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Methods are developed for extracting from a numerical propagating-beam solution of a scalar wave equation

the information necessary to compute the impulse-response function and the pulse dispersion for a multi-
mode graded-index fiber. It is shown that the scalar Helmholtz equation and the parabolic wave equation
have the same set of eigenfunctions in common and that the eigenvalues for the two equations are simply re-

lated. Thus one can work exclusively with the simpler parabolic equation. Both the mode eigenvalues

(propagation constants) and mode weights, which are necessary for determining the impulse response, can

be obtained with high accuracy from a numerical Fourier transform of the complex field-correlation function

by the use of digital-filtering techniques. It is shown how a solution obtained in the absence of profile dis-

persion can be simply corrected for the presence of profile dispersion. In an illustrative example a graded-

index fiber with a central dip in its profile is considered.

1. Introduction

In an earlier publications we described an accurate
method for computing the electric field in an optical
waveguide that circumvents the usual field synthesis
in terms of normal modes. The method relies on a
discrete Fourier representation of the field and solves
the scalar Helmholtz equation by a marching algorithm
that can accurately treat realistic source conditions.
The solution gives all the spatial and angular properties
of a beam that originates from a prescribed source dis-
tribution and propagates down the waveguide. In ad-
dition, the Fourier transform of the field with respect
to axial distance z at a single transverse point (x,y)
yields the totality of all mode eigenvalues On, including
those that correspond to leaky or decaying modes. This
method of solution will hereafter be referred to as the
propagating-beam method. In this paper we show how
the propagating-beam method can be applied to the
calculation of pulse dispersion in multimode fibers.

The behavior of a pulse transmitted along a length
z of optical fiber is conveniently characterized by the
impulse-response function2

h(t,z) Z Wn (t - Z/Vn), (.1)
n
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where the coefficients Wn represent the relative power
in the fiber modes that are excited and the Vn are the
mode-group velocities defined by the relation

(1.2)

If the intramodal contributions to pulse broadening are
neglected, the time dependence of a pulse after propa-
gating a distance z can be represented in terms of its
shape at z = 0 through the convolution

f(t,Z) =4 h(t',z) f(t - t',O)dt'. (1.3)

Determination of the dispersion for a specific fiber and
set of launch conditions thus reduces to the computa-
tion of the mode-group velocities Vn and the mode
weights Wn.

Mode-group velocities have been calculated with a
variety of techniques, including the WKB method,2-5
perturbation theory,4-6 evanescent-wave theory,7 and
the simultaneous numerical computation of mode ei-
genvalues and eigenfunctions.-11 The selection of the
mode weights Wn, on the other hand, has traditionally
been based on heuristic assumptions, for example, that
all modes with the same principal mode number are
excited with equal power.12 Such an assumption may
be justified if sufficient mode mixing takes place within
the fiber.13 There may be situations, however, in which
it is desirable to have the mode weights determined by
source and launch conditions. If the set of normalized
eigenfunctions for all guided modes is available, say,
from a numerical computation, it is possible, at least in
principle, to expand the field at z = 0 in a series of these
functions. If the expansion coefficients are An, the
power in the mode designated by n is proportional to
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A,,1 2. To our knowledge, however, this procedure has
never been carried out.

The propagating-beam method, as already men-
tioned, is capable of furnishing the mode eigenvalues
fln at the same time that it is generating a variety of
other data. Computation of the field for two or more
values of X permits the numerical evaluation of the
derivatives in Eq. (I.2). It is also possible to determine
from a propagating-beam solution the sum of the
weights of all modes belonging to a set with the same
propagation constant. Knowing the total weight of
each such degenerate mode set and the corresponding
group velocity is sufficient for computing the impulse-
response function (I.1). Two methods are available for
determining the weights. The first method requires
squaring the complex field amplitude and integrating
over the fiber cross section for each increment in z. The
resulting complex function of z is then Fourier trans-
formed numerically, and the heights of the peaks of the
resulting spectrum will be proportional to the desired
weights. The second method, which is the more accu-
rate of the two, is based on a correlation function formed
by multiplying the conjugate of the complex field am-
plitude at z = 0 and the complex field amplitude for
arbitrary z and integrating over the fiber cross section.
The numerical Fourier transform with respect to z of
the complex correlation function, applied in conjunction
with digital-filtering techniques, gives highly accurate
values for both the mode weights and eigenvalues, where
the former are determined by the heights of the peaks
and the latter by their position.

