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ABSTRACT

The ‘‘reliability ensemble averaging’’ (REA) method for calculating average, uncertainty range, and a measure
of reliability of simulated climate changes at the subcontinental scale from ensembles of different atmosphere–
ocean general circulation model (AOGCM) simulations is introduced. The method takes into account two ‘‘re-
liability criteria’’: the performance of the model in reproducing present-day climate (‘‘model performance’’
criterion) and the convergence of the simulated changes across models (‘‘model convergence’’ criterion). The
REA method is applied to mean seasonal temperature and precipitation changes for the late decades of the
twenty-first century, over 22 land regions of the world, as simulated by a recent set of nine AOGCM experiments
for two anthropogenic emission scenarios (the A2 and B2 scenarios of the Intergovernmental Panel for Climate
Change). In the A2 scenario the REA average regional temperature changes vary between about 2 and 7 K
across regions and they are all outside the estimated natural variability. The uncertainty range around the REA
average change as measured by 6 the REA root-mean-square difference (rmsd) varies between 1 and 4 K across
regions and the reliability is mostly between 0.2 and 0.8 (on a scale from 0 to 1). For precipitation, about half
of the regional REA average changes, both positive and negative, are outside the estimated natural variability
and they vary between about 225% and 130% (in units of percent of present-day precipitation). The uncertainty
range around these changes (6 rmsd) varies mostly between about 10% and 30% and the corresponding reliability
varies widely across regions. The simulated changes for the B2 scenario show a high level of coherency with
those for the A2 scenario. Compared to simpler approaches, the REA method allows a reduction of the uncertainty
range in the simulated changes by minimizing the influence of ‘‘outlier’’ or poorly performing models. The
method also produces a quantitative measure of reliability that shows that both criteria need to be met by the
simulations in order to increase the overall reliability of the simulated changes.

1. Introduction

Projections of climatic changes for the twenty-first
century at the broad regional, or subcontinental, spatial
scale (106–107 km2) are based on transient simulations
with coupled atmosphere–ocean general circulation
models (AOGCMs) including relevant anthropogenic
forcings, for example, due to greenhouse gases (GHG)
and atmospheric aerosols (e.g., Kattenberg et al. 1996).
To date, such projections have been characterized by a
low level of confidence and a high level of uncertainty
deriving from different sources (Visser et al. 2000; Gior-
gi and Francisco 2000b): estimates of future anthro-
pogenic forcings, the response of a climate model to a
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given forcing, the natural variability of the climate sys-
tem. Quantifying uncertainties in the projection of future
climate scenarios used for impact assessments has been
identified as a critical research need both in the climate
and impacts research communities (e.g., Carter et al.
1999; Mearns et al. 2001), and has inspired a recent
flurry of research (e.g., Jones 2000a,b; New and Hulme
2000; Katz 2001).

One of the primary factors of uncertainty is that dif-
ferent AOGCMs can simulate quite different regional
changes even under the same anthropogenic forcing sce-
nario (e.g., Kittel et al. 1998; Giorgi and Francisco
2000b; Whetton et al. 1996) and it is very difficult to
ascertain which of the different AOGCMs are most re-
liable. Therefore, a comprehensive assessment of re-
gional change projections needs to be based on the col-
lective information from the ensemble of AOGCM sim-
ulations. For example, Giorgi et al. (2001a) identified
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emerging patterns of the regional spatial structure of
climatic changes by searching for consistent regional
change signals, both in sign and magnitude, across a
wide range of simulations with different AOGCMs.
However, they did not quantify either the uncertainty or
the reliability of the simulated changes.

Two general ‘‘reliability criteria’’ have been used to
assess, mostly in a qualitative way, the reliability of
regional climate change simulations (e.g., Kattenberg et
al. 1996; Giorgi et al. 2001b). The first is based on the
ability of AOGCMs to reproduce different aspects of
present-day climate: the better a model performance in
this regard, the higher the reliability of the climate
change simulation. We refer to this as the ‘‘model per-
formance’’ criterion. The second criterion is based on
the convergence of simulations by different models for
a given forcing scenario, greater convergence implying
higher reliability of robust signals that are little sensitive
to the differences among models. We refer to this as the
‘‘model convergence’’ criterion.

To date, these two reliability criteria have not been
used together in a quantitative way to establish measures
of uncertainty and reliability in regional climate change
projections. Furthermore, procedures to estimate re-
gional changes based on the collective information of
different AOGCM simulations have been used only in
limited regional contexts (Hulme and Carter 2000). Of
relevance in this regard is the analysis of control climate
simulations from 15 coupled AOGCMs presented by
Lambert and Boer (2001) as part of the first phase of
the Coupled Model Intercomparison Project (CMIP1).
The study shows some evidence that the mean clima-
tological fields averaged over the ensemble of models
compare better with the observed climatology than the
fields produced by any of the individual models. This
suggests that the collective information from ensembles
of model simulations may be more reliable than that of
any individual model. Techniques for extracting infor-
mation from ensembles of different model simulations
have also been proposed by Krishnamurti et al. (1999,
2000) and Palmer et al. (2000) within the context of
seasonal prediction.

In this paper, we present a quantitative procedure for
calculating average, uncertainty range, and collective
reliability of regional climate change projections from
ensembles of different AOGCM simulations based on
the model performance and model convergence criteria.
We call this method ‘‘reliability ensemble averaging’’
(REA), and apply it to a recent set of AOGCM transient
climate change experiments for the twenty-first century
for two anthropogenic forcing scenarios. We then com-
pare the results from this new method with those from
a simpler averaging procedure. In the study we consider
simulated changes in surface air temperature and pre-
cipitation for the late decades of the twenty-first century
compared to present-day climate over 22 land regions
covering most land areas of the world. Throughout this
paper the term ‘‘ensemble’’ refers to simulations with

different models and not to different realizations with
the same model.

