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Summary 

The known failure of classical ray theory at caustics has led to a recon- 
sideration of displacement (in the frequency domain), expressed as an 
integral over ray parameter p. The integrand contains saddle-points on 
the real p-axis which correspond to rays for the associated physical 
problem, and it is shown here that direct computation of the complex 
integral is still straightforward, even when two saddle-points (rays) have 
coalesced to form a caustic. WKBJ theory is still usable for the vertical 
wave-functions, but one may avoid both the Taylor series expansion for 
the phase, and the steepest-descents approximation. Attention is first 
directed towards the PKKP caustic near 119", to calculations of both 
amplitude and the phase slowness (dT/dA) as a function of frequency, and 
to a criticism of some uses of plane wave reflection coefficients across 
the core-mantle boundary. It is then shown that short-period P-wave 
energy is efficiently tunnelled into and out of the Earth's core, from body 
waves having their turning point just above the core-mantle boundary. 
This provides an explanation for observations of multiply reflected core 
phases, PmKp with m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 2, which are found usually at distances beyond 
the cutoff one would expect from requiring real angles of incidence 
(5 90 ") from mantle to core. To obtain body wave pulse shapes in the 
time domain, a method is described which appears to offer some strong 
advantages over Cagniard-de Hoop inversion. 

Introduction 

Advances in theoretical seismology have, in the last four or five years, made 
possible a much more complete use of the data contained in seismograms. Thus, the 
methods outlined by Helmberger (1968) and Gilbert & Helmberger (1972) are allowing 
the computation of theoretical seismograms in Earth models with fine layering down 
to scales of about 5 km in the upper mantle, and Helmberger & Wiggins (1971) 
have shown comparisons with seismic data along several profiles in North America. 
The time domain calculations of these authors are complemented by the frequency 
domain approach of Chapman & Phinney (1970, 1972), who have developed repre- 
sentations of the Fourier-transformed seismogram as an integral, typically over 
horizontal wavenumber, and have shown how direct numerical integration may 
be accomplished. 

A consequence of these advances has been their demand for increasingly length 
and sophisticated computation-which is unfortunate (though often necessary), in 
that the expense and complexity of computations required by a full wave theory is 
a present barrier to routine applications of the theory by most seismologists. 
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This paper is concerned with the application of WKBJ approximations which 

can be made in the full wave theory-in particular, approximations which permit 
simple computations of short-period theoretical seismograms to be made, even in the 
vicinity of caustics. The computation involves modifying programs which are widely 
available zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: namely, programs giving travel time T, and distance A, for a ray with given 
ray parameterp in a specified Earth model, and programs giving plane-wave reflection 
and transmission coefficients. The principal modification involves allowing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp to be 
complex. 

Applications of the method of this paper are expected to arise in many different 
body wave problems: it is especially relevant to the evaluation of core phases. The 
method reduces trivially to the geometrical spreading formulae of Bullen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 963, 
Chapter VIII) and Julian & Anderson (1968), in cases where these are accurate, but 
it includes an evaluation of caustics, diffraction, and tunnelling, in cases where these 
are appropriate. 

To illustrate basic procedures, the example of PKKP is considered in some detail 
at distances in the vicinity of a caustic near 241 O (1 19 O in the backward direction). 
This example shows that the use of plane-wave reflection and transmission coefficients, 
for short-period waves incident on the core-mantle boundary, may be suspect, 
and Airy functions are introduced to allow improvements in the basic method. They 
permit study of the excitation of core phases by mantle P-waves having turning points 
just above the core-mantle boundary. Such a tunnelling phenomenon is evaluated 
for P4KP, and is shown to be a remarkably efficient route of propagation. It appears 
(Engdahl 1968) frequently to have been observed. 

Basic method 

Wave propagation problems for point sources in layered media are often solved 
by Fourier (or Laplace) transformation of the time dependence, and also by trans- 
formation of the transverse spatial co-ordinate. (This latter is horizontal distance, for 
plane layering normal to a vertical axis, and is angular distance A, for spherically 
symmetric Earth models.) 

The doubly-transformed wave-equation involves derivatives with respect to depth 
only, and yields an explicit formula for the doubly-transformed solution. After writing 
down the inverse transverse transform, over wavenumber, an integral representation 
is thus obtained for the forward time transform of the required solution. In the 
Cagniard-de Hoop methods, the integrand at this stage is manipulated into a form 
which permits its identification as the time-domain solution required. But, for fre- 
quency-domain calculations of the solution (see e.g. Chapman 8z Phinney 1972), the 
wavenumber integral is computed directly. 

This paper uses the latter method, representing a Fourier-transformed seismogram 
at distance A from a point source as 

s(A, w )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf(v, w )  Q,,-I/~(~) (COS A) dv. (1) r I 
Here, w is a radian frequency; r is a complex path which depends on the problem in 
hand; f ( v ,  w )  is essentially the doubly-transformed solution; and Qv-1/2(2) is that 
travelling-wave component in the Legendre function Pv-1/2 which moves away from 
the source. (The choice of Q(2), rather than Q(l), depends on our convention of the 
Fourer transform as j( ) e+got dt. See Phinney & Alexander 1966; equation (19).) 
Equation (1) may take many different forms, depending on the Watson or Poisson 
transformation used to derive it, and on the particular rays (or routes of energy 
propagation) which it is intended to represent. Nussenzveig (1965) gives a thorough 
treatment in a spherical problem, and Scholte (1956) has discussed the representation 
of particular rays such as PcP, PKP, and diffraction by the Earth’s core. Gilbert & 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
5
/1

-3
/2

4
3
/6

1
5
2
0
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbody waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA245 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Helmberger (1972) have gone further in factorizingf(v, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  into a product of (a) the 
sourcereceiver directivity function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA; and (b) the transmission and reflection coeffi- 
cients appropriate to the ray path of interest (for the example of PcP, these include 
the core-mantle boundary reflection, transmission across mantle to crust, and, if 
required, a correction factor for measurements made on the free surface of the 
Earth). Included here also is the transmission phase for the total ray path, accumu- 
lated from the phases of the vertical wave functions, as they propagate across each 
layer of the model. Many authors (e.g. Friedman 1951; Seckler & Keller 1959) 
have shown that, for short periods, these vertical wave functions are accurately 
approximated by WKBJ theory. 

