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CALCULATION OF CHEMICAL EQUILIBRIUM 
BETWEEN AQUEOUS SOLUTION AND MINERALS: 

THE EQ3/6 SOFTWARE PACKAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA‘ 0  

ABSTRACT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The newly developed EQ3/6 software package computes equilibrium models of aqueous 

geochemical systems. The package contains two principal programs: EQ3 performs distribu- 
tion-of-species calculations for natural water compositions; EQ6 uses the results of EQ3 to predict 
the consequences of heating and cooling aqueous solutions and of irreversible reaction in rock- 
water systems. The programs are valuable for studying such phenomena as the formation of ore 
bodies, scaling and plugging in geothermal development, and the long-term disposal of nuclear 
waste. 

EQ3 and EQ6 are compared with such well-known geochemical codes as SOLMNEQ, 
WATEQ, REDEQL, MINEQL, and PATHI. The data base allows calculations in the temperature 
interval 0-350°C, at either 1 atm-steam saturation pressures or a constant 500 bars. The activity 
coefficient approximations for aqueous solutes limit modeling to solutions of ionic strength less 
than about one molal. 

The mathematical derivations and numerical techniques used in EQ6 are presented in 
detail. The program uses the Newton-Raphson method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto solve the governing equations of chemical 
equilibrium for a system of specified elemental composition at fixed temperature and pressure. 
Convergence is aided by optimizing starting estimates and by under-relaxation techniques. The 
minerals present in the stable phase assemblage are found by several empirical methods. Reaction 
path models may be generated by using this approach in conjunction with finite-differences. This 
method is analogous to applying high-order predictor-corrector methods to integrate a correspond- 
ing set of ordinary differential equations, but avoids propagation of error (“drift”). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 

INTRODUCTION 

This report describes the EQ3/6 software package for computing chemical equilibrium problems in aqueous 
geochemistry. The package includes two principal source codes, EQ3 and EQ6. Data files support model calculations 
in the temperature interval 0-350°C, either at pressures on the 1 atm-steam saturation curve or at a constant pressure of 
500 bars. The activity coefficient approximations for aqueous species are not suitable to describe aqueous solutions of 
concentration greater than about 1 molal ionic strength. 

EQ3 computes from input analytical data the distribution of chemical species (ions, neutral species, 
ion-pairs, and complexes) in an aqueous solution. This calculation produces a model of the fluid, which specifies the 
concentration and thermodynamic activity of each chemical species occurring in the chemical system and included in 
the data base. The program then calculates the saturation state of the fluid with respect to all relevant mineral phases in 
the data base. The aqueous solution model calculated by EQ3 is used as a starting point for mass transfer computations 
by EQ6. 

EQ6 can compute several kinds of mass transfer models. If the initial model fluid is supersaturated with 
respect to any mineral phases, the program first “equilibrates” it by calculating a new model of modified fluid plus 
precipitates. This new model satisfies the original mass constraints. EQ6 then computes reaction progress models of 
compositional evolution and mass transfer in a closed or open (flow-through) system containing this aqueous solution 
(with or without any initial precipitates). Reaction progress may describe changes in temperature and pressure, 



irreversible reaction of the fluid with reactants (rocks, minerals, gases), or both of these simultaneously. The 
calculation predicts in detail the changes in fluid composition, the identity, appearance, and disappearance of 
secondary minerals, and the values of reaction progress at which the fluid saturates with reactants. Such computations 
permit modeling of the effects of heating and cooling aqueous solutions and of irreversible reaction in rock-water 
systems. They represent a powerful tool to study such phenomena as the formation of ore bodies, scaling and plugging 
in geothermal development, and the long-term isolation of nuclear waste forms. Two simple examples, the dissolution 
of microcline (KAlSi,O,) in HC1 solution at 25°C and 1.013 bars and the heating of Salton Sea water, illustrate use of 
the programs. 

The total EQ3/6 software package consists of the two principal source codes (EQ3 and EQ6), the set 
of supporting data files, two utility routines for data file management, and sample input files for EQ3 and EQ6. 
The package contents are listed in Appendix A; the length of the package precludes reproducing all of its con- 
tents. However, this software is available from the National Energy Software Center.* The EQ3/6 package consists of 
over 30,000 card images and should therefore be requested only on magnetic tape. A request form is repro- 
duced in Appendix B. 

All source codes were written in FORTRAN Extended 4.6 language (Control Data Corporation, 1977) for 
execution on CDC 6600 and 7600 computers. Principal programs EQ3 and EQ6 and utility program EQF each require 
one or more externals (subroutines) from the International Mathematical and Statistical Library, a set of commercial 
software subscribed to by most government and university computing centers in the United States. Also, it is desirable 
but not necessary to incorporate a local external into EQ6 to permit the program to sense the approach to the 
job-computing limit during execution. Activation of this feature permits EQ6 to write a file that permits re-starting the 
job. 

The purposes of this report are to announce the availability of the EQ3/6 software package, to discuss the 
application of EQ3 and EQ6 to solving problems in aqueous geochemistry, to compare these with other available 
programs, and to present the mathematical and numerical approaches adopted in program EQ6. The source codes and 
data files of this package were written to be highly transparent to the user. Each program has its own operating manual 
built into the source code via comment statements. Each manual is the primary documentation for each program, giving 
a general overview of its purpose, technical parameters, and other information the user needs to operate and even 
modify the program. This document is therefore intended to supplement, not duplicate, these operating manuals. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

CAPABILITIES OF PROGRAMS EQ3 AND EQ6 

The first principal program of the package, EQ3, solves the distribution-of-species problem familiar to 
geochemists: given certain compositional parameters of an aqueous solution, what are the concentration and ther- 
modynamic activity of each individual ionic or molecular species (e.g., Na+, NaSO,-, NaCl?? Parameters used in 
such problems are the “total” concentrations of simple species (Le., “total” Na’), the pH, and the oxidation-reduction 
potential (Eh) or some other redox parameter such as oxygen fugacity or pe-. The geochemical foundation of this 
problem has been discussed in detail by Garrels and Christ (1965, Ch. 4). The most closely comparable programs now 
available are SOLSAT (Helgeson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. ,  1970), SOLMNEQ (Kharaka and Barnes, 1973), and WATEQ (Truesdell and 
Jones, 1974) and its daughter versions WATEQF (Plummer et al. ,  1976) and WATEQ2 (Ball et al.,  1979). The 
programs REDEQL (Morel and Morgan, 1972) and its daughter MINEQL (Westall et a l . ,  1976) are also roughly 
similar. 

I shall term this distribution-of-species calculation a Class I problem to distinguish it from related chemical 
equilibrium computations (Class 11) that are defined by a complete array of mass balance constraints. This Class I 
calculation has no mass balance constraints on the elements oxygen and hydrogen, which compose the solvent, water. 
In place of such constraints, pH and Eh values are fixed and the modeled system contains a completely arbitrary mass of 
solvent (the species H20( Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,), which, adopting the molal scale of concentration, may conveniently be taken as 1000 g. 
The input variables (pH, Eh, etc.) are such that the masses of oxygen and hydrogen in the system (relative to 1000 g of 
solvent) is determinable only after the Class I computation has been solved by an iteration process. 

The second principal program, EQ6, computes models discussed by Helgeson (1968, 1979) for chemical 
equilibrium and mass transfer in aqueous systems. It is similar in modeling function to the program PATH1 (a.k.a. 

*Write to the National Energy Software Center, Attn. M. Butler, Argonne National Laboratory, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9700 South Cass Avenue, Argonne, IL 60439. 
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PATHCALC: Helgeson, 1968; Helgeson et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal . ,  1970), but differs in numerical methodology in that, unlike PATHI, it 
does not integrate a set of differential equations. Helgeson ’s model of partial-equilibrium mass transfer allows division 
of the aqueous system into an equilibrium subsystem (aqueous solution plus minerals with which it is in heterogeneous 
equilibrium) and a reactant subsystem (another aqueous solution or a set of minerals that are not in equilibrium with the 
solution in the first subsystem). The reactant components are then titrated into the equilibrium subsystem according to a 
reaction progress variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0 and specified relative rate constants. Temperature and pressure may be constant or 
functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 

At any value of 5, however, the problem reduces to finding the dismbution of phases and species in an 
aqueous system at fixed temperature, pressure, and known mass for each element present. This requires a Class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 
calculation. Remember that, unlike the Class I computation, it is constrained by a mass balance relation on each 
element in the system, including oxygen and hydrogen. In this case, the mass of the solvent is no longer arbitrary, but 
must be calculated. Similarly, the pH and Eh (or alternate redox parameter) are now output, not input, variables. 

The Class I calculation yields the thermodynamic affinity of solid phase components to precipitate (Le., the 
saturation state of the aqueous solution with respect to the various minerals). This is usually the main goal of such 
computations. However, a Class I calculation does not reveal which of the (often many) supersaturated phases would 
actually be present in a stable heterogeneous assemblage. In fact, such an assemblage can include a phase with which 
the initial aqueous solution is undersaturated. This is clearly a Class II problem, because the pH, Eh, and mass of 
solvent all may change in response to precipitation. 

Program EQ3 was written mainly to provide input to EQ6 by calculating a model of the initial aqueous 
system, though it can also be used independently, as other Class I programs such as SOLMNEQ are. EQ3 is very 
flexible in the input constraints it accepts, which may include “total” concentrations, “free” concentrations, activities 
(pH), and assumptions of heterogeneous (aqueous solution-mineral) equilibria. The user may define the redox state 
directly by specifying a value of Eh, pe-, oxygen fugacity, or dissolved oxygen content, or indirectly by specifying 
information on a redox couple (e.g., by entering values for both “total” sulfate and “total” sulfide). 

EQ3 allows specification of redox disequilibrium if the user has sufficient input to do so. Ion-pairing and 
complexing reactions of geochemical importance are thought to be sufficiently rapid that the equilibrium assumption is 
appropriate for treating them (Garrels and Christ, 1965, Ch. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). However, it is not generally appropriate in the case of 
redox reactions, especially at low temperatures, because many of these reactions are controlled by bacterial activity. 
Thus, a natural aqueous solution may yield analyses of dissolved oxygen, “total” sulfate, and “total” sulfide that give 
one calculated value of Eh for the oxygen-water couple and a different value for the sulfate-sulfide couple. A direct 
measurement with a platinum electrode might give still a third value. EQ3 thus permits calculation of a more realistic 
chemical model when sufficient input data are available. 

EQ6 first checks that the input system (usually defined relative to lo00 g of solvent) is in homogeneous 
equilibrium. If it is not, the program first “equilibrates” it according to the specified mass balance constraints. This 
will yield a single Eh for the solution and alter to some extent all the other solution parameters, including the pH. If there 
are then any supersaturated phases, the program “precipitates” a set so that no supersaturations remain. This step may 
result in still different values for the pH and other solution parameters. Any such “initial” precipitates may be retained 
in the system or deleted before the reaction progresses. Calculations may then be performed to model simple titration or 
irreversible reaction with “reactants” in systems that are either closed to solids or open (flow-through systems). Such 
models will be discussed later. 

EQ6 and EQ3 are supported by a data base that covers the temperature range 0-300°C over one of two 
pressure regimes. One set of data files is for a constant pressure of 1 atm (1.013 bar) from 0-100°C and the steam 
saturation curve from 100-300°C; the other set is for a constant pressure of 500 bars. Another set of data files holds log K 
(equilibrium constant) values for specified reactions at temperatures of 0,25,60, 100, 150,200,250, and 300°C. EQ3 
and EQ6 do not read any of these files directly, but rather a set of secondary files which contain fitted coefficients of 
interpolating polynomials. Two polynomials are regressed for each reaction in the data base: one for 0-100”C, the other 
for 100-300°C. The 100°C point is weighted in the regression to minimize any discontinuity between the two 
polynomials at that temperature. More details of the data base are given in Appendix C. 
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EQUILIBRIUM CALCULATIONS IN 
AQUEOUS GEOCHEMISTRY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Equilibrium calculations are of interest to many fields, such as chemical engineering and physiological 
chemistry; new notes or articles on such computations appear almost monthly in the scientific literature. A review of the 
past progress in applying equilibrium calculations to problems of aqueous solution chemistry will aid evaluation of EQ3 
and EQ6 in light of previous methods. This short review is restricted to important works that either lie in the field of 
aqueous geochemistry or deal with methods or concepts pertinent to the EQ3/6 software package. 