Note that, at present, in our method we do not follow
a probabilistic approach. Recently, a number of articles
have addressed the issue of estimating probability den-
sity functions (PDFs) for future climate variables (e.g.,
Jones 2000a,b; Schneider 2001; Wigley and Raper 2001;
Andronova and Schlesinger 2001). For example, Wigley
and Raper (2001) calculate the probabilities of globally
averaged future climate conditions based on the emis-
sion scenarios developed by the Intergovernmental Pan-
el on Climate Change (IPCC; Smart et al. 2000). How-
ever their method relies on a number of assumptions
regarding the shape of the PDFs for the major uncer-
tainty factors they consider (e.g., climate sensitivity,
emission scenarios, radiative forcing). Jones (2000a,b)
assume uniform PDFs for both regional and global tem-
perature changes in a study for the south Australia re-
gion. While interpreting calculations of future climate
in probabilistic terms is an important step, we prefer to
employ a quantitative but nonprobabilistic method be-
cause we prefer not to make assumptions about the dis-
tribution of factors such as the climate model sensitivity,
especially at the regional scale. In addition, we have a
very limited sample size (nine AOGCMs for each sce-
nario), which makes it very difficult to identify PDFs
of specific regional climatic changes. It is more difficult
at this stage of research to produce PDFs for regional
climate change than for mean global conditions (the
latter can be determined using simple climate models
that can generate easily many simulations), since gen-
erating the large number of runs desirable for con-
structing PDFs at the regional scale is currently not
feasible.

2. Experiments and methods

The set of experiments analyzed here includes 18
different AOGCM simulations (Table 1), 9 for each of
2 anthropogenic forcing scenarios, that is, the A2 and
B2 marker scenarios developed by the IPCC (Smart et
al. 2000). These scenarios, which are derived from dif-
ferent assumptions of future social and technological
development, are considered as ‘‘high’’ (A2) and ‘‘me-
dium low’’ (B2) in terms of cumulative GHG emissions
(Smart et al. 2000).

Our analysis considers the difference in mean tem-
perature and precipitation between the periods of 2071–
2100 (future climate) and 1961–90 (present-day cli-
mate), a quantity we refer to as ‘‘change.’’ Changes are
calculated for December–January–February (DJF) and
June–July–August (JJA). The data are interpolated onto
a common 0.58 grid and are averaged over 22 regions
covering nearly all land areas of the world and identified
by Giorgi and Francisco (2000a,b; see Fig. 1). Only
land areas are considered and the interpolation proce-
dure is described by Giorgi and Francisco (2000a). For
one of the models, three realizations were available, and
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TABLE 1. List of AOGCM experiments and corresponding global temperature change, DT (K), defined as the difference on global annual
surface air temperature between the periods 2071–2100 and 1961–90. Also given are references for the models and/or simulations analyzed.

Institution/model Reference DT-A2 DT-B2

CCSR-NIES/version 2
MRI/version 2
CCC/CGCM2
CSIRO/Mk2
NCAR/CSM
DOE-NCAR/PCM
GFDL/R30-c
MPI-DMI/ECHAM4-OPYC
UKMO/HADCM3

Nozawa et al. (2001)a

Noda et al. (1999)
Flato and Boer (2001)b

Gordon and O’Farrell (1997)
Dai et al. (2001)
Washington et al. (2001)c

Knutson et al. (1999)
Stendel et al. (2000)
Johns et al. (2001)d

4.53
1.25
3.59e

3.50
2.29
2.35
2.87
3.11
3.38

3.38
0.92
2.49e

2.71
1.71
1.80
2.18
2.34
2.42

a Manuscript submitted to J. Meteor. Soc. Japan.
b Manuscript submitted to Geophys. Res. Lett.
c Manuscript submitted to Climate Dyn.
d Personal communication.
e Average of three realizations.

FIG. 1. Regions used in the analysis presented in this work. SAU, NAU, AMZ, SSA, CAM,
WNA, CNA, ENA, ALA, GRL (and northern territories), MED, NEU, WAF, EAF, SAF, SAH,
SEA, EAS, SAS, CAS, TIB, and NAS. Giorgi and Francisco (2000a) provide the regions’ definition
in terms of lat and lon.

the data analyzed here refers to their average. (Giorgi
and Francisco 2000a,b show that 30-yr means do not
vary substantially between different realizations of the
same experiment). The global temperature changes for
each simulation are reported in Table 1. It can be seen
that the full range of simulated global temperature
changes for a given scenario is about 3.5 K.

As a base for comparison of our REA method we use
a simpler approach to the development of climate
change estimates and associated uncertainty range. In
this approach, taking as an illustrative example the tem-
perature T, the estimated change is given by the ensem-
ble average of all model simulations, that is,

1
DT 5 DT , (1)O iN i51,N

where N is the total number of models, the overbar

indicates the ensemble averaging and D indicates the
model-simulated change.

In its generalized form, the uncertainty is measured
by the corresponding root-mean-square difference
(rmsd), or d, defined by

1/2
1

2d 5 (DT 2 DT ) . (2)ODT i[ ]N i51,N

The uncertainty range is then given by 6dDT and is
centered around . To put this definition into per-DT
spective, if the changes followed a Gaussian PDF, the
rmsd would be equivalent to the standard deviation and
the 6dDT would approximately cover the 68.3% confi-
dence interval. Note that the direct ensemble averaging
does not explicitly take into account the reliability cri-
teria and weighs equally all model simulations.
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In our REA method, the average change, , is givenD̃T
by a weighted average of the ensemble members, that
is,

R DTO i i
i˜D̃T 5 A(DT ) 5 , (3)

RO i
i

where the operator Ã denotes the REA averaging and
Ri is a model reliability factor defined as

m n [1/(m3n)]R 5 [(R ) 3 (R ) ]i B,i D,i

m n [1/(m3n)]
e eT T5 . (4)5 6[ ] [ ]abs(B ) abs(D )T,i T,i

In Eq. (4), RB,i is a factor that measures the model
reliability as a function of the model bias (BT,i) in sim-
ulating present-day temperature, that is, the higher the
bias the lower the model reliability. Here the bias is
defined as the difference between simulated and ob-
served mean temperature for the present-day period of
1961–90. Here RD,i is a factor that measures the model
reliability in terms of the distance (DT,i) of the change
calculated by a given model from the REA average
change, that is, the higher the distance the lower the
model reliability. Therefore, the distance is a measure
of the degree of convergence of a given model with the
others. In other words, RB,i is a measure of the model
performance criterion while RD,i is a measure of the
model convergence criterion.