In order to obtain the specificf(v, w )  in equation (l), for the numerical evaluation 
given below, the seismic source is taken to be an explosive point source at position 
r = re, with equivalent body force given by the gradient of potential B(r-r8) H(t) .  
(H( t )  here is the Heaviside unit step function and 6(r) is a three-dimensional Dirac 
delta function.) Were this source in a homogeneous elastic medium, with P-wave 
speed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas and density p s  (suffix s refers throughout to evaluation at the source), it 
would give rise to a spherical P-wave wavefront, centred on the source. The displace- 
ment would have just a longitudinal component, u1 (say), directed away from the 
source. Near the wavefront, this component would be 

in which R is the distance I r -rs I, and 8( t )  is a one-dimensional Dirac delta function. 
Head-waves from this source would have the shape of H(t - R/aS), and the reduced 
displacement potential (see Werth & Herbst 1963) is ~iY(t)/(47rp@!BS). If, as we assume, 
this source is placed in a spherically symmetric Earth, then the equation equivalent to 
(2) is the result obtained by classical ray theory: 

Here, p and 01 are evaluated at the receiver position r; T is the P-wave travel-time 
to r from rs taken along the ray connecting source and receiver; and R(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIs) represents 
the geometrical spreading from source to receiver. This function is defined by requiring 
R2 dQ to be the cross-sectional area, at r, of a tube of rays which leaves rs in a cone of 
solid angle dQ. The factor (p01)-1/2 in (3) arises from conservation of energy flux 
down ray tubes; the remaining ps-1/20rs-5/2 are required for this source, so that 
equation (3) tends to the form (2) as r + rs (noting then that R(r, rs) + lr-rgl). 

To appreciate the inaccuracy of (3), for many distances in realistic Earth models, 
and to improve the calculation of body wave amplitudes, a full wave theory is required. 
This theory is outlined below in a form which approximates, at two stages, the exact 
version often necessary for accurate studies of the upper mantle (although providing 
useful guidelines even in these cases). 

The first approximation (Richards 1971a; 1973) permits the use of potentials, to 
discuss P-SV motion in a spherically symmetric (but radially varying) medium. 
It may be shown by construction that azimuthally independent scalar functions 
$(r, w), x(r, w )  exist, such that displacement in the frequency domain is given by 

(4) 

The vector potential for S here is itself solenoidal, being curl (rx, 0, 0), where vector 
components are written in spherical polar co-ordinates. Furthermore, the wave 
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246 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Richards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
equations satisfied by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx are of second order, being 

where the constant Ks, for our source normalization, is F/(iwps1/2ay,2), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/3 is the 
shear wave speed. 

The lower-order terms, in the right-hand side of the last three equations, would 
vanish in a homogeneous medium. We shall neglect these terms, even in radially 
varying media, since they are down in magnitude from the remaining terms by a 
factor of w-1, or w-2, and we are interested in a theory which is accurate at high 
frequencies. 

The solution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(5 )  in a homogeneous medium is merely 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhs = w/as. This has the well-known partial wave expansion in terms of spherical 
Hankel functions, 

where r> = the greater of (r,  rs), r< = the lesser of (r, rs). 
Friedman (1951) and Richards (1970, Appendix II) show that this last result 

may be generalized for a radially varying a(r), giving the particular integral of (5) as 

4 = Ls 5 (n ++) g?k(l)(r>)kgn(l)(r<) +gn(2)(r<)l P ~ C O S  A) (6) 
?k= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

where Ls = -F/(47rpsl~2as3), and the g,(f) are generalized vertical wave functions, 
outgoing (from the centre of the Earth) for j = 1, and ingoing for j = 2. The 
normalization of these wave functions is taken so that their WKBJ approximation 
(Morse & Feshbach 1953, p. 1101) is, in the region for which wr > (n++) a(r),  

where 

and r,  is the radius at which the integrand vanishes. The right-hand side of (7) is 
made up from radially varying amplitude and phase factors (obtainable from the one- 
dimensional wave equation satisfied by the gn(f)), and a source dependent factor, 
chosen to make the g,(l) exactly spherical Hankel functions in homogeneous media. 
There are analogies here to the way radial dependence in (3) was deduced from (2). 
Although the approximation (7) is to be used below in calculating the g,(n, (7) has 
at this stage merely the role of normalizing the exact vertical wave functions. 

It is often useful to split the Legendre function into its travelling wave components, 

where (provided n is not near a negative integer, nor A near 0 or 180O) 
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Calculation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbody waves 247 

Conversely, it is often convenient to sum the vertical wave functions, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
gn(l)  +gn(2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2fn, wheref, is regular at r = 0 

and reduces to the spherical Bessel function j ,  in homogeneous media. 

terms do not significantly decrease until n exceeds N, where 
Although partial wave expansions such as (6) are convergent series, the individual 

The number N is about 4500eperiod (in seconds), so several thousand terms would 
have to be summed, if short-period body waves (with period about 1 or 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) were 
calculated directly via (6). Such numerical difficulty is effectively avoided by converting 
the summation over n into an integral (the Watson or Poisson transform), and then 
direct integration is simple to carry out, after a suitable contour is found in the 
(complex) order plane. Finding the suitable contour is not always easy (see Nussenz- 
veig 1965, 1969a, b for an extensive analysis), since (6) is essentially a sum of four 
different types of waves. Each is of type gn(J)(r<) Qn(k), withj = 1 or 2, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = 1 or 2, 
and can be recognized in terms respectively of downward or upward departure from r< 
to 6, and arrival towards or away from the source. But if the series (6) is separated 
into four series, one for each wave type, each series diverges. Fortunately, however, 
it appears that an integral representation of series (6) can always be found with the 
following two simplifying properties : (a) the integrand involves the conversion of 
just the expected one of the four terms in (6); and (b) the integrand contains no scalar 
factors not already explicitly displayed in the series (6). 

To illustrate these simplifications, and to obtain two interesting representations 
of the particular integral (6), an Appendix is given below to describe the necessary 
manipulations in the complex order plate. Different representations are shown to 
arise, depending on whether or not a turning point is present, for the ray path between 
source and receiver. 