NATURE OF CHEMICAL EQUILIBRIUM PROBLEMS 

Solving a chemical equilibrium problem requires three general steps. First, one must explicitly define the 
model in terms of its physical and thermodynamic nature. For example, the “classical” problem in chemical 
equilibrium computations is to calculate the state of a closed system of specified elemental composition at fixed 
temperature and pressure (i.e., the Class I1 problem solved by EQ6 for aqueous systems). A different closed system 
model might specify fixed pressure and enthalpy, so that the temperature is an unknown variable to be calculated. Open 
systems of various kinds are another family of possible models. The nature of the physical-chemical model determines 
the set of governing equations to be used in computations. 

The second step is to manipulate this original set of equations into a desirable form. This usually reduces the 
number of operating variables (unknowns) in the computation. The original governing equations may contain many 
parameters with unknown values, including masses, concentrations, and non-ideality parameters. The manipulation is 
usually done so that one need deal only with the masses of a subset of species or, alternatively, with extent-of-reaction 
variables for a set of linearly independent reactions. The third step is to solve the remaining simultaneous equations. 
Iterative techniques are required except in the case of trivial problems (see Zeleznik and Gordon, 1968; Van Zeggeren 
and Storey, 1970). 

Rather than solving sets of equations, some workers have chosen to formulate the equilibrium computation as 
an optimization problem, such as solving the so-called classical problem by minimizing the calculated free energy of 
the system (see Van Zeggeren and Storey, 1970, for a detailed discussion of this approach). However, not all 
equilibrium problems of interest are properly constrained by an optimization criterion (e.g., the Class I distribution-of- 
species problem). Most geochemists have avoided optimization techniques in favor of solving sets of nonlinear 
equations. 

The techniques for solving systems of equations have been grouped by Van Zeggeren and Storey (1970, 
p. 134) into three categories: (1) pure iteration; (2) Newton-Raphson iteration; and (3) integration of ordinary differ- 
ential equations. 

Pure iteration is basically simple recursion or back-substitution. The arrangement of the recursion scheme is 
often critical to getting the system to converge. This method gives first-order convergence in the limit of the solution. 

The Newton-Raphson method is probably the most popular device for solving systems of nonlinear 
equations; a detailed discussion of this approach can be found in Van Zeggeren and Storey (1970) or any general text on 
numerical methods. It gives second-order convergence in the limit of the solution. However, this should not be 
interpreted to mean that this method is necessarily faster than pure iteration. 

The differential equations approach, not often used, is to differentiate the governing algebraic equations with 
respect to a variable that controls the composition of the system. The basic concept is to first use one of the other 
methods to solve for the state of a system that contains all the necessary elements, but in relative proportions that make 
the problem easy to solve. One then integrates the system of ordinary differential equations to the system composition 
that was actually desired. 

DEVELOPMENT OF MODELS FOR AQUEOUS SYSTEMS 

Methods for calculating chemical equilibrium models of non-trivial systems were first developed by 
engineers and applied mathematicians in the 1940’s. They successfully applied such computations to the development 
of rocket propellants, explosives, and sophisticated chemical processing techniques. The physical systems they studied 
usually consisted of a single gas phase or, less often, a gas phase plus one or more solids. These computations were 
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nearly always what I term Class I1 problems, because they typically included a mass balance constraint on each element 
in the system. The basic strategies for computing chemical equilibrium models in such systems have been reviewed 
extensively by Zeleznik and Gordon (1968) and by Van Zeggeren and Storey (1970). 

In the early 1960’s, biochemists began to apply equilibrium models to the study of physiological fluids (see 
Perrin, 1965). These, unlike the earlier models, were basically Class I computations. This work inspired Garrels and 
Thompson (1962) to develop a pioneering model of sea water, which included the first distribution-of-species 
calculation in the field of geochemistry. Such calculations have since been applied to a wide variety of natural waters 
(e.g., Garrels and Christ, 1965, Ch. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4; Polzer and Roberson, 1967; Pai?es, 1969). 

The biochemists and geochemists generally avoided the numerical aspects of thermodynamic equilibrium 
problems. Most of the geochemists used the pure iteration method: simple back-substitution schemes patterned after 
that of Garrels and Thompson (1962), which was originally intended for hand calculation. The sophisticated numerical 
analysis and techniques developed by applied mathematicians and engineers were largely ignored. Simple back-sub- 
stitution is the numerical basis of such well-known programs as SOLMNEQ (Kharaka and Barnes, 1973) and WATEQ 
(Truesdell and Jones, 1974). The usual alternative to back-substitution in solving Class I problems is the Newton- 
Raphson method, which is used in the well-known programs REDEQL (Morel and Morgan, 1972) and its daughter 
MINEQL (Westall et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.,  1976). It was also adopted by Crerar (1975) for modelling hydrothermal solutions. The 
Class I problem usually does not present any formidable numerical difficulties, and from the practical viewpoint there 
appears to be no one superior program or method (see Nordstrom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al.,  1979). 

The geochemists zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA’ distribution-of-species problem is often set up so that the mass action relations describing 
complex dissociation and redox crosslink reactions are substituted for mass and charge balance in the original 
equations. This reduces the number of unknown species concentrations, which must be iteratively calculated, to a 
so-called “basis” set. Each basis species may zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbe assigned a formal one-to-one association with a mass balance 
relationship in which its concentration appears. Usually, the basis species is a simple ion, and one assigns Na+ to 
sodium mass balance, for example. For a model with redox reactions, oxygen fugacity or Eh or pe- may be the logical 
choice as the basis species to associate with the charge balance equation. (If a model contains no redox reactions, charge 
balance is implicitly constrained by the mass balance relationships .) Basis sets are sometimes formally recognized (as 
for example in the MINEQL program of Westall et al.,  1976). However, they are also present implicitly in the 
back-substitution method of Garrels and Thompson (1962). 

Program EQ3 has a formally recognized set of basis species which is presently fixed by the structure of its 
data base. The choice of basis set is sometimes crucial in a distribution-of-species calculation, however. It is especially 
so when dealing with trace metals or ligands for which the mass balance is heavily dominated by a species not in the 
basis set. In such cases, the iteration may converge at an impractically slow rate or simply diverge. One may solve the 
problem by choosing the dominant species, whether a simple ion of alternate oxidation state or a complex, as the basis 
species. MINEQL (Westall et al. ,  1976) is an example of a code that changes its basis set to influence the iteration to 
converge. Such a feature has not yet been incorporated into EQ3. 

The first step toward computation of Class I1 models for aqueous systems was made by Helgeson (1968). He 
developed a partial equilibrium model for the irreversible reaction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof an aqueous system (aqueous solution plus 
minerals, all in heterogeneous equilibrium) with a set of “reactant” minerals, whose relative rates of dissolution were 
specified in terms of a single reaction progress variable 6. The initial aqueous system (consisting of only an aqueous 
solution) was first modeled by a Class I calculation using the program SOLSAT (Helgesonetal., 1970) as a subroutine. 

Helgeson used the differential equations approach; he differentiated with respect to 6 the set of equations 
describing mass and charge balance and mass action. Derivatives with respect to 6 of the unknown quantities in the 
resulting set of linear differential equations could be found by solving a matrix equation. A second differentiation 
permitted similar evaluation of the second derivatives. The overall (irreversible) reaction could then be computed for a 
step of reaction progress by using these values of the f i t  and second derivatives to evaluate a truncated Taylor’s series. 
At completion of each such step, the results were checked to see if any mineral supersaturations had developed or if any 
“product” minerals (solids in equilibrium with the fluid) had “disappeared” (decreased to less than a very small, 
arbitrary mass). If either condition was detected, the step-size was cut by an interval-halving technique to find the 
lowest value of reaction progress at which a new phase saturated or an old one “disappeared.” The assemblage of 
“product” minerals was then modified and the integration continued. This permitted prediction of the overall mass 
transfer in the system, including changes in fluid chemistry, the appearance and disappearance of “product” minerals, 
and the eventual equilibration of the fluid with the “reactant” minerals. 

Helgeson’s computer program (PATHI; a.k.a. PATHCALC) was a pioneering effort in theoretical 
geochemistry. It was used to generate models of geochemical processes such as diagenesis and metasomatism 
(Helgeson et al. ,  1969) and genesis of ore-bearing fluids (Helgeson, 1970). It is methodologically interesting as one of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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the few reported examples of the differential equations approach to equilibrium computation. PATHI, however, had 
several deficiencies. First, if the initial solution created by the Class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI computation was supersaturated with respect to 
any minerals, the method could not be applied and the program was forced to terminate. Secondly, “drift” error 
developed and propagated in the integration of the differential equations because of the higher-order terms neglected in 
the truncated Taylor’s series. Third, execution was long and costly. The last problem has been remedied by adopting 
the high-order predictor-corrector integration method described by Gear (197 1 a,b), as was done in a version of PATHI 
developed at Los Alamos Scientific Laboratory (Herrick, 1976). 

Russian investigators (Karpov and Kaz’min, 1972; Karpov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. ,  1973) criticized PATHI for the first two 
reasons noted above. They eliminated these problems by adopting the free energy minimization method (the 
optimization technique mentioned earlier) developed by one school of engineers (see Van Zeggeren and Storey, 1970). 
Their efforts, however, seem to have been largely ignored in the West. 

Reed (1977) has recently written a Class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 program that uses the Newton-Raphson method to solve the 
governing algebraic equations and thereby avoids the “drift” problem. He has applied this code to modelling the 
generation of ore-forming fluids and ore bodies. 

The programs REDEQL (Morel and Morgan, 1972) and its daughter MINEQL (Westall et al., 1976) deserve 
comment here because they have the capability to calculate the models of heterogeneous aqueous systems. However, 
they appear to do so by means of Class I, not Class zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, computations. If calculation by either of these programs shows the 
aqueous solution to be supersaturated with respect to a solid, the mass action equation corresponding to dissolution of 
that solid is used in a substitution to eliminate one mass balance relation. However, no mass balance constraints are 
recognized in the first place for the elements oxygen and hydrogen, the solvent components. This means that the mass 
of the solvent plus either the pH or the Eh, or both, must remain fixed during the “precipitation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” Therefore the results 
of such calculations do not correspond to the physical situation in which a supersaturated solution in a closed 
environment converts to a stable heterogeneous assemblage of modified, saturated fluid plus precipitates. Another 
difficulty with REDEQL and MINEQL is that they sometimes make use of a parameter called “total ionizable 
hydrogen” (a.k.a. TOTH; Morel and Morgan, 1972). The definition of this parameter is a reduced form of the charge 
balance equation. Unfortunately, TOTH is not a conserved quantity in the presence of redox reactions, so it cannot be 
used to compute pH or pe- as can the charge balance equation itself. 

EQ6, with its companion program EQ3, was written to perform the modelling functions of PATHI while 
eliminating its shortcomings and extending its flexibility for the user. EQ6 solves at each point of reaction progress the 
original algebraic equations that describe mass and charge balance, mass action, and non-ideality . Finite-difference 
expressions of high order are used to estimate derivatives with respect to reaction progress and then predict the values of 
a basis set of unknowns at a subsequent point of reaction progress. This process is closely analogous to the predictor part 
of Gear’s (1971 a,b) scheme for integrating differential equations. However, the predicted values are then corrected, by 
using the Newton-Raphson method, to satisfy the original algebraic equations instead of corrected to (locally) satisfy 
the difference equations that represent the corresponding differential equations. This process avoids incurring a “drift” 
error. The Jacobian matrix used by EQ6 in the correcting iteration is the same as Helgeson’s “grand” matrix (for 
constant temperature and pressure), which is used in correcting when using the differential equations approach. The 
operational difference between my method and Helgeson ’s is that the matrix equations are then solved with different 
right-hand-side vectors. 

