
Calculation of dispersion energies

Author

Dobson, John F, Gould, Tim

Published

2012

Journal Title

Journal of Physics: Condensed Matter

DOI 

https://doi.org/10.1088/0953-8984/24/7/073201

Copyright Statement

© 2012 Institute of Physics Publishing. This is the author-manuscript version of this paper.
Reproduced in accordance with the copyright policy of the publisher.Please refer to the journal's
website for access to the definitive, published version.

Downloaded from

http://hdl.handle.net/10072/46865

Griffith Research Online

https://research-repository.griffith.edu.au



TOPICAL REVIEW

Calculation of Dispersion Energies
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Nathan, Queensland 4111, Australia
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Abstract. We summarise the theory of van der Waals (dispersion) forces, with
emphasis on recent microscopic approaches that permit prediction of forces between
solids and nanostructures right down to intimate contact and binding. Some
connections are pointed out between microscopic theory and macroscopic Lifshitz
theory.

PACS numbers:

Submitted to: J. Phys.: Condens. Matter

1. Introduction

“Dispersion forces” [1],[2] are generally understood in the solid-state physics community

to be that part of part of the non-covalent van der Waals (vdW) interaction that

cannot be attributed to any permanent electric mono- or multipoles. (In the chemistry

community, the whole of the non-chemically-bonded interaction is often termed the “van

der Waals” (vdW) interaction, but in the the physics community this term is usually

reserved for the outer dispersion component as defined above. A useful categorisation

of the many components of the total force is given in [3] from a perturbation theory

standpoint). The ubiquitous dispersion forces occur wherever polarisable electron clouds

are present, and are typically weaker than ionic and covalent bonding forces, but are

of longer range than the latter, decaying algebraically rather than exponentially with

separation. They are important in protein interactions, in rare-gas chemistry and in soft

condensed matter generally. They are especially important, for example, in the cohesion

and self-assembly of graphenic nanostructures including nanotubes and planar graphene-

based systems, which have attracted strong recent interest in the condensed matter

community. Much work has been done on the vdW interaction in the two extremes of

(i) small molecules (via high-level quantum chemical methods such as coupled cluster

(CCSD(T)) [4] or Symmetry adapted Perturbation theory (SAPT) [3]) and (ii) well-

separated macroscopic objects (via Lifshitz theory and its extensions, for example [5],

[6], [2]). However the study of vdW interactions between solids and nanostructures
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down to intimate contact, where dispersion competes with other forces, is still an area

of active research. The selective adhesion of graphene to various metal substrates is

an example of a delicate phenomenon where vdW forces are important but where a

successful fully quantitative theory is only just emerging [7]. This paper will outline the

development of simple and more complex theories to account for these phenomena within

the electromagnetically non-retarded regime, as defined in the following paragraph. The

website [ http://www.cecam.org/workshop-2-411.html ] of a recent CECAM workshop

will give the flavour of some relatively recent work in this area.

vdW forces are a special case of the more general electromagnetically retarded

interaction between matter, an interaction that is properly treated by regarding both

the matter and the electromagnetic field as dynamical quantum systems. When the

distance D between the interacting bodies is sufficiently small, the light transit time

τlight = D/c is small compared to the response time τmatter of the charges in the matter,

and then we can neglect the retardation of the electromagnetic field. This is sometimes

designated the “vdW regime”, and here one can treat the electromagnetic field as a

non-retarded scalar classical Coulomb field that serves merely to induce correlations

between the charge fluctuations within the interacting bodies. The emphasis is then

focussed on the dynamics of the interacting matter - the electronic many-body problem.

This is the approach that will mainly be pursued below.

It is worthwhile, however, to consider briefly the opposite limit where retardation

is important, and here the dispersion-type forces are often termed Casimir forces [8].

In this “Casimir regime” the response of the matter is often treated approximately

via a spatially local dielectric function ε(ω) confined within sharp spatial boundaries

representing the edges of the matter. The dispersion interaction is then often regarded

as being due to the separation-dependence of the zero-point and/or thermal energy of

the normal electromagnetic field modes. These modes are calculated from the classical

Maxwell equations in the presence of chunks of matter characterised only by their

macroscopic permittivity ε(ω). The two viewpoints are united by the very successful

Lifshitz theory [5], [6], applied originally to the interaction between bulk samples with

parallel planar faces, and quickly extended to other geometries in various approximate

ways [1], [9],[10]. In recent years the Lifshitz type of approach has been applied, without

approximation, to more general geometries such as spheres, cylinders, thin plates etc,

but always with the caveat that the spatial scales must be long compared with the scale

of the microscopic structure of the matter, so that only the long-wavelength response of

the matter to electromagnetic fields is invoked [11], [12].

In fact the term “Casimir effect” has recently come to have a wider meaning,

covering the dependence on geometry (shape, size or separation) of the total zero-

point or thermal free energy of any kind of field in confined geometry. Apart from

the electromagnetic Casimir forces described above, examples of this approach include

(i) the effect of elastic wave fluctuations on the thermodynamic behavior of finite and/or

curved elastic membranes (ii) the interaction between nuclei or nucleons in a Fermi sea

of quarks, where the zero point kinetic energy of the free quark field carries the basic
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effect. Some flavor of the possibilities of this field-fluctuation approach can be obtained

by visiting the website of a recent Kavli Institute for Theoretical Physics workshop

entitled “Fluctuate 08”: [ http://www.kitp.ucsb.edu/directory/all/fluctuate08 ].

For the remainder of the present paper we will work in the electromagnetically non-

retarded (non-Casimir) limit, which often means in practice that we can treat interacting

systems at separations from about a micron down to full overlap of electronic clouds.

2. Simple models of the vdW interaction between small systems

It is worthwhile to consider first a very simple picture of the vdW interaction between

two neutral spherical atoms at separation R >> b where b is an atomic size. (For more

detail see e.g. [13] , [14], [15] .) The Hartree field of a neutral spherical atom decays

exponentially with distance, and so the Hartree energy cannot explain the algebraic

decay of the vdW interaction.

2.1. Coupled-fluctuation picture

However the quantal zero-point motions of the electrons (or thermal motions where

significant) can cause a temporary fluctuating dipole moment d2 to arise on atom #2.

The nonretarded Coulomb interaction energy between this dipole, and another dipole

of order α1d2R
−3 that it induces on atom #1, has a nonzero average value that can be

estimated [13] ,[14] as

E =
〈
(α1d2R

−3)(−R−3d2)
〉 ≈ −C6D

−6, (1)

C6 = K~ω0α1α2. (2)

Here α1 and α2 are the dipolar polarisabilities of the atoms and ω0 is a characteristic

frequency (level spacing) of an atom. The coefficient C6 for this geometry has been

obtained using a harmonic oscillator analogy to estimate < d2
2 > = Kα2~ω0 and

this contains a dimensionless constant K, that is not easily specifiable from the above

qualitative argument.

