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Summary. We present a method for calculating complete theoretical seismo- 
grams in earth models whose velocity, density and attenuation profiles are 
arbitrary piecewise-continuous functions of depth only. A form of attenua- 
tion valid for low loss situations is included by allowing the seismic velocities 
to be complex, and frequency is also allowed to be complex to avoid wrap- 
around problems in the time-domain seismograms. Solutions for the stress- 
displacement vectors in the medium are expanded in terms of orthogonal 
cylindrical functions. A seismic source is applied at the Earth’s surface and 
a radiation condition is applied at depth. The resulting two-point boundary 
value problem for the expansion coefficients is solved by a collocation 
technique which works best for those cases that other methods, e.g. propa- 
gator matrices, work most poorly, i.e. highly evanescent solutions. Solutions 
for the expansion coefficients are obtained in the depth, frequency and 
horizontal wavenumber domain. Phase velocity filtering may be effected at 
this point by restricting the portion of the frequency-wavenumber plane in 
which solutions are sought. The transformed strain tensor at depth is formed 
by taking linear combinations of the solutions. This strain tensor is trans- 
formed back into the space and time domain by successive application of a 
Bessel transform, a fast Fourier transform, and by multiplication of the time 
signal by a growing exponential to remove the exponential decay introduced 
by the use of complex frequency. The strain tensor is contracted with a 
seismic moment tensor, and a reciprocity relation for Green’s functions is 
used to obtain displacements at the Earth’s surface caused by a buried 
moment tensor source. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 Introduction 

The calculation of theoretical seismograms in a medium in which material properties are a 
function of depth only ultimately reduces to the solution of a differential equation with 
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boundary values specified at the Earth’s surface and at some great depth. Two approaches 
to the problem have typically been taken. If an inhomogeneous source term is included, the 
theoretical seismogram is usually expressed as a double integral of differential equation 
solutions over frequency and horizontal wavenumber (or slowness, or angle of incidence). 
If no source term is included in the differential equation, the problem becomes an eigen- 
value-eigenvector problem and the integral over horizontal wavenumber becomes a sum of 
residues at poles. In both approaches numerical difficulties have been encountered in inte- 
grating the differential equations either to obtain the secular function of the medium, the 
eigenfunctions, or the particular solutions to the differential equations for various 
frequencies and wavenumbers. These difficulties and many of their solutions are well 
summarized by Harvey (1 981). 

While much of this work has approximated the Earth’s velocity structure as a stack of 
homogeneous layers, increased attentior has been given to the solution of the differential 
equations when more general velocity profiles, piecewise-continuous functions, are present. 
Several numerically stable methods have emerged for calculating complete seismograms in 
piecewise-continuous velocity profiles. For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeigenvalue-eigenfunction calculations the 
Rayleigh-Ritz procedure has been used by Wiggins (1976) and others. The recent work of 
Alekseev zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Mikhalenko (1980) and Olson, Orcutt & Frazier (1983) has focused attention on 
the solution of such problems when a source is included from the outset. In their 
approaches, a partial differential equation in depth and time is solved by a time-stepping 
finite-difference or finite-element method, respectively, to obtain the stress-displacement 
vectors in the wavenumber, depth and time domain. The particular solutions for each wave- 
number are then summed to obtain the theoretical seismograms. These methods are 
computationally robust and have already been used in practical applications (e.g. Hartzell & 
Helmberger 1982). Certain inconveniences arise from the solution of the differential 
equations in the time domain, however. Since time-stepping algorithms are used, calculations 
must always commence when the source acts, regardless of the epicentral range of the 
desired Green’s function. Hence, at large epicentral distance, considerable computational 
effort is expended calculating the string of zeros preceding the initial zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP motion. Currently, 
neither time domain method includes attenuation, although a depth-dependent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ could 
probably be incorporated by allowing wavenumber to be a complex function of depth. 
However, making this attenuation frequency dependent is probably impossible. In addition, 
phase velocity filtering, which has proved so useful in frequency domain methods such as 
that of Fuchs & Miiller (1971), is possible but cumbersome in the time-domain methods. 
For these reasons we have chosen to follow an approach similar to Olson’s but in the 
frequency domain. 

In this paper we present a method for the calculation of complete theoretical seismo- 
grams in laterally homogeneous earth models, i.e. in earth models in which seismic velocities, 
density and attenuative quality factor Q are functions of depth only. The strongest assets 
of this method are its generality, flexibility and robustness. The method is general because 
the velocity- and density-depth profiles may be arbitrary piecewisecontinuous functions of  
depth. The method is flexible because it can be used in any distance range, either near field or 
far field, to calculate all possible body waves, surface waves and leaky modes. In addition, 
phase velocity and group velocity windowing can be used to calculate specific seismic phases 
of interest or specific time windows of interest. The robustness of the method springs from 
the use of a collocation technique to solve for the stress-displacement vectors as functions of 
depth, frequency and wavenumber. The use of this technique to solve the two-point boun- 
dary value problem for the stress-displacement vectors avoids the numerical difficulties 
commonly encountered when propagator matrices. Runge-Kutta integrations and other zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. Spudich and U. Ascher 
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Collocation seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA103 

initial value methods are employed. We shall thus refer to our method as the 'collocation 
seismogram method' (CSM) and refer to seismograms calculated using the CSM as 'collo- 
cation seismograms'. 

The chief flaw of our current incarnation of the CSM is its long computation time, being 
roughly competitive with other complete theoretical seismogram methods such as the 
discrete wavenumber/finite element (DWFE) method of Olson et al. (1 983). However, we 
do not consider this version of the CSM to be computationally optimized. In Section 4 we 
discuss a number of ways to improve the efficiency of the method. 