The methods used in EQ3 have been discussed in detail by Wolery and Walters (1975) and were used in a 
computer program called SALT (Walters and Wolery, 1975). This document will therefore concentrate on presentation 
of the mathematical derivations used in EQ6 and discussion of some of the important numerical techniques adopted. 
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APPLYING THE NEWTON-RAPHSON METHOD TO THE 
CLASS 11 EQUILIBRIUM CALCULATION 

BASIC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADEVELOPMENT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The basic strategy in program EQ6 is to solve for the equilibrium distribution of phases and species present in 

a closed system (E the equilibrium subsystem) for specified elemental compositions (n: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa at fined temperature 
(T) and pressure (P). (See the glossary of symbols.) The only additional restriction is that an aqueous phase be present. 
Tables 1-3 contain the set of equations required to describe this model. With the glossary of symbols, these equations 
introduce the notation, which is somewhat complicated. The equations will be manipulated into a form suitable for 
solving by the Newton-Raphson method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E 

E  ̂
S 

W 

S 
- 

s 
S* 
A 
S 

r 

A 
r 

4 

$ 

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 

; 

n: 

X 

n 

!2 

z, 

m, 

Ys 

a 

X 

A 

I 

Glossary of Symbols 

subscript denoting a chemical element 

total number of chemical elements 

subscript denoting an aqueous species (1 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&o(@) 
special subscript denoting s = 1 (%O(@) 

number of aqueous species used as basis variables to describe the aqueous phase; refers in 
particular to the fictitious species 02(g.8q) 

number of non-fictitious aqueous species basis variables; identical to 2 and 

subscript denoting the aqueous species destroyed in the r-th aqueous reaction; 

total number of aqueous species 

subscript denoting an intra-aqueous reaction (dissociation of an aqueous complex or redox 
cross-link reaction) 

total number of (independent) intra-aqueous reactions; note that 

subscript denoting a pure mineral (one having a fmed composition) or its dissolution reaction 

total number of pure minerals; also denotes osmotic coefficient 

subscript denoting a solid solution 

total number of solid solutions 

subscript denoting a solid-solution end-member component or its dissolution reaction 

total number of end-members of a solid solution 

mass of a species, in moles 

total mass of the e th  element 

log,, n; logarithmic mass 

electrical charge on the s-th aqueous species 

molal concentration of the s-th aqueous species; note that m, = wnJn, 

activity coefficient of the s-th aqueous species 

thermodynamic activity 

mole fraction of a solid-solution end-member 

activity coefficient of a solid-solution end-member 

true ionic strength 

- 1 

C s* s 'i 

= 2 - 'F 
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equivalent stoichiometric ionic strength of a sodium chloride solution; defined as the total molality 
of either Na or C1 

fugacity of oxygen in the aqueous phase; may be abbreviated as fo2 

Debye-Huckel ion size parameter 

Debye-Huckel parameters 

power series coefficients for computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAycO~(,,, 

coefficients for computing aH20(P) 

gas constant (1.98726 cal/mol -K) 

temperature -K 

In 10 

water constant; 1000/molecular weight of H,O zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 55.51 

composition coefficient (moles element per formula weight) 

reaction coefficient 

excess Gibbs energy of a solid-solution 

solid-solution excess free energy parameter 

abbreviation for d log a,/d I 

abbreviation for d log y,ld I 

abbreviation for the formal partial derivative d log hx=l/d log xx,, 

equilibrium constant of a reaction 

activity product of a reaction = rI a,"' 

vector of basis variables which describes a system or subsystem in internal equilibrium 

vector of residual elements which measures the error in the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg 

residual vector identical to E, except that the mass balance residual elements are in the relative 
rather than the absolute, sense 

the largest magnitude (absolute value) of any element of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP_ 

the root-mean-square of the elements of P_ 

vector of Newton-Raphson correction terms 

the largest magnitude of any element of 6 
the Jacobian matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( a  ai/d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzj) 

relaxation parameter 

convergence function; see text 

alternate convergence function; see text 

decision function for dropping a phase; see text 

a closed system in internal equilibrium 

a system containing a set of one or more reactants 

a system conceptually defined as a closed reaction vessel 

a system "physically removed" from E; mineral phases are periodically removed from 
open system calculations 

reaction progress variable 

increment of reaction progress 

pressure, in bars 

- 

1 

- 
to X in 
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T" temperature--"C 

T," 

tl,t2,t3 temperature tracking coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P subscript denoting a reactant 

P 

temperature at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0--"C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A 

total number of reactants 

reactant tracking coefficients for the input of a reactant into the system E; relative rate constants 
of order increasing from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 , 9 5 2  7 5 3  

f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ f , , ( , ,  . . . , tn] n-th order finite difference for a set of reaction progress values 

f [ 12 . . . n ]  

f 
d 

condensed notation for n-th order finite difference 

vector of finite differences increasing in order from 1 

vector of derivatives with respect to reaction progress increasing in order from 1 

matrix for computing 4 from f; = _D f r, - - 

These equations are written in a format that assumes a specific notational organization of the aqueous species 
(s = 1 ,;). The first S species (s = 1 ,S; s = 1 denotes H,Oa) correspond on a purely formal one-to-one basis with the 
elements and their mass balance equations. I have chosen to adopt oxygen fugacity as the redox parameter used in 
writing reactions. To index this variable, I shall create a fictitious aqueous species, 02(g,aq), and denote it as theFth 
species (3 = s + 1). It may be assigned a formal correspondence with the charge balance equation. The remaining 
aqueous species (s =3 + 1, c) correspond one-to-one with the aqueous reactions in which they are destroyed. The fusty 
aqueous species are the "basis" species. Each reaction, whether it is a dissociation, redox crosslink, or mineral or gas 
dissolution reaction, is written exclusively in terms of these basis species and the associated species (aqueous, solid, or 
gas) that is destroyed: 

(e.g., 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ -CaCO," + Ca++ + COT, 

0 2 - Fe+++ - 1/2 H20m + Fe++ + Ht + 114 02(g.a9)) 

(e.g., 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - KAlSi,O, - 4 H+ + A l + + +  -t io; + 
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Table 1. 
solid phases and for which the total m a s  of each element (nl) is specified. 

Equations defining a chemical equilibrium problem for a system that consists of an aqueous phase and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Mass balance for each element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 . 8  

Charge balance in the aqueous phase 

Mass action for intra-aqueous reactions (complex dissociation and redox cross-link reactions); s* > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS denotes the 
species destroyed in the r-th reaction (r = 1 9 )  

A 

Mass action for minerals of fixed composition (4 = l ,+) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

Mass action for solid-solution end-member components (+ = l,$; X = l ,X*) 

Activity-concentration relation for aqueous solute species (s = 2,4) 

as = msys 

Activity-mole fraction relation for solid-solution end-members (+ = 1,$; x = 1,; ) 

a = x  A 
x$ x6 x+ 

Definition of the equivalent stoichiometric ionic strength of a sodium chloride solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E  * = Na or C1) 
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Table 1. Continued. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Definition of true ionic strength 

S 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= % C m z 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs s  

s=2 

Activity of liquid water’ 

log a, = -2/(2.303w)T$ 

where C$ = 1 - DJ + b 2 7 / 2  + 2b,T213 + 3b4y3/4 (osmotic coefficient) 

D = 2.303A/(b,3?j 

G = l + b , f i  

J = B  - 2 1 n B  - 1/B 
A A A 

Activity coefficients of aqueous solutes (s = 2,;) 

log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ,  = f$I) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfs is one of the functions listed in Table 2 

A 

Activity coefficients of solid-solution end-member components ( J I  = 1 ,$; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX = 1 ,X,,) 

log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh x , i , ~  == gx$,(Xx=j+,,g’Xx = ks>,J ’  . ’ .) 

where gxa is one of the functions listed in Table 3 

Molal concentrations of aqueous solutes (s = 2, 

mS = wns/nw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h 

Mole fractions of solid-solution end-members (JI = l,$; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = l,X,,) 

lHelgeson et al. (1970). 
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Table 2. Activity coefficient functions for aqueous solute species discussed by Helgeson (1968, 1969) and 
Helgeson et al. (1970). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ideal behavior; suitable for slightly to moderately polar neutral species 

Extended Debye-Huckel equation; suitable for charged species 

log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAys zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -Az,2V'F/ (1 + & B ~ )  + BI 

Power series fit to aqueous carbon dioxide data; suitable for dissolved gas species andother neutral, low polarity species 

Table 3. Some conventional models for treating solid solutions: excess free energy functions and activity 
coefficient relations. 

Ideal solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Gx, = 0 

2.303 RT log Ax = 0, all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX 

Third-order Maclaurin, binary solution',' 

2.303 RT log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, = (-W2/2 - W3/2)~,' + W3xI3/3 + (W1 + WJ2 + WJ6) 

Binary regular3 

2.303 RT log A, = WxZ2 

2.303 RT log X, = WxI2 

'Note that log &+O as x,+O onIy if (W, + W2/2 + W,/6) = 0. If this condition is not satisfied, then this treatment should not be applied to phases which 

exhibit continuous solid solution. This treatment was incorrectly programmed in the original PATHI program described by Helgeson et al. (1970). 

*Compare to Helgeson et al. (1970) and references therein. 

3Compare to Saxena (1973, p.11-12). 
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Table 3. Continued. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGuggenheim polynomial, binary solution 

The set of equations in Tables 1-3 includes mass-balance, mass action, non-ideality, and definitional 
relations, and presents an equal number of unknowns, including masses, concentrations, mole-fractions, activities, 
activity coefficients, etc. For numerical facility it is desirable to reduce the number of unknowns by a sequence of 
substitutions involving the initial set of equations. I have chosen as operating variables the masses of a basis set of 
aqueous species, the oxygen fugacity, and the masses of mineral species present in the modelled system. Eliminating 
the masses of aqueous zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu complexes and simple ions of alternate oxidation state required the adoption also of the ionic 
strength parameters I and I as operating variables. This was necessary to avoid aninfinite loop of substitutions in the 
mathematical derivations, to be presented. Because these quantities (masses, fo2, I ,  I) are all inherently non-negative 
functions, their logarithmic forms were adopted. This prevents physically unrealistic estimates from occurring during zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 0  

2.303 RT log & = (W, - 3W2 + 5W3)x,' + (4W2 - 16W3)xI3 + 12W3x14 

Ternary regula? 

Cubic Maclaurin. binarv solution6 

Gxs = xixz(Wi xz + WZXI) 

2.303 RT log AI = (2W2 - W , ) X ~ ~  + 2(W1 - W2)xZ3 

2.303 RT log & = (2W, - W2)x12 + 2(Wz - W,)x13 

4Compare to Saxena (1973, p. 14-15). 
Tompare to Rigogine and Defay (1954, p. 257) 

'Compare to Saxena (1973, p. 16). 
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the iteration process (an old trick; cf. Van Zeggeren and Storey, 1970, p. 94). Thus, the vector of operating variables 
has the general form 

The corresponding set of reduced equations is given in Table 4. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 4. A reduced set of equations in logarithmic unknowns for describing a chemical equilibrium problem. 