The choice of the particular function (4) is based on
its simplicity and on the requirement that both criteria
need to be met in order to yield a high reliability for a
given model simulation. This is effectively achieved by
using the product of the RB,i and RD,i factors. Note that
in the experiments examined here there was little re-
lationship between the biases and distances of individual
simulations. We calculated the correlation between bi-
ases and distances across models for a given region and
season, and found that the correlation was generally
small (mostly less than 0.5 except for a few instances)
and was statistically significant at the 95% confidence
level only in a few regional cases. This suggests that,
for most cases, a large individual model bias does not
imply a corresponding large distance and vice versa,
that is, that the main model outliers in the future climate
simulation are not necessarily those that show the poor-
est performance in reproducing present-day climate.
This is not surprising in view of the fact that often some
model parameters are ‘‘tuned’’ to reproduce present-day
climate but may be characterized by a pronounced sen-
sitivity to strong climatic forcings.

The distance DT,i is calculated using an iterative pro-
cedure. A first guess of DT,i is the distance of each DTi

from the ensemble average change of Eq. (1), thatDT
is, [DT,i]1 5 [DTi 2 ]. The first guess values are thenDT
used in Eqs. (3) and (4) to obtain a first-order REA
average change [ ]1, which is then used to recalculateD̃T

the distance of each individual model as [DT,i]2 5 [DTi

2 [ ]1] and repeat the iteration. Typically, this pro-D̃T
cedure converges quickly after several iterations. Note
that the distance from the REA average is only an es-
timated measure of the model convergence criterion giv-
en that future conditions are not known. This does not
imply that the REA average represents the ‘‘true’’ cli-
mate response to a given forcing scenario but only that
the REA average represents the best estimated response.

The parameters m and n in Eq. (2) can be used to
weigh each criterion. For most calculations in this work,
m and n are assumed to be equal to 1, which gives equal
weight to both criteria. However, they could be different
if different weight is given to the two criteria (see dis-
cussion in section 3e). Also, RB and RD are set to 1 when
B and D are smaller than e, respectively. Essentially,
Eq. (4) states that a model projection is ‘‘reliable’’ when
both its bias and distance from the ensemble average
are within the natural variability, so that RB 5 RD 5 R
5 1. As the bias and/or distance grow, the reliability of
a given model simulation decreases. Note that, for RB

and RD lower than 1, e cancels out in the REA operator
and the reliability factor effectively reduces to the re-
ciprocal of the product of bias and distance.

The parameter e in Eq. (2) is a measure of natural
variability in 30-yr average regional temperature and
precipitation. In order to calculate e, we computed time
series of observed regionally averaged temperature and
precipitation for the twentieth century over our 22 re-
gions from the dataset of New et al. (2000). We then
computed 30-yr moving averages of the series after lin-
early detrending the data (to remove century-scale
trends) and estimated e as the difference between the
maximum and minimum values of these 30-yr moving
averages. Alternatively, e could be defined as the dif-
ference between some upper and lower percentiles of
the 30-yr moving averages, a definition that would be
less dependent on the length of the observing record.
However, given that the record is relatively short, and
hence that e is likely a lower estimate of variability, the
use of the maximum and minimum values is more ap-
propriate for this study.

In order to calculate the uncertainty range around the
REA average change, we first calculate the REA rmsd
of the changes, DT, defined byd̃

1/22 ˜R (DT 2 DT )O i i 
i2 1/2˜ ˜  d̃ 5 [A(DT 2 DT ) ] 5 . (5)DT i R O i

i 

Equation (5) is the counterpart of Eq. (2) when the
reliability criteria are accounted for. The upper and low-
er uncertainty limits are thus defined by˜DT 5 DT 1 d̃ (6a)1 DT˜DT 5 DT 2 d̃ . (6b)2 DT

From this definition the total uncertainty range is giv-
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en by DT1 2 DT2 5 6 DT 5 2 DT. The uncertaintyd̃ d̃
limits defined by Eqs. (5), (6), and (2) encompass the
range of changes defined by the rmsd with and without
the explicit contribution of the reliability criteria. As
mentioned, a rigorous probabilistic interpretation of
these uncertainty limits is not possible because the PDFs
of the changes are not known due to the small sample
size. On the other hand an analogy may provide some
guidance in this regard. Under the assumption that the
changes are distributed following a Gaussian PDF, the
rmsd is equivalent to the standard deviation, so that the
6d range would imply a 68.3% confidence interval. For
a uniform PDF, that is, one in which each change has
the same probability of occurrence, the 6d range im-
plies a confidence interval of about 58%. In the REA
method, the normalized reliability factors of Eq. (4) can
be interpreted as the likelyhood of a model outcome,
that is, the greater the factor, the greater the likelihood
associated with the model simulation. As shown in sec-
tion 3d, the distribution of the reliability factors is ir-
regular and it changes from region to region. Therefore,
assuming that the actual PDF of the changes is some-
where between a uniform and a Gaussian PDF, the
6 range can be interpreted as approximately repre-d̃
senting a confidence interval of 60%–70%. Also note
that the choice of an uncertainty range of 6 is onlyd̃
for illustrative purposes. A larger range, say 62 , couldd̃
be used to account for a greater confidence interval.

A quantitative measure of the collective model reli-
ability ( ) in the simulated changes can be obtained byr̃
applying the REA averaging operator to the reliability
factor, that is,

2RO i
i˜r̃ 5 A(R) 5 . (7)

RO i
i

In other terms, the collective reliability is given by the
REA average of the individual model reliability factors.
This definition of reliability is consistent with the fact
that different model simulations are weighted differently
in the calculation of the REA average.

Note that the reliability depends not only on ther̃
bias and distance but also on how these relate to the
natural variability, which changes from region to region.
In fact, while in Eqs. (3) and (5) e cancels out under
the condition of B and D greater than e, in Eq. (7) e
does not cancel out. The underlying assumption is that
more stringent conditions on B and D are required to
increase the reliability over regions characterized by
lower natural variability. The quantity can thus ber̃
interpreted as a reliability measure of the REA average
and uncertainty range in relation to a certain level of
natural variability. Given that different functions can be
used to define the factors RB and RD, the relevance of

is not in its absolute value, but as a tool to intercom-r̃
pare the level of reliability across regions.

Finally, we also define the two quantities:

1
R 5 R (8a)OB B,iN i51,N

1
R 5 R , (8b)OD D,iN i51,N

which provide a measure of the collective model reli-
ability with respect to the two criteria separately.