It is well known that there is a relation between the order of a radial wave function, 
gn(J)(r)(j = 1 or 2), and the horizontal phase slowness of the wave solution 
gn(j)(r) Qn(z)(cos A) e-20t. In seconds/radian, the slowness is approximately (n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA++)/w. 
This result follows directly from equation (8), and hence tends to become more accu- 
rate as n increases. A much better physical discussion of the Appendix formulae can 
thus be given, if one shifts and scales the complex order plane by instead using the 
variable 

p = (order number++)/w. (9) 

A further benefit of this transformation is the well-known interpretation of WKBJ 
approximations (7) in terms of ray properties: rn is the turning point radius of the ray 
with ray parameter p; the g,(f)  grow exponentially with depth below r,, butf, decays 
exponentially; and the expression [ ] in (7) is merely cos2 i where i = i(r, p )  is the 
angle between this ray at depth r and the local vertical. (We shall, however, find 
cause below to improve the approximation (7) in the vicinity of r = r,.) Equation 
(7) then becomes 

\ I  
rP 

in which, following BuIlen (1963), r ,  is the turning point radius of the ray with ray 
parameter p. 

The Appendix formulae (A2) and (A3) can now be written as integrations in the 
complex ray parameter plane, and we have the following two cases: 
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Case A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Source below receiver, ray departing upwards (see Fig. l(a)). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

M, w) = Ls 1 w2pgwp-1/2(1)(r) gUp-1/d2)(rB) Q0p-1/2(2) (cos A) dp 
r, 

where is the path shown in Fig. l(b). 

(a)  

FIG. 1. (a) Parameters for 
(b) Associated path rl for 

(a 1 

i 

n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ci, 

h 
Real p 

a ray departing upwards from source to receiver. 
the response integral in the complex p plane. See 

equation:(ll). 

FIG. 2. (a) Parameters for a ray departing downwards from source to receiver. A 
turning point is present. (b) Associated integration path Fa. See equation (12). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Case B 

Source below receiver, ray departing downwards (see Fig. 2(a)). 

d(r, w )  = Ls w2pgwp-1/d1)(r) g ~ p - 1 / 2 ( 1 ) ( f 8 )  Q W p - 1 d 2 )  (cos A) dp (12) 
r, 

where J?z is the path shown in Fig. 2@). 
The singularities of each of these integrands are merely poles on the negative real 

axis, and each of r l  and I'z may be deformed to cross any convenient point, or points, 
of the positive real p-axis. The effect of discontinuities in the Earth, such as the core- 
mantle boundary, is examined below, and equations (11) and (12) have a relatively 
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Calculation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof body waves 249 

simple form because reflection and transmission coefficients are absent. The effect 
of multi-pathing between source and receiver is, however, included zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: the number of 
rays present must be odd, since implicit in the above definition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg,(j) is the assump- 
tion that no low velocity zones are present. (The WKBJ expressions may be modified 
to permit weakening of this assumption.) It is well known that each ray path between 
rs and r has a ray parameter which, at high frequencies, is near a saddle point of the 
integrands in (1 1) and (12)-and is exactly at the saddle point, if these integrands are 
replaced by the WKBJ expressions (8) and (10). Further, it can be shown that the 
orientation of saddles is such as to permit the path I? to cross all of them by the 
route of steepest descents. 

The uses made of these results have been either (i) to compute the vertical wave 
functions directly (by integration of the equations of motion), and then to integrate 
the results for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI? chosen near the steepest descents path (see e.g. Chapman & Phinney 
1970), or (ii) to substitute from (8) and (10) into (11) or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(12), and then to make a 
Taylor series expansion of the phase about each saddle point. If this series for the 
phase is approximated by only the first two non-zero terms, and if further the integral 
(1 1) or (12) is approximated by taking r separately over each saddle (and adding the 
results), then (as is shown below) one merely obtains geometrical spreading formulae 
of type (3). But a middle way between this trivial result and the numerical com- 
plexity of (i) is available, and involves the numerical integration of formulae such as 
(11) and (12), but using the WKBJ approximations for the integrand. This is the 
second stage of approximation, referred to prior to equation (4). It permits rapid 
computation of body wave amplitudes, even in cases of multi-pathing, and is particu- 
larly useful for distances near caustics. The method is computationally very simple, 
as can be seen on applying it to, for example, the radial component of displacement 
in Case B (with turning point: see Fig. 2). Then, for a receiver at distance A0 from 
the source, we have 

The stage two approximation, obtained from (12), (8) and (10) after differentiating 
the approximation for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgv- lp( l ) ( r )  and retaining terms of highest order in frequency, 
is 

ur(r, A ~ ,  w) = p-112 a+/ar. 

where 
(us2p2 112 

cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = (1 -$$)1‘2, cos is = (1 - %) 

and the phase delay integral is 

‘r r 

J(r ,  p )  = 1 (T) cos i dr + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 rGi) dr +pAo.  

‘P ‘P 

Notes on equation (13) 
(i) If the fourth-order equations for P-SV motion in spherical geometry are solved 

by the generalized WKBJ method of Coddington & Levinson (1955, pp. 174-177), 
then (13) can be obtained without the device of introducing approximate potentials 
(equation (4)). See Chapman (1973) for discussion of this method. 

(ii) The horizontal displacement is given by (13), but with integrand modified by 
the factor pa/(r  cos i ) .  

(iii) The turning-point radius r p  is complex if p is complex. It is a solution of the 
equation pa@) = r ,  and thus the velocity profile must be analytically continued from 
its values at real depths. This can be achieved for ray parameters with small imaginary 
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part, by Taylor series expansion of the velocity profile about a real radius. It is also 
simple to achieve for velocity profiles given by some specific analytic expression, 
such as the MohoroviEiC law, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa(r) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarb. If a low velocity zone is present, then r p  is 
no longer a single valued function of p. Knowledge of the turning point is not needed 
for ray paths of the type shown in Fig. 1, since there the phase arises from the phase of 
gv-lp(l)(r) gv-1/2(2)(r,), and involves merely an integral from re to r.  

(iv) As pointed out by Bullen (1963, p. 112) and Gilbert & Helmberger (1972), the 
phase delay integral in (13) is related to the travel-time and distance integrals, and in 
fact one finds in all cases that 

J(r,p) = T(r,P)-PA(r,p)+PAo (14) 

where T and A are the time and distance at which the ray with ray parameterp arrives, 
at radius r, from source Is. Since aT/ap = p aA/ap, it follows that the integrand for 
ur has saddle points at values ofp such that A(r, p )  = Ao, i.e. at just the ray parameters 
for which there is a ray between source and receiver. Near such a saddle point PO 
(say), Taylor series expansion gives 

J ( r , p )  = T(r,Po)+3(P-Po)2(- aA/aP). 