First, however, we present the theory behind the CSM, emphasizing the solution of the 
boundary value problem using the collocation technique since its use in seismology is new. 
We de-emphasize the particular Bessel transform employed because any of a variety will 
work, although some may be considerably more efficient than others. To verify the correct- 
ness of the CSM, we show comparisons of collocation seismograms with those calculated 
using the DWFE method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 Theory 
Our general plan of attack will follow that of Olson et al. (1983). We first find particular 
solutions to the boundary value problems for three orthogonal forcing terms applied at 
z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0, the Earth's surface. We then take linear combinations of the particular solutions to 
obtain the solutions for orthogonal point forces applied at the Earth's surface, i.e. to obtain 
the Green's functions for the medium. From these Green's functions one can obtain the 
strain tensor in the medium, which is then contracted with the seismic moment tensor to 
obtain the ground displacements caused by the point moment seismic source. 

and density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are 
functions of depth into the half-space, z, only. In the depth interval 0 G z < z> we allow 
a(z), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(z) and p(z) to be arbitrary piecewise-continuous functions of depth. For depths 
z > z > ,  we require the wave speeds to be constant, i.e. a (z )=a> ,  p(z) =p> and 
p ( z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp>,  as shown in Fig. 1. In addition, following Kennett (1975) we approximate the 
effects of anelastic attenuation by allowing a and p to be complex functions of depth. In 
our current version of the method, we set 

Consider a half-space in which P-wave velocity, a, S-wave velocity 

APPLY S O U R C E  H E R E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

P X  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i E V A L U A T E  S O L U T I O N S  

U N I F O R M  H A L  F S P A C E  H E R E  

OR DECAYING 
' ^ " " * ' T I O H  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

z 
Figure 1. General problem geometry. Seismic velocities and density may be arbitrary piecewise-contin- 
uous functions of z between z = 0 and z = z > .  Beneath z> a uniform half-space is assumed. 
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where Q, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQp are the usual attenuative quality factors. This approximation is valid for 
low loss situations. A trivial modification would allow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and 

Our ultimate objective is to calculate the motions at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 which would be generated by a 
buried point source of seismic waves. We are primarily concerned with seismic sources which 
can be characterized by a point moment tensor (e.g. explosions and double couples), but 
results for single forces will be obtained along the way. 

P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpudich and CI. Ascher 

to be frequency dependent. 

2.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACOUPLED D I F F E R E N T I A L  E Q U A T I O N S  FOR DISPLACEMENT A N D  T R A C T I O N  

In a vertically inhomogeneous earth, displacement and traction across a horizontal plane are 
continuous functions of depth regardless of the behaviour of the elastic constants. Numerous 
authors have exploited this convenient property to obtain sets of coupled ordinary differen- 
tial equations in z. For example, following Takeuchi & Saito (1972) we expand displacement 
in a cylindrical coordinate system as 

u(r, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, z ,  t )  = - [ a lRT  +a3ST +a,Tr ]  d k d w  ( 2 )  

and traction across a horizontal plane (i.e. the z-component of the stress tensor u) as 

where R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and T are defined in the Appendix, the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai terms are understood to be functions 
of k, m, z and o, and where the sum on m runs from -- to -. We shall ultimately see that 
we only need to concern ourselves with m = -1, 0 and 1. Our Fourier transform pair is 
defined in the Appendix, and we allow w to  be complex. 

Our objective is to determine the unknown coefficients a l ,  . . . , a6. From the equations 
of motion, two sets of coupled ordinary differential equations relating ul,,  . . , a6 can be 
obtained (Takeuchi & Saito 1972). If we let ap = (al, az, a3,  a,)T, aH = (a5, f26)T and 
a' = da/dz, then the first set of equations, the P-SVequations, is 

a; = AP ap 

and the second set, the SH equations, is 

aA = A H  aH 

where 

1 /@a2) r o  
0 A p = l  0;l' O - k ( l  - 2p2/a2) 

k(1 - 2p21aZ) 

0 

0 

[4pk2(1-PZ/a2) - p a 2 ]  

and 

pk2 -pwz  0 

.O 
A H =  [ 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/7
5
/1

/1
0
1
/6

1
2
7
2
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Collocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseismograms 105 

with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= P O * .  These equations are exact for our cylindrical geometry. Note that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm does not 
appear explicitly in these equations. The continuity of displacement and traction imply that 
a , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. .. ,a6 are continuous functions of z. We would like to  solve for a , ,  ... ,a6 in the 
interval [0, z>], but to do so we must first apply boundary conditions at the ends of the 
interval. 

2.2 R A D I A T I O N  C O N D I T I O N  A T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ> 

Following Kennett & Kerry (1979), let us relate our zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa vector more directly to upgoing and 
downgoing waves. From this we may derive a radiation condition at z> by requiring only 
downgoing waves for z > z> . 

Considering a vector v whose elements may be associated with upgoing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-i direction) and 
downgoing wtve potentials. For P-SV, let 

V P  = (@u, $u,  @d,  $d lT*  

V H  = ( x u  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 Xd)T. 

(8) 

(9) 

and for SH let 

In a uniform medium v satisfies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v '= Av 

where for P-SV 

Ap=diag { v f f , v p ,  -va, -up> 

and for SH 

AH = diag {up,  -up} 

with 

and where, in order to ensure that the wavefunction associated with downgoing waves 
decays with depth, we choose 

Re(v) 0, h ( v )  Q 0 when Re(v) = 0. (14) 

If we define vectors 

and 

bH = (a5, ~ - ' a ~ ) ~  

then our a coefficients are related to up- and downgoing waves by 

v = D - ' b  

where for SH, 
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Our physical requirement in the region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA> z ,  is that there should be no upgoing waves, 
i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGU = J/, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxu = 0. Thus, for P-SV we must have 

q U = O =  [S2al+2pkv,a3-v,a2 +ka4 ]  (21) 

(Y" = 0 = [ 3pkVpa l+  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 2 ~ 3  + ka2 - ~ p a 4 ]  1, =,$ 

xu = 0 = [upas + p - l a 6 ]  I,=,., 

(23) 

where a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= p w 2 - 2 p k 2 ,  and for SHwe have the boundary condition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( 2 3 )  

where 

z s  = lim (z ,  + [e l ) .  
E - + O  

These boundary conditions are appropriate for all values of w/k, i.e. for both radiating 
and evanescent solutions in the half-space z > z>, except for I w I near 0. When w = O ,  
(21) and (22) reduce to the same equation. To introduce another independent boundary 
condition we replace (23) by 

This follows from replacing the eigenvector matrix D p  by the matrix of generalized 
eigenvectors. For practical computation, replacement of ( 2 2 )  by (25) is made whenever 
1 w 1 is small, e.g. when 1 w2/P2 1 and I w2/a2 I are less than 1 per cent of k 2 .  