2.2. Model based on the static correlation hole: failure of LDA/GGA at large

separations

The spontaneous dipole d2 invoked above would be implied if we had found an electron

at a position ~r ′ on one side of atom #2. The induced dipolar distortion on atom #1

then represents a very distant part of the correlation hole density n2(~r|~r ′) [16] due to

discovery of the electron at ~r ′. The shape of this hole is entirely determined by the shape

of atom #1, and is thus quite unlike the long-ranged part of the xc hole present in a

uniform electron gas of density n(~r). It is therefore unsurprising that the local density

approximation (LDA) misses the long-ranged tail of the vdW interaction. In fact, the

LDA and the GGAs can only obtain the vdW tail via the distortion of the density of

each atom. This distortion is predicted by these theories to decay exponentially with
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separation of the two atoms, thus ruling out the correct algebraic decay of the energy.

The situation with GGA is less clear when the densities of the interacting fragments

overlap. If the principal attractive correlation energy contribution comes from electrons

near the overlap region, then treating this region as part of a weakly nonuniform gas

might be reasonable. In keeping with this, various different GGAs can give qualitatively

reasonable results for vdW systems such as rare-gas dimers. The results are neither

consistent nor reliable, however [17], [18], [19], [20], though surprisingly good results

near the energy minimum are obtained [21], [22] with Hartree-Fock exchange plus the

Wilson-Levy functional. Some discussion is given in [13].

2.3. Model based on small distortions of the ground state density

Instead of considering the energy directly for two atoms separated by distance R ,

Feynman [23] and Allen and Tozer [24] considered the small separation-dependent

changes δn(~r : R) in the groundstate density n(~r) of each atom, caused by the Coulomb

interaction V12 between atoms. The Coulomb field acting at the nucleus of each atom

created by δn(~r : R) as source, leads to a force which was identified as the vdW force,

in the distant limit. One can then obtain the correct result ~F = −∇R(−C6R
−6) in

the widely-separated limit, in agreement with (2). Such a result emerges, for example,

if δn(~r : R) is calculated from a many-electron wavefunction correct to second order

in V12, involving a double summation with two energy denominators. (The first-order

wavefunction perturbation makes zero contribution to δn(~r : R).) By contrast, looking

at the total energy to second order in V12 one already obtains the dispersion interaction

with only a single summation and one energy denominator, a substantially easier task

of the same order as obtaining the first-order perturbed wavefunction. From here on

we restrict attention to approaches based directly on the energy.

2.4. Coupled-plasmon model

Another simple way to obtain the R−6 interaction is to regard the coupled fluctuating

dipoles invoked above as forming a coupled plasmon mode of the two systems [14]. One

solves coupled equations for the time-dependent density distortions on the two systems,

leading to two normal modes (in- and out-of-phase plasmons) of free vibration of the

electrons. The R dependence of the sum of the zero-point plasmon energies
∑

i ~ωi/2

gives an energy of form −C6R
−6, in qualitative agreement with the coupled-fluctuation

approach described above for the case of two small separated systems (see, e.g., [25],

[1], [14]). A strength of the coupled-plasmon approach is that it is not perturbative,

and is equally valid for large or small systems, even for metallic cases where zero energy

denominators could render perturbation theory suspect. The coupled-plasmon theory

is linked to the correlation-hole approach by the fluctuation-dissipation theorem to be

discussed starting from Section 5 below.
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2.5. Perturbation theory picture assuming no overlap

The factor R−6 in (2) can be understood as arising from two actions of the dipolar field,

each proportional to R−3, suggesting that this simplest approach relates to second -order

perturbation theory in the inter-system Coulomb interaction . Indeed the application of

standard 2nd order Rayleigh-Schrodinger perturbation theory, regarding the electrons

of one system as distinguishable from those of the other and treating the inter-atom

Coulomb potential V as a perturbation, yields the formula

E
(2)
AB = − ~

2π

∫ ∞

0

du

∫
d~r1d~r ′1d~r2d~r ′2

× V (~r ′2 − ~r1)χA(~r1, ~r
′
1, iu)V (~r ′1 − ~r2)χB(~r2, ~r

′
2, iu) (3)

where V is the bare electron-electron Coulomb potential and χA(~r1, ~r1
′, ω) exp(−iωt)

is the linear electron number density response at position ~r to an external potential

perturbation of form δV (~x) = δ(~x − ~r ′) exp(−iωt): see (e.g.) [26], or [27]. χA is

usually termed the electron density-density reponse of system A (or just the density

response), and the expression (3) is sometimes known as the “(generalised) Casimir

Polder formula”. It is derived in a different fashion in Section 6.1 below.

By expanding the Coulomb potential in a multipole series around the centres of A

and B, one obtains to lowest order a result of the form (2) with

C6 =
~
2π

3∑

jklm=1

∫ ∞

0

tmj( ~̂R)A
(A)
jk (iu)tkl( ~̂R)A

(B)
lm (iu)du, (4)

tkl = R̂kR̂l − 3δkl

(See e.g. [13]). Here ~r is the vector joining the centers of A and B, R̂ = ~r/ |~r| and

A
(A)
jk =

∫
xjx

′
kχA(~x, ~x ′, iu)d~xd~x ′ (5)

is the is the dipolar polarisability tensor of species A. ~x is the position of an electron

relative to the center of A. For two isotropic systems A
(A)
jk = δjkA

(A) and similarly for

A
(B)
jk . This leads to the possibly more familiar expression

E(2) = −C6R
−6, C6 =

3~
π

∫ ∞

0

A(A)(iu)A(B)(iu)du. (6)

Using (4) or (6) one reduces the calculation of the asymptotic vdW interaction

between fragments to the calculation of the (imaginary) frequency-dependent dipolar

polarisability A of each fragment. This is a surprisingly demanding task. It can

be done accurately with high-level quantum chemical approaches, but even relatively

sophisticated treatments like RPA or ALDA obtain accuracies only of order 10-20% for

small atoms and molecules, where orbital self-interaction is an issue.

If the multipole expansion of the Coulomb potential in the Casimir-Polder formula

(3) is taken to higher order, additional terms of form C8R
−8, and higher powers, are

added to the leading −C6R
−6 term. There are also mixed induction-dispersion terms

in general. A good and very detailed enumeration of the possible terms is given in [3].
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2.6. vdW and higher-order perturbation theory

For non-overlapping electronic systems one can go further within perturbation theory

with respect to the inter-system Coulomb interactions Vij. In third order one finds

an interaction between three separated systems, which cannot be expressed as the

pairwise sum of R−6 terms such as (2). At large separations for spherical systems

the leading (dipolar) contribution to this third-order term has the Axilrod-Teller form

EvdW, (3) ≈ C9R
−3
12 R−3

23 R−3
13 , (see e.g. [28]) where C9 contains some angular dependence.

There are also corrections to the pair interaction (3) from perturbation orders beyond

2 [3].