Modified mass balances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1,2) 

and log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, and log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA,: are replaced in all equations by appropriate expressions from 
Tables 2 and 3, respectively. 
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Table 4. Continued. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAModified charge balance 

A 
S r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ZSlOPS + ~ Z S . 1 O P ~ *  
s =2 r = I  

Equivalent stoichiometric ionic strength 

True ionic strength 

) 0 = -log I + log zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(51 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 z:o,o(Q~ - Qw) + 45 Zs,~wlO~*~* - P w )  

r = l  

A 

Mass action for a pure mineral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4  = 1,4) 

c 

S 

where v i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx u ,  
s=2 

A A 
Mass action for a solid-solution end-member component ($ = l ,&  X = 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,x,> 

0 = -log K + u log aw + ux$og f + vxt6 (log w - 9,) + ux6xJI (log xx6 + log Ax+) 
x9 xw 0 2  

s 

XlLs 
where ui9 = u 

s=2 

These equations may be solved simultaneously by the Newton-Raphson method (cf. Van Zeggeren and 
Storey, 1970, Sec. 4.2.2, p. 92-94; Sec. 5.2.3, p. 137-139). Given an estimate for the vectorzofoperating variables, 
the error can be measured by the residual vector (y, whose elements correspond to the right-hand-sides of the equations 
of Table 4. The Newton-Raphson method is applied by computing a correction vector 5 from the equation 

(1) 
wherei is the Jacobian matrix (a  ai/a",) whose elements are presented in Tables 5-7. A new estimate of g is then 
computed by 

(2) 

-- J6 = --(Y - - 

zi+l = zi + $. 
In addition to g, other useful residual functions may be defined: 

a identical to g except that p, = dn:, E = 1 , E h ;  
pmu, the largest magnitude of any element of e; and 
p,, the root-mean-square of the elements of @. 
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Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, pma, p 6 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,,, (analogous to pmax).all approach zero as the iteration converges. Program EQ6 
tests for convergence by comparing each of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp,,, and a,, with a user-specified tolerance parameter (usually in the range zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArms' -' 

to lo-"). It is also useful to define a convergence function: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p,,"v,i = (prnax.i-1 - ~max,i)"mm,i-~ 

Note that this function is negative if the iteration is diverging, close to zero if little improvement is being made, and 
approaches unity if the iteration is converging rapidly. The function 6conv is analogous to pcOnv and has the same 
properties. 

Table 5. Elements of the Jacobian matrix (J).' 
- 

A 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
aac/aQ,, = 2.303k 10'" + ~ 2 . 3 0 3 k c s , u ~ 1 0  '*/urs* 

r = l  
€W 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

d a J d Q s p w  = 2.303kn10Q' + 1 2 . 3 0 3 k  a* urslOQ'*/urs~ 
r = l  

A I 
I 

d a B / d  log I = - 12.303k,,* ulS,Cs* + 
r = l  s=2 

A 
r 

d a z / a  1ogT = - c2.303zs*  urwCwlOPs*/urs~ 
r = l  
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Table 5. Continued. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
acYia 10gT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvmwcw 

acYx,/a log I = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASVX@ c, 
s=2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x #i 

Y 'Expressions for C and S functions are defined in Tables 6 and 7, respectively. The parameters I,,,, and I,,,, are defined in Table 1 ,  and Qs, 

in Table 4. 

Table 6. C, functions for aqueous species.' These equations correspond to those in Tables 1 and 2. 

Water (Table 1 )  

C ,  = -(2/2.303w) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[f + JD - (Db13?'2/2B2) + (b2T /2) + (4b3>/3) + (9b,T3/4)] 

Ideal behavior (Table 2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c, = 0 

Extended Debye-Huckel equation (Table 2) 

C, = -A~,21-"~/[2(1 + !sBI'/2)2] f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 

Power series (Table 2) 

C, = cl + 2c21 + 3c312 + 4c413 

'Note that C, = 8 log a,./aI and that C, , ,  = 8 log 'Y,/aI. 
- 
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Table 7. Sx=l.r=,,Q functions for solid-solution end-member components.' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ideal solution 

Sij = 0 for all i j  

Third-order Maclaurin, binary solution 

SI2 = ( - W , X ~ ~  - W3Xz3) /RT 

SZI = [ - (Wl + W3)xI2 + W3xI3] /RT 

Binary regular solution 

SI2 = ( ~ W X , ~ )  IRT 

S,, = (2WxI2) IRT 

Guggenheim polynomial, binary solution 

SI2 = [2(Wl + 3W2 + 5W3)xZ2 + 3(-4W2 - 16W3)xZ3 + 48WZxz4] /RT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
S p I  = [2(Wl - 3w2 + 5W3)xI2 + 3(4w2 - 16W3)xI3 + 48W3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxI4]  IRT 

Cubic Maclaurin, binarv solution 

Si2 = [2(2W, - W , ) X ~ ~  + 6(Wl - W2)xZ3] /RT 

Szl = [2(2Wl - W2)xI2 + 6(W2 - WI)xl3] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/RT 

'Note that Slj = a log A,/a log x,, is a purely formal partial derivative of the expressions in Table 3, and is not any form of partial molal quantity, 
such as a chemical potential. 

Several problems remain. Newton-Raphson iteration, when it converges, is usually sufficiently fast. 
Unfortunately, however, the basic method outlined thus far may diverge. In particular, the Jacobian matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) may 
become singular or so ill-conditioned with respect to machine word length that the correction vector cannot be 
computed. Also, it has thus far been assumed that the mineral phase assemblage is known in advance. Special 
techniques and modifications to the Newton-Raphson method are required to treat these problems. Some are specific to 
the chemical equilibrium calculation dealt with here; others are very general. 
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UNDER-RELAXATION TECHNIQUES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwidely used device to enhance the probability of convergence is to replace Eq. (2) by 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is a relaxation parameter (sometimes called a “convergence forcer,” although it does not guarantee 
convergence) whose value lies on the interval (0,1]. It is especially useful when dealing with poor starting estimates. 
If the iteration is converging satisfactorily (as measured by pOnv zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= K ) ,  then under-relaxation should be discontinued 

Several schemes can be adopted to manage K .  The simplest device is to choose a constant value of % or $5 
until five to ten iterations have been done or until &,,, (or 6,,,,) shows that convergence is proceeding satisfactorily. 

A second device is to place a limit 6’ on the magnitude of the Newton-Raphson correction on any iteration. If 
timan> zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA_ S I ,  where 6‘ might have a value of, say, 2.0, then choose 

( K  = 1). 

This scheme keeps the iteration from blowing up (via overflow during the arithmetic of computing the new residual 
functions or new Jacobian) by very large elements of 8 in a single iteration. 

A third technique is to incrementally reduce K to decrease an absolute measure of divergence, (Pmax,i+l 
- &,,as,i) > 0, to within some chosen tolerance. If the number of incremental attempts becomes large, it is likely that 
convergence cannot be induced, and the iteration should be terminated in favor of pursuing some other course of action 
(such as changing the mineral phase assemblage). 

All three of these strategies have been incorporated into program EQ6. Extensive testing has found them 
necessary and satisfactory. A fourth scheme, not used in EQ6, is to locate the optimal value of K on each iteration. A 
suitable single-valued residual function that is a continuous function of K (such as Prms) is minimized on the interval 
(0,1]. Such methods have been discussed in detail by Ting-Po and Nancollas (1972). 

OPTIMIZING STARTING ESTIMATES 

During development of program EQ6 it was found that, if an element mass balance residual were more than 
slightly negative at the start of iteration, it would become increasingly negative instead of improving and the iteration 
would diverge. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 - 0.1 (10% mass deficiency) very little risk of this was observed; but for p,5 - 0.5 (50% 
mass deficiency) it occurred frequently. The problem was usually associated with a minor element, such as Cu, and 
could be avoided by incrementing the corresponding basis aqueous species variable (e.g., Qcu++) prior to Newton- 
Raphson iteration until the mass balance residual became non-negative. This simple, fast procedure eliminates the need 
for a time-consuming, curve-crawling technique proposed by Crerar (1975). That method requires first solving with 
only the major elements present, then calculating the numerical equivalents of steps on a reaction path to place the 
minor metals into the system. 

The above observation suggests a parallel approach for choosing starting estimates for the logarithmic masses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(Q) of solids added to the phase assemblage. The mass of any new phase is physically limited by the masses of its 
constituent elements present in the system. Choice of a starting estimate comparable to this limit insures positive 
starting mass balance residuals; this yielded excellent results during testing, even when some of the mass balance 
residuals were highly positive (p, 1 .o, 100% calculated mass excess). 

FINDING THE CORRECT PHASE ASSEMBLAGE 

The method described so far requires that the mineral assemblage be specified a priori. However, often it is 
not known in advance, and may be difficult to guess. By successively modifying a sequence of assumed, provisional 
phase assemblages it is possible to find one that satisfies all the governing equations. 

First one should ask, how many mathematical solutions may exist? The phase assemblage may not be unique 
(i.e., more than one may occur) if the temperature and pressure fall on an invariant point or a univariant curve of some 
mineral assemblage. For example, if the chosen temperature and pressure lie on the univariant curve of two polymorphs 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand B, then three “correct” phase assemblages could occur: aqueous solution-A, aqueous solution-B, and aqueous 
solution-A-B. The last assemblage could not be computed by the iteration procedure described here because the rows in 
the Jacobian matrix for the mass action expressions for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA and B would be identical, causing a singularity. With these 
considerations in mind, I shall take the first “correct” assemblage successfully computed as the only correct 
assemblage. 

I shall assume that, once a satisfactory phase assemblage has been found, no further question of uniqueness 
need be considered. This is perhaps an article of faith-believing that the Gibbs free energy function is truly convex. 
Studies by applied mathematicians have shown that this indeed holds for thermodynamically ideal systems (Hancock 
and Motzkin, 1960; Shapiro and Shapley, 1965). However, i t  has been demonstrated (Caram and Scriven, 1976; 
Othmer, 1976) that it may not be true when some popular non-ideality relations are applied (e.g., the regular solution 
model in Table 3). 

The phase selection scheme adopted involves modifying the provisional assemblage by adding one phase, 
deleting one phase, or (occasionally) replacing one phase by another. This one-at-a-time restriction, adopted also by 
Morel and Morgan (1972), serves two purposes. First, the selection process may occasionally make a wrong choice, 
such as deleting a phase which should actually be present. Restricting the number of simultaneous changes in the 
assumed assemblage facilitates recovery from such an error. Second, more than a few phases may need to be added, as 
when eliminating supersaturations from a starting solution model created by program EQ3. If all possible phases were 
added at once, the burden on the Newton-Raphson iteration would be greatly increased. Also, the Jacobian matrix 
might be rendered singular by linear dependence among the rows corresponding to the solid species’ mass action 
relationships. This occurs in formal violations of the Gibbs phase rule and also in cases in which the phase rule is 
satisfied only because the temperature and pressure happen to lie on an invariant point or univariant curve. 

The Newton-Raphson iteration may converge or diverge for a given provisional phase assemblage. If it 
converges and one or more supersaturations remain, the supersaturated phases may be ranked according to decreasing 
affinity to precipitate. The affinity function of the j-th phase may be calculated as 

Aj= 2.303 RT(log Qj- log Kj) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  

where Q, is the activity product of the phase (Helgeson, 1979). (For solid solution components, the calculation is not 
straightforward because Qj depends on the assumed composition of the solid solution phase; see Helgesonetal., 1970.) 
The phase with the highest affinity may then be added to the provisional assemblage (Morel and Morgan, 1972). (To 
avoid a possible conflict between the addition and deletion mechanisms, no phase should be added to the system unless 
its affinity exceeds some small tolerance.) 

Two problems may occur when the above scheme is used. First, affinities (also log Q and log K) are 
dependent on molecular formulas and reaction coefficients, both of which are arbitrary. Consider the dissolution of 
calcite: 

Doubling the molecular formula, 

Ca,(CO,), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 2 Ca” + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 CO; , 

or doubling the reaction coefficients, 

2 CaC03 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 2 Ca++ + 2 COT 

doubles log Q, log K ,  and the affinity. Choosing a new phase on the basis of chemical affinities therefore has a built-in 
bias in favor of phases with large molecular formulas, such as clay minerals. The affinities may instead be scaled by 
dividing by a factor which takes into account the number of aqueous species participating in the dissolution or 
precipitation of the phase: 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsecond problem when several new phases must be added is that a highly insoluble phase, such as hematite, 
may have a very high affinity even though the maximum mass that may be precipitated is very small. If such a phase is 
among the first to be added, its presence in the Jacobian will tend to hold its calculated activity product close to the 
equilibrium value and “anchor” the corresponding aqueous basis species (including H+, in the case of hematite). This 
can greatly decrease the rate of convergence, or even lead to divergence, when a major precipitate is added to the 
assemblage later. The problem can be eliminated by first examining the maximum precipitable mass of each phase, i.e., 
the limit imposed by the masses of the component elements in the aqueous phase. If this is very small, the scaled affinity 
of the phase may be arbitrarily reduced. (This has been tested by reducing the scaled affinity of aphase by a factor of 100 
whenever its maximum precipitable mass is less than lop6 mole.) This causes highly insoluble trace phases to be placed 
in the phase assemblage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAafter the major precipitates have been added. 