We must stress that this commonly used treatment of the boundary condition at z> is 
strictly true only for the case of perfect elasticity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a, /3 and k real). Borcherdt (1977) has 
pointed out that a rigorous treatment of anelasticity requires not only (Y and (3 but also k to 
be complex. In addition, because the direction of phase propagation is not generally equal to 
the direction of mean energy flux in anelastic media, Borcherdt chooses the sign of v based 
on the direction of energy transport rather than on the growth or decay of the downgoing 
vertical wavefunction. Richards (1981) suggests that the choice of a downward decaying 
wavefunction may be wrong in some cases in anelastic media. Moreover, use of complex w 
introduces additional complications, such as causing 'downgoing' waves to propagate upward 
for small Re(w). Hence, a more rigorous treatment of the boundary condition will probably 
require the phase of v, and up to vary with w, k ,  a> and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,. 
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Collocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA107 

2.3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB O U N D A R Y  CONDIT ION A T  Z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Usually in wave propagation problems the Earth’s surface is taken to be stress-free, but in 
this case we choose to apply tractions at the Earth’s surface and evaluate the resulting waves 
at depth. Since source and receiver positions may be ultimately exchanged because of the 
spatial reciprocity of Green’s functions (Aki & Richards 1980, eqn 2.39), this eventually 
allows us to obtain displacements at the Earth’s surface from sources at all possible depths 
in the interval [0, z>]. 

?.;3 = F L L T ,  L = R , S o r T  

and we further require FL = 1 for all w, k and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm. Then the orthogonality of R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and T 
yields the boundary conditions at z = 0 given in Table 1 (Takeuchi & Saito 1972, eqns 230 
and 240). Note that with this particular choice of FL,  nothing in the P-SV or SH equations 
or their boundary conditions depends upon m, the azimuthal order. Hence, we do not need 
to solve the P-SV and SH equations for individual values of m,  even though our ultimate 
moment tensor source may have a multipolar radiation pattern. 

With the specification of this boundary condition, we now have enough information to 
solve the P-SV and SH equations for any (a, k )  pair and for the three source terms. Let US 

denote solutions of the P-SV equations for an applied source term G L  by aiL(z), 

i = 1 ,  . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,4, L = R or S, and we denote solutions to the SH equations for an applied source 
ir by a 5 ~ ( z )  and a6T(Z). Solutions of the P-SV and SH equations for more complicated 
sources such as point moment tensors can be manufactured by taking linear combinations 
of the ten solutions a lR ,  . . . , a6T. 

As sources we apply separately tractions at z = 0 given by 

2.4 N U M E R I C A L  SOLUTION OF T H E  B O U N D A R Y  V A L U E  P R O B L E M  

Consider the first-order system of differential equations 

a ’= f (z ,  a), z o <  z G z> 

where a and f are vector functions of order n. For the P-SV and SH problems, f is linear in 
a and can be written as 

f(z, a) = A(z) a + q(z) (27) 

where A(z) is an n x n matrix and q(z) is a vector of order n. For the P-SV problem, 
n = 4, A = Ap, and a = ap, while for the SH problem n = 2, A = AH, and a = aH. 

The system (27) is subject to boundary conditions 

~ o ~ ( z o )  = C O ,  C> = c> 

where Co is an no x n matrix and C, is ( n  - no) x n ,  0 d no < n.  

For the P-SV problem, from Table 1 we see that 

O I  

0 1 0  

0 0 0 1  
co= [ 
and for a i~ source, CR = (-FR, O)T, while for a %s source cs  = (0,  - F s ) ~ .  At the top of 
the uniform half-space, the P-SV boundary condition obtained from (21) and (22)  is given 
by c> = (0,  O)T with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

s2 -v, 2 p k v ,  

c> = [ Z p k v p  k s2 
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108 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. Spudich and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Ascher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1. Boundary condition at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 for various sources. 

Source term at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ZR -1 0 * 

0 - 1  * 
2 -1 * 

*Not applicable due to separation of P-SV and SH. 

for I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw I not near 0, and for I w I near 0 (see Section 2.3) 

It zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs1 -v, 2pkv ,  

0 l / ( p a ! Z )  2k(l-/3Z/aZ) p-1 z=z; 
c> = [ 

6 
For the SH problem, from Table 1 we obtain Co = (0 l ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAco = -FT, C> = (vp p-'), and 

An approximate solution ah@) is sought for a(z) on a mesh 
c> = o .  

z O = Z l < z 2 <  ... < Z N + l = z >  (32) 

h.  = z .  z + l  - z i ,  h = max hi. 
I Q i Q N  

In the collocation method, given 1 points (1 3 1) 

0 Q c ; ,  < c;2 < ... < g/ G 1 

the approximation ah(z) is required to be a continuous piecewise polynomial vector function 
satisfying: 

(Cl) On each element of the mesh (z i ,  ~ i + ~ ) ,  each component of ah is a polynomial of 

(C2) ah(z) is continuous throughout [z,,, z>] 
(C3) ah@) satisfies the differential equation (26) exactly at the collocation points 

degree at most 1. 

(33) 2.. = z .  +h. ( .  z l ,  l ~ j c l ,  1 G i G N .  

(C4) ah@) satisfies the boundary conditions (28). 

Thus, as in the usual finite element method, the collocation solution is a piecewise poly- 
nomial function; however, no variational principle is used here and the differential equations 
(26) are approximated directly by the requirement (C3). Also, like other finite element 
methods, the collocation method presented here is equivalent to certain non-trivial, high- 
order finite difference schemes as outlined below. 