2.7. Perturbation theory including overlap: Symmetry Adapted Perturbation Theory

When the electron clouds of two systems 1 and 2 are allowed to overlap, the electrons

in 1 and 2 can no longer be treated as distinguishable, and Equation (3) is inapplicable.

A perturbative approach in this case requires Symmetry Adapted Perturbation Theory

(SAPT) [3]. In SAPT the antisymmetry of the many-electron wavefunction is imposed

upon perturbation theory via a projection operator technique. This approach has

been developed to a very high level of sophistication (including judicious use of Time

Dependent Density Functional Theory to ease parts of the calculation) [29]. SAPT

probably represents the current state of the art for the van der Waals interaction between

pairs of molecules up to medium size. So far it seems not to be feasible for solids and

large nanostructures, so it will not be considered further here.

3. The simplest models for vdW energetics of larger systems

3.1. Simple pairwise addition of C6R
−6 for well-separated macroscopic bodies

The simplest approach to the vdW interaction between many-atom systems, including

solids, is to add energy contributions of form −C6(ij)R
−6
ij between each pair (i, j) of

atoms. There is a large early literature of calculations of this kind for macroscopic

solids with an empirical C6 value. Often one replaces sums over atoms by continuous

integration using volume elements that may each contain many atoms. In this way one

easily obtains analytic dependence on the separation D for macroscopic objects of each

well-defined shape (thick slab, thin slab, sphere, cylinder etc). [1], [14],[9]. See also the

right-hand column of Figure 1 below, for a few specific cases.

3.2. Pairwise addition with empirical short-range repulsion

If the interacting bodies can come into close contact, the attractive −C6R
−6 interaction

must be attenuated (damped, saturated) at short range and replaced by a Pauli repulsion

term. In empirical pairwise theories the short-ranged part is often of form +C12R
−12

(Lennard-Jones potential) or +B exp(−CR). Since the polarisability A (see (4)) of an
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atom in a molecule or solid is usually quite different from that of the isolated atom,

all coefficients C6, C12 or B are often determined empirically. Two examples are the

“universal graphitic potentials” [30], [31]. Such models have been used extensively

to model interactions between carbon nanotubes, graphene sheets, bucky balls etc:

see (e.g.) [32]. Similar terms are included in force fields (e.g. CHARMM) used for

biochemical modelling.

3.3. Pairwise addition as a dispersion energy correction to LDA

Perhaps because of the availability of high-level quantum chemical methods, the simple

pairwise approach seems to have been pursued much later for finite molecular systems

than for other application areas. Wu and Yang [33] introduced a pair interaction of form∑
ij f ij

d (Rij)C
(ij)
6 R−6

ij to be added to the Local Density Functional (LDA) energy, which

of course already contains the Pauli repulsion. The coefficients C6 were optimised by

fitting a set of accurate molecular energies. They turned out to be surprisingly, though

not perfectly, transferrable. This general approach is now often called “DFT+D” or

“DFT-D” and has been furthered by Grimme and others [34], [35]. In the last approach,

transferability is improved by counting the number of effective bonds in which an atom

participates, then using this to modify the atomic C6 coefficients. Another approach

[36] starts from accurate quantum chemical data for the vdW C6 coefficients of free

atom pairs. The vdW interaction is then modified to account for Pauli compression

effects of nearby atoms on the atomic polarisabilities, using the effective volume of each

atom in its molecular environment, according to a standard molecular space partitioning

scheme.

4. Effects beyond pairwise additivity

As already indicated in Section 2.5 above, perturbation theory naturally produces triplet

and higher contributions to the dispersion energy, beyond pairwise interaction of atoms

or spatial elements. For small weakly polarisable systems such as rare gas atoms, these

terms are relatively small but can be significant, along with R−8 and higher terms, at

shorter range as in rare gas crystals [37].

Stronger effects, not describable by a small number of triplet and higher

perturbation terms, have been discovered in polarisable, highly anisotropic systems.

Kim et al [38] studied chains of non-contacting polarisable SiO spheres in various

geometric arrangements. They obtained the vdW interaction from the zero-point energy

of coupled plasmons within a polarisable point-dipole model similar to that in [14] and

found major discrepancies compared with pair-summation. These discrepancies were

not significantly improved by adding just triplet terms. Martyna et al. have applied a

somewhat related model of coupled oscillators to solid xenon [39]. The multiple-coupled

dipole approach has been popular in the past [14] and can be used [40] to derive the

nonretarded Lifshitz interaction - see Section 6.1 below.
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Other formalisms have yielded equally large discrepancies for semiconducting linear

hydrogen chains [41], [42]. The beyond-pairwise effects can be understood in terms of

the screening of the Coulomb interaction that couples fluctuations on two atoms, due to

polarisation of the electon clouds on other atoms . The non-additive effects are strong

when the systems are very anisotropic (e.g. chains or thin films) and highly polarisable.

An extreme case of a polarisable system is a metal, especialy in low dimensions (wires,

sheets, graphene) where internal Coulomb screening is less effective. For such cases

it has been shown [43], [44], [45], [46] that one can even obtain an exponent p in the

asymptotic vdW power law E ≈ −CD−p that differs from that predicted by
∑

C6 R−6

theories. (See Figure 1 below).

5. The adiabatic connection - fluctuation dissipation (ACFD) approach to

groundstate correlation energy

While coupled point polarisable dipole models are sensible and exhibit the required

non-pairwise–additive vdW behavior, in general one needs a more complete approach

that allows for overlap and a detailed description of metals. This leads one to

seek more fundamental approaches. The electronic Diffusion Monte Carlo (DMC)

approach has been applied to a few simple nanostructures [47][48], but it is very hard

to ensure convergence of DMC in such systems, because of the need for a very big

sample cell in order to capture long-ranged vdW correlations. In what follows we

therefore concentrate mainly on approaches to the electronic correlation energy based

on the Adiabatic Connection Formula and the Fluctuation Dissipation Theorem (ACDF

approach) of which the simplest example is the (direct) Random Phase Approximation

(dRPA) correlation energy to be described in the next Section.

The vdW energy is part of the electronic correlation energy in the groundstate

of the total many-electron system. An exact formal expression for this groundstate

correlation energy is the ACFD formula

Ec = − 1

2

∫ 1

0

dλ

∫ ∞

0

~du

π

∫
d~rd~r ′

× V (~r, ~r ′) [χλ(~r, ~r
′, iu)− χ0(~r, ~r

′, iu)] . (7)

Here we have defined a “λ-system” in which the bare inter-electron Coulomb

interaction V (~r, ~r ′) ≡ e2 |~r − ~r ′|−1 has been replaced by λV (~r, ~r ′) while a λ-dependent

static external potential is applied in order to keep the groundstate density constant

at the true (λ = 1) value while λ is varied. χλ is the electronic density response of

the λ-system, defined in general such that the linearised density perturbation of the

λ-system under an external potential δV ext(~r) exp(−iωt) is

δn(~r, t) = exp(−iωt)

∫
χλ(~r, ~r

′, ω)δV ext(~r ′)d~r ′. (8)

In (7) the integration over imaginary frequency u implements the Fluctuation–

Dissipation theorem [49], [50], [15]: as such it constructs the correlated groundstate
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pair density n2λ(~r, ~r
′) using the density response as input. The expression (7) is thus

of the form of an electrostatic energy, except for the λ integration, which implements the

Adiabatic Connection formula [51], [16]. The λ integration is based on the Feynman-

Hellman theorem, and physically it re-introduces the zero-point kinetic energy of

correlation, otherwise missed in an electrostatic energy type of integral. A particularly

clear explanation of the Adiabatic Connnection is given in Gunnarsson and Lundqvist

[16] starting from their Equation (28), with their “g” representing our “λ”. A complete

pedagogic derivation of (7) in the present context, including a first principles derivation

of the appropriate version of the FD theorem, is given in [15].