If there is just one real ray between r and rs, then (from the curvature of the travel- 
time curve) aA/ap is negative, and the saddle is oriented favourably for r2 to be taken 
as the path of steepest descent, leading to the approximation of (13) by 

112 efoT cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis sin A0 - a A  -112 
ur(r, Ao, w )  = asLs (z) [ p icos i  ~ ( -ap-)] 

Using the formula for Ls, and the geometrical spreading relation 

a,R(r, r,) = rr,[cos i cos is sin A0 I aA/ap l/p0]1/2 

(see Richards 1971b, p. 463), we have 

which is in complete agreement with equation (3), after resolving the longitudinal 
motion in the radial direction, and Fourier inversion. 

A more complex configuration is shown in Fig. 3(a), where for the distance A0 
there are five ray parameters which solve the equation A(r,p) = Ao. The second 

(4 (b) 

t 4 

At3 A I 
FIG. 3. (a) A reduced travel-time curve, with two over-lapping triplications. 
(b) Integration path in the complex ray parameter plane, crossing five saddles, each 

at a value of p satisfying A(r, p )  = Ao. 
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derivative of the phase integral, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaA/ap, is alternately positive and negative, giving 
saddles with the orientation shown in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3(b). r 2  may be deformed to cross each 
saddle by the steepest descents path, to give approximations of the type (15) for the 
first, third and fifth saddles. For the second and fourth, the approximation is of type 
(15) times zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-i). Our analysis has been for the case of positive frequencies. The 
negative frequency solution can be found from the requirement that u(r, t )  be real, 
implying that the Fourier transform has a real part which is even in w,  and an imagi- 
nary part which is odd. Inverting to the time domain, arrivals corresponding to the 
first, third and fifth saddles thus behave like -8 ( t -T) ,  but for the second and fourth 
the time dependence is the allied function, [r(t-T)]-l  obtained by Hilbert trans- 
formation. 

These approximate evaluations of integral (13) are accurate only if the saddles in 
Fig. 3(b) are sufficiently separated. If the distance A0 is near a caustic, then two adja- 
cent saddles may be sufficiently close for their contributions to interfere. Although 
this effect can be analysed with the use of uniformly asymptotic approximations to 
the integrand (Chester et al. 1957), it may numerically be simpler to compute the 
integral (13) directly, using (14) for the phase. This procedure is followed below. 

(v) The final point to note in equation (13) is that a smoothly varying velocity pro- 
file has been assumed. If discontinuities are to be allowed for, such as the Earth's free 
surface, then the associated reflection and transmission coefficients must be intro- 
duced. The principal techniques involved are well known (Scholte 1956) for simple 
Earth models consisting of a few homogeneous shells, since in these the vertical wave 
functions at any depth are made up from spherical Hankel functions, which have been 
widely studied. It is found in such models that the wave path of interest (for example, 
S K I D )  can be analysed by isolating its partial wave series in the Debye ray expansion 
for the total response. A Watson transform can still be used, but now any path 
deformation in the complex v-plane must take account of poles in the reflection/trans- 
mission coefficients for the ray path of interest. These poles are located by studying 
properties of the WKBJ approximation to spherical Hankel functions (Scholte 1956), 

FIG. 4. Approximate location of diffraction poles, for the Earth model described 
in Table 1. Short dashes are used for P wave poles, long dashes for S. 
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and so in more realistic Earth models, with radial variation of elastic properties 
between depths of discontinuity, we may still expect to locate relevant poles by using 
WKBJ formulae (7) for the generalized vertical wave functions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgv-1/2(j). If the wave 
path under discussion has some interaction with the Earth's free surface, and with 
discontinuities between the crust and mantle, mantle and core, and outer core and 
inner core, then the associated poles may be expected to be near the schematic dashed 
lines shown, in the complex ray parameter plane, in Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 1 

Body wave velocities in a Jeffreys-Bullen Earth model, with parameters also for a 
homogeneous crust and solid inner core. The last two columns give grazing-ray ray 

parameters for each interface. 

Discontinuity 
Free surface 
Crust 
Mantle 
Mantle 
Outer core 
Outer core 
Inner core 

Radius r (km) 
6371 
6338 
6338 
3473 
3473 
1250 
1250 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a (kms-1) 
5 
5 
7.75 

13.64 
8.1 
9 . 4  

11.16 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B (kms-9 r b  (4 rlB 6) 

3 1274 2124 
3 1268 2113 
4.353 818 1456 
7.302 255 476 
0 429 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 
0 133 - 
3 112 417 

This diagram is for an Earth model with the discontinuities described in Table 1. 
Poles are located on lines starting near (but not on) the real p-axis, starting near real 
values each of which corresponds to a ray (either P or S) bottoming at one side of a 
discontinuity. The poles string upwards or downwards according to whether the 
grazing ray is just above or just below the interface. The complex p-plane contains 
also: poles in the left half plane which are the reflection in the origin of those shown 
in Fig. 4: poles corresponding to Stoneley or Rayleigh waves for each interface; and 
poles arising from the Watson transformation itself. 

The rigorous analysis of path deformations, needed to change the Watson path 
(Fig. Al(a)) into paths such as rl or I'2 (Figs l(b) and 2(b)) presents a formidable 
prospect for realistic Earth models. However, such solutions need rarely be achieved, 
or even attempted, since sufficient guidance appears to be obtained from insight into 
properties of the complex ray parameter plane, plus occasional rigour for canonical 
problems. 