3. Results

a. Model performance in reproducing present-day
average climate

Prior to discussing the climate change results, it is
useful to provide an overall view of the model perfor-
mance in reproducing present-day climate. Figures 2 and
3 show, for each region, the ensemble average bias along
with the largest positive and negative individual model
biases for temperature and precipitation. The ensemble
average regional temperature biases are mostly within
62 K (Figs. 2a,b). Noticeable exceptions are the Alaska
(ALA) region in winter, where the ensemble average
bias is about 6 K, and the Greenland (GRL) and Med-
iterranean (MED) regions in summer, where the average
bias exceeds 3 K. The range of individual model biases
(i.e., the difference between the largest positive and larg-
est negative individual model biases) varies consider-
ably across regions, and it is generally minimum in
tropical and subtropical regions (order of 3–5 K) and
maximum in mid- and high-latitude regions, where it
can exceed 12 K. Except for the case of Alaska in DJF,
where all models exhibit a warm bias, biases of both
signs are found in the ensemble. The magnitude of the
individual model biases varies from a few K to over 10
K (8 cases of bias in excess of 10 K are found).

Figures 3a,b show a wide range of precipitation biases
across regions. The ensemble average biases are mostly
within 650% of observed precipitation, with a general
predominance of positive biases, that is, an overestimate
of precipitation, especially in the cold season. Precipi-
tation is greatly overestimated over three regions, ALA
and Tibet (TIB) in DJF and Sahara (SAH) in JJA, where
the ensemble average bias is in excess of 200%. In the
case of the Sahara region this large percentage over-
estimate is amplified by the very low observed precip-
itation amounts, while the problem over the Tibet region
may be related to the generally coarse model resolution
(300–500 km for the models considered), which would
result in a poor representation of the Tibetan Plateau.
The intermodel range of biases varies from about 30%–
50% to over 200% across regions, and a number of
instances of positive individual model bias greater than
100% can be observed. A few instances of very large
individual model negative bias (precipitation underes-
timate) of up to 80%–90% also occur, in particular over
the MED and Central Asia (CAS) in JJA and SAH in
DJF. As with temperature, in most cases precipitation
biases of both signs are found within the ensemble.
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FIG. 2. Ensemble average temperature bias (AVE, dark circles) and largest positive or negative
individual model temperature bias (EXTR, continuous lines) over the 22 regions of Fig. 1: (a)
DJF, (b) JJA. Units are degrees K. Values with magnitude greater than 10 K have been set equal
to 10 K for plotting purposes. The dotted line indicates the 0 level.

Figures 2 and 3 thus provide a picture of a wide range
of model performance in reproducing present-day mean
climate conditions, with occurrences of large errors,
both by individual models and by the overall ensemble.
Although individual model results are not shown, there
was no model that performed best over all regions, and
all models contributed at least one maximum positive
or negative regional bias in Figs. 2 and 3. However,
there were two to three models that exhibited an overall
largest number of maximum bias within the ensemble.
The marked interregional and intermodel variability of
the biases illustrated by Figs. 2 and 3 and the occurrence
of large biases clearly point to the need of including the
model performance criterion in the evaluation of the
simulated changes.

b. Estimates of change and uncertainty range

Figures 4 and 5 show the following variables for re-
gional temperature and precipitation in the A2 scenario.
The REA average change [Eq. (3)] along with the cor-
responding upper and lower uncertainty limits [Eqs. (6a)
and (6b)] the ensemble average change plus/minus the
corresponding rmsd and the natural variability esti-
mates. Also shown are the highest and lowest simulated
changes by individual models within the ensemble. The
difference between these latter values can be considered
as a measure of maximum uncertainty range that does
not take into account the collective information of the
ensemble of simulations. Note that in this paper the units
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FIG. 3. Same as in Fig. 2 but for (a) DJF precipitation and (b) JJA precipitation. Units are percent
of observed precipitation. Values greater than 200% have been set equal to 200% for plotting
purposes.

used for the precipitation change is percentage of pre-
sent-day precipitation.

For temperature, the difference between the REA av-
erage change and ensemble average change is of the
order of a few tenths of K to about 1 K across regions.
In DJF, maximum warming of 6.9–7.2 K is found over
the Northern Hemisphere high-latitude regions of ALA,
GRL, and northern Asia (NAS). The maximum northern
high-latitude warming has been consistently found in
previous AOGCM simulations (e.g., Giorgi and Fran-
cisco 2000a,b) and can be attributed in good part to the
snow–ice albedo feedback mechanism, by which warm-
ing causes a decrease in snow and ice cover, and thus
a decrease in the local albedo. This results in an increase
of the absorption of solar radiation at the surface that

enhances the warming (e.g., Giorgi et al. 1997). Min-
imum DJF warming, of the order of 2.5–4 K is found
over tropical and subtropical regions, along with the
MED region.

In JJA the warming shows lower interregional vari-
ations than in DJF, mostly because of reduced warming
over high-latitude northern regions. Maximum warming
of 5–6 K occurs over the CAS, TIB, and NAS regions
along with western North America (WNA) and central
North America (CNA). Minimum warming in JJA of
2.2–2.7 K is calculated over southern South America
(SSA), south Asia (SAS), and Southeast Asia (SEA).

The estimates of natural variability (eT) for DJF tem-
perature are of the order of 0.25 to about 1.6 K, with
maxima over northern high- and midlatitude continental
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FIG. 4. REA average change [REA, dark circles, see Eq. (3)] and corresponding upper and
lower REA uncertainty limits [REA 6, continuous lines, see Eqs. (6a) and (6b)], ensemble average
changes [AVE, open circles, see Eq. (1)], and corresponding 6 rmsd [AVE6, dashed lines, see
Eq. (2)], maximum and minimum changes simulated by individual models in the ensemble (MAX/
MIN, dotted lines), and estimated natural variability values (VAR, bold dotted line, see text) for
the A2 scenario over the 22 regions of Fig. 1: (a) temperature, DJF; (b) temperature JJA. Units
are degrees K.

regions. This is also likely due to the snow–ice albedo
feedback mechanism, whereby relatively warm (or cold)
periods are enhanced (or reduced) by the feedback pro-
cess. Therefore, the largest temperature change signal
occurs in regions characterized by the largest natural
variability (e.g., Stott and Tett 1998; Fyfe and Flato
1999). In JJA there is less interregional variability of
eT, which remains mostly in the range of about 0.25–
0.7 K. Note that the estimates of natural variability in
Figs. 4 and 5 are generally consistent with analogous
ones obtained by Giorgi and Francisco (2000a,b) from

multiple realizations of model experiments. All the sim-
ulated REA average and ensemble average regional
warming values are well above the natural variability
estimates.