Expressions based on (7) can be obtained for the exchange-correlation energy

Exc = − 1

2

∫ 1

0

dλ

∫
d~rd~r ′V (~r ′, ~r)

×
[∫ ∞

0

~
π

χλ(~r, ~r
′, iu)du + n(~r)δ(~r − ~r ′)

]
(9)

and the exact exchange energy

Ex = − 1

2

∫
d~rd~r ′V (~r ′, ~r)

×
[∫ ∞

0

~
π

χ0(~r, ~r
′, iu)du + n(~r)δ(~r − ~r ′)

]
. (10)

The latter reproduces the “DFT exact exchange”, namely the Hartree-Fock

expression for the exchange energy, but with Kohn-Sham orbitals in place of Hartree-

Fock orbitals. An explicit constructive proof of this statement is given in [15].

6. The (direct) RPA for the correlation energy

Equation (7) is a purely formal expression giving the correlation energy in terms of the

response function χ, and it is not immediately clear how sophisticated an approximation

to χ is required in order to obtain useful accuracy in Ec. In fact it turns out that no

explicit correlation physics is needed in χλ in order to obtain a non-zero correlation

energy from (7). Indeed a very simple time-dependent Hartree approximation for χλ,

namely

χdRPA
λ = χ0 + χ0λV χdRPA

λ , (11)

produces the (direct) Random Phase Approximation (dRPA) for the correlation energy,

first introduced long ago for the special case of the homogeneous electron gas. The

correlation energy includes the mutual energy of coupled fluctuations of the density

about the groundstate, fluctuations whose average value in the groundstate is zero so

that they cannot contribute any extra energy in the static Hartree approximation.

However when an explicit density disturbance (with non-zero ensemble average) is

introduced by a time-dependent external field, this can interact with disturbances

elsewhere even at the (time-dependent) Hartree level. The Fluctuation Dissipation



Calculation of Dispersion Energies 10

Theorem relates such interactions in the non-equilibrium driven system to the

interactions between spontaneous fluctuations around the non-driven groundstate.

For the dRPA case the λ integration in (7) can be carried out analytically

using the following formal operator identity in (~r, ~r ′) space: ∂λ ln(1 − λχ0V ) =

(1− λχ0V )−1 χ0V = χdRPA
λ V in which products are to be interpreted as spatial

convolutions:

EdRPA
c = − 1

2

∫ ∞

0

~du

π

∫
d~r [ln(1− V χ0) + (V χ0)]~r~r (12)

= − ~
2π

∫ ∞

0

du Tr [ln(1− V χ0) + (V χ0)] (13)

= − ~
2π

∫ ∞

0

du Tr
[
ln(1− V 1/2χ0V

1/2) + (V 1/2χ0V
1/2)

]
(14)

where the properties of the trace operation have been used in the last line to introduce

a Hermitian operator V 1/2χ0V
1/2 which is convenient especially when diagonalisation

methods are used to evaluate the correlation energy.

While the dRPA correlation energy was calculated for the homogeneous electron

gas many decades ago (see e.g. [52]), its practical evaluation in more complex systems

including periodic systems is often numerically costly, and has only been carried out

quite recently [53], [54], [55], [56], [57], [58], [59], [60], [61]. When used as a post-

functional starting from PBE orbitals, it has proved to give a very good description of

the lattice constants and elastic constants of many crystals [60] including most of the

van der Waals bound rare gas crystals [62] (except He where self-interaction issues are

arguably dominant - see the next Section). Atomisation energies in the dRPA are good

but slightly worse than those from a groundstate PBE calculation, which again may be

related to self-interaction issues. Some methods have also been given to increase the

numerical effiiciency of dRPA and exact exchange calculations in solids [59].

For finite molecular systems the correlation energy in the dRPA and the related

RPAx (see below) have been implemented in an efficient way, via methods and codes

originally designed for molecular time-dependent Hartree-Fock calculations (see [57] and

references therein). On the formal side Furche [57] proved that

EdRPA
c =

~
2

∑
n

(
Ωn − ΩD

n

)
(15)

where Ωn is an eigenfrequency of the RPA equation (11) and ΩD
n is the same quantity

to linear order in the Coulomb coupling strength λ. In fact the notion of using the

separation-dependent part of the sum of zero point energies ~Ω/2 of collective modes

to obtain vdW energies is quite an old one ([1], [14]). For the macroscopic collective-

mode-only models used in these old calculations one can show that this is correct (see

e.g. [63]), but the Furche result is more general. For some discussion of the sum of zero

point energies see also Section 5 of [63] where it is pointed out that the asymptotic vdW

interaction of undoped graphene planes is dominated by single-particle-type modes so

that the older collective mode zero-point energy model is not sufficient.
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Within formal perturbation theory, the dRPA is represented in Feynman energy

diagrams by a sum of rings of open bubbles (where each open bubble represents χ0).

The dRPA and many other variants of the RPA idea can also be expressed as doubles

ring diagrams in the Coupled Cluster approach.

6.1. Lifshitz-like vdW energy formula for non-overlapping systems, and its relation to

RPA

The Lifshitz theory [5], [6] was the mainstay of macroscopic vdW calculations for many

years. One can use a modified form of the ACFD to derive a slight generalisation of the

macroscopic Lifshitz formula [64] that renders it suitable for noncontacting nanosystems

as well as the thick parallel slabs for which it was originally intended.

Consider 2 non-overlapping systems “1” and “2” separated by a variable distance

D and with the Coulomb interaction split into inter- and intra system interactions

V11 + V22 + µ(U12 + U21) ≡ V11 + V22 + µV12. (16)

We assume no overlap so the systems lie in separated regions “S1” and “S2” of space.

Then U12(~r1 ,~r2) = e2 |~r1 − ~r2|−1 when both ~r1 ∈ S1 and ~r2 ∈ S2 but U12 is zero

otherwise. Similarly for U21 while V11, V22 only connect points inside the same system.

Then V12 ≡ U12 + U21 = 0 if ~r1 and ~r2 lie in the same subsystem.