Briefly reviewing the major properties: the poles shown in Fig. 4 are associated 
with diffracted waves, the best seismological example being P diffracted along the 
bottom of the mantle (Phinney 8z Alexander 1966), and leading to energy leaking 
into the core shadow. Most such types of diffracted waves in fact have negligible 
contribution to seismograms : for example, S waves diffracted around the surface of 
the inner core, with a ray parameter of about 420 s. (Such waves could be excited only 
by tunnelling of P-wave energy through most of the outer liquid core.) A further 
simplifying feature is that Watson transforms are taken of partial wave series which 
in general are odd in v, immediately permitting the Watson path to be taken just above 
(or just below) the entire real v-axis. Each WKBJ approximation, a function of p 
and a radius rj (say), is accurate for all positions along this integration path, except 
for the vicinity of two values pj and -PI ,  where pj = rj/a(rj) (or pj = rj/p(rj), for 
S-wave functions). Since the radii at which vertical wave functions are needed include 
those at which boundary conditions enter the problem, the r5 are just those radii at 
which discontinuities are present in elastic parameters. For p near these p5 (listed 
for one model in the last two columns of Table l), the wave functions are proportional 
to Airy functions with small (of order 1) argument. Linear combinations of these 
and their derivatives, appearing in the denominator of reflection/transmission coeffi- 
cients, have zeros which generate the poles of importance in Fig. 4. Perhaps the major 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
5
/1

-3
/2

4
3
/6

1
5
2
0
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Calculation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbody zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwaves 253 

simplifying feature of WKBJ methods is that the reflection/transmission coefficients 
turn out to be those for plane waves, incident on the boundary between two homo- 
geneous half-spaces. The cases of near-critical incidence arise in just the cases that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p is near somepj, and the familiar branch cuts of planar problems have their analogue 
in the lines of poles shown in Fig. 4. 

Gilbert zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Helmberger (1972) have used several of the basic methods described 
in this section. Their work required path deformations which permit integrals such 
as (13) to be interpreted as a forward time transform, taking the WKBJ phase delay 
(i.e. J(r, p)) itself as the independent variable of integration. Their method, though 
often powerful, was not directly applicable for ray paths with turning points; nor was 
its use of wave reflection/transmission coefficients modified for near-critical incidence 
on spherical discontinuities. These drawbacks are absent from the present approach, 
which is illustrated by calculations for particular core phases. 

Applications 
We first examine PKKP at distances near 241 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO, which include a caustic. The radial 

displacement is given by (131, after inclusion of integrand factors giving coefficients 
for transmission into the core, reflection from below the mantle, transmission back 
into the mantle, and an extra phase shift (-a/2) due to an extra turning point. 
The choice of dependent variable (potential, or displacement), used to obtain these 
coefficients, is unimportant, since only their product is needed. If receiver and source 
radii are equal, we have 

with coefficients 

TPK = 2pm01c cos im cos 2jmlD 

RKK = [D - 2pC cos im]/ D 

TKP = 2pc01m cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAic cos 2jm/D 
and 

where suffix m refers to the bottom of the mantle, c to the top of the core, and the 
dependence on ray parameter (required for evaluation of (16)) is via 

D = pcolc cos im +pm[am C O S ~  2jm +4s2Pm3 cos im cos jm] cos ic 

cos iz = (1 -p2az2/r2)1/2 (x = m, c) s = p/r 

cos j m  = (1 -p2&2/r2)1/2 cos 2jm = 1 -2p2&2/r2 r = rm. 

The phase factor may be obtained from equation (14), using standard methods for 
calculating travel time and distance for a ray with given take-off angle, or ray para- 
meter. The method used here is given by Julian & Anderson(1968, their Appendix), 
assuming the law 01 = arb in each layer of the Earth model given in Table 2. 

To evaluate the integral in (16) for displacement, it remains to determine the path 
I?. For the model of Table 2, a caustic is present in PKKP (surface focus) at 
A, = 240.8", with ray parameter pc = 227 s. For A0 > A, there are two real ray 
paths, with saddles at p',p" as in Fig. 5(a). This figure also shows a steepest descents 
path I?, crossing each saddle. For A0 < Ac, the equation A(r,p) = A0 has two 
complex conjugate roots, giving saddles as in Fig. 5(b). In this case, the steepest 
descents choice of I' is taken across one saddle only. (The steepest descents crossing 
of the other saddle would be in a direction throughp", parallel to the imaginaryp-axis.) 
This choice of path begins and ends in the same regions of the p-plane as in Fig. 5(a), 
and is a path for which the integrand contributions to ur are effectively concentrated 
on a short length. Integrand singularities nearest p = pc occur near pj = 254.6 s, 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

An Earth model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp), specified at 18 radii. Values are taken from Jeflreys (1962, 
pages 122 and 161), with a solid inner core and homogeneous crust. 

Radius r (km) D ( h s - 1 )  r b  (4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/? (kms-1) P (gcm-9 
125 11.305 11.06 3 17.2 
500 11.28 44-33 3 17.0 

lo00 11.21 89.21 3 16.8 
1250- 11.16 112.01 3 16.8 
1250+ 9-40 132.98 14.2 
1389.2 10.44 133.07 11-54 
2778.4 9.03 307.69 10-34 
3473 - 8.10 428 * 77 9.43 
3473+ 13.64 254.62 7.302 5.68 
3802.8 13.46 282.53 7-199 5.52 
4436.6 12.71 349.06 6.893 5.20 
5323.92 11.50 462.95 6.395 4.71 
5830.96 9.91 588.39 5.463 3.99 
5894.34 9.50 620.46 5.227 3.82 
5957.72 8-97 664.18 4.962 3.64 
6338- 7.75 817.81 4.353 3.32 
6338+ 6 1056.33 3.5 2.7 
6371 6 1061.83 3.5 2.7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

associated with rays in the mantle incident at near grazing angles (im - 90') on the 
core. These singularities, shown in Fig. 5(d), are well away from the paths r of either 
Fig. 5(a) or (b), and numerical evaluation of (16) can be achieved for all A0 near Ac 
with the path I? of Fig. 5(c). 

The positions and orientations of saddles in Fig. 5(a) and (b) are similar to those 

I d'. 

FIG. 5. Disposition of saddle points p' and pa, singularities, and resulting paths 
I? for the cases: (a) PKKP at distances A0 > Ac; (b) PKKP at A0 c Ac; (c) choice of 

as two line segments, appropriate for numerical work for all distances AO near 
Ac; and (d) the path for P+PcP at distances near the shadow boundary of the 

Earth's core. 
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of an Airy function with negative (Fig. 5(a)) or positive (Fig. 5(b)) argument. Jeffreys 
(1939) has attempted to use Airy's diffraction theory for the caustic in PKP, but such 
a geometrical method does not account correctly for the curvature of rays in an 
inhomogeneous medium. Such curvature is described in our problem by the positive 
auantitv 

the model of Table 2 giving zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0.000212 s-2. Note then that the phase delay 
J = J ( A 0 , p )  can be expanded about (Ac,pc)  in the form 

J(A0,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP) = Tc +(do- AC)P -B(p -pcI3/6 (17) 
(correct to third order in small quantities Ao- Ac, p - p c )  where 

Tc = T(pc) = J(Ac,pc)  = travel time to distance Ac. 