The full range of individual model-simulated changes
(dotted lines) is highly variable from region to region,
mostly 3–12 K for DJF and 2–7 K for JJA. These ranges
show pronounced maxima over mid- and high-latitude
regions particularly in the cold season, that is, the in-
termodel range of warming is maximum in the regions
where both the signal and the natural variability are
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FIG. 5. Same as Fig. 4, but for (a) DJF precipitation and (b) JJA precipitation. Units are
percent of present-day precipitation. Values with magnitude greater than 60% have been set
equal to 60% for plotting purposes.

largest. This suggests on the one hand that the snow–
ice albedo feedback gives an important contribution to
the intermodel spread of results over these regions, and
on the other hand that the treatment of snow and ice
processes and related feedbacks is an important factor
in determining the differences across model simulations.

We can compare the intermodel range of simulated
changes of Figs. 4a,b with the corresponding range of
model biases of Figs. 2a,b. This comparison shows that
the range in bias is generally greater than the range in
change, which is in agreement with the conclusions of
an analysis by Kittel et al. (1998) of a previous gen-
eration set of AOGCM simulations. Especially during
the cold season, a number of regions characterized by
pronounced ranges in simulated change do not show

correspondingly large ranges in bias [most noticeably
the ALA, northern Europe (NEU), and NAS regions].
This may be an indication that in the models some pa-
rameters within the ice physics representation are op-
timized for present-day conditions but show a different
response to the GHG forcing. When comparing the en-
semble average changes and corresponding average bi-
ases we can notice some correlation. The correlation
between ensemble average changes and biases across
regions is equal to 0.473 for DJF and 0.613 for JJA, in
both cases statistically significant at the 95% confidence
level. This indicates that, when considered collectively
across models, the spatial structure of the simulated
changes appears affected by the spatial structure of the
biases.
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The uncertainty range as defined by the rmsd [Eq.
(2)], that is, 6dDT, is of the order of 2–5.5 K in DJF
and 1.5–4 K in JJA (dashed lines in Fig. 4). A pro-
nounced interregional variation of uncertainty range is
found, with maxima in cold climate mid- and high-lat-
itude regions. Use of the REA method (continuous lines)
tends to overall reduce the uncertainty range, although
not in all cases. This is because the contribution of
model outliers and/or strongly biased models is effec-
tively filtered out. With the REA method, the uncertainty
estimates vary between 1 and 4 K in DJF and between
1 and 3.5 K in JJA across regions. The few cases in
which the REA uncertainty range is greater than the
corresponding rmsd-based uncertainty range generally
occur when large biases are found in correspondence of
small distances.

Moving to precipitation, Figs. 5a,b show that the dif-
ferences between ensemble average and REA average
values are generally less than 10% (in units of percent
of present-day precipitation). In fact, in a number of
cases the estimates of change with the two methods are
quite close to each other. A noticeable exception is the
SAH region in JJA, where a large difference is found
between the ensemble average and the REA average.
The main reason for this is that most of the model sim-
ulations exhibit a large precipitation bias over this re-
gion, in excess of 200%, with the exception of 3 sim-
ulations that have a bias of less than 100% (only 1 model
has a bias lower than 10%). As a result, since the REA
average is dominated by three simulations only, it can
be substantially different from the ensemble average. In
DJF we mostly find precipitation increases in the range
of a few percent to about 30%, while decreases of about
215% occur over the Central America (CAM) and SAH
regions. Smaller negative precipitation changes in DJF
can be observed over the MED and SAS regions. The
predominance of positive precipitation changes is con-
sistent with an intensification of the hydrologic cycle in
warmer conditions. In 11 out of 22 regions the DJF
REA average change is well outside the estimated nat-
ural variability: positive over Southern Australia (SAU),
SSA, ALA, GRL, NEU, NAS, and eastern Asia (EAS),
Western and Eastern Africa (WAF and EAF); and neg-
ative over CAM and SAH.

In JJA the precipitation changes are more equally
distributed between positive and negative except over
the Asian regions, where the changes are mostly posi-
tive. Both negative and positive REA average changes
are outside the natural variability. These include de-
creases over the Australian regions [northern Australia
(NAU) and SAU], CNA, Southern Africa (SAF), SAH,
and MED, where the REA average changes are in the
range of 210% to 225%. Increases in JJA REA average
precipitation outside the natural variability are found
over ALA, GRL, TIB, EAS, and SAS. These increases
are of the order of 10%–20%. Note that the models
indicate an intensification of summer monsoon precip-
itation over Asia, a result not found in a previous set

of simulations (Giorgi and Francisco 2000b). This may
be due to the decreased amounts of twenty-first century
sulfate aerosols assumed in the A2 and B2 scenarios
compared to the earlier scenarios used in the simulations
analyzed by Giorgi and Francisco 2000b (see also Gior-
gi et al. 2001a).

The range of individual model-simulated changes can
be large (dotted line in Figs. 5a,b). Over some regions
this range can be as large as 60%–90%, for example,
the SAH, EAS, and SAS regions in DJF and the NAU,
MED, SAH, and CAS regions in JJA. This implies a
pronounced spread of different model results over these
regions. For the other regions the spread of model results
is between 20% and 50%. The uncertainty range esti-
mates based on the rmsd (6dDP) is mostly in the range
of 10%–40%, with some exceptions (SAS and SAH in
DJF; MED, SAH, and CAS in JJA). The uncertainty
range is reduced in most cases when using the REA
method (6 DP mostly varying between 5% and 20%)d̃
because of the filtering of outliers.