We start from two systems with no intersystem interaction (µ = 0), but with full

Coulomb interactions inside each subsystem. The energy in this situation is the same

as for D →∞. That is

E(D →∞) = E(D,µ = 0)

Then the D-dependent part of the energy is

Ecross ≡ E(D, µ = 1)− E(D →∞)

= E(D, µ = 1)− E(D,µ = 0)

=

∫ 1

0

dE(D,µ)

dµ
dµ

=
1

2

∫ 1

0

dµ

∫
V12(~r, ~r

′)ρ(D,µ,~r, ~r ′)d~rd~r ′dµ

where ρ(D, µ, r, ~r ′) is the electronic pair distribution for slabs at distance D and

interaction V11 + V22 + µV12 : the Feynman-Hellmann theorem was used in the last

step.

By the Fluctuation Dissipation theorem this is related to the density response

function:
dE(D,µ)

dµ
=

1

2

∫
d~rd~r ′V12(~r, ~r

′)

×
[∫ ∞

0

−~
π

χ(D,µ,~r, ~r ′, ω = iu)du− n0(~r)δ(~r − ~r ′) + n0(~r)n0(~r
′)
]

(17)

where χ is the density-density response of the fully interacting system. The direct

Hartree cross energy (the last term) is not part of the vdW energy, and so will be
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ignored (see also [65]). The self-term with the delta function gives zero when folded

with V12. Thus the cross energy is entirely due to correlation (because the in-principle-

included exchange part is zero in this non-overlapped regime) and is given by

Ecross(D) = − ~
2π

∫ ∞

0

du

∫ 1

0

dµ

∫
d~rd~r ′

× V12(~r, ~r
′)χ(D, µ,~r, ~r ′, ω = iu) (18)

= − ~
2π

∫ ∞

0

du

∫ 1

0

dµ

∫
d~rd~r ′

× V21(~r, ~r
′)χ12(D,µ,~r, ~r ′, ω = iu)

+ {1 ¿ 2} (19)

where χ12 (unlike χ012) is NOT zero because of the Coulomb interaction between the

slabs. We now make the RPA assumption for the interaction between the slabs. This is

the essential Lifshitz approximation - see the ring diagrams in [6]. Then χ21 = δn2/δV1

can be found from linear mean field equations in the presence of time dependent external

potentials δV1, δV2 acting separately on the two systems. This gives

χ21 =
(
1− µ2χ22V21χ11V12

)−1
µχ22V21χ11 (20)

and similarly for χ12. Then the vdW interaction is

Ecross(D) = − ~
2π

∫ ∞

0

du

∫ 1

0

dµ

∫
d~rd~r ′

× V12(~r, ~r
′)χ21(D,µ,~r, ~r ′, ω = iu)

+ {1 ¿ 2}
=
~
2π

∫ ∞

0

du

∫
d~r

∫ 1

0

dµ

× d

dµ
ln

(
1− µ2χ11V12χ22V21

) |~r~r

=
~
2π

∫ ∞

0

du Tr [ln(1− χ11V12χ22V21)] (21)

where in general the “ln” is an operator log over the (~r, ~r′) space. Also, χ11 and χ22

are for D →∞ - i.e. for the isolated subsystems but with full-strength e-e-interactions

within each subsystem. Using the operator idensity Tr[ln(Ô)] = ln(Det[Ô]) one can see

that (21) is related to the interaction in the general Casimir scattering theory, Equation

(5.16) of [11].

(21) is also valid within the dRPA. A more direct proof of (21) from the full

RPA-adiabatic connection formalism, switching on all interactions together, can be

constructed by diagrammatic means: a version for a specific case is given in ref. [64].

We will show presently that Equation (21) reduces to the non-retarded Lifshitz formula

[5] for macroscopic slab systems. (See Equation (24) below). In general, because (21)

is closely related to the Lifshitz approach, we expect that it will lead to the same

asymptotic vdW power laws as Lifshitz in the electromagnetically nonretarded limit.



Calculation of Dispersion Energies 13

To obtain the nonretarded Lifshitz result we note that, from charge conservation

and from insensivity to a spatially uniform applied potential [66], the “direct” responses

χ̄11 and χ̄22 can be written in terms of a (generally nonlocal) tensor polarisability

α = (ε− 1) /4π via

χ̄11 = −e−2

3∑
µν=1

∂2

∂rµ∂r′ν
α11µν(~r, ~r

′, ω). (22)

For insulators (and for 3D metals with a finite plasma frequency ωP (q → 0)), α remains

finite as both q → 0 and ω → 0. For two thick slabs of matter in vacuo with parallel

surfaces separated by D, the standard non-retarded limit of the Lifshitz formula is

reproduced from (21) by approximating α11 and α2,2 via a macroscopic local dielectric

functions ε1, ε2:,

α11µν = δ(~r − ~r ′)
ε1(ω)− 1

4π
θ(~r)δµν (23)

and similarly for α22. Here θ restricts ~r and ~r ′ to lie within the slabs and ε(ω) is a local

spatially constant dielectric function of each slab. After some algebra for fields varying

as exp(i~q|| · ~r) parallel to the slab surfaces (see [63]), we obtain χii from χ̄ii via the

screening relation χ = χ̄ + χ̄V χ, and we then reduce (21) to

Ecross =
~

32π2D2

∫ ∞

0

du

∫ ∞

0

dxx2

×
(

ε1(iu) + 1

ε1(iu)− 1

ε2(iu) + 1

ε2(iu)− 1
ex − 1

)−1

, x = 2q‖D (24)

which upon differentiation yields the nonretarded Lifshitz force result given in Equation

3.1 of [5].

An expansion of the logarithm in (21) to lowest order in V12 also reproduces the

generalised Casimir Polder formula (3), so (21) can also be regarded as is a generalisation

of (3). At the RPA level, higher terms in the expansion of the logarithm in (13) produce

vdW interactions between three or more centres (Axilrod-Teller and higher terms) [67].

One might think that the perturbative form (3) always becomes asymptotic to (21)

at sufficently large separation between two subsystems so that the perturbation V12 is

“small”. This is not in fact the case when the interacting systems have an infinitely large

area as in sheets or slabs. The reason is that as D → ∞ the interaction is dominated

by excitations with a small wavenumber q|| = O(D−1) → 0 parallel to the surface, and

the Coulomb interaction between such excitations goes as exp(−q||D)q−1
|| which is never

small since q||D = O(1). For thick parallel plates this can give a discrepancy of up to

around 20% between the Lifshitz result (21) and the generalised Casimir-Polder formula

(3), a point already noticed by Lifshitz [5]. A discussion of this discrepancy for other

geometries is given in Section 4 of [63].