This method of computing scaled affinities to choose a phase to add to the mineral assemblage is a distinct 
improvement over directly using chemical affinities. Other techniques for scaling might be adopted; the ones chosen 
here are admittedly empirical. Their justification is that they have produced good results. 

The Newton-Raphson iteration procedure fails to converge, obviously, if no mathematical solution exists for 
the assumed set of mineral phases. It might, of course, diverge for other reasons, such as a bad set of starting estimates. 
Experience with EQ6 has shown that the techniques of optimizing starting estimates and of under-relaxation so improve 
the method that divergence is a reliable indication that a phase assumed to be present should be dropped. The single 
exception to this generalization is that divergence is also sometimes caused by a poor starting estimate for the oxygen 
fugacity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs will be shown later, this condition is easily detected. 

Divergence caused by an inappropriate mineral assemblage may be divided into two cases. First, the Jacobian 
matrix may be singular at the start because of an apparent phase rule violation. In this case, a subset of the mineral 
mass-action rows exhibits linear dependence. Second, iteration may proceed one or more steps before ceasing (the 
matrix may become too ill-conditioned to solve or iteration may be terminated by programmed criteria). Other work- 
ers (e.g., Morel and Morgan, 1972; Bos and Meershoek, 1972; others cited by Van Zeggeren and Storey, 1970, 
p. 141- 144)  have deleted solids for which negative masses are calculated. However, such physically unrealistic 
mathematical solutions cannot be obtained by the method described in this report because it uses logarithmic forms for 
all mass variables. Other techniques for choosing a phase for deletion must therefore be found. 

Let us first consider the case of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan apparent phase rule violation. This can occur only on adding a new mineral 
to the system. The subset of minerals involved can be found by testing for linear dependence. A mineral is involved if 
the set of mass action rows corresponding only to the other minerals in the provisional assemblage is linearly 
independent. An affinity-based criterion can then be used to choose which mineral in this subset should be deleted. 

For each mineral in the subset, one may calculate its hypothetical affinity in the presence of others. Suppose 
the subset consists of quartz (SO2), periclase (MgO), and enstatite (MgSiO,). The dissolution reactions and their 
respective conditions for chemical equilibrium are: 

In the presence of quartz and periclase, 

Hence, the hypothetical affinity of enstatite is 
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Similarly, 

and 

Note that 

If quartz or periclase were the last phase added, then 

This would indicate that only removal of enstatite from the system could lead to a system not supersaturated with respect 
to the other two solids. If, on the other hand, enstatite were the last phase added, then 

and the solid chosen to be deleted must be periclase or quartz. The logical procedure, in general, would be to choose the 
phase with the most negative hypothetical affinity. Here, however, the two negative affinities are equal. Testing of 
program EQ6 has shown that the procedure can be improved by scaling the hypothetical affinities in the manner used to 
choose a phase to add to the system. For the example above, this would indicate deletion of quartz. If a tie exists after 
scaling, one must make an arbitrary choice, such as deleting the phase with the lowest numerical index. 

If divergence occurs after one or more iterations, or if the matrix is singular at the start but the mineral 
mass-action rows are linearly independent, four independent criteria may be applied to choose a phase for deletion. 
These criteria are based on empirical grounds, but have yielded good results during extensive testing of EQ6. Each 
criterion yields a value of a “decision” function for every solid in the assumed phase assemblage. The phase with the 
most negative value is the choice of the individual criterion. If no mineral has a negative-valued decision function, then 
the criterion produces no candidate for deletion. Of the maximum possible four candidates, the one with the most 
negative decision function is the deleted solid. Table 8 gives definitions of the four criteria adopted in EQ6. Other 
variations and specifications are possible; these have given good results. 

Frequently, the logarithmic mass variable (see Table 8) of a mineral species that should not be present 
diverges toward minus infinity. This criterion is analogous to the convergence to a negative mass value discussed 
earlier. The decision function may be based on the final iterated value of the logarithmic mass variable, the value of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
last correction term, or the value of the sum of the correction terms for all iteration steps. In these cases, the magnitude 
ofthe last correction term generated nearly always matches the under-relaxation limit 6’ of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEq. (4). This is also how one 
can detect a poor starting estimate for oxygen fugacity (when S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8’). 

A second device, applicable only when computing a reaction path, is to look for a phase whose mass is rapidly 
decreasing with reaction progress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e). The decision function is simply the derivative estimated from finite differences. 
This criterion almost always chooses the same candidate as the first. These two criteria generally produce decision 
functions which are much greater in magnitude than the other two, and are termed the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAstrong criteria. They nearly 
always determine the dropped phase. 

The last two criteria in Table 8,  the weak criteria, are useful mainly very close to real or hypothetical phase 
boundaries; i.e., when a slight change in the elemental composition of the system would cause non-occurring phases to 
actually be present. In such a case, the logarithmic mass variable may fail to decrease, and the finite-difference Taylor’s 
series, if available, may not predict sufficiently rapid drop in the mass of the phase. The third criterion is based on the 
fact that residual function elements & and &, are numerical analogs of dimensionless affinities (log Qj - log Kj) for 
the respective mineral species. Negative values are analogous to the physical state of undersaturation, and can be used 
to choose the phase to be deleted. The fourth decision method is to search for a contrast between the mass balance 
residuals of elements that make up a phase and of those that do not. If the former are appreciably greater in magnitude 
than the latter, the phase is a candidate for deletion. 

If the phase selection scheme fails to find the correct assemblage, some options remain. If a reaction path is 
being computed and is beyond the initial value of reaction progress, then the step size can be cut until the method works. 
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Table 8. 
phase assemblage. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Loaarithmic mass variable criterion 

Decision functions (A) for evaluating the j-th phase as a candidate for deletion from the provisional 

If one or more iterations were performed: 

A, min zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ Qj, r ina l  - Qj, in i t ia l ,o}  

If no iterations were performed: 

AI = min{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ + lO,O} 

Derivative criterion (applicable only when computing a reaction path) 

A2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd Qj/d[ if d f!,/d[ < - 200, else 4 0 

Numerical undersaturation criterion 

A3 3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPj if pj < - 10 x (tolerance on Pmax), else A3 = 0 

Mass residual contrast criterion 

r 

1 
z 

where pms = 

- 
if log Prms - log firms < - 1, else A4 = 0 

where ?denotes an element that does not make up the 
phase, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 is the number of such elements in the 
system 

r 
wheLe i denotes an element that makes up the phase, 
and j is the number of such elements 

Otherwise, the user may select his own provisional phase assemblage and try again, or use reaction path techniques to 
find the right assemblage. As an example of the latter, suppose a starting aqueous solution exhibits several supersatura- 
tions and the phase selection method fails. The user may then suppress all phases (by ignoring supersaturations) and 
titrate in some component such as HCl (or H2 or O2 if the phase problem is mainly a redox one) until all affinities 
indicate no supersaturations, or some so few and small that the phase selection scheme will now work. Phase 
suppression may then be lifted and the components that were titrated in may be titrated out, until the desired system is 
found. 

COMPUTING REACTION PATH MODELS 

TYPES OF MODELS 

0 
The Newton-Raphson procedure described here may now be applied to the calculation of partial equilibrium 

reaction path models of mass transfer, which have been discussed by Helgeson (1968, 1979). Trachg a reaction path 
involves, in its simplest form, changing the mass constraints (n:, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = 1 ,t) on the closed system E (the equilibrium 
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subsystem) so that a series of compositionally neighboring chemical equilibrium problems may be solved. The user 
specifies a set of ;reactants ($may be zero) and a corresponding set of reactant tracking coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(t), which may be 
interpreted as relative rate constants (Helgeson, 1968). Thus, for the p t h  reactant, 

-dnpld[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,,  & E2,E - [ , ,E2 (p  = 1,8) . (17) 
- 

The change in the bulk (elemental) composition of E with reaction progress (e) is given by 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

dn:/d[ = -  z k  t P  (dnpldt) . 
p = l  

Integration of Eqs. (1 7) and ( 18) yields 

Temperature may also be varied as a function of reaction progress, 

Pressure may be changed in a manner similar to that for temperature, but presently the data base for program EQ6 
requires that P be 1 atm (1.013 bar) for T‘ 100°C and follow the vaporlliquid equilibrium curve for water for T“ 
> 100°C, or have a constant value of 500 bars for all temperatures. Because reactant dissolution rates and variation in 
temperature are arbitrary functions specified by the user in defining a problem, functional forms other than the 
power-series format chosen for Eqs. (17) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(20)  could be used. For example, temperature could be defined by a 
sinusoidal function, if desired. Negative rates of reactant dissolution, however, may be physically unrealistic, so the 
user should be cautious. 

Several types of paction path models, which have different physical interpretations, can be calculated. 
Considzr the closed system E, and a system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (reactant subsystem) of reactants to be added toE, along with a reaction 
vessel V (a physical enclosure) in which the reaction takes place. Two kinds of closed system models may be exam2ed: 
( I )  If vcontains both Eand E, then the reaction path is a model ofithe approach to equilibrium in a closed system (V) as 
irreversible reaction occurs between the species in E and E; (2) If V contains Ealone then the path is a model of the final 
equilibrium states of a sequence of compositionally different systems. If Einitially consists only of an aqueous solution, 
then reaction progress (6) may be interpreted as the reactandwater ratio. 

The only possible mathematical difference between these two models is that one or more of several reactant 
species might saturate with the aqueous phase and then later be destroyed as other reactants continue to react 
irreversibly. In the first model, such a reactant should be destroyed reversibly (at equilibrium), whereas in the second its 
input to E remains as arbitrarily specified by Eq. (17). The requirement for the first model can be satisfied by 
transferring the unreacted mass of a reactant at saturation from E to E, a simple bookkeeping operation. 

An open (flow-through) system model in which product solids are removed from to a “physically 
removed” system X permits modelling of compositional changes in a packet of aqueous solution and product mineral 
zoning, produced as the fluid moves through a reactant medium. Such transfers of mineral masses must take place 
periodically so that no mineral mass, once precipitated, is later destroyed by back-reaction with the fluid. 

- 

USE OF FINITE DIFFERENCES 

To obtain good starting estimates at a new point of reaction progress, information at previous points can be 
used. The technique is based on use of Taylor’s series, as was the original method of Helgeson (1968). All estimates of 
derivatives, however, are based on finite-difference calculations. The high-order predictor-corrector method of Gear 
(1971a,b) also uses finite-difference expressions to estimate derivatives of order higher than first. His method, 
however, uses corrector iteration to satisfy a system of ordinary differential (actually, difference) equations, whereas 
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the Newton-Raphson technique used in this work corrects to satisfy the basic algebraic governing equations them- 
selves, and thus avoids propagation of error from one point to another (i.e., “drift”). 

Suppose that the chemical systems at n successive points of reaction progress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,t1; the subscript 1 
denotes the most recent point) have been computed. If there is only one previous point, then a “zero-th” order Taylor’s 
series must be used; i.e., at the previous point must be taken as the vector of starting estimates at the new point. 
Otherwise, for each k-th element of z a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf containing finite differences from order 1 to order n - 1 may be 
computed (Carnahan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al., 1969, p. 9-10): 

fi = f[12] f [ 6 1 9 ‘ f ! 2 ]  = (zkl - zk2)/(t1 - 62)  

f j  = f[12 . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( j+  I) ]  = (f[l . . . j ]  - f[2 . . . Q + I > ] ) / ( ~ ~  - tj+l) 

(21) 

(22) . 