The paper is organized as follows. In Sec. II it is
shown that the eigenfunctions for the parabolic ap-
proximation to the Helmholtz equation are identical to
those of the Helmholtz equation itself and that the ei-
genvalues for the two equations are simply related.
Methods for determining mode weights under general
launch conditions are derived in Sec. III. The accuracy
of the determination of mode weights, propagation
constants, and group delays is also assessed in Sec. III.
An application of the techniques developed is discussed
in Sec. IV. In the example considered, a multimode
fiber with a central dip in its refractive index is irradi-
ated by an incoherent beam. Conclusions are stated in
Sec. V, and in the Appendix an equation is derived re-
lating group velocities in the presence of profile dis-
persion to those computed without it.

where
E(w,x,y,z) = 6(w,x,y,z) exp(-ikz),

k = (now)/c,

(2)

(3)

and no is some reference value of the refractive index,
which we take here to be that of the fiber cladding.

Substitution of Eq. (2) into Eq. (1) yields the fol-
lowing equation for the complex field amplitude 6:

(4)
az

2 Oz V[\2)J1

where VI = 32 /ax2 + 82/0y2. Neglect of the first left-
hand member of Eq. (4) yields the parabolic or Fresnel
form of the wave equation

2ik = V26' +k 2 K-2 - 1 6'. (5)

Hereafter we shall use a prime to distinguish between
solutions of the parabolic and the scalar Helmholtz
equations.

It is easy to show that the Helmholtz equation [Eq.
(4)] and the parabolic equation [Eq. (5)] have the same
set of eigenfunctions in common and that eigenvalues
for the Helmholtz equation can be simply obtained from
those of the parabolic equation. To this end, we write
the solution to the Helmholtz equation as

6'(x,y,z) = u.(x) exp(-io3z), (6)

where x (x,y), and the solution to the Fresnel equation
as

'(x,y,z) = u'n (x) exp(-i3'n z). (7)

Here for simplicity we have used a single index label n
to distinguish the different modes. Substitution of Eqs.
(6) and (7) into Eqs. (4) and (5), respectively, gives

(B2 + 2kfn)un = V2 Un + k 2 {n(x'Y ] - Ulsn,

24',n u' = V2 U + k2 { F _ _ IIn-

(8a)

(8b)

Clearly un(x) - uX(x), since the operators on the
right-hand sides of both Eqs. (8a) and (8b) are identical.
Furthermore, n and ', are related through the ex-
pressions 

II. Relationship Between Eigenfunctions and
Eigenvalues of the Helmholtz and Parabolic Equations

It is assumed that the propagation of a single-fre-
quency component of light is governed by the scalar
Helmholtz equation

02E 82E a
2E ,2

Ox2 y2 + z2 + c2 n2(oxy)E = (1)

where E(w,x,y,z) exp(iwt) is the transverse component
of the electric field at angular frequency w, and n (w,x,y)
is the refractive index. It will be convenient to extract
from the z dependence of E(c,x,y,z) a carrier wave
moving in the positive z direction. Thus we write

(9a)3n =IB + 2kfn)/2k,

fln = -k [1- (1 + 2'n/k)1/21 = o 1 An +
2 k

(9b)

Thus to determine the eigenvalues for the Helmholtz
equation it is sufficient to determine them for the
Fresnel equation and to apply Eq. (9b). [The reader
is reminded that the propagation constants appearing
in Eqs. (6)-(9) have had the carrier wave contribution
k removed, and in this respect they differ from the
propagation constants used in conventional waveguide
literature.] These results can be very useful, since it is
often more convenient to work with the parabolic
equation than the Helmholtz equation.

From Eq. (9) we have
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Table 1. Comparison of Numerically and Analytically Calculated
Propagation Constants and Group Delays for Square-Law Refractive

Medium

V zif1(psec/km)
13, (cm-l) _______________

n Numerical Analytical Numerical Analytical

0 713.6 712.6 159.56 159.54
1 672.7 672.2 158.17 158.15
2 631.8 631.8 155.84 155.84
3 590.9 591.2 152.57 152.60
4 549.9 550.8 148.34 148.45
5 511.6 510.3 143.54 143.36
6 470.6 469.8 137.48 137.35
7 429.7 429.3 130.48 130.41
8 388.8 388.9 122.55 122.57
9 347.9 348.4 113.67 113.78

10 306.9 307.9 103.82 104.07
11 266.0 267.4 93.06 93.44
12 227.7 227.0 82.12 81.91
13 186.7 186.5 69.49 69.43
14 145.8 146.0 55.95 56.02
15 104.9 105.5 41.46 41.68
16 64.0 65.1 26.04 26.46
17 25.6 24.6 10.69 10.28

1 d1n3=

n aw
(10)

To second order in O/'k Eq. (10) can be written as

vn k 2 k Ow 1c k

The group delays Trn = v-, which appear in Eq. (11),
are expressed relative to the delay for the carrier wave,
no/c.