In (21) no approximation has yet been made for the internally-interacting responses

χ11, χ22 of the isolated fragments. If these are approximated with the dRPA then (21)

gives a useful form of the dRPA correlation energy, suitable for nonoverlapping systems.
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System Present Theory [44], Conv. Theory (
∑

D−6)

D

Metallic EvdW ∝ D−2 EvdW ∝ D−2

EvdW ∝ D− 5
2 EvdW ∝ D−4

EvdW ∝ D−4 EvdW ∝ D−4

π-conjugate

EvdW ∝ D−3 EvdW ∝ D−4

EvdW ∝ D−2(ln D
D0

)−
3
2 EvdW ∝ D−5

EvdW ∝ D−5 EvdW ∝ D−5

Figure 1. Asymptotic vdW energy formulae for thick and thin slabs, and for parallel
wires, pictured in the left column. Red (darker) indicates an insulator, blue (lighter)
a conductor, purple a semimetal (graphene). Right column: Predicted energy from
pairwise additive theories. Middle column: Predicted energy from RPA [44]. For
further discussion of unusual powers see Refs. [43], [44], [70], [71].

6.2. Unusual asymptotic vdW power laws

The dRPA correlation energy can sometimes be evaluated analytically for widely-

separated nanostructures (D →∞) because then only the long-wavelength (q ≈ D−1 →
0) limit of the response χ0 is needed. This long-wavelength form can be taken as

χ0(~q, ω = iu) ≈ −n0q
2/mu2 for metals, −n0q

2m−1(u2 + ω2
0)
−1 for insulators and (see

[68], [69], [65]) χ0(q||, ω = iu) = 1
4
~−1q2

||(u
2 + v2

0q
2
||)
−1/2 for graphene. Furthermore, the

dRPA is expected to give at least qualitatively correct screening at the long wavelengths

of interest here, so the power laws that we will find are not expected to be changed by

going beyond the dRPA. When the above bare responses are applied to the dRPA for

non-overlapping structures distant D, one can show [43], [44], [70] [71], [72], [61], [73]

that the asymptotic form of the vdW interaction is sometimes qualitatively different in

dRPA from the predictions of pairwise additive theories where E =
∑

ij C6ijR
−6
ij . In

particular the exponent p in the form EvdW = −CD−p can be different as summarised

in Fig. 1.

This can occur when all of the following are satisfied: (i) each system is macroscopic
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in at least one dimension so that electron density fluctuations of arbitrarily long

wavelength (q → 0) are possible; (ii) each system is small in at least one other

space dimension, so that intra-system Coulomb screening of the charge fluctuations is

incomplete; and (iii) the systems have a zero homo-lumo gap, as in 2D or 1D metals or

graphene. The unusual power laws arise from the coupling of long-wavelength excitations

that involve the coherent motions of electrons on many atoms, quite different from the

pairwise physics. Significant differences in vdW interaction have also been predicted

between metals and semiconductors in the non-asymptotic limit [74]. When condition

(iii) is not satisfied but the gap is small, as in highly polarisable systems, then the

asymptotic power exponent p in the form EvdW = −CD−p will not be anomalous,

but nevertheless non-pairwise additivity makes the coefficient C differ strongly from

the prediction of
∑

C6R
−6 theory. The unusual power exponents p predicted by

dRPA (Figure 1, second column) have been verified by electron Diffusion Monte Carlo

calculations [48] for the case of parallel linear conductors. In the case of planar

conductors these DMC calculations only partly confirmed the analytic dRPA result

[71], but in this case there is a possibility that the DMC simulation cell did not

have a large enough area to capture the very long-wavelength fluctuations/correlations

involved in the large-D vdW interaction. For the case of graphite a full numerical

dRPA calculation of the layer binding energy E(D) has recently been performed [61].

This calculation was able to confirm the presence of the predicted anomalous D−3

contribution at the largest D values (≈ 3nm) where the numerics were still feasible, but

also showed that the D−3 contribution from the gapless electronic πz → π∗z transitions

was still essentially negligible at this separation, compared with the much larger vdW

energy from the gapped transitions involving “majority” Bloch bands other than the πz

bands. A similar consideration applies to observation of the anomalous asymptotic

−CD−2(ln D)−3/2 energy predicted [43], [44] for parallel metallic carbon nanotubes

(though the unusual energy contribution may be more dominant for nanowires made

of metallic atoms). Nevertheless at sufficiently large separation D the anomalous

metallic term will dominate, and it will be interesting to see whether sensitive modern

force detection techniques such as atomic Force Microscopy are able to measure these

anomalous forces directly. In terms of general modelling of solids and nanostructures,

however, the wrong magnitude of the vdW interaction at short to intermediate distances

because of non-pairwise-additivity effects is probably more important than the power

law at asymptotic separations.

7. Diseases of dRPA

Despite the good success of the dRPA for many solids, with inclusion of vdW effects

as just described, this theory has some very serious shortcomings in general, and it is

important to use it only in circumstances where these are not significant or where they

can be easily corrected.
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7.1. Over-correlation by dRPA

Firstly, the depth of the short-ranged part of the electronic correlation hole is seriously

over-estimated in dRPA, resulting in overestimation of the magnitude of the absolute

correlation energy. This was apparent already in early work on the homogeneous

electron gas. Fortunately, one is most often interested in energy differences ∆Ec =

Ec(
{

~Rj

}
) − Ec(

{
~R′

j

}
) between different arrangements of the same set of nuclei, with

positions ~Rj in one configuration and ~Rj
′ in the other configuration. Here the incorrect

short-ranged part of the hole is much less important as it is likely to be very similar

in the two nuclear configurations and hence largely cancels in ∆Ec, provided that the

nuclei are not moved too close to one another. Indeed Perdew and co-workers [75]

noted that dRPA tends to overestimate |Ec| per electron by a constant amount, so that

“isoelectronic” energy differences (those with the number of electrons held constant)

are relatively well described. Since the short-ranged hole is described much better

in LDA/GGA, Perdew and collaborators also proposed in the same paper a theory

correcting the RPA correlation energy for short-ranged effects by using LDA data

ERPA+
c = EdRPA

c +

∫
[εhom

c (n(~r))− εhom,dRPA
c (n(~r))]n(~r)d~r . (25)

Here εc(n) is the correlation energy per electron in the homogeneous electron gas of

density n. More sophisticated versions of “RPA+” based on gradient functionals were

also derived [76]. Note that all of the sucessful dRPA calculations for solids by Harl et

al., [60] were for isoelectronic energy differences.

A different approach to the short-ranged diseases of dRPA is that of range

separation, originally introduced by Savin and Stoll for molecular problems [77], [78].

This involves splitting the bare Coulomb interaction into short ranged and long ranged

parts, with different many-body treatments applied to the two parts - e.g. dRPA for

the long ranged part and LDA for the short ranged part. This has been tried recently

as a correction to the dRPA with some success [79], but the approach probably deserves

wider application for RPA as it also lessens the computational load associated with

reproduction of the Coulomb cusp in the pair function.