It should be noted that only in a small number of
cases do all models agree on the sign of the simulated
precipitation change: The high-latitude Northern Hemi-
sphere regions in DJF and ALA, GRL, EAS, SAS, and
TIB in JJA. A greater number of cases is found in which
the whole REA uncertainty range is of the same sign.
Comparison of the changes in Fig. 5 and the biases in
Fig. 3 clearly shows that the biases are markedly larger
in magnitude. The correlation across regions of ensem-
ble average changes and biases is small for DJF (0.329),
but large for JJA (0.773), indicating that for the latter
season the collective model biases somewhat influence
the spatial structure of the collective simulation of
changes.

For the B2 scenario the REA average and uncertainty
analysis revealed a model behavior similar to that found
for the A2 scenario. It is therefore more instructive to
analyze the A2:B2 ratio of REA average changes to
evaluate the extent to which the scenario affects the
collective climate change simulation by the models. Fig-
ures 6a,b show the ratio of A2:B2 REA average regional
changes of temperature and precipitation, respectively.
For temperature, this ratio is quite uniform across re-
gions, 1.30–1.52, which is also close to the ratio of the
ensemble average global temperature changes for the
two scenarios (about 1.34). This result indicates that the
regional structure of simulated temperature change is a
little sensitive to the details of the forcing scenarios,
and implies that regional temperature changes at the
subcontinental scale can be ‘‘scaled’’ by the global tem-
perature change without addition of substantial uncer-
tainty (Mitchell et al. 1999).

A higher interregional variability of the A2:B2 ratios
of changes is found for precipitation, which is at least
partially due to the smaller signal-to-noise ratio for the
precipitation changes compared to the temperature
changes. For the vast majority of cases, however, the
ratio is greater than 1, indicating that the magnitude of
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FIG. 6. Ratio of A2:B2 REA average changes over the 22 regions of Fig. 1 for DJF (dark
circles) and JJA (open circles): (a) temperature and (b) precipitation. The dotted line indicates
the 0 level.

the precipitation changes is amplified in the A2 exper-
iments (i.e., the experiment with greater cumulative
GHG forcing) compared to the B2 experiments regard-
less of the sign of the change. For most regions the A2:
B2 ratio of precipitation changes is between 1 and 2.
Only in three cases, CNA, MED, and SAF in DJF, this
ratio is negative, that is, the REA average change sim-
ulated by the two scenarios is of opposite sign, and for
all three cases the change is extremely small (see Figs.
5a,b). This result shows that there is a high level of
consistency between the A2 and B2 scenarios in the
sign of the simulated average precipitation changes. No-
ticeable cases of A2: B2 ratios of precipitation change
greater than 2 include SAU in both seasons, SSA in
DJF, and SAU, NEU, WAF, and SEA in JJA. The cor-

relation across regions between the A2 and B2 simulated
REA average precipitation changes is high, about 0.95,
indicating an overall high level of coherency between
the changes in the two scenarios.

c. Reliability analysis

Figures 7 and 8 show the reliability [Eq. (7)] forr̃
the A2 scenario corresponding to the REA averages of
Figs. 4 and 5 along with the collective reliability factors
with respect to the model performance and convergence
criteria [ and in Eqs. (8a) and (8b), respectively].R RB D

It is evident that, both for temperature and precipitation,
is consistently greater than , which indicates thatR RD B

the model convergence in the simulation of changes is
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FIG. 7. Reliability [REL, dark circles, see Eq. (7)], and average reliability factors for the
performance criterion [RB, open squares, see Eq. (8a)] and the convergence criterion [RD, open
diamonds, see Eq. (8b)] for the A2 scenario over the 22 regions of Fig. 1: (a) DJF temperature
and (b) JJA temperature.

greater than the model performance in reproducing pre-
sent-day climate, a result evident from the comparison
of Figs. 2, 3 and 4, 5. Therefore, for both variables the
factor that most contributes to decreasing the reliability
in the regional projections is the performance in repro-
ducing present-day climate conditions. Note that in most
cases the value of is in between those of RB and RD,r̃
which is intuitive from the definition of these quantities.

For temperature, the values of are mostly in theRD

range of 0.4–0.8 in DJF and somewhat lower in JJA.
This implies distances from the ensemble average great-
er than the natural variability estimates by factors of up
to 2.5. The values of are generally lower, mostlyRB

0.1–0.6 in DJF and even lower in JJA. This implies that

the overall magnitude of the model biases is greater than
the natural variability by factors that can exceed 10. The
overall reliability in the simulated temperature changes
is in the range of 0.3–0.8 in DJF and 0.1–0.7 in JJA,
which suggests that the winter-simulated changes are
generally more reliable than the summer ones. In DJF
the highest reliability values are found in some northern
mid- and high-latitude regions: CNA and eastern North
America (ENA), NEU, TIB, and CAS. The lowest re-
liability of DJF estimates occurs over SSA, EAS, and
SAS. In JJA the highest reliability of the simulated tem-
perature changes is found over SSA, EAS, and some
mid- and high-latitude northern regions (CNA, ENA,
ALA, NAS). The lowest reliability of JJA REA tem-
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FIG. 8. Same as Fig. 7 but for (a) DJF precipitation and (b) JJA precipitation.

perature change is found over the Amazon (AMZ) and
SAS regions. In evaluating the reliability values of Fig.
7, it should be recalled that the reliability measure r̃
depends on the natural variability estimate e, lower val-
ues of e implying more stringent reliability require-
ments.

The reliability of the simulated precipitation changes
is highly variable across regions in both seasons, span-
ning values from less than 0.1 to 0.9. The values of

are consistently and substantially higher than thoseRD

of . In fact is mostly between 0.5 and 0.9, whileR RB D

is mostly lower than 0.5. This is evidence of a gen-RB

erally poor model performance in reproducing present-
day precipitation and of a magnitude of simulated
changes not large compared to the natural variability
estimates. Noticeable exceptions of larger and thusRB

better model performance occur over CNA in DJF and
SEA in JJA. Despite the poor collective model perfor-
mance in simulating present-day precipitation amounts,
it should be noted that given models might individually
show better performance over individual regions and
that the REA averaging maximizes the contribution of
such models.