To approximate displacement near a caustic, we may then substitute (17) in (16), 
evaluating all but the phase at p = p c ,  and obtain 

I = 1 exp iw[Tc+(A~-Ac)p -B(p -pc )3 /6 ]  dp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i - - etw[Tc+(A0-*c)*cl2 cos w[(Ac-Ao) p+Bp3/6] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdp. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

This last integral is an Airy function (Abramowitz & Stegun 1964, equation 10.4.32), 
and I = 2~ etu[Tc+(Ao-Ac) pcl (+wB)-1/3 Ai[(+wB)-1/3 w(AC - Ao)]. (19) 

Before turning to the numerical evaluation of (16), (18) and (19), it is of interest to 
note that the ray configuration of PKKP occurs also for light rays refracted and 
reflected by a sphere of water in air. Enhanced amplitudes near the caustic of once 
internally-reflected rays (PKKP) are responsible for the primary rainbow. Secondary 
and tertiary rainbows are occasionally observed in nature, at directions the seismolo- 
gist would associate with caustics in P3KP, P4KP. Nussenzveig (1969b) discusses the 
scattering amplitude for these cases, and his Fig. 8 gives an integration path of the 
type needed in our present problem. 

The numerical evaluation of equations (16) and (14) for displacement near the 
caustic in PAX7 is shown in Fig. 6, which displays both slowness and logarithmic 
amplitude of the vertical component. Crustal reverberations here are ignored, being 
obtainable from Haskell's (1962) method, if needed. The slowness (reciprocal of 
horizontal phase velocity) is found by differentiation of the phase of ur with respect 
to Ao, and division by w. The calculations are carried out for two different periods, + s and 2 s. For the longer period, the approximate method of equations (18) and (19) 
is also displayed over distances Ao such that the argument of the Airy function in 
(19) has magnitude less than one. These results may be compared with the predictions 
of ray theory, which in Fig. 6 are shown as the ray parameter curvep = p(A0)  and as 
the amplitudes obtained (from geometrical spreading and plane wave reflections and 
transmissions) for each branch on the lit side of the caustic. 

A principal feature of Fig. 6 is the way in which, at finite frequencies, both the 
slowness and the amplitude of the arriving displacement wave are close to just one 
of the ray theory branches. One might have expected stronger interference between 
the two branches, but this does not happen because the reflection coefficient RKK 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
5
/1

-3
/2

4
3
/6

1
5
2
0
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



256 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

240 

v) 
v) 
w 
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA220 

s 
v) 

200 

Ae. Degrees 

P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. Richards 

-21 

- 
L 

3 - 
Q 

m 
0 - 

-23 

- 25 

Ae, Degrees 
FJG. 6. Slow~ess and amplitudes for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPKKP in the Earth model oT Table 2. A 
caustic is present at AO = Ac = 240-8 O,  and calculations are shown on the basis of 
ray theory; numerical integration of equation (17) for two different periods; and 
Airy diffraction, allowing for ray curvature (equations (19) and (20)). One 
branch of the ray theory amplitudes has a zero at AO = 242%' due to a zero in 

reflection coefficient RKK at ray parameter value p = 240 s. 

turns out to be much smaller for values of p on the second branch (p > p,) ,  going 
through a zero near p = 240 s. Despite such variations in a factor of the integrand in 
(16), the Airy method is quite good for amplitudes near Ao. However, it appears 
poor for slowness. Amplitudes given by (16) are down by a factor of 10, for waves of 
2-s period, at about 3" into the shadow side of the caustic, and for 3-s period this 
decay is reached at about 1 '. 

The apparent success of the numerical integration method for calculating PKKP 
suggests its use to investigate other core phases. Engdahl(l968) has reported observa- 
tions of PmKP up to m = 5, reproducing a record of P4KP, and Bolt & Qamar (1972) 
have obtained records of P7KP. But the caustics for P4KP and P7KP occur, in the 
crude Earth model of Table 2, for p c  = 246.5 s and 251.6 s respectively (at distances 
A, = 415.4" and 668.0"). Such slowness values are close to pj  = 254.6 s, the value 
for mantle P waves at grazing incidence on the core. The difficulty is thus raised that 
solution integrands, of the type in (16), have their main contribution at ray parameter 
values near a system of singularities of the type shown in Fig. 4. The problem is not 
that any extra residues are picked up by the integration, or that the integrand is ill- 
behaved: it is simply that the WKBJ expression (9) is inaccurate for values of p 
(= (n +$) /w)  near the slowness value which makes the radial argument a turning 
point. The physical limitation imposed by this breakdown is that plane wave reflec- 
tion/transmission coefficients are inadequate to investigate grazing incidence of a 
wave upon a spherical boundary. To investigate the extent of the inaccuracy, and to 
improve on (9) where necessary, consider the one-dimensional wave equation satisfied 
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where W is a vertical wave function (a spherical Bessel function, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa were constant). 

For r near the turning point radius, the solution of (20) is given by Airy functions, 
using a method going back to Rayleigh (1912). But we wish to investigate solutions 
W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW(r, n) with n varying and r fixed. Richards (1970) has shown in this case that 
the normalization implicit in (7) leads to 

( 1 )  

gUp-1/2(2)(r) = clw-5/6 erm/a[Ai(~ e*zin/3) +O(w-2/3)]  (21) 

where the quantity z is linearly related to p via zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = czw2/3[P-r/or(r)], and the real 
frequency-independent constants c1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcz are c1 = (2/r)5/6(~a~)l/2a1/3(l - b)-1/6, with 
b = (r/a)(du/dr); ~2 = (2a/r)l/*( 1 - b)-2/3. 