If the problem is sufficiently smooth and an isolated solution a(z) exists, Weiss (1974) 
kas shown that by choosing t l ,  . . . , ,$/ as the Gaussian points (zeros of the Legendre poly- 
nomial of degree 1 on [0, 1 1  ), we get 

i.e. the maximum discrepancy is O(lz2'). 

points 
If the function f(z, a) in (26) or A ( z )  in (27) has, at worst, jump discontinuities at some 

z0 Q w, < ... < W M Q  z> 
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Collocation seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA109 

[as would be the case if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ~ ( z ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp(z) or p ( z )  had discontinuities at those depths], then these 
points wi must be included in the mesh (32). In this case the error estimate (34) still holds 
because even if f were to have a jump discontinuity at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz = z j ,  a(z) would still be continuous 
at zi (with discontinuous higher derivatives). This behaviour could be duplicated by a*(z), 
which is also merely continuous at mesh points. Moreover, f [z, ah (z)] is only evaluated at 
the collocation points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzii (33), and if we require zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC;, > 0, < 1, which is true for Gaussian 
points, then the collocation points are never mesh points and f [zii, ah (zij)] is always single 
valued. 

For implementation purposes, note that the above collocation scheme is equivalent to an 
implicit Runge-Kutta method, since ah(zi+ 1 )  may be obtained by using Gaussian quadrature 
to integrate the differential equation on the interval [zi, zi+ Let 

(35) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai = a h (zi), f i j  = f[zij, ah(zij)] = [ah(zij)] ’, 1 G j G Z. 
6 

By using Gaussian quadrature we obtain the difference scheme 

where X i  and Cjq are quadrature constants given by 

f j q  = Jb” L q ( t ) d t ,  X i  = Jol L j ( t ) d t ,  1 G j ,  q G 1 

and Lj are the Lagrange polynomials 

as in Weiss (1 974). 

From (36)  and (37) it can be seen that f i j  can be eliminated locally for each i, 1 < i G N .  

We describe this process for the linear case (27). A quasi-linearization process may be used 
for a general non-linear problem (Keller 1976). Defining the vectors of order nl,  

(37) may be written 

J i  f i  = ri 
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and where I i s  the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx nl identity matrix. So, (36) gives zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
b 

ai+l = ai zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt hiXTfi = aj + hiXTJ;'ri. 

ai+l = r i a i  t g i ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 , .  . . , N (43) 

Coal = co, C, aN+t = c>,  (44) 

ri = I f  hi 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX i  1 (J;l)i, A(ziq) ,  1 G i G N (45) 

gi = h i  1 X j  C 

(42) 

Writing JT' = [ (JT1) jq ]  with each (JT1)jq an n x n block, we get the finite difference scheme 

where ri is an n x n matrix and gi an n-vector, 

1 I 

j = 1  q = l  

1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j = 1  q = t  

(JT')jq q(ziq)* 

Note that ri is the collocation approximation of the propagator matrix. 
In generating ri and gi for each element i, the matrixJi is factored rather than explicitly 

inverted and the linear systems of order nl are solved for n + 1 right-hand side vectors. In 
our particular problem g = q = 0 since the source is introduced as a boundary value. 

The system of linear equations (43) and (44) to be solved is written as 

I 

- rz 

0 

I 

and is solved by the package S O L V E B L O K  (de Boor & Weiss 1980), which exploits the 
sparseness of the large matrix by performing Gauss elimination with scaled row partial 
pivoting on the non-zero subpartitions of the matrix. For the P-SVproblem, note that the 
matrix of (46) is the same for T~ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArS sources. Thus, it needs to be assembled and 
factored only once. Consequently, the computational cost of obtaining the two correspond- 
ing solutions is essentially that of obtaining only one. 

The collocation method (36)-(37) which we use is particularly competitive when the 
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eigenvalues of A(z) have large positive and negative real parts. This corresponds to the case 
of highly evanescent solutions of the P-SV and SH problems. Let X I , .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . , h ,  be the 
eigenvalues of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA @ ) .  The real parts of these eigenvalues are assumed to stay away from 0 
over the interval of integration and we denote 

h.- = min Re(hi) < 0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA, = max Re(hj) > 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i, z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, z 

(47) 

It is well known that methods which employ initial value integrations (or propagator 
matrices) run into trouble when h ,  and h- are large, because they have to integrate rapidly 
(exponentially) increasing fundamental solution components, producing exponentially 
increasing roundoff errors. However, when the fundamental solution components are finally 
combined to form the solution of the boundary value problem, the growing fundamental 
solution components are scaled down by the boundary conditions (assuming that the boun- 
dary value problem is well-posed) and their contribution to the actual solution of the 
problem (26), (28), is negligible away from the boundaries zo and z> .  

The method presented here remains stable even under these circumstances. To see why, 
recall that a difference scheme of the form (43) is said to be A-stable if, when applied to the 
test equation a '=Xa,  z > z o ,  with h a constant satisfying Re(X)< 0, the condition 
lai+l I G /ail is satisfied for any hi> 0. Our collocation method has the property of 
A-stability in both directions of integration, in z and in -z. Thus, the numerical solution to 
the homogeneous problem does not grow in magnitude. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result, stable accurate solutions 
are obtained for arbitrarily large h,  and h-, provided that an appropriate mesh ( 3 2 )  is used. 
Such a mesh is dense where the actual solution, not the propagator matrix, varies quickly, 
and is sparse elsewhere. Despite the possibly extreme non-uniformity of the resulting mesh, 
the linear system (46) can be safely solved because the condition number of the matrix, 
which roughly indicates the factor by which roundoff errors are amplified when solving (46). 
is only O ( N )  and is independent of 

(1 zi: N h i ) - 1  

The use of SOLVEBLOK for this purpose is preferred over the factorization method in 
which (43) is used in a direct recursion to express aN + 1 in terms of al and obtain from (44) 
an n x n linear system for a l .  