It is important to point out that, for precipitation, the
reliability values should be assessed in relation to the
magnitude of the changes. It is in fact possible that a
high reliability simply implies that the change is within
the estimated natural variability, that is, that there is
high reliability in a simulation of no significant change.
Indeed, many of the changes corresponding to reliability
values in excess of 0.6 are small and within the natural
variability estimates. Focusing on the changes that are
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outside the natural variability, we can see that in DJF
over GRL, NEU, WAF, and NAS the reliability is above
0.5, while over CAM, SAH, ALA, EAF, and EAS it is
less than 0.4. In JJA, with the exception of ENA and
EAS, the reliability for regions where the simulated
changes are outside the natural variability is below 0.4,
primarily as a result of high biases.

Overall, the reliability levels for the B2 experiments
were similar to those for the A2 ones, so for brevity
they are not discussed here.

d. Specific regional cases

In this section we discuss in more detail some specific
regional cases to better illustrate the functioning of the
REA method. We selected four cases, two for temper-
ature and two for precipitation: Northern Europe DJF
temperature (NEU-T), Amazon Basin JJA temperature
(AMZ-T), Greenland DJF precipitation (GRL-P), and
Mediterranean JJA precipitation (MED-P). In all these
cases the REA changes are well outside the natural var-
iability estimates (see Figs. 4 and 5). However, for the
NEU-T and GRL-P cases the reliability is high (about
0.8 and 0.7, respectively), while for AMZ-T and MED-
P it is low (0.15 and 0.25, respectively). Figures 9 and
10 show for each case the individual model changes and
biases as a function of the normalized reliability factor
R [i.e., the value of Ri of Eq. (4) divided by the sum
of Ri over all models in the ensemble]. Also reported
in the plots are the REA averages and the corresponding
REA uncertainty limits.

The first feature to notice is the highly irregular nature
of the distribution of the reliability factors. For example
in the case of MED-P all the values of R are about 0.1
or less except for 1 instance of over 0.45. Similarly, for
the GRL-P case only 2 values are greater than 0.1 (and
both are equal to about 0.33). On the other hand, in the
NEU-T case the R values are relatively well distributed
between 0 and 0.2, while for the AMZ-T case for most
models R is less than 0.08, for 2 models it is equal to
about 0.17, and for 1 model it is about 0.25. The REA
uncertainty range encompasses between 50% to 67% of
the total number of the individual changes, with this
percentage decreasing as the REA averaging is increas-
ingly dominated by a smaller number of simulations.

In the NEU-T case, 7 out of 9 models show a small
bias and 6 of them also show a small distance. The
model with the largest bias also exhibits the largest dis-
tance. Evidently for this region both the convergence
and performance criteria are met by most simulations.
In the GRL-P case the averaging is dominated by the
contribution of two simulations that show both small
bias and distance, while again the model with the largest
distance is also characterized by the largest bias. The
GRL-P case thus illustrates a situation in which the high
reliability is dominated by a relatively small number of
high-performing models.

The MED-P case is an interesting one. As can be

seen, most models show a negative precipitation change
as well as a negative bias. In other words, most models
are relatively dry over this region and become drier in
the enhanced GHG forcing scenarios. The agreement in
the sign of the change would imply a strong signal,
however the fact that all models also show a negative
bias indicates that perhaps the conditions of enhanced
GHG forcing are amplifying a common model defi-
ciency that leads to the negative bias. This feature has
been noted also in the analysis of a previous set of
simulations by Machenhauer et al. (1998). The addition
of the performance criterion in the analysis thus indi-
cates that the signal might not be the result of a phys-
ically realistic process but rather the result of a common
model deficiency. As a consequence, although the
change signal is strong, the reliability of this signal is
very low.

Finally, the AMZ-T case illustrates the effect of the
natural variability estimate on the overall reliability of
the REA changes. In this case, both the biases and dis-
tances are not especially large compared to other re-
gions. However, the estimated natural variability is
small, about 0.25 K, therefore the reliability factor be-
comes small. Although admittedly the natural variability
estimates are only approximate, and although this result
depends to some extent on the function used to define
the reliability factors, this example illustrates the point
that different regions require different levels of ‘‘pre-
cision’’ because of the underlying regional character-
istics of the natural variability.

e. Sensitivity to the weighting parameters m and n

In the previous sections the 2 parameters m and n of
Eq. (4) were set equal to 1, implying the same weighting
of the 2 reliability criteria. This is not necessarily the
case if there are reasons to believe that one of the two
criteria should have a greater weight. An example can
illustrate this point. It might be argued that the model
convergence toward a common answer regardless of the
bias magnitude could be the indication of a robust sig-
nal. For example, Giorgi et al. (2001a) found a number
of consistent patterns of change in regional temperature
and precipitation structure across several model simu-
lations. On the one hand, the consistency of these pat-
terns might imply physical processes in action across
models regardless of the model biases. On the other
hand, the presence of large biases over a region might
be a consequence of common model deficiences and
thus a convergent response across models could result
from the amplification of the common model biases. In
the former case, one would set n greater than m in Eq.
(4), giving more weight to the convergence criterion,
while in the latter case one would set m greater than n,
thereby giving more weight to the performance crite-
rion. In order to test the sensitivity of our method to
the values of m and n we repeated the A2 scenario
calculations for the two cases m 5 1, n 5 2 (case CONV,
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FIG. 9. Individual model change (dark circles) and bias (open circles) as a function of the
normalized reliability factor [see Eqs. (3) and (4)]. Also shown are the REA average change
(REA-AVE, bold continuous line) and corresponding REA uncertainty limits (REA-UNC, thin
continuous lines). (a) NEU DJF temperature and (b) AMZ JJA temperature. Units are degrees K.
The dotted line indicates the 0 level.

implying more weight to the convergence criterion) and
m 5 2, n 5 1 (case PERF, implying more weight to the
performance criterion).

For temperature, in all regions the REA changes [Eq.
(3)] in the CONV and PERF cases were within 5% of
those of the original case. A greater sensitivity was
found in the calculation of upper and lower REA un-
certainty ranges [Eqs. (6a) and (6b)], where in many
regions the sensitivity to the changes in m and n ex-
ceeded 10%. Instances of particularly large sensitivity
(higher than 20%) in the calculation of uncertainty range
of temperature change occurred over the AMZ, ENA,
WAF, EAF, and SAS regions in DJF and the NAU, AMZ,

CAM, WNA, CNA, and SAF regions in JJA for the
CONV case; and the SAU, WNA, CNA, SAF, SAS, and
NAS regions in DJF and the NAU, AMZ, WNA, and
EAF regions in JJA for the PERF case. Concerning the
calculation of the reliability [Eq. (7)], in the CONV case,
a number of regions showed sensitivity of more than
10% compared to the original case (4 regions in DJF
and 9 regions in JJA), while this number was lower in
the PERF case (1 region in DJF and 5 regions in JJA).