Formulae (21) enter the analysis of core phases via the cos im of (16), since this 
expression arose in the plane wave theory from the ratio of the radial derivative of a 
mantle P wave function to the function itself: different signs arise for this ratio using 
upgoing or downgoing plane waves, and these cases must be distinguished if (21) are 
used, since the two directions then give ratios which are not so simply related. The 
resulting coefficients across the core-mantle boundary thus become 

TPK = Pm%[C(l)+C(')] cos 2 jdD 

RKK = [D-2pcC(')]/D 

TKP = 2pcam cos ic cos 2jm/D, 

. 

where 

and 
D = pcacC(l) +pm[am C O S ~  2jm +4s2/9m2C(1) cos j,] cos ic, 

suffuc rn indicating evaluation at the base of the mantle, and Ai'(5) being (d/&) Ai(5). 
As p decreases below the core-grazing value (rm/am), C(1) and C(2) both become 

(approximately) cos im, and the wave coefficients in (22) match on to those of (16). 
But as p increases above r,&,, one finds 

C(1) N i(p2cxmz/rm2-l)1/2 - -C(Z), and TPK -+ 0. 

For intermediate values of p, formulae (22) quantify a tunnelling effect: P-waves 
which have turning points just above the core can leak energy down into the core. 
Engdahl(l968) and Adams (1972) have observed that tunnelling energy is significant, 
since they find that PmKP arrivals are often most noticeable at distances beyond the 
cut-off imposed by P waves bottoming at the core-mantle boundary. To obtain the 
total reflection coefficient for, say, P 4 U ,  one need merely examine the product 
TPKRKK~TKP.  This expression contains all the interaction of P4KP with the core 
mantle interface. By examining the product 

[T~~g,p-i/2(~)(rm)I R~~~[T~p/g,p-i/z(~)(rrn)l 

and observing that I g 0 p - 1 / 2 ( 2 ) / g ~ z - 1 / 2 ( 1 )  I = 1 for all real values of p, it also follows 
that the exponential decay between turning point and interface is automatically 
included in T P K R K K ~ T K ~ .  (This decay originates from the C(l)+C(Z) of TPK:  see 
equation (22)). Values of the total P4KP reflection coefficient are shown, as a function 
of ray parameter, in Fig. 7. Periods of 2 s and 3 s are used, and also shown is the 
result of using plane wave coefficients. The latter method becomes inadequate for the 
longer period, for p > 252 s. Engdahl's (1968) and Adams' (1972) observations are 
satisfactorily explained by Fig. 7, since amplitudes for the two finite frequencies are 
highest at around 2569, beyond the core-grazing value of 254.6. At 2-s period, the 
reflection amplitude remains within a factor of 10 of its maximum for ray parameters 
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I. 

. I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 

c' 
Y IOY 

Y 

K 

$ .01 - 

.001 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E 

LEGEND 
Plane wave method - 
Airy method{ 

I,,,, -_____ 
2'ec. ............... 

0-\ 

\ 
J. ....... 

*.. .... 1 .* .... \ 

' I  

255 260 

P, sec 

FIO. 7. Calculation of the tunnelling effect for the Earth model of Table 2. The 
total transmission coefficient for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP4KP is shown as a function of ray parameter. 
Plane wave theory predicts a cutoff at p = 254.6 s, due to the mantle ray just grazing 
the core. But the Airy method (formulae (23)) permits energy at finite frequencies 
to cross into the core, even from mantle ray paths which do not intersect the core. 

up to 5 s beyond the core-grazing value. The frequency dependence of the reflection is 
remarkable, in that the shorter period has the greater amplitude for part of the 
tunnelling range. It is clear that attenuation in the outer core will be assigned too 
low a value (high Q) if plane wave coefficients are used. 

The above results have been developed from a theory of high frequency waves. 
But, unfortunately, the asymptotic nature of WKBJ approximations makes it difficult 
to quantify any improved accuracy that results from using Airy functions where WKBJ 
theory breaks down. A test of the Airy function method can, however, be achieved, 
by using it in a canonical problem which has already been solved exactly. This is the 
problem of P waves near the shadow boundary of the Earth's core, in an Earth model 
with individually homogeneous mantle and core. Phinney & Cathles (1969) have 
obtained this solution in the form of equation (l), and have discussed the numerical 
integration. The exact integrand involves a PcP reflection coefficient in terms of 
Hankel functions, and resulting slowness and amplitudes of the potential for P+PcP 
waves are shown in Fig. 8(a) and (b). The Earth model used was just that of Phinney 
8c Cathles, which has its shadow boundary at distance 113.5". Fig. 8 shows also 
the result of doing the same integration (involving in the complex p-plane the 
path I? of Fig. 5(d)), but approximating the mantle P wave by Airy functions of 
formulae (21). In this case both for the 1-s and 10-s periods, the Airy function 
method is clearly successful. 

It is important for many wave propagation problems in the Earth to know the 
range of real ray parameters, or angles of incidence, within which plane wave reflection/ 
transmission coefficients are inaccurate. No simple dehitive answer can be given, 
but the range must crudely be given by those arguments of an Airy function for which 
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5.0 

4.9 

4.8 
U zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\ u 
% 

+-. 4.7 
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113.54 
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FIG. 8. P-wave potential slowness (a), and amplitude (b), due to a point source in 
a homogeneous mantle, computed for each of two periods by the exact (Hankel) 

and Airy function methods. Accuracy of the latter is verified. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
WKBJ theory (for the Airy equation) is inadequate. The theory is in error by about 
6 per cent for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAi(z) when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = 1 or z = -1, and rapidly worsens as z -, 0. So one 
may expect, from the definition of the Airy function argument in (21), that plane wave 
coefficients will be inadequate for studying a boundary condition at radius r if the ray 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/3
5
/1

-3
/2

4
3
/6

1
5
2
0
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



260 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. G. Richards 

parameter is in the range 

As might be expected, this range is decreased for higher frequencies. It is also 
decreased for b zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1, implying a near critical velocity gradient. This also should be 
expected, for the standard Earth flattening transformation (Muller 1971) converts a 
spherical shell with gradient zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(da/dr) = a/r into a homogeneous plate, in which plane 
wave theory is exact. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Extension of basic methods 

The emphasis above has been on calculating displacement components in the 
frequency domain in the form 

u(A0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1/2f(P, Ao) efwJ(PPA0) dp 

for w > 0. But the dependence on frequency here is very simple, and if values off 
and J are stored along I? then the time domain solution may readily be obtained from 

r 

Computation of theoretical seismograms via (23) may compare very favourably 
with the generalized Cagniard method for a spherically symmetric medium (Gilbert 
& Helmberger 1972). Both (23) and the Cagniard procedure would require Fourier 
integration (or convolution) for practical sources and instrument responses, so com- 
parison of the methods must be between an integration over p, and calculation of a 
Cagniard path. Both paths are in the complex ray parameter plane, and both are 
required (in their different contexts) to be steepest descents paths (although r need 
only approximately be so). But in any given problem, the paths are completely 
different. The Cagniard path, for our analysis of the Fourier transform, would be 
exactly a path of stationary phase. 