7.2. Spurious electron self-interaction and dRPA

In a one-electron electron system the bare density response χ0 is the exact response, and

the correlation energy should be zero. However the time-dependent Hartree equation

(11) contains a non-zero self-interaction term, the second mean-field term on the right

side, which corresponds in this case to an electron avoiding itself. As a result the dRPA

contains an incorrect self-correlation energy for a one-electron system. Because of the r−1

dependence of the Coulomb energy, this can be a very serious error for orbitals that are

highly localised (having small radius r), as in the He atom for example. Partly as a result

of this, dRPA starting from LDA or GGA orbitals gives an extremely bad account of the

binding energy curve of small dimers [80], [81]. Some improvement can be obtained by
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using starting orbitals and/or KS potential that incorporate groundstate self-interaction

correction, since the corresponding effective potential includes the correct −e2/r tail and

reduces the polarisability of the outer orbitals compared with the incorrect high values

obtained from the LDA potential. The problem of singles contributions, related to a

non-self-consistent choice of starting orbitals, is also a significant issue [82].

The best-justified method to correct the self-interaction in dRPA is to go to higher

members of the RPA class of theories. For example the “RPAx” energy comes from

replacing (11) by the antisymmetrised Hartree Fock version of the mean field, and this

entails the response of the 1-electron density matrix rather than just the density. This is

implemented in a number of molecular packages, and it does improve the binding energy

curves of small dimers where self interaction correction (SIC) is an issue [80], [79]. RPAx

does have some problems and instabilities of its own, however, and is computationally

demanding in solids.

Another systematic way to improve dRPA is to add, to the dRPA ring energy

diagrams, a sum of higher terms in the form of the Second Order Screened Exchange

(SOSEX) diagram [83]. This exactly cancels the one-electron self-correlation term in

the dRPA. It also makes a significant further improvement to the already good dRPA

results for the energetics of solids [83] and gives excellent lattice spacings. Unfortunately

it adds significantly to the already large computational cost of dRPA energy calculations

for solids.

Another possible improvement to dRPA is the use of the Inhomogeneous Singwi-

Tosi-Land-Sjolander (ISTLS) correlation theory [84], [85], [86], which not only cures

the one-electron self-interaction problem but may improve the “many-electron self

interaction” properties discussed by Perdew and coworkers [87] and by Yang and

coworkers [81], related to the need for a linear dependence on any fractional orbital

occupation numbers. Of course ISTLS is also computationally very costly.

The success of the dRPA energetics for crystals with diffuse outer orbitals such

as the π-clouds of graphene systems [61], or crystals of the larger rare-gas atoms

[62], reflects the unimportance of orbital self-interaction for such diffuse orbitals.

Significantly, the bonding of the He crystal with its tightly bound atomic orbitals was

described much less well by dRPA than the higher rare-gas crystals [62].

8. Approximations to microscopic energy expressions for vdW energetics

A number of approaches have been proposed to obtain efficient vdW energy functionals

by approximating microscopic energy expressions. Racpewicz and Ashcroft [28]

and Andersson, Langreth and Lundqvist [88] postulated a nonlocal density-based

approximation for well-separated pairs of systems via indirect arguments. Dobson and

Dinte [66] showed that this expression could be derived directly from the generalised

Casimir Polder perturbation theory (Equation (3) above), via a local conserving density-

based approximation to the density response χ. More complex theories have recently

been proposed with this type of approach as a starting point [89], [90].
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It is also possible to approximate non-perturbative ACFD energy expressions using

only the groundstate electron density n(~r) as input. An early attempt in this direction

was the functional of Dobson and Wang [91]. This approximated χ0 by the double

space gradient of a density-based approximation to the polarisability, followed by RPA

screening without further approximation. This approach reproduced the RPA cohesion

energy of a pair of metal slabs right down to contact with overlap of electron clouds.

Unfortunately the functional is not very efficient numerically and needs explicit cutoffs

to describe insulators, and so far it has not been pursued further.

8.1. vdW-DF

By far the best-known functional of the “approximated ACFD” type is the “vdW-DF”

of Dion et al [92], [93], [94]. A complete self-contained derivation of this functional seems

to be lacking in the literature, but an attempt will be made here to list some features of

the reasoning. The starting point is the exact ACFD, Equation (7). From this starting

point the vdW-DF provides a nonlocal correction Enl
c to the LDA correlation energy of

a nonuniform system. The method is not limited to the RPA, but it is approximate,

and five distinct approximations/assumptions appear to have been made in obtaining

it:

Approximation (i) The method notes that the quantity ε(~r, ~r ′, ω) defined in

electrodynamics is equal to the screening function 1 − χ̄V , where products represent

convolutions in real space, for the special case of the uniform gas. Here χ̄ denotes

the “direct” response function relating the electron density to the total classical

electrodynamic potential. The vdW-DF then assumes that plugging ε into the ACFD,

instead of the exact χλ = (1− χ̄λλV )−1 χ̄λ, results in the LDA correlation energy. The

nonlocal correction to the LDA would then be given by

Enl
c =

1

2

∫
dλ

λ

∫ ∞

0

~
π

du Tr
[
(1− χ̄λλV )−1 χ̄λλV − ε−1

λ (ελ − 1)
]

(26)

where the dependence on (~r, ~r ′, ω = iu) is suppressed for brevity, products are space

convolutions and the Trace operation is Tr F =
∫

F (~r, ~r)d~r. The subtracted term is not

exactly the LDA, so this amounts to the first approximation.

Approximation (ii) The “full potential approximation”, explicitly introduced in

vdW-DF, assumes that the λ integration in the ACFD can be done analytically to give

an operator logarithm:

Enl
c =

~
2π

∫ ∞

0

du Tr ln
[
ε−1(1− χ̄1V )

]
(27)

This is exactly true in the dRPA where χ̄λ = χ0 independent of λ, but it constitutes an

approximation in other formalisms.

Approximation (iii) Since χ̄ = −e−2∂2/(∂rµ∂rν)(εµν − δµν)/(4π) exactly in general

(see e.g. [66]), the nonlocal correlation energy correction (27) can be expressed in terms

of ε alone. The logarithm in (27) represents the solution of the time-dependent Hartree-

Coulomb screening problem. In vdW-DF, this screening problem is solved approximately
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by expanding the logarithm to second order in the quantity (ε−1 − 1), termed “S” in

[92], (but not exactly equal to to the dynamic structure factor despite the similarity to

a common notation). This gives

Enl
c =

~
4π

∫ ∞

0

Tr


S2 −

(
~∇S · ~∇V

4πe2

)2

 du . (28)

Here once again all products represent convolutions in position space.

Approximation (iv) Finally a modified plasmon pole type of approximation is made

for S and substituted into (28), yielding after some algebra a functional of form

Enl
c =

∫
n(~r)n(~r ′) φ(~r, n(~r),∇n(~r) : ~r ′, n(~r ′),∇n(~r ′)) d~rd~r ′ (29)

where φ ∼ |~r − ~r ′|−6 as |~r − ~r ′| → ∞. The dependence on gradients is built into the

modification to the simple plasmon pole approximation, and the physics of this is based

on many years of success by David Langreth and co-workers with the development of

gradient density functionals.