To compute the 3', from a numerical solution of Eq.
(5), it is necessary to calculate the Fourier transform of
C'(co,x,y,z) for a particular transverse position (x,y) not
at the origin. If we call this Fourier transform
6'(w,x,y,O), the spectral density I6"(C0,x,y,/)j2 will
display a set of sharp resonant peaks, which can be
identified with the guided modes of the fiber. By
identifying the values of : corresponding to these
maxima, one can determine the /'. There is, of course,
an implied uncertainty in the values of /',, so deter-
mined, if they are picked from a discrete set of values
of a numerical transform. The maximum uncertainty
in 3', can be expressed in terms of the sampling interval
A/ along the : axis and the propagation distance Z over
which the solution &'(w,x,y,z) is available as

A13' A, = 7r/Z. (12)

A resolution of 1 cm-' in the determination of /'n ac-
cording to Eq. (12) requires a propagation distance of
about 3 cm. It is possible, however, to improve sub-
stantially on the accuracy implied in Eq. (12) by
multiplying the data sample to be Fourier transformed
by a suitable window'4 function and then selecting the
/3n values from the transformed sample by interpola-
tion. 15

Table I shows the results of a numerical computation
of the propagation constants and mode-group velocities
based on a numerical solution of Eq. (5), the spectral
density 6(w,x,y,O) 12 for an off-axis point, and Eq. (10).
The fiber was assumed to have a truncated square-law
profile defined by{In11 - 2.A(-)] r • a I

2 2=[ 1 2 a) r ano = (1 - 2A)nl r > ad
(13)

with A = 0.008, a = 31.25 Aim, and no = 1.5. The vac-
uum wavelength X was taken to be 1 Aim, and the total
propagation distance was Z = 2.45 cm. The s'n were
determined by selecting the local maxima of
I 6"(W,x,y,/) 12 without benefit of interpolation. In Eq.
(10) the numerically determined eigenvalues g'n were
used, but the derivatives a,'1,/&. were calculated by
differentiating the analytic expression

13'(mn) = -n1 (2/ 2 (m + n + 1). (14)
no c no a

Also displayed in Table I for comparison are the prop-
agation constants and group delays from the Helmholtz
equation for an infinite square-law medium. The latter
values were computed from the analytic expressions

co 2c(2A)'1 2 1/2O(n) -no- + n, 1_ (m + n + . (15)
c c [ nicoa

In Table I it is seen that the numerically and analyti-
cally determined values of On agree to within the 1-cm-1

resolution predicted by Eq. (12).17 The corresponding
values for group delays are in good over-all agreement.
These results give confidence that propagation con-
stants can be determined with sufficient precision by
the propagating-beam method for an accurate calcu-
lation of pulse dispersion.

For more general refractive index profiles n (r) can be
written as

2 f - 2Af(j)] r a

n2 = (l-2A)n2 r > a
n2= = 

f(o) = 

te) 1, r > a

In general, it will be necessary to evaluate the propa-
gation constants 3n' for at least two different values of
co in order to compute the derivatives a3',/9cw numeri-
cally. This will require solving Eq. (5) for each value
of co. In doing so, one should consider not only the ex-
plicit dependence of Eq. (5) on a, but also the detailed
variation of the profile function with w. This method
will thus allow a completely general treatment of dis-
persion if appropriate refractive index data are avail-
able.

A simple model of profile dispersion2,18 is based on
the assumption that the parameter A depends on
wavelength, while the function f (r/a) is independent of

(16)
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it. In this case one can ignore the presence of profile
dispersion in calculating the mode-group delays a3,n/dc,
and correct for it afterwards. If we call °', the propa-
gation constants calculated without profile dispersion,
it can be shown (see Appendix) that the group delays
in the presence of profile dispersion are given by the
expression

a3'n = an a olnn 1 oI I In A

Ow do Oa 2 AX I

22o _ + AX-
co 2 1 -A) dAX

(17)