The principal merits of (23) are then: (i) thatfand J are easily modified for different 
distances Ao, r remaining fixed, whereas the Cagniard path requires recalculation 
for each distance; (ii) that the method (23) will work for ray paths having a turning 
point, and the Cagniard method (as presently developed) apparently will not; (iii) that 
our method may be modified (by formulae (21), (22)) to study problems for which 
plane wave reflection/transmission coefficients are inadequate; and (iv) that (23) is 
not significantly complicated by allowing each velocity profile zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, ,3) to have an 
imaginary part, thus quantifying the effect of attenuation. 

Conclusions 

Short-period body waves in the Earth display a variety of properties (caustics, 
diffraction, tunnelling) which appear to require a full wave theory for their evaluation. 
But this evaluation is often accurately given by expressing wave solutions as an 
integration over complex ray parameter, the integrand being adequately given by 
WKBJ theory. (See equations (16) and (14)). The advantages lie in straightforward 
and rapid numerical computation, and in insight into wave properties, which are 
often predicted by inspection of features in the complex ray parameter plane. 

Amplitudes and dT/dA, calculated at finite frequencies near the caustic in PKKP, 
are found to be controlled by properties of the earlier travel-time branch. But for 
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Calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbody waves zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
PmKP (m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> 3), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe larger amplitudes are associated with the later travel-time branch, 
and are in fact largest for energy tunnelling into and out of the core from a mantle P 
wave ray with turning point somewhat above the core-mantle boundary. 
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Appendix 

The partial wave expansion (6) is here manipulated into a form more suitable 
for computation. We use the Watson transform 

f (n++)  = + 1 f ( v )  e-f* sec YW dv 
c n=O 

where C is taken around the positive real v-axis, and is shown in Fig. Al(a). The two 
cases to be considered are as follows. 

Case A.  Source below receiver, ray departing upwards. 
This configuration is shown in Fig. l(a), and note that there is no turning point 

along the ray path. 
Writing (6) as 

ca 

4 = Ls C. (2n + 1) gn(l)(r)  fn(rs) e2fnn Pn(cos A) 

(note the introduction of e2(nn = 1, required below for convergence in part of the 
upper half of the complex order plane), we may use (Al) to find 

+ =  - L a /  vg,-1,2(l)(r)fy-1/2(r8) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPv-llz(cos A) egvn sec YW dv. 

The work of Nussenzveig (1965, equations (2.20) and (2.35)) shows that C may be 
deformed across the first quadrant, and parts of the second and fourth, into path CO 

m =  0 

C 
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Calculation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbody waves 263 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Fig. Al(b)), which is symmetric about the origin. Writing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Pv-iiz(cos A) sec v r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= - i[Qy-1/dZ)(cos A)- Q-,-1/d2)(cos A)] cosec VT, 

the integral along zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO may be split into two terms. Replacing v by - v in the integral 
containing Q-v-1/~(2),  and using 

f-v-iiz(rs) = fy-i/z(r8) e*vn - i sin vrgv-1/z(2)(rs), 

it is seen that there is a cancellation of parts of the two terms, and 

$ = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-Ls vgv-i/z(l)(r) g,,-l/z(z)(rs) Qv-1/d2)(cos A) dv. 
0. 

The Watson poles have at this stage been transrerrea to the negative real v-axis 
having poles at the negative integers), and, reversing the direction of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACO, we 

find 

$ = LS vgv-1/z(l)(r) gv-i/z(z)(rs) Qy-~/z(2)(COS A) dv (W 
Cl 

where C1 is shown in Fig. Al(c). 

A 

Real Y v 
F I ~ .  Al. (a) Path for Watson transformation. Poles occur at Y = n+& n = 0, 
1, 2, 3, . . . . (b) Deformation of C, for direct ray with no turning point. (c) As 
for CO, after Q-,,-i/a(Z) integration is reflected in the origin, and CO direction is 
reversed. (d) Deformation of C, for direct ray with turning point, and after 

Q-v-l/~(2) integration is reflected in the origin. 

Case B. Source below receiver, ray departing downwards. 

present. 
This configuration is shown in Fig. 2(a), and note that a turning point is now 

Using P, (cos A) = e*nn Pn( - cos A), one sees from (6) that 
m 

n = O  
$ = Ls Z (2n + 1) g n ( W ) f n ~ r s )  e*nnPn(-cos A), 
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264 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. C. Richards zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and then from (Al) that 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-iLs vgU-1/2(')(r)fY-1/2(rs) Pu-1/2(-c0s A) sec zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvn dv. 
C 

It follows from Nussenzveig (1965, equations (2.19) and (2.34)) that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC may be 
deformed across the fourth quadrant, and parts of the first and third, into path C2 
(see Fig. Al(d)), which is symmetric about the origin. At this stage, the integrand 
has poles on the positive real v-axis. Writing 

Pu-1/2(-c0s A) sec vn = [ -e-*unQv-1/2(2)(cos A) +eimQ-u-1/2(2)(~~~ A)] cosec vn, 

and using 
f-u-1/2(rs) = fy-1/2(r8) e-tun + i sin vngv-1/2(1)(r8), 

it is seen that the method used for Case A again permits the poles to be shifted to the 
negative real v-axis, and in fact there results 

4 = LS I vgU-1/2(Yr) gu-i/dl)(rs) Qv-lp(2)(cos A) dv. (A31 
CI 

The formulae (A2) and (A3) display the two simplifying properties claimed for the 
(Watson) transformed solution. Namely, that only the expected one term (of four 
terms) is retained from the expansion (6), and that it is integrated over a complex 
path with no prior scalar multiplication. 
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