For precipitation, in a few instances the REA change
showed large sensitivity in both the CONV and PERF
cases, although mostly in correspondence to instances
of small estimated changes or small control run precip-
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FIG. 10. Same as in Fig. 9 but for (a) GRL DJF precipitation and (b) MED JJA precipitation.
Units are percent of observed precipitation for the bias and percent of present-day precipitation
for the change.

itation. The number of regions in which the uncertainty
range showed sensitivity greater than 10% compared to
the original case was lower than for temperature, in-
dicating a somewhat lower intermodel spread of results.
On the other hand, the calculation of reliability was
more sensitive to the changes in m and n. Overall, both
for temperature and precipitation, compared to the orig-
inal results, the confidence was generally increased in
the CONV case (and correspondingly decreased in the
PERF case) because of the greater weight of the con-
vergence criterion reliability factor, which has values
generally higher than the performance criterion factor
(see Figs. 7 and 8).

In summary, the REA method is flexible enough that
the contribution of the two reliability criteria can be

weighted differently by modifying the parameters m and
n in Eq. (4). Some of the quantities we calculate, and
in particular the reliability measure, appear sensitive to
the choice of m and n, essentially because of the dif-
ferent contribution to the reliability by the convergence
and performance criteria. However, it is our opinion that
both criteria should be met in order to yield a high
reliability in the projected changes.

4. Summary and discussion

In this paper we introduce the ‘‘reliability ensemble
averaging’’ (REA), method for calculating average, un-
certainty range and a reliability measure of regional cli-
mate changes from ensembles of experiments with dif-
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ferent AOGCMs. The method explicitly and quantita-
tively takes into account what we have called reliability
criteria, that is, the model performance and model con-
vergence criteria. The philosophy underlying the REA
approach is to minimize the contribution of simulations
that either perform poorly in the representation of pre-
sent-day climate over a region or provide outlier sim-
ulations with respect to the other models in the ensem-
ble. Therefore, we extract only the most reliable infor-
mation from each model. It is important to emphasize
that the criteria are applied regionally and not globally,
that is, that different models can be outliers or poor
performers over different regions. In the set of exper-
iments we analyzed, both for temperature and precipi-
tation there was no model that ubiquitously performed
better or worse than all the others, that is, that exhibited
the lowest or highest bias over all regions. Concerning
the simulated temperature changes, the same models
were mostly (although not in all regions) the primary
outliers since the magnitude of the regional changes is
tied to the global model sensitivity. This was however
not the case for precipitation, since precipitation chang-
es are more tied to regional circulations and processes.

We applied our method to seasonal temperature and
precipitation changes over 22 land regions of subcon-
tinental scale as simulated by a recent set of transient
climate change experiments with nine AOGCMs for two
forcing scenarios. The REA average change differed
from the ensemble average change by a few tenths of
K to about 1 K for temperature and a few tenths of
percent to about 10% (in units of percent of present-
day values) for precipitation. The uncertainty range cal-
culated using the REA method was generally lower than
the corresponding range calculated using the rmsd, both
for temperature and precipitation. This is because of the
minimization of the contribution of outliers or poorly
performing models in the estimation of the uncertainty.

The method also provides a quantitative measure of
reliability in the simulated REA average changes based
explicitly on the two reliability criteria. Both for tem-
perature and precipitation, the overall reliability deriv-
ing from the model performance (as measured by the
model bias) was consistently lower, and often quite
markedly, than that deriving from the model conver-
gence. In other words, the models showed biases sub-
stantially greater than the spread in the simulated chang-
es. This conclusion is not obvious in view of the fact
that often model parameters are ‘‘tuned’’ to reproduce
present-day climate conditions. Because both criteria
affect the overall reliability, the presence of large biases
leads to a general reduction in the reliability of the sim-
ulated changes. This implies that the foremost require-
ment for a general improvement of the reliability of
simulated regional climatic changes, at least as mea-
sured by the REA method, is the reduction of model
biases (or more generally the improvement of model
performance) in reproducing present-day regional cli-
mate conditions.

In the simulations for the A2 scenario the REA av-
erage regional temperature changes varied between
about 2 and 7 K across regions and they were all outside
the estimated natural variability. The uncertainty range
around the REA average changes (as measured by 6 DT)d̃
varied between 1 and 4 K across regions and the reli-
ability level was mostly in the range of 0.2–0.8. For
precipitation, about half of the REA average changes,
both positive and negative, were outside the estimated
natural variability, and they varied between about 225%
and 130% (in units of percent of present-day precipi-
tation). The uncertainty range around these changes
(6 DT) mostly varied between about 10% and 30% andd̃
the corresponding reliability varied widely across re-
gions. The ratio of A2:B2 REA changes was quite uni-
form across regions (1.30–1.52) for temperature, while
for precipitation it showed larger variations but was
nearly always positive (i.e., the average precipitation
changes in the two scenarios were of the same sign).

The method can be expanded in various directions.
For example, presently the calculation of the reliability
factors is performed separately for each region and var-
iable. More generally, consistent performance across
variables and regions would be a further indicator of
reliability. In addition, we employed relatively simple
functions to describe the reliability factors, and more
sophisticated ones could be utilized within the same
conceptual framework. Finally, our method was applied
in this study to averaged climate variables. However, it
could be used to examine simulated changes in different
climate statistics, for example variability measures such
as the standard deviation. While the REA method was
applied here to AOGCM simulations, it can also be used
within the framework of different modeling tools used
to produce regional climate information, such as re-
gional climate models (e.g., Giorgi and Mearns 1991).
We are currently exploring all these areas of develop-
ment of the REA method to report in future work.

We will also investigate ways of further developing
the method in probablistic terms. With the development
of new research to calculate the probabilities of different
climate model sensitivities (Andronova and Schlesinger
2001) and with the production of additional AOGCM
model simulations for a larger number of emission sce-
narios, such extension may be possible without making
numerous a priori distribution assumptions.
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