The value of each zk at a new point of reaction progress ecan be computed as a function of step size A[ andf(Carnahan 
et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. ,  1969, p. 11): 

This expression could be used directly to estimate starting values at the new point. However, the finite difference vector 
- f may be converted into a vector of derivatives of order 1 through n - 1 by the linear transformation 

c j = D f .  (24) 

The matrix _D may be calculated by expanding the terms of Eq. (23) and rearranging the resulting terms into the format 
of a power series in A t .  The Taylor’s series expansion corresponding to Eq. (23) is given by 

which also is in the form of a power series in At. By equating terms of corresponding order, one may then derive linear 
relations between the derivatives and finite differences; these may be written in matrix form corresponding to Eq. (24). 
For up to sixth order, 

1 a ab abc abed 

0 1 a+b ab +ac +bc abc +dab 
+dac +dbc 

0 0  1 a+b+c ab +ac +bc 
+ad +bd +cd 

0 0 0 1 a+b +c +d 

0 0  0 0 1 

0 0  0 0 0 

abcde 

abce +dabe +abcd 
+dace +dbce 

abc +dab +dac +dbc 
+abe +ace +bce +ade 
+bde +cde 

ab +ac +bc +ad +bd 
+cd +ae +be +ce +de 

a+b+c+d+e 

1 

Here I temporarily abandon earlier convention for symbols and use 

Starting estimates at new points can then be computed by truncated Taylor’s series corresponding to Eq. (25). 
The accuracy can be controlled by constraining the step size A t  to keep the contribution from the highest term from 
exceeding a desired tolerance. The standard assumption, also made by Gear (1971a,b) for integrating ordinary 
differential equations, is that the ignored terms of higher order are negligible. Experience with program EQ6 has shown 
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that this assumption is sometimes grossly invalid. Thus, Taylor‘s series predictions with truncation after the sixth order 
may fail to achieve the desired accuracy even though the step size was specifically constrained to do so. This is not a 
serious problem in EQ6 because Newton-Raphson iteration then reduces the error to the desired tolerance. (If this 
iteration fails, then the step size is cut until convergence is achieved; this often occurs during rapid drops in oxygen 
fugacity, which may change by a factor of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA102n-1070 within very small increments of reaction progress.) 

The order of Taylor‘s series must be reduced to zero whenever a point of reaction progress is reached at which 
the derivatives are not continuous. Such points arise because of (1) additions to or deletions from the phase assemblage, 
(2) exhaustion of a reactant, or (3) saturation of a reactant. Because it requires computing time to build up the order and 
step size after the order has been reduced to zero, the cost of computing a path segment increases rapidly with the 
number of such discontinuities. 

THE FLOW-THROUGH MODEL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
Computation of an open system model in which a packet of fluid flows through a reactant medium, which 

may be a source of elements and/or a source or sink of heat, requires some special treatment. Solid product phases, once 
formed, are left behind by the flowing packet of fluid and thus-may not back-react with it. This can be modelled by 
periodically transferring product solids from the subsystem E to the physically removed subsystem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, a simple 
bookkeeping operation. The frequency of this operation defines the resolution of the model. For the special case of 
products of fixed composition, such shifts need not be performed at arbitrary intervals, but only when the mass of such a 
product achieves a maximum in the equilibrium subsystem. I shall discuss this special case in some detail. 

A Taylor’s series can be used to estimate the first derivative of the k-th element ofg(inc1uding the logarithmic 
masses of mineral species): 

In principle, this permits calculation of simple maxima of the masses of product minerals. In practice, however, 
undesirably small step sizes are required to keep the above expression sufficiently accurate to avoid calculating many 
false maxima. A better approach is to reduce step size to keep only the product-phase masses themselves (and other 
elements of z) accurate, and to ignore predicted maxima calculated from Eq. (27) unless the predicted increment of 
destroyed mass exceeds a trivial value. 

Maxima of mineral masses, however, usually do not occur on intervals where the functions (masses) are 
differentiable. They tend to occur at discontinuities where a new phase appears in the system, the new phase competing 
with a pre-existing one for the available material. Thus, the location of phase boundaries should be estimated from 
Taylor’s series and the step size appropriately restricted when computing this type of model. 

A mineral phase whose mass maximizes should, in theory, disappear entirely from the equilibrium subsystem 
and hence from the Jacobian matrix. However, because maxima are not precisely located by the practice recommended 
above, and because mineral masses may be transferred periodically to the physically-removed subsystem for conveni- 
ence, it is necessary to leave a trivial, sacrificial amount of each mineral in the equilibrium subsystem. 

It is necessary here to distinguish between “linear” mass (n) and its derivatives, and logarithmic mass ( II ) 

and its derivatives. Let symbolize the former and Q‘k ’  the latter; k denotes the order. Then n‘O’ = n and Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( O )  =Q. At 
a transfer point, for any mineral, n is replaced by the trivial value n*. Its derivatives (dk’, k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 1) are not affected by the 
transfer. However, the derivatives of logarithmic mass ( Q ( k ) ,  2 1) must be rescaled to new values ( Q ‘ k ’ * ,  k 2 1) 
consistent with the trivial logarithmic mass Q * (=log n*). It is easiest to do this by first computing the dk) values from 
the Q ( k )  values which are normally dealt with, transferring all but the trivial mass, and then computing the new Q‘k’* 

values from the n ( k )  values and n*. One may accomplish this by applying the following sequence of equations: 

k 

dk) = 2.303 (“;)n‘k-i)Q‘i’, fork  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
i =  I 
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$?I)* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn("/(2.303 n*) (32) 

- 
Microcline saturates -2 - 

-3 I- - 

- -4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 Kaolinite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E -5 - 
0" 

- - 
- 

- - 
- -6 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

-7 - - 

-8 - - 

-9 I. I I I I I 1 I I 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(:I:) is a binomial coefficient. To derive Eq. (29), use the chain rule of differentiation to evaluate 

the expression 

(dk/dtk) 10'. (34) n(k) = 

Then invert the results and replace n by n* to obtain Eqs. (32) and (33). 

EXAMPLE: DISSOLUTION OF MICROCLINE 

Models of the reaction of microcline (KAlSi308) with pH 3 HC1 solution at 25°C and 1.013 bars pressure were 
calculated for both closed and flow-through (open) systems. The mass of the initial aqueous solution was chosen to 
contain 1000 g H20 (solvent). The reaction progress variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(8 was made directly equivalent to the mass (in moles) of 
destroyed microcline. One may interpret the closed system results as representing either irreversible reaction of 
microcline with the HC1 solution or titration of the solution by the mineral. This equivalence in physical interpretation is 
guaranteed by there being but a single reactant (microcline). 

Reaction in both closed and open systems produces, in this case, the same suite of product minerals in the 
same order of appearance: gibbsite, AI(OH)3; kaolinite, A12Si205(OH)4; quartz, SiO,; and muscovite, 
KAl,Si30,,(OH), (Figs. 1 and 2). In the closed system, both gibbsite and kaolinite appear transiently; they are 
destroyed before the solution saturates with respect to microcline and reaction stops. Gibbsite begins to dissolve when 
kaolinite appears and competes with it for aluminum. Kaolinite behaves similarly at the appearance of muscovite. In the 
open system (Fig. 2), the masses of precipitated gibbsite and kaolinite are not subject to dissolution. Active 
precipitation merely ceases. Physically, this corresponds to the packet of fluid moving through a microcline medium, 
leaving all precipitate masses behind. Saturation with microcline occurs sooner in the open system because backreac- 
tion of transient precipitates does not occur. 

Fig. 1. Masses of product minerals 
(relative to an initial lOOOg H,O) 
formed by closed system reaction of 
microcline with pH 3 HCl solution at 
25°C and 1.013 bars pressure. Note the 
transient occurrence of gibbsite and 
kaolinite. 

-1 I I I I 1 I I 1 1 I 1 

28 



-2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMicrocline saturates 

. - - - -  

Gibbsite 
- 

- 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I I I I I I 

Fig. 2. Cumulative masses of pro- 
duct minerals (relative to an initial 
1000 g H,O) formed by reaction at 
25°C and 1.013 bars of HC1 solution of 
original pH 3 flowing through a mi- 
crocline medium. Dashed lines indi- 
cate lack of further precipitation. 

0 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 12 16 20 

1 0 - ~  

The reaction paths in both closed and open systems are traced on the K+ /H+ vs Si0,"and Al+++ /3H+ vs K+ 
/H+ activity diagrams in Figs. 3 and 4. Quartz appears at B ' (open system) and D (closed system). The activity of SiO; 
becomes fixed when quartz appears. Therefore, one may interpret the part of Fig. 4 to the right of point D (closed 
system) or point B ' (open system) as a cross-section of Fig. 3 along the part of the quartz saturation line above D or B '. 

On both diagrams the open system path is identical to that of the closed system, except for the dashed line 
B-B'-D. Gibbsite first appears at A, and kaolinite at B. In the closed system gibbsite is destroyed along the segment 
B-C, which represents a redirection of the reaction path in activity space. However, the open system path is not 
redirected because the gibbsite that has precipitated is merely removed from the system. After quartz appears, the 
activity of dissolved silica is fixed on the quartz line. At E, muscovite appears. The closed system remains fixed at this 
point until all kaolinite is destroyed. At F the solution saturates with respect to microcline and no further reaction 
occurs. 

The thermodynamic driving force of the irreversible reaction of microcline with this HCl solution is the 
affinity of the microcline to dissolve. Figure 5 shows this function for both closed and flow-through systems. Note that 
this is not a linear function of reaction progress; i t  has a complex dependence on the evolution of the fluid composition. 

EXAMPLE: HEATING OF SALTON SEA WATER 

EQ3/6 predicted the effects of heating Salton Sea water (Table 9) to 220°C by similar calculations. The 
temperature in "C was made directly equivalent to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6, and the calculation began at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 = 25 (T = 25°C). The pressure was 
1.013 bars below 1OO"C, and at the steam saturation value at higher temperatures. One may visualize this open system 
model as a packet of aqueous solution flowing down a pipe with an externally imposed temperature gradient. 

The fluid was initially supersaturated with respect to eight phases: magnetite, Fe304; hematite, Fe203; 
calcite, CaCO,; huntite, CaMg,(CO:A; magnesite, MgCO,; aragonite, CaCO,; dolomite, CaMg(CO,),; and gypsum, 
CaS04.2H20. EQ6 calculated the stable assemblage to be aqueous solution-gypsum-dolomite-hematite. The reaction 
paths then calculated are presented in Figs. 6 and 7 (closed and open systems). In both systems, heating to 220°C 
produced only two new precipitates, anhydrite and magnesite. In the closed system anhydrite replaced gypsum at about 
90"C, and magnesite replaced dolomite near 137°C. In each case both phases co-exist in a small interval of temperature. 
In the open system, active precipitation of gypsum and hematite ceases as heating begins; the moderate quantity of 
gypsum removed from the system delays the appearance of anhydrite until about 100°C. However, magnesite appears 
at essentially the same temperature as in the closed system (137°C). 
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G i bbsite zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-4 
-6 -5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. 3. Reaction of microcline with pH 3 HCl solution at 25°C and 1.013 bars projected on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKC/H+ vs SiO; 
activity diagram. The solid line (with arrows) shows the closed system path. The dashed line, B-B’-D in the 
magnified inset, shows the flow-through system path where it differs from that of the closed system. A) gibbsite 
appears; B) kaolinite appears; B’) quartz appears (open system); C) gibbsite disappears (closed system); D) 
quartz appears (closed system); E) muscovite appears; F) the aqueous solution saturates with respect to the 
reactant, microcline, and no further reaction occurs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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Fig. 4. Reaction of microcline with pH 3 HCI solution at 25°C and 1.013 bars projected on the AI+++ /3H+ vs K+ 
/H+ activity diagram. The solid line (with arrows) shows the closed system path, and the dashed line B-B'-D 
shows where the flow-through system path is different. Lettered points are the same as in Fig. 3. 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Affinity of microcline to dis- 
solve during reaction with pH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 HCl 
solution. The solid line represents the 
closed system and, up to A, the flow- 
through system. The dashed line A-F' 
represents the rest of the flow-through 
system curve. Points A through D have 
the same meanings as in Fig. 3. E) 
muscovite appears (closed system); E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA') 

precipitat ion of kaolinite ceases , 
disappears (closed system); F) micro- 
cline saturates (closed system); F') 
microcline saturates (flow-through zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

- 
- 
- 

- 

(flow-through system); E") kaolinite - 
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system). 2 -  
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Fig. 6. Masses of precipitates from 
Salton Sea water (relative to an initial 
lo00 g H,O) produced by heating in a 
closed system. Pressure is 1.013 bars 
below 100°C and the steam saturation 
value at  higher temperatures. Gyp- 
sum, dolomite, and hematite are initial 
precipitates from supersaturated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASO- 

lution. 
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Table 9. 
(atmospheric value). 