111. Determination of Mode Weights for Arbitrary
Launch Conditions

A. Method 1 (Field-Squared Method)

The complex field amplitude (x,y,z) can be ex-
pressed in terms of the waveguide-mode eigenfunctions
as

fracting medium. The refractive index was of the form
(14) with x substituted for r. The value of a was taken
to be 31.25 ,um, and the quadratic dependence on x was
continued to the edge of the computational grid at x =
+120 gim. The remaining parameters were as for Eq.
(14). The beam shape at z = 0 was taken to be the
Gaussian 6(x,O) = exp(-x 2 /2o2 ) with ar = 10.24 Am.
The appropriate mode eigenfunctions for this problem
are1 6

un,(x) = (Or /22nn!)1/2 Hn(x/oa) expa-x2 /2o2)

where the Hn (x) are Hermite polynomials and

a = [ 1/2
a [^(2a) 12

(22)

(23)

Table II shows the ratio A2/A2 for an expansion in terms
of the eigenfunctions (22), calculated both analytically
and numerically using Eqs. (5) and (21), for a propa-
gation distance of 9.5 cm. The analytic coefficients
were computed from

&(x,y,z) = E_ Anj unj(x) exp(-i3nz)
naj

(18)

The index j is used here to distinguish different mem-
bers of the degenerate mode set that may have the same
propagation constant /n3 Squaring 6, integrating over
the total fiber cross section, and taking account of the
orthogonality of the set of eigenfunctions give

'P(Z) = jf J 2 (xyz)dxdy = E_ Al 1 exp(-2inz). (19)

The Fourier transform of P(z) is

fp(l) = E Al 60 - 21n). (20)
naj

Let us assume for the moment that the An are all real.
If we now identify the Wn as the total weight of all
modes having the same propagation constant 3n, the
Wn satisfy

Wn = const X Ei A~ (21)

Thus the mode weights Wn can be determined from the
heights of the maxima in the function §P(/). In practice
P(o) must be computed from a finite set of discrete 'P(z)

values that have been multiplied by a suitable window
function.l4 The peaks in P(O) will display a finite
width and shape that are characteristic of both the
window function and the propagation distance.

Table II shows the results of a mode-weight deter-
mination based on the field-squared'method for a
Gaussian beam introduced into a 1-D quadratic re-

A2,, 2n! 11/2 l - b2n 1,
[7r22n-(l + b2) '1 + b2I n! (23a)

where b = aa/a.

In the numerical calculation a Hanning19 window
and quadratic interpolation were used.

The procedure just outlined can be generalized to the
case where the Anj are complex. Let

(24)

Then it will be necessary to run two separate propaga-
tion calculations with '(x,y,0) = e[&(x,y,0)] and

/n [6 (x,y,0)], respectively, as starting conditions.
Applying Eqs. (19)-(21) to both calculations will allow
one to determine W as

Wn = E (AA) 2 + E (A-,) 2
= E [(Alj)

2 + (A-7)2]. (25)

B. Method 2 (Correlation-Function Method)

Let us form the product d* (x,y,0)C(x,y,z) and inte-
grate over the cross section of the fiber. Making use of
Eq. (18), we have

¶P1(z) - f 6* (x,y,0)6(x,y,z)dxdy = (6* (x,y,0),6(x,y,z))

= E Anj 1 2 exp(-inZ).
n j

Taking the Fourier transform of Eq. (26) gives

'P1 (O) = E IAn 1 2 6(0 1-1,).
nJi

(26)

(27)

Table II. Comparison of Analytically and Numerically Determined Mode
Weights for 1-D Square-Law Refracting Medium illuminated by Gaussian
Beam, Using 2 Method, Hanning Window, and Quadratic Interpolation

An2/Ao2

n Analytical Numerical

2 0.1800 0.1765
4 0.0486 0.0443
6 0.0146 0.0118
8 0.0046 0.0031

10 0.0015 0.0008

The maxima of 'P (), determined for a single propa-
gation calculation, give the desired weights,

Wn = const X E IAnj 2,
j

even for Anj complex.
Table III shows the results of a mode-weight deter-

mination with the correlation-function method for the
conditions of Table II, except that a four-term Black-
man-Harris'4 ,20 window was employed. Best results
were obtained with quadratic interpolation. The
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Table Ill. Comparison of Analytically and Numerically Determined Mode
Weights Using Correlation-Function Method a

n Analytical Numerical

2 0.1800 0.1805
4 0.0486 0.0489
6 0.0146 0.0147
8 0.0046 0.0046

10 0.0015 0.0015

a Same conditions as for Table II but with four-term Blackman-
Harris window.