The complete theory for collocation for this type of problem was given by Ascher & 
Weiss (1982a, b). It includes more precise statements along the lines above and their proofs, 
as well as formulae for selecting the mesh (32) to achieve a specified accuracy. The basic idea 
when selecting a mesh is to try to equidistribute the error, i.e. to have roughly the same error 
magnitude at each mesh point. In general, such a mesh can only be chosen after some quanti- 
tative knowledge of the solution profile is available. However, near z,, the solution of the 
boundary value problem is dominated by the component exp[h-(z-zo)] and so an 
a priori mesh selection can be made there. For the SH and P-SV problems the mesh can be 
taken very sparse elsewhere. The total number of mesh points N (but not their location near zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ZO) is essentially independent of the eigenvalues of A(z), provided that their real parts are 
large enough in magnitude. As the number of collocation points I increases, the number of 
mesh points required to approximate exp [h-(z-zo)] to a desired accuracy decreases. Of 
course, the computational effort per mesh point increases with I ,  and we have found zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 = 3 
or 4 most economical. 

For rapidly oscillatory solutions the collocation method is less well suited, although it 
still works. For these solutions the mesh must be dense everywhere and the collocation 
method is not particularly more efficient or stable than initial value techniques. 
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2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADISPLACEMENTS A N D  S T R A I N S  F R O M  POINT FORCES 

Having obtained zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAalR(z),  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , u 6 ~ ( z )  for any choice of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo and k ,  following Olson et al. 

(1983) we wish to find the particular linear combinations of these solutions which will 
give us displacements and strains from a point force. 

Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu"? be the transformed displacements caused by a ?F source, where L = R ,  S or T. 

From (2) and (A9) we obtain 

-m = a l L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARy + a 3 ~ S ;  + a S L T ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn 
UL 

where a@ = ass = a lT  = u3T = 0 due to the separation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP-SV and SH. The transformed 
displacements 6"caused by a poirlt force in the 8,-direction, where n = 1, 2 or 3, are 

P. Spudich and U. Ascher 

(48) 

where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf" terms are expansion cokfficients for a point force applied at ro ,  @o in the 
k,,-direction given by 

r0 

The Fourier transform of the resulting traction per unit impulse is 

r0 

which may be expanded as 

5n = jOm (ffi RT + f ; S r  + f ; T ? )  dk. 
2rr 

From (A4) and (A5) we obtain 

fi= /02ff j : rTn .L;"Xdrd4 ,  n = l , 2 , 3 ,  L = R , S , T .  (53) 

In the limit as ro + 0, Go -+ 0, (53) yields the point force expansion coefficients required in 
(49) and given in Table 2 .  Although the sum on rn in (49) nominally runs from -m to DO, 

only the rn = - 1, 0 and 1 terms contribute because of the m dependence of the point force 
expansion coefficients. By performing the sum on m,  and by using (48), (49), Table 2, and 
(Al) we obtain the displacement Green's functions 

- 
u 2  = i s in@[alsJ1]  

ii = i a l R  J o  - J1, 
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Collocation seismograms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPoint force expansion coefficients. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n f f i  f; f; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 0 m Am I - iAml 

2 0 - iAml  -mAm 1 

3 6mo 0 0 

Amn =%(ti,, + 6-mn). 

MOMENT TENSOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1, SOURCE 

113 

where the Bessel functions J ,  and J ,  implicitly have the argument (kr). If we define the 
strain tensor elements resulting from a point force in the kn-direction to be 

they may be evaluated at @ = 0 in Fig. 2. They are, for an k l  point force, 

F 2  - - 2  - - 2  - -  
11 - e 22 - e 33 - e :3 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  

POINT / 
FORCES / 

; /  

Figure 2. Representation theorem geometry. Moment tensor sources are simulated by applying point 
forces at the observer locations and calculating the resulting strains at the moment tensor source location. 
The strain tensor is calculated in the unprimed coordinate system and rotated into the primed coordinate 
system. 
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and for an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx3 point force, 

P. Spudich and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Ascher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Z - 0 3 ~  kX2 

e"3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
13 - - % J1 (a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 R k ' zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ;R zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

J l  e"i2 = -a3R 

e" i 3  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU ;R  Jo, 

where Jo and J1 are Bessel functions with argument (kr), and where 

du 

dz 
(I' = - 

In practice the a ; ,  u; and 0; terms may be obtained from a 2 ,  a4 and a6 by using the P-SV 

and SH differential equations, (4) and ( 5 ) .  Note that while u l ,  . . . , a6 are continuous across 
discontinuities in material properties, their derivatives are not. Consequently, some care 
must be taken when evaluating a ; ,  ui and a; at the depths of material discontinuities. 

2.6 I N T R O D U C I N G  .4 M O M E N T  TENSOR S O U R C E  

To include the effect of a moment tensor source we use the approach of Olson el al. (1 983), 
which we briefly summarize here. 

The spectrum of the a component of displacement at the observer location, y = (r, I9 = 0 ,  
z = 0) in Fig. 2, is given by 

c n ( Y ) = a k l ( x )  ~ , " , ( x , ~ ; y , o )  (59) 

where mkl are the elements of the moment tensor of a point source located at x = (r = 0 ,  
I9 = 0, x;), ezf are the elements of the strain tensor evaluated at x caused by application of 
an impulsive point force at y and time 0 in the 2; direction, as illustrated in Fig. 2, and 
where the summation convention over repeated indices is used. Note that mkl and E k f  are 
components with respect to the zi;-k;-x; basis system, whereas ekl (55) are components 
in the ji-k2-X3 basis. The two strain tensors are related by 

and 

€ 3  = 

, n = l o r 2  

, 
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Collocation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAseismograms 115 

which is obtained by rotating the elements of e by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIT and changing the sign of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe for n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 
and 2. To obtain displacements at 8 + 0, rather than move the observation location we 
instead rotate the seismic source by an angle of -8, which is physically equivalent to 
moving the observer. This rotation changes the moment tensor elements mpq to mLq where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
mil  = m,, cos' 6 + m12 sin 28 + rn2' sin' t9 

mi2 = m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12 cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 8  + %(mZ2 - mll )  sin 2 8  

mi3 = m13 cos 8 + m23 sin 8 

m12=ml l  s in28-m12sin28+m22cos28 

mi3 = -mi3 sin 8 + m23 cos 8 

mi3 = m33 d 

and mb = mii.. Thus, the representation theorem becomes 

ii&, 8) = Eil 

&, (r, 8) = @ A r  Eil 

ii, (r, 8) = @ A r  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu,, ug and u, are the radial outward, azimuthal and vertical downward components 
of motion in the ki-k;-k$ coordinate system, m' is the rotated moment tensor given 
by (61) and E" is the strain tensor caused by a point force in the ?&-direction at (r, 0), 
given by (60). 

