2 and 4.4.3. The aperture

distribution shown in Figs., 4.4.4. and 4.4.5 was calculated from the field

measured at RFre = 2,04 m. A good agreement of both reconstructed aperture
fields is apparent. Interpretation of the calculated amplitude and phase
distribution for the aperture field requires a separate investigation;

however, some obvious conclusions can be made here.

— The dip in the amplitude of the aperture field is due to aperture blocking
by the feed. )

- The lobes outside the aperture, where the field should be zerec, are due to
the fact that the Fresnel field was measured over too small an angle (:_320).
The same effect can be observed from Figs. 3.4.10 to 3.4.12, since truncation
of the dynamic range of measurement resembles a measurement interval which
is too small., This resemblance is due to the fact that the Fresnel field
intensity decays fast for larger boresight angles. However, measurement of
the Fresnel distribution over larger angles is hardly possible, because then
o and B are proportional to sinf instead of 6, and, hence, sample distance
requires nonconstant azimuth and elevation steps.

- The calculated aperture phase distribution is strongly nonuniform yielding
high levels of the far sidelobes of the radiation pattern [27]. However,
no far sidelobes may be predicted in case of strongly nonuniform phase

distributions because of the asgumptions made in sec. 2.2.

The reconstructed field within the aperture was used to calculate the far
field patterns 4.4.6 to 4.4.8. The radiation pattern of the antenna was

measured in another anechoic chamber, which unfortunately exhibited a strong
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reflectivity, yielding high interlobe levels (Fig. 4.4.6) and making the

recorded radiation pattern highly inaccurate below -28 dB.

In spite of the small Fresnel field measurement interval, the reconstructed
and measured main lobe exhibits good agreement in the E and H planes.

The reconstructed sidelobe levels agree within approximately 0.5 dB with
the measured levels.

Note that the predicted levels between main lobe and first sidelobe are

much lower than the measured values, which are too large due to reflections

in the anechoic chamber.



SOTNAON

Fig, 4.4.2. Aperture field calculated from Fresnel field measurements at 2.54 m.
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Fig. 4.2.4.

Modulus of the aperture field as reconstructed from Fresnel field measurements at 2.04
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4.5 Conclusions

The relative simplicity of the Fourier-Fresnel transforms used and the high
speed of F.F,T. algorithms are the major advantages of the method described
in comparison with near field-far field methods (cf. ref. 1 & 2 of ch. 1).
Another advantage of Fresnel field measurements is the use of an often
existing antenna mount instead of a special scanning system.

Calculation of radiation patterns from measurements in the Fresnel zone

is only meaningful for large D/A ratios because small ratios vyield a
small far field distance and a small number of reductions m. Another
advantage of a large D/X ratio is the small angle of measurement yielding

a simple relationsghip between Fresnel field co-polar and cross—-polar and
aperture field polarisations (ef. 2.5.3 & 2:5.4).

The small measurement angle however might still be too large as in case of
the 3 m. Cassegrain antenna of our university which is presently operated on
a very special mount [28] at frequencies of 30 and 11.6 GHz. The special
mount already menfioned igs very stable and accurate, but has some inherent
disadvantages being the limited scan angle of 3° and the small rotation and
translation as the antenna is scanned. The translation of a few centimeters
make accurate pha?e measurements impossible, while cross—-polar measurements
are no longer meaningfull due to a small rotation of the antenna.

The most severe restriction is however the limited scan angle of 30, and a

test range of about 16 meters:

D=3m; vy =1 (eq. 2.9.2); M =5 (sidelobes)

o A D/ | A/D _ RFra Max RFre min emaxn 8min N
30 GHz 1 cm 300 ( 0.197] 1800 m | 60 I0m 5.97 | 6.21°
11.6 GHz | 2.58 cm | 116 | 0.49°| 696 m [31.2 [22.3m |8.36 |[10.22°
Equations ‘ 2.8.21 2,9.3 }2.9.2 [2,8.19
Figs f 2.9.3] - 2.9.1 -

For small D/A ratios, Fresnel field measurements are meaningful as far as
knowledge of the aperture field distributions is concerned. The interpretation
of these distributioms and alsoc probe correction could be subject of further

study.
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