Composition of Salton Sea water.' Temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 25"C, pH = 7.7, oxygen fugacity = 0.21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Componen t Molality 

Na- 0.4613 
K' 0.004443 
Ca" 0.02404 
Mg++ 0.04479 
c1- 0.4274 
so: 0.08566 
zco, 0.003366 
Fe 1.8 x 1 0 - 7  

lCal~fomia Dept of Water Resources (1970. Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA-5) 

Salton Sea water has been proposed for use as cooling fluid for power plant condensers and as make-up fluid 
for injection into geothermal fields in the Imperial Valley of California. In each case the water will be heated. The 
results of equilibrium calculations should be applied here with some caution. The precipitation of hematite in this 
example may be unrealistic. In this relatively short time a hydrated, metastable, probably amorphous iron oxide, 
Fe(OH,), would probably form from supersaturated solution instead of the stable hematite. Besides, real Salton Sea 
water is probably not hematite-supersaturated, because iron in colloidal particles, perhaps Fe(OH),, probably contri- 
butes to the analyzed value for dissolved iron. A more serious problem may be that dolomite does not precipitate at low 
temperatures except perhaps over geologic time. 

The kinetics of precipitation and dissolution of gypsum and anhydrite and, at high temperatures, magnesite, 
are sufficiently rapid that the models probably give a realistic degree of plugging that would occur during injection of 
the water into a geothermal field. Figure 8 depicts the calculated volume of total precipitates per 1000 g H 2 0  that would 
occur in closed and flow-through systems. About half of the precipitate at 220°C could be eliminated if, before 
injection, gypsum were allowed to precipitate from supersaturated solution at 25°C and then were removed by settling 
or filtration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Fig. 7. Cumulative masses of pre- 
cipitates from Salton Sea water (rela- 
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F ig .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8. Total precipitate volume per 1.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ZOO0 g H,O produced by heating Sal- 
ton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASea water. The solid line repre- 1 .2 
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line the flow-through system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3 1.0 

E 
I 0.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

al 
5 0.6 - 
>" 0.4 

0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt- 

1 I 1 1 1 I 1 I 1 

- - 

- - 
- - 
----- - 

- 

i 
0.01 I I I I I I I I I I 

20 60 100 140 180 220 
Temperature - "C 

ACKNOWLEDGMENTS 

Most of this work was done while the author was at the Department of Geological Sciences, Northwestern 
University, and was supported during the tenure by N.S.F. grants EAR74-22338 and EAR77-14479 to N.H. Sleep. 
Subsequent work and publication costs of this report were funded by the Earth Sciences Division, Lawrence Livermore 
Laboratory. I thank N.H. Sleep (Dept. of Geological Sciences, Northwestern University) and H.C. Helgeson (Dept. of 
Geology and Geophysics, University of California, Berkeley) for aid and encouragement in the course of this project. I 
also wish to thank L. B. Owen and R. N. Schock for encouraging me to publish this report. 

34 



REFERENCES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ball, J.W., E.A. Jenne, and D.K. Nordstrom, WATEQ2-A computerized chemical model for trace and major 

element speciation and mineral equilibria of natural waters, in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAChemical modeling in aqueous systems, 
speciation, sorpriori, solubility, utld kinetics, E . A .  Jenne, Ed., ACS Symp. Series 93, Am. Chem. SOC., 
Washington, D.C., 1979. 

Bos, M.,  and H.Q.J. Meershoek, A computer program for the calculation of equilibrium concentrations in complex 
systems, Aiinl. Chim. Actn. 6 1 ,  185-199, 1972. 

California Dept. of Water Resources, Geothermal wastes and the water resources of the Salton Sea area, California, 
Calif. Dept. Water Resources Bull. 143-147, 1970. 

Caram, H.S., and L.E. Scriven, Non-unique reaction equilibria in non-ideal systems, Chem. Eng. Sci., 31, 163-168, 
1976. 

Carnahan, B., H.A. Luther, and J.O. Wilkes, Applied numerical methods, John Wiley and Sons, New York, 1969. 

Control Data Corporation, FORTRAN Extended Version 4 reference manual (60497800), rev. C ,  1977. 

Crerar, D. A,,  A method for computing multicomponent chemical equilibria based on equilibrium constants, Geochim. 
Cosrnochim. Acta, 39,  1375-1384, 1975. 

Garrels, R.M.,  and M.E. Thompson, A chemical model for sea water at 25°C and one atmosphere total pressure, Am. 
J .  Sci., 260, 57-66, 1962. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

, and C.L. Christ, Solutions, minerals, and equilibria, Harper and Row, New York, 1965. 

Gear, C.  W., The automatic integration of ordinary differential equations, Comm. ACM, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14, 176-179, 1971a. 

, Algorithm 407-DIFSUB for solution of ordinary differential equations, Comm. ACM, 14, 185-190, 
1971b. 

Hancock, H.J. and T.S. Motzkin, Analysis of the mathematical model for chemical equilibrium, in Proc. 1st Conf. 
High zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATemp. Systems, 82-89, 1960. 

Helgeson, H.C., Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous 
solutions-I. Thermodynamic relations, Geochim. Cosmochim. Acta, 32, 853-857, 1968. 

, Thermodynamics of hydrothermal systems at elevated temperatures and pressures, Am. J .  Sci., 267, 
729-804, 1969. 

, A chemical and thermodynamic model of ore deposition in hydrothermal systems, Special Paper No. 
3 in Mineralogical Sociec of America 5’0th Anniv. Symposium, B.A. Morgan, Ed., 155-186, 1970. 

, Mass transfer among minerals and hydrothermal solutions, in Geochemistry of Hydrothermal Ore 
Deposits, H.L. Barnes, Ed., John Wiley and Sons, 1979, in press. 

, T.H. Brown, A. Nigrini, and T.A. Jones, Calculation of mass transfer in geochemical processes 
involving aqueous solutions, Geochim. Cosmochim. Acta, 34, 569-592, 1970. 

35 



, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ.M. Delaney, H.W. Nesbitt, and D.K. Bird, Summary and critique of the thermodynamic properties 
of the rock-forming minerals, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAm. J .  Sci., in press, 1978. 

, R.M. Garrels, and F.T. Mackenzie, Evaluation of irreversible reactions in geochemical processes 
involving aqueous solutions-11. Applications, Geochim. Cosmochim. Acta, 33, 455-48 1, 1969. 

, and D.H. Kirkham, Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at 
high pressures and temperatures: I. Summary of the thermodynamic/electrostatic properties of the solvent, 
Am. J .  Sci., 274, 1089-1198,d 1974a. 

and , Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at 
high pressures and temperatures: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Debye-Huckel parameters for activity coefficients and relative partial 
molal properties, Am. J .  Sci., 274, 1199-1261, 1974b. 

and , Theoretical prediction of the thermodynamic behaviour of aqueous electrolytes at 
high pressures and temperatures: 111. Equation of state for aqueous species at infinite dilution, Am. J .  Sci., 
274, 97-240, 1976. 

Herrick, C.C., Los Alamos Scientific Laboratory, Los Alamos, N. Mex., private communication (1976). 

Karpov, I.K. and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL.A. Kaz’rnin, Calculation of geochemical equilibria in heterogeneous multicomponent systems, 
Geochem. Int., 9, 252-262, 1972. 

, and S.A. Kashik, Optimal programming for computer calculation of irreversible 
evolution in geochemical systems, Geochem. Int., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10, 464-470, 1973. 

Kharaka, Y.K. and I. Barnes, SOLMNEQ: solution-mineral equilibrium computations, U.S. Dept. of the Interior, 
Geol. Surv. Computer Contr. Publ. 215-899, 1973. 

Morel, F. and J. Morgan, A numerical method for computing equilibria in aqueous systems, Environ. Sci. Technol., 6,  
58-67. 1972. 

Nordstrom, D.K., L.N. Plummer, T.M.L. Wigley, T. J. Wolery, J. W. Ball, E.A. Jenne, R.L. Bassett, D.A. Crerar, 
T.M. Florence, B. Fritz, M. Hoffman, G.R. Holdren, Jr., G.M. Lafon, S.V. Mattigod, R.E. McDuff, 
F. Morel, M.M. Reddy, G. Sposito, and J. Thrailkill, A comparison of computerized chemical models for 
equilibrium calculations in aqueous systems, in Chemical modeling in aqueous systems, speciation, sorp- 
tion, solubility, and kinetics, E.A. Jenne, Ed., ACS Symp. Series 93, Am. Chem. Soc., Washington. D.C., 
1979. 

Othmer, H.G., Nonuniqueness of equilibria in closed reacting systems, Chem. Eng. Sci., 31, 993-1003, 1976. 

Pates, T., Chemical equilibria and zoning of subsurface water from Jachymov ore deposit, Czechoslovakia, Geochim. 
Cosmochim. Acta, 33, 591-609, 1969. 

Perrin, D.D., Multiple equilibria in assemblages of metal ions and complexing species: a model for biological systems, 
Nature, 206, 170-171, 1965. 

Plummer, L.N., B.F. Jones, and A.H. Truesdell, WATEQF-a FORTRANIVversion of WATEQ, a computerprogram 
for calculating chemical equilibrium of natural waters, U.S. Geol. S u m .  Water Resources Invest. 76-13, 
1976. 

36 



Polzer, W. L. and C.E. Roberson, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACalculation of ion activityproducts fo ra  brinefrom rhe Bonneville SaltFlats, Utah, 
U.S. Geol. Surv. Prof. Paper 575-C, C116-CI19, 1967. 

Prigogine, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI .  and R .  Defay, Chemical thermodynamics, Longmans, Green, and Co., London, 1954. 

Reed, M. H. Calculations of hydrothermal metasomatism arid ore deposition in submarine volcanic rock with special 
reference to the West Shasta District. California, Ph.D. thesis, University of California, Berkeley, Calif., 
1977. 

Reardon, E.J. and D. Langmuir, Activity coefficients of MgSO," and CaSO," ion pairs as a function of ionic strength, 
Geochirn. Cosmochim. Acta, 40, 549-554, 1976. 

Robie, R.A., and D.R. Waldbaum, Thermodynamic properties of minerals and related substances, U.S. Geol. Surv. 
Bull. 1259, 1968. 

Saxena, S .R., Thermodynamics of rock-forming cnstallitie solutions, Springer-Verlag, New York, 1973 

Shapiro, N.Z. and L.S. Shapley, Mass action laws and the Gibbs free energy function, J .  SIAMInd. AppliedMath., 13, 
353-375, 1965. 

Tardy, Y., and R.M. Carrels, A method of estimating the Gibbs energies of formation of layer silicates, Geochim. 
Cosmochim. Acta, 38, 1101-1 116, 1974. 