3 Anexample 

We illustrate the various steps in the CSM by calculating complete theoerical seismograms in 
a velocity structure consisting of a linear velocity-gradient region overlying a uniform half- 
space. This model is shown in Fig. 3 and its parameters are given in Table 3.  The model has 
been chosen to be perfectly elastic in order to enable direct comparison with DWFE results. 

L I N E A R  G R A D I E N T  MODEL 
VELOCITY,  k m l s ;  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADENSITY,gm/cm3 

n o  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 4 6 8 
U 

E 2  
Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 
+ a 
w 

" 4  

6 
Figure 3. Linear gradient test example. The radiation condition is applied at depth z> and solutions 
obtained at zs and z> are shown in subsequent figures. 
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116 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASpudich zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand U. Ascher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 3. Linear gradient model. 

Depth, km a, k m  s" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, km s-' P ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg cm-3 Q* Qo 
0 2.50 1.44 1.39 m m 

4 5 .OO 2.89 2.28 m m 

4 6.00 3.46 2.58 m m 

>4.924 6.00 3.46 2.58 m m 

The first step is the choice of a suitable grid of points in the a-k plane at which to 
obtain solutions of the P-SV and SH equations. In our test case we obtain solutions at 
points (wn,  k,) given by 

w n = - ( 2 ~ n - i l n D ) ,  n = 0 , 1 ,  ..., O < R e ( w ) < 7 n  
1 

T 

J,(k,R) = 0, 0 < k ,  < 8.56 

where T =  37.768s is the length of the desired time series, D = 0.05 is the exponential 
decay factor at the end of the time series (see Appendix), and R = 1 lOkm is the reflecting 
cylinder radius (see Appendix). This portion of the w-k plane is more than adequate to 
include the complete response of the medium in the 0-1 Hz band. 

The collocation method is then used to obtain solutions aIR(z) ,  . . . , a6T(z)  at each w-k 
point. Representative solutions for a l R  and aST are shown in Figs 4 and 5. In each figure, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
is held fixed at the value shown and k is chosen to give horizontal phase velocities o / k  
of 0.5, 1.5, 7.5 and 3.5 km s-'. The values of the solutions at the mesh points (+symbols) 
are determined by the collocation method, and the smooth curves connecting them are their 
Hermite cubic interpolants. 

The solutions depicted in Figs 4 and 5 show the intuitively expected behaviour. Below 
the geometric optics S-wave turning point (indicated by arrows), the solutions decay 
exponentially while above the turning point they are oscillatory. For the 0.5 km s-l phase 

FOR VARIOUS w - k POINTS a I R  
L INEAR GRADIENT MODEL , ~ = 2 ~ + 0 . 0 9 1 i  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w/k*0.5 k m / s  w/k - 1 . 5  k m / s  w/k - 2.5  k m l s  w/k - 3 5 k m / s  

-0.02 0 0.02 -0.49 
7 

E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y 

I + 
LL 

w n 4 

-6 

2 

MAT f R I A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 
D I S C O N T I N U I T Y  

6 

=>  1 

004 0 

+ : M E S H P O I N T ,  - : s  W A V E  TURNING POINT,  - - : R E ( o , ~ ) ,  -- :IW ( a I R )  

Figure 4. Real and imaginary parts of solution a , ~  for a fixed w and varying phase velocity, w l k .  

Arrows indicate depth of S-wave turning point for each phase velocity. Crosses are solution points 
obtained by collocation method, and the smooth connecting curves are interpolating functions. Solutions 
from depths zs and z> are shown in subsequent figures. 
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0.6 

0 4  

0.2 

- 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w/k-O.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk m l s  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-003 0 003 

I + 
(L 

W 
n 

I + 
(L 

W 
n 

L 

a 5 T  FOR V A R I O U S  w - k  P O I N T S  

L I N E A R  G R A D I E N T  M O D E L  , w = 2 ~ + 0 0 9 1 i  

w / k =  1.5 k m / s  w/k - 2.5 k m / s  

-0.25 0 0.25 -0.09 0 0.09 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwlk - 3 . 5  k m l s  

-015 0 015 

I, 
: R E ( a  ) , - - : l M ( O  ) - :S WAVE TURNING P O I N T ,  - 5 T  5T + : M E S H  POINT , 

Figure 5. Real and imaginary parts of solution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaST for a fixed w and varying phase velocity w / k .  See 
Fig. 4 for details. 

a , L I N E A R  G R A D I E N T  M O D E L  
IA 
z = 1 0 1 2 k r n i  IM(w)=0.091 

1 ' ' " 1 ~ " ' 1 ~ ' ' ' 1 ' ~ ~ ' 1 ' ' " 1 ' ~ ' ' 1 ' ~ ~ ' 1 ~ ~ ' ' l  

0 0 2  0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.6 0.8 
SLOWNESS , s / k m  

Figure 6 .  Solution for U,R at zs = 1.012 km depth in the linear gradient model of Fig. 3. Solution is 
shown as a function of frequency, w/2n, and slowness, k / w .  All traces are plotted in record section 
format t o  the common scale shown on the right, and any static offset has been removed from all traces. 
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velocity, which is less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 at the surface, S-waves do not penetrate into the medium at all 
and the solutions decay rapidly away from the surface. For 1.5 and 2.5 km s-l phase 
velocities the S-waves turn within the linear gradient zone but are still evanescent in the 
underlying half-space. Finally, for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.5 km s-' phase velocity S-waves can radiate out into 
the underlying uniform half-space. The boundary condition at z> changes from a decaying 
to a radiating condition, and solutions in the interval [0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz > ]  are completely oscillatory. 
Note that the solutions are continuous across the material discontinuity at 4 km depth, as 
they should be. 