Approximation (v) In order to implement the functional in practice, it must be

combined with a suitable approximation for the exchange energy E0
x. Tests on a number

of systems showed that neither LDA exchange nor exact DFT exchange produced results

of useful accuracy. However it was found that the revPBE exchange functional was

suitable, and some physical reasons were advanced for this choice. This is very crucial

to the behavior of the functional for vdW-bound systems near to their equiilibrium

binding separation D0.

8.2. Features of vdW-DF

The vdW-DF turns out to be a numerically efficient approach with some very good

general features. It has the −∑
C6R

−6 form at for well separated systems and hence

never fails to produce a vdW interaction where required. A very strong feature is the

natural saturation of the function φ at short distances (see Equation (29) above), without

the need for any empirical input, in contrast to more empirical pairwise summation

approaches. vdW-DF gives sensible results for a wide range of van der Waals bonded

systems from rare gas dimers to solids and surfaces, often giving good vdW energies

but sometimes significantly over-estimating D0 [95], [96], [97]. Significant improvements

have recently been made in its numerical implementation (e.g.[98], [99]) and its speed

is now quite competitive with more empirical pairwise-additive theories. Attention

has also been focussed on improving the generalised plasmon pole approximation

(“Approximation (iv)” described above). Vydrov and van Voorhis [100], [101] took

a frankly empirical approach and modified Approximation (iv) so as to improve the

predicted C6 for atom dimers. The original authors [102] also suggested improvements

to aspects (iv) and (v). Overall the method is robust and continues to be used for a

variety of systems [103].
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There are however a number of further aspects (Approximations (i)-(iii) listed

above) that could probably be improved. For example, as a result of approximating

the logarithm as in Approximation (iii) above, the theory ends up having a pairwise

additive form, with
∑

ij CijR
−6 behavior at large separations (compare Section 4 above).

This
∑

ij CijR
−6 long-ranged behavior means that the asymptotic vdW interaction for

metallic systems will have the same exponent as for insulators in any geometry, contrary

to known properties of thin metal or graphene sheets or metallic wires: see Section 6.2

above. While the unusual behavior of such low-dimensional zero-gap systems at large

distances is interesting, the force there is small and this alone would not constitute a

serious disadvantage of the theory for practical binding calculations [61]. However the

same pairwise property means that one might need to be careful about this functional

for polarisable, highly anisotropic systems even in the non-asymptotic region of electron

cloud overlap (see for example [38], [74], [42]). One should probably not be surprised that

the theory appears not give a satisfactory account of the selective binding of graphene

to specific metal surfaces [97], for example.

8.3. New directions for ACFD-based vdW functionals

It is tempting to try to go beyond the dRPA by using the ACFD Equation (7) but

replacing the time dependent Hartree equation (11) of dRPA by the exact equation of

linear Time Dependent Density Functional Theory (TDDFT) [104]:

χλ = χ0 + χ0 (λV + fxcλ) χλ . (30)

If the usual Adiabatic Local Density Approximation (ALDA) is used for the dynamic

exchange-correlation kernel fxc, the ACFD energy from (30) is typically not improved

over dRPA, because the ACFD energy samples all frequencies, not just low frequencies

for which the ALDA is suited. Instead of this dRPA+ALDA approach, an ACFD

energy formalism has been tried, with use of an “energy optimised” local exchange

correlation kernel fxc designed to improve the short ranged hole properties, and fitted

to the xc energy of the homogeneous gas [105], [106]. This approach improved the energy

over RPA for jellium spheres [107] and in fact it did better than the RPA+ approach

described above in Section 7.1. Other than this it has received little testing. The xc

kernel fxc[n](~r, ~r ′) used in these theories was local or semi-local in r and ~r ′ and had a

similarly local functional dependence on the groundstate density n(~r ′′). However it has

become clear that any beyond-dRPA theory of van der Waals interactions requires fxc

to have a highly nonlocal functional dependence on n(~r′′) A limited discussion of this is

given in [15], and work is proceeding on a possible implementation of this idea.

Even the simplest of the full many-body theories, the dRPA, is very costly

numerically. For example a recent implementation [61] of dRPA for the binding energy

curve E(D) of graphite as a function of the layer spacing D using an efficient periodic

code was near the limit of present numerical capabilities despite the small size (4 atoms)

of the unit cell of graphite. This was partly because of the need to sample k space finely
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near the Dirac points in the Brillouin zone - see e.g. [65]. dRPA-based modelling of

technologically interesting graphenic nanostructures, such as graphene bound on various

metals, would seem to be presently out of reach if similarly fine k-sampling is required,

because large crystal unit cells are also necessary. See however [7], where a relatively

coarse k grid made the calculation feasible despite the larger unit cell. Pairwise additive

theories including vdW-DF are not a priori reliable because of the highly anisotropic,

highly polarisable nature of the systems involved. (see Section 4). Thus a highly non-

additive nonlocal but numerically efficient theory is required. One current approach

to this problem is to keep a full solution of the time dependent Hartree screening

problem (Equation (11)), corresponding to retention of the full logarithm in (13) or

(27), without use of a second order expansion, thus avoiding restriction to pairwise

additive physics. Instead one approximates the independent-electron response function

χ0(~r, ~r
′, iu). A very recent development [108] is the use of the new Continuum Mechanics

(CM) formalism of Tokatly, Vignale and co-workers [109] , [110] to calculate χ0. CM

is a hydrodynamic-style theory with the remarkable property that it gives the exact

response χ0 of one-electron and two electron systems at all frequencies, and for general

many-electron systems at high frequencies. It satisfies the f-sum rule and various other

exact constraints such as the Harmonic Potential Theorem [111]. Ref [108] develops this

approach into a general-geometry non-pairwise theory that has good vdW properties

both for insulators and for a simple metal test model. Work is proceeding on formal

properties of the CM-based correlation theory, and on its numerical implementation for

realistic geometries.

9. Summary

Macroscopic (Lifshitz) and few-atom (quantum chemical) approaches to dispersion

forces have long been available. In recent years here has been much progress in the first-

principles microscopic description of dispersion forces in solids and larger nanostructures,

right down to microscopic contact separations. Modellers can now choose from a

variety of computationally tractable semi-empirical pairwise-additive theories of these

phenomena, as well as the pairwise additive vdW-DF theory. These are adequate for

medium-accuracy calculations in the electromagnetically non-retarded limit, with the

possible exception of systems that are simultaneously highly anisotropic and highly

polarisable. An improvement for such cases can be obtained with models evaluating

the zero point energy of self-consistent dynamical collective polarisation modes, in

arrays of localised polarisable dipoles. For a full description of such cases however,

including a detailed account of low-dimensional, low-gap systems one probably needs

the computationally expensive full many body approaches, which are now available in

packages such as VASP and ABINIT. These start with the simplest direct Random

Phase Approximation (dRPA). Recent additions such as RPAx and dRPA+SOSEX can

improve numbers but are even more costly. Currently these approaches are not feasible

for large nanostructures in realistic, technologically interesting geometries. Work is
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continuing to remedy this situation.
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