Ting-Po, I . ,  and G.H. Nancollas, EQUIL-a general computational method for the calculation of solution equilibria, 
Anal. Chem., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA44,  1940-1950, 1972. 

Truesdell, A.H. and B.F. Jones, WATEQ, a computer program for calculating chemical equilibria of natural water, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.I. 

Res. U S .  Geol. Surv., 2, 233-248, 1974. 

Van Zeggeren, F. and S.H. Storey, The computation of chemical equilibria, Cambridge University Press, London, 
1970. 

Walters, L.J., Jr., and T.J. Wolery, A monotone-sequences algorithm and FORTRAN IV program for calculation of 
equilibrium distributions of chemical species, Comp. Geosci., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ,  57-63, 1975. 

Westall, J.C., J.L. Zachary, and F.M.M. Morel, MINEQL, a computer program zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor the calculation of chemical 
equilibrium composition of aqueous systems, Ralph M .  Parsons Laboratory for Water Resources and 
Environ. Eng., Dept. of Civil Eng., M.I.T., Tech. Note 18, 1976. 

Wolery , T.J., Some chemical aspects of hjdrothermal processes at mid-oceanic ridges-a theoretical study. I .  
Basalt-sea water reaction arid chemical cycling between the oceanic crust and the oceans. I1 Calculation of 
chemical equilibrium between aqueous solutions and minerals, Ph.D. thesis, Northwestern University, 
Evanston, Ill., 1978. 

, and L.J. Walters, Jr. ,Calculation of equilibrium distributions of chemical species in aqueous 
solutions by means of monotone sequences, Math. Geol. 7, 99-1 15, 1975. 

Zeleznik, F.J. and S.Gordon, Calculation of complex chemical equilibria, Ind.  Eng. Chem., 60(6), 27-57, 1968. 

C JT 

37 



APPENDIX A 
CONTENTS OF THE EQ3/6 SOFTWARE PACKAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The EQ3/6 software package consists of sixteen files written on magnetic tape. These are, in order, 

1. DEQ500B (a data file) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 .  DEQ5WL (a data file) 
3. DEQ500S (a data file) 
4. DEQCDL (a data file) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  DEQCDS (a data file) 
6. DEQCE (a data file) 
7. DEQREM (a data file, contains text and documentation) 
8. DEQSSCB (a data file) 
9. DEQSSCL (a data file) 

10. DEQSSCS (a data file) 
11. EQ3 (source code, distribution-of-species program) 
12. EQ6 (source code, “path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA” program) 
13. EQF (source code, utility program) 
14. EQS (source code, utility program) 
15. TEST3 (EQ3 documentation input decks) 
16. TEST6 (EQ6 documentation input decks). 

The ten data files contain the following: 

Compositions and reactions 

1. DEQCE: 
Composition data for elements, aqueous species, minerals, gases, and solid solutions. Also 
invariant properties of aqueous species such as electrical charge. 

Coefficients for destructioddissolution reactions of aqueous species, minerals, and gases, 
written in terms of an expanded basis set of aqueous species. 

Coefficients for destructioddissolution reactions of aqueous species, minerals, and gases, 
written in terms of a strict basis set of aqueous species. (Created from DEQCDL by utility 
program EQS .) 

Data for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 atm-steam saturation curve 

2 .  DEQCDL: 

3. DEQCDS: 

4. DEQSSCB: 
Temperature-dependent data, including log K values for the reactions as written in the 
expanded basis format, at temperatures of 0, 25, 60, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100, 150, 200, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA250, and 300°C. Also 
coefficients for the excess Gibbs energy functions of solid solutions. This file is meant to be 
read only by the utility program EQF, never by the principal programs EQ3 and EQ6. 

Polynomial coefficients for all temperature-dependent data (including log K functions for 
reactions written in the expanded basis format) plus coefficients for the excess Gibbs energy 
functions of solid solutions. (Created from DEQSSCB by utility program EQF.) 

Polynomial coefficients for all temperature-dependent data (including log K functions for 
reactions written in the strict basis format) plus coefficients for the excess Gibbs energy 
functions of solid solutions. (Created from DEQSSCL by utility program EQS.) 

5. DEQSSCL: 

6. DEQSSCS: 

Data at a constant pressure of 500 bars 

7. DEQSOOB: 

8. DEQSOOL: 
Analog of DEQSSCB 

Analog of DEQSSCL 
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9. DEQ5OOS: 
Analog of DEQSSCS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Source itfortnation 

10. DEQREM: 
Remarks concerning the structure of the data file package, its application, and the source of the 
data. 

EQ3 and EQ6 do not directly read the DEQ-files, but rather two disk files called DATAl and DATA:!. These 
files are created at the start of job execution by merging, copying, or renaming the appropriate combination of 
DEQ-files. Inclusion of the remarks file DEQREM is optional and results only in its being printedon the job’s output. 

EQ3: 

DATAl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= DEQCE 
DATA2 = DEQCDL,DEQSSCL( ,DEQREM) for ssc pressures 

= DEQCDL,DEQNOL(,DEQREM) for 500 bars pressure 

EQ6: 

DATAl = DEQCE and DEQCDS 
DATA2 = DEQSSCS (and DEQREM) for ssc pressures 

= DEQ5OOS (and DEQREM) for 500 bars pressure 

On the CDC 7600 computer, EQ3 requires about lOOK (octal) words of memory and typically uses a few CP 
seconds to process each input deck. EQ6, on the other hand, requires zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA147K SCM and ?K LCM memory. Execution 
times depend strongly on the nature of the input and may range from a few CP seconds for a short problem to a few 
minutes for a very long one. 

Utility routine EQF fits interpolating polynomials to the gridded data in DEQSSCB (DEQSOOB) to produce 
the file DEQSSCL (DEQSOOL). EQS checks the consistency among the compositional, electrical charge, and reaction 
coefficient data and creates the files DEQCDS and DEQSSCS (DEQSOOS). 
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APPENDIX B 
SAMPLE REQUEST FORM TO OBTAIN THE PACKAGE FROM THE 

NATIONAL ENERGY SOFTWARE CENTER 

Code Re lease  O f i i c e  

Computat ion Dept  

uc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAILL 

NATIONAL ENERGY SOFTWARE CENTER 

PROGRAM PACKAGE REQUEST 

Mod i f i ed  c l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 8 / 7 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
NESC Nurntier i i f  hiiow,nI Machine Version 

Program or System Identification. 

I f  this request i s  for a particular subset of  the package, rather than the complete package, indicate the specific categories of 

information needed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 ( A )  Authorization 0 ( R )  Documents U is! Source 0 ( B )  Run Deck 0 (P) Problem 0 ( L )  Libraries 

U ( X )  Auxiliary Material 

I f  this request can be filled without submission of magnetic tapes, indicate what media IS desired: 

U (C) Control Information 

0 punched cards 0 listing 0 documentation 

I f  tapes are being submitted, list the r e e l  identification and give the date of shipment, unless shipment accompanies this form 

Indicate any special tape requirements on back of this form (Item 91. 

Availability of program package as defined by NESC (check onel: 

0 Unlimited Unknown 

0 Limited to U S. use 

0 Limited to Government Contract use The material i s  requested by. 

for -use on _____________ 
c o n t r a c t o r  Con t rac t  FJurnber 

~ 

Agency 

Slynature of  Governmen t  Con t rac t i ng  Of f i ce r  

Limited to authorired recipients. This requect i s  authorized b y '  

~ 

Signature o f  Au tho r i zed  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARecip ient  I nstal lat ion 

I f  limited distribution, and location of use i s  different from address of requester, complete the following. 

Location of  use Access via' 

~ 

Name of Establ ishment Equipment ( ( . e ,  110 terminal .  s ta t i on )  

dt.. ~~ ____~ 
Street Address Company  

_ _ _ _ ~ _ _ _ _ _ _  ~~ 

C i t y ,  Stare. Zip Code Address 

Request submitted by Date. - 
N a m e  

~- Telephone, ~~~~ 

I n s t a l l a i ~ a n  Area Number E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxi 

~ _ _ _ _ _ - . _ ~ ~ ~ ~  ~~~~~ FTS _ _ _ _ ~ - . _ . _ _ _ _ . ~  

Special installation Tape Requirements (indicate 7 or 9 track recording, odd or even parity. density o f  200, 556, 800 or 

1600 bpi, and character set, record length, or blocking factor restrictions pertinent to your computer facilities! Standard 

transmittal for non-IEM programs 7 track 556 bpi recording with BCD records even parity in unblocked 80character card- 

image format and binary records as received from the originating installation. Standard transmittal for IBM 3601370 prograrns 

i s  9 track 800 bpi recordiny with EBCDIC records odd parity RECFM=FB. LRECL=80, BLKSIZE=3200, and other recoids as 

received from the originating installation. Submit to 

Address 

Nationnl Energy Software Centpr 

A t t e n t i n n  M. Butlet 

Argoririe National Laboratory 

9700 Soutli C'ISZ Avuiiue 

Aryiii,i ie,lIIii iois USA 60439 t i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: E i i  R L V . 2  3 6 :  A C C F 7  
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APPENDIX C 
NOTE ON THERMODYNAMIC DATA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Two parallel sets of thermodynamic data were constructed to support theoretical prediction of rock-water 
interactions. The first corresponds to a pressure of 1 atm (1.013 bar) for the temperature range 0-100°C and to steam 
saturation pressure above that, The second set corresponds to a constant pressure of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 bars. Temperature-dependent 
data were computed or compiled in each case at temperatures of 0 ,25,60,  100, 150,200,250, and 300°C and fitted to 
interpolating polynomials to support calculations at any value in the range 0-350°C. 

The thermodynamic data were taken mainly from Helgeson and Kirkham (1974ab, 1976) and Helgeson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeta l .  
(1978). These sources form an internally consistent and fairly comprehensive set of data for water, dissociated ions, and 
rock-forming minerals, Because complete data for certain clay minerals (especially smectites) and chlorites relevant to 
many aqueous geochemical systems are not given, i t  was necessary to estimate some or all of their thermodynamic 
functions (free energies of formation, enthalpies, entropies, volumes, and heat capacity coefficients) using techniques 
suggested by Tardy and Garrels (1974) and Helgeson et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai. (1978). The details of these calculations and the resulting 
estimates are given by Wolery (1978, Appendix B).  Values of log K for miner2 dissolution reactions and redox 
(cross-link) reactions among aqueous species were then calculated from the above data using the computer program 
SUPCRT (Helgeson et a l . ,  1978) for the eight discrete temperatures and appropriate values of pressure. 

Values of log K for the dissociation of aqueous complexes at pressures for H 2 0  liquidhapor equilibrium were 
taken mainly from Helgeson (1969). However, a number of values were selected from more recent literature. I wish to 
emphasize that my effort to update these log K values in no way represents a critical and comprehensive compilation, 
and to point out that uncertainties in complex dissociation data are in general much greater than for mineral dissolution 
data. Values of log K for complex dissociation reactions at 500 bars pressure were generated from corresponding steam 
saturation curve values using the dielectric constant correction suggested by Helgeson (1969). 

The lack of a satisfactory treatment for most of the solid solutions present in aqueous geochemical systems 
(especially sheet silicates) usually requires that end-member components or other specific compositions be treated as 
individual phases. Alternatively, one might model such phases as ideal solutions, but many are obviously quite 
non-ideal. 

Non-ideality in the aqueous phase was treated according to equations and data presented by Helgeson (1969). 
However, the activity coefficients of neutral, polar complexes such as CaSOl were assigned a value of unity rather than 
that of aqueous COP. The activity coefficient of aqueous carbon dioxide increases with increasing ionic strength 
(Helgeson, 1969), but Reardon and Langmuir (1976) have shown that the activity coefficients of CaSO," and MgSO," 
actually decrease at 25°C and 1 atm pressure. We lack sufficient understanding of these parameters at high temperatures 
and pressures, but the present assumption of unit activity coefficients for such species appears reasonable. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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