These solutions may also be viewed as functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw and k for particular depths. In Figs 
6 and 7 alR is shown as a function of w and horizontal slowness, k/w, for the two depths 
indicated in the previous figures, zs = 1.012 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm and z> = 4.924 km. At the shallower depth, 
the dominant feature is the ridge caused by the fundamental Rayleigh mode. For low 
frequencies this mode has a phase velocity or slowness appropriate to  the region z > z>,  but 
as the frequency increases the phase velocity of the mode diminishes. For the deeper depth 
(Fig. 7) the fundamental mode is still apparent at low frequencies but it disappears zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the 
frequency increases. 

Since these solutions are obtained for a predetermined portion of the w-k plane, one can 
easily exclude portions of the earth model's seismic response simply by not calculating 
solutions for that portion of the w-k plane. This is similar to the phase velocity windowing 
employed in the reflectivity method of Fuchs & Muller (1971) and others' subsequent 
work, and it simultaneously economizes the calculation and makes the resulting seismograms 
more easily interpretable. 

P. Spudich and U. Ascher 

0- 

N 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 
0 

?Z 0.5 
I3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n= LL. 

1.0 

a , LINEAR G R A D I E N T  MODEL 
IA 
z - 4 , 9 2 4  km , I M  (u)= 0 . 0 9 1  

Lu.. ~ . . . . ~ . . . . ~ . . . " " " ~ " " ~ " " ~ ' " ' '  

0.3 

0.2 

0. I 

0 

0 0 2  0.4 0 6  0 8  
SLOWNESS , s / k m  

Figure 7.  Solution for alg at z> = 4.924 km depth in the linear gradient model. See Fig. 6 for details. 
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T - R / 6 + 5 ,  S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 8. Theoretical velocity seismograms for a point dislocation having equal thrust and left-lateral 
components on a dipping plane in the linear gradient model of Fig. 1. Source depth is 4.924 krn, moment 
is 10zodyne cm, and source time function is a step function. Seismograms have been plotted with a 
reduction velocity of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 km s" , and have been filtered with a zero-phase cosine-squared taper between 
0.5 and 1 Hz. For each range and component two traces are shown. The upper, heavier trace is the collo- 
cation seismogram and the lower, lighter trace is the difference between it and the equivalent DWFE 
seismogram. The amplitude scale varies linearly with range. The vertical bars to  the right o f  the vertical 
seismograms indicate 0.001 cm s" at 5 and 35 km range respectively. 

Once the solutions u l R ,  . . . , a6T are available on the desired region of the a - k  plane, 
theoretical seismograms are obtained by calculating the strain tensor, doing the inverse 
transforms, and contracting the strain tensor with a source moment tensor. As an example, 
the heavier lines in Fig. 8 are collocation seismograms calculated for a point double couple 
of moment 102'dyne cm located at depth z> = 4.924km in the linear gradient model. The 
source has a dip of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA80°, a rake of 45", and is observed at an azimuth 9=60" (Fig. 2) off 
strike. The source time dependence is a step function and the seismograms are ground 
velocity in the frequency band 0-1 Hz. The seismograms have been filtered by application 
of a cosine-squared fading of their spectra between 0.5 and 1 Hz. 

In order to check the CSM, we have also calculated seismograms for the identical test 
problem using the DWFE method. Rather than show the DWFE seismograms directly, in 
Fig. 8 we have plotted the difference between the CSM and DWFE seismograms using the 
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lighter lines. As can be seen, the methods agree rather well for this problem. In general 
the discrepancies between the methods appear to be due to slight differences in phase rather 
than waveform mismatches, and it is not yet clear which set of seismograms is more 
accurate. 

Although omitted here for brevity’s sake, we have performed other tests of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACSM with 
satisfactory results. Analytic solutions to (4) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  and their boundary conditions can 
easily be found for the case of a uniform layer overlying a uniform half-space, and in all 
cases for which the analytic solution can be evaluated accurately, the collocation method 
obtains the proper solution within the desired tolerance. In addition, we have successfully 
duplicated the theoretical seismograms obtained by Olson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1983) for an earth model 
consisting of two uniform layers overlying a uniform half-space. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. Spudich and U. Ascher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 Discussion 

In this paper we have demonstrated the utility of collocation techniques in solving boundary 
value problems for stress-displacement vectors in a vertically varying medium. While the 
collocation solver has been placed into a flexible, general purpose package for the calculation 
of synthetic seismograms, we have not yet attempted to optimize the efficiency of the 
package. 

The computation time required by the current version of the CSM is roughly proportional 
to the cube of the desired frequency bandwidth (see Appendix for details). The efficiency 
of the CSM is largely dependent upon two factors, the number of sample points required 
in the w-k plane for accurate evaluation of the integral transforms, and the rapidity with 
which individual solutions are obtained, especially for large Re(w). Improvements in both of 
these areas can be made to our current implementation of the CSM. The easiest improve- 
ment to implement would be to choose a method for evaluating integrals of the form (A1 1) 
which requires fewest sample points in the w-k plane. Since our ultimate goal is to obtain a 
seismogram of a specified accuracy, the following questions regarding a - k  sampling should 
be investigated. Can a very sparse sampling along the real k-axis be used when h ( w )  is large 
since the integrands are very smooth for large h ( w ) ,  or does the multiplication of the 
seismogram by exp[Im(o)t]  require a dense sampling of the smooth integrand to keep 
errors bounded? Should the sampling vary if we desire an accurate accelerogram rather than 
a displacement record? Should the sampling anticipate the high frequency taper applied to 
the seismogram spectra? 

The CSM could be improved for large Re(o)  by interchanging the collocation technique 
with other techniques for solving the boundary value problem when appropriate. For 
example, when Re(u,) and Re(up) are small the matrix ri in (43) could be the exact propa- 
gator matrix (i.e. the layer matrix) if a, fl and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp are constant for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzi G z G zi+l and ri could 
be an asymptotic approximation if a, fl and p vary gradually with depth and the approxi- 
mation is valid between zi and as in Cormier (1980). On the other hand, the collo- 
cation approximation to ri could be used near turning points, in regions of large velocity 
gradient, or when u, or up have significant real parts. 

In addition, for large Re(w) and k, additional savings might be achieved by factoring zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 
out of the A matrix, as advocated by Kennett zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kerry (1979), and working on a fixed set 
of slownesses for all frequencies. In order to avoid redundant calculation, one would also 
have to use the same mesh in z for all frequencies. When using the collocation technique 
this would probably be done economically for evanescent solutions but might not be 
appropriate for oscillatory solutions. 

Since we have not yet attempted to optimize the CSM with respect either to sampling in 
the w-k plane or to efficiency at high frequencies, we cannot say with certainty how 
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economical the CSM will ultimately be in any particular application. However, it is clear that 
the current implementation of the CSM is better suited to some applications than others. 

The current version of the CSM is probably most useful for two classes of problems, 
those involving extended seismic sources and those which for some reason are so patho- 
logical that they elude solution by other less general methods. For example, consider the 
problem of calculating ground motions in a region from 0 to 100 km epicentral distance 
from a magnitude 6.5 earthquake having surface rupture and a 10 km hypocentral depth. In 
this case one needs Green’s functions for sources at a wide range of depths, which the CSM 
automatically yields if one saves the results for all mesh points. Any particular observation 
location may simultaneously receive all types of near-field and far-field body and surface 
waves, and, as long as the a - k  window is large enough, the CSM cheerfully disgorges all 
these waves with very little user intervention. 

In addition, due to its generality the CSM may be used for problems involving frequency- 
dependent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ, low-velocity zones, strong velocity-gradient regions, and other situations where 
many common approximations, such as the WKBJ approximation, break down. On the other 
hand, use of the CSM for point sources is generally a bit of overkill and is clearly not 
warranted if the Earth response is well approximated by surface waves or a small number of 
body waves, particularly at high frequencies. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Appendix A: integral transforms 

In this section we define the various integral transforms used, and introduce some notation. 
Following Takeuchi & Saito (1972) and Ben-Menahem & Singh (1981), we present the 
orthogonal vector functions R, S and T employed in spatial transforms, defined by 

where i, 6, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 are unit vectors in a cylindrical coordinate system, and where 

Y ( k ,  m, r,  @) = Jm(kr )  exp(irn@), m = 0, f 1, f 2 ,  . . . 

Note that m is a discrete variable while the others are continuous. 
If we define the following inner product 

(a, b )  = /02n ra . b*dr d@ 

where the asterisk denotes complex conjugate, then R, S and T satisfy the following ortho- 
gonality relations 

Since R, S and T are orthogonal, any vector function v of r,  @ and z may be written as a 
linear combination of them: 
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For temporal transforms we use the Fourier transform pair, 

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f ( w )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS__ exp( io t ) f ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdt 

exp(-iot) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.?(a) d o  

where w may be complex and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIm(w) > 0. Note the sign convention employed. With this 
definition of the Fourier transform, we may expand any vector function of both space and 
time by 

or 

.” 
V(r ,$ ,z ,w)= I - [ A R T + B S T + C T r ] d k .  

m - o  2n 

In instances when A ,  B and Care non-zero for only a few values of m, the following notation 
becomes useful. Define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf by 

exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(-io zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt) 

With this definition, writing (A7) is similar to  writing 

F m  =ART + E S T  + CT?. (A101 

The efficient evaluation of expressions like (A9) is still a matter under investigation by US 

and others. For the examples shown in this paper we have used an extension of the discrete- 
wavenumber summation, introduced by Alekseev & Mikhailenko (1980) and Olson ef al. 
(1 983), in which an integral of the form 

f ( r )  = low kg(k)Ji(kr) dk, i = 0, 1 
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As pointed out by the previous authors, the physical effect of this substitution is to intro- 
duce an artificial boundary at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= R ,  and hence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR must be chosen sufficiently large so that 
waves reflected from this boundary arrive at the receiver locations after the last outgoing 
signal of interest. In addition, note that the k, in (A13) are the roots o f J l  (k,R) for both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i = 0 and 1 in (A1 1) .  This easily derived extension of the previous authors’ work cuts in half 
the number of sample points required in the k domain. The choice of N 1  and N2 in (A12) 
is made by determining the portion of the a-k plane for which the seismic response is 
desired. By allowing N 1  and N2 to be functions of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw, phase velocity filtering of the theo- 
retical seismograms is easily performed. 

The inverse Fourier transform is performed using a standard FFT and subsequent multi- 
plication of the time domain signal by the growing exponential exp[Im(o)t] to remove 
the effect of the complex frequency. This convenient trick, introduced by Phinney (1965) 
simultaneously smooths the integrand and diminishes the wrap-around problem inherent 
in the use of an FFT. 

Like the DWFE method, the computation time required by this version of the CSM is 
roughly proportional to the cube of the desired frequency bandwidth. Since equally spaced 
frequencies are required by the FFT, the number of frequencies needed grows linearly with 
bandwidth. Similarly, if lines of constant phase velocity are used to bound the region of 
integration in the a-k plane, the required number of wavenumbers (N2 - N 1 )  rises linearly 
with o. Finally, the number of mesh points required to  solve the P-SV and SH equations is 
roughly proportional to frequency. 

P. Spudich and U. Ascher 
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