E 1- 1

3: 10.10 

0

-1400 -1200 -1000 -800 -600 -400 -200 0
- a (cm1)

Fig. 1. Fourier transform of complex field-correlation function for
Gaussian beam propagating in a 1-D quadratic refracting medium.

Heights of spectral peaks are proportional to the weights of normal
modes excited.
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Fig. 2. Refractive index as a function of radius. Parabolically

shaped dip in center of quadratically varying index profile.

over-all agreement between the numerical and analytic
results is excellent. The agreement is particularly im-
pressive considering the small amounts of power that
are contained in the higher modes. The power spec-
trum 'PI (/) calculated for a Hanning window is shown
in Fig. 1, plotted vs -3 (to emphasize the similarity
between an optical waveguide and a quantum-me-
chanical system with an attractive potential). Figure
1 gives an accurate picture of both the relative mode
powers and their eigenvalues.

Table IV gives a comparison between analytically and
numerically determined eigenvalues (columns 2 and 5)
for the conditions of Table III, with the latter deter-
mined by quartic interpolation. The agreement in
Table IV is to within better than 0.1 cm-1. Thus by
interpolation the resolution implied by Eq. (12) had
been improved by at least a factor of 3.

The numerically determined mode delays a/3o'/a, for
a 20% variation in w, are also displayed in Table IV
relative to the constant An /noc. The numerical values
show an rms deviation of 7.4 psec/km from the correct
null value. Numerically and analytically determined
values of O/nl/w are displayed in columns 4 and 6, in-
dicating a 7.2-psec/km rms deviation between the two
sets of values.

The accuracy of the correlation-function method is
clearly better than the field-squared method. Thus the
correlation-function method is to be preferred for rea-
sons of both accuracy and simplicity.

Table IV. Comparison of Analytically and Numerically Determined Propagation Constants and Mode Delaysa

Numerical Analyticala13. -A 013,, A (psec/km) , an _n (psec/km)
n 3 (cm') Ow noc (psec/km) Ow noc 1'n (cm-) do no

0 1277.24 -3.23 -457.9 1277.24 -454.8

2 1196.26 11.36 -443.1 1196.29 -454.3

4 1115.30 -6.95 -456.9 1115.34 -450.0

6 1034.33 -2.96 -444.8 1034.39 -441.9

8 953.36 8.97 -421.0 953.44 -430.0

10 872.40 -7.20 -421.2 872.49 -414.2
(rms error, 7.4 psec/km) (rms error, 7.2 psec/km)

Numerical values of propagation constants were determined from location of peaks in correlation function, mode delays using Eq. (10).
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Fig. 3. Field spectrum for transverse position 5 ,m from fiber axis.
(a) Quadratic variation of index with radius, (b) quadratic variation
with radius but with parabolically shaped dip in center. Leaky modes

have been suppressed.
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Fig. 4. Fourier transform of complex field-correlation function for
fiber with dip, illuminated by beam composed of randomly phased
plane waves. Spectrum furnishes both frequencies and amplitudes

of modes excited. Leaky modes are also included.

IV. Numerical Illustration

The principles developed in the previous sections
have been applied to a fiber with the following refractive
index profile:

1n 1-2/\ -() h 1-(21 rr <~ r

n 2(r) = n [1-2A (J)2I R j, (29)

ni (1- 2A) = nor > a

where A = 0.008, h = 0.3, R = 6.25 gm, a = 31.25 gm,
and no = 1.5. The fiber is also assumed to be enclosed

Y9

8

-

a

-a

Ca
0

.

26 , I X I L -I .
-600 -500 -400 -300 -200 -100 0

-1(cm- 1 )

Fig. 5. Mode-group delays for fiber with dip plotted against negative
of propagation constant.

in a strongly absorbing jacket 1 at r = 62 gmi. For the
above profile the core index is quadratic in r except for
a parabolically shaped dip at the center. A plot of n (r)
is shown in Fig. 2. The fiber is assumed to be illumi-
nated with a beam composed of randomly phased plane
waves' at a wavelength of 1 m.

The spectrum | 6(x,y,3) 12, corresponding to a
propagation distance of 2.5 cm and a transverse position
5 gm from the fiber axis, is shown in Fig. 3(b). Because
of the off-axis position all modes are represented. For
comparison the spectrum for the same fiber with the
central dip eliminated is displayed in Fig. 3(a). For the
profile with no dip there are eighteen distinct guided-
mode groups, while the less degenerate spectrum for the
fiber with the dip shows forty-nine distinct guided-
mode groups. Moreover, the dip alters the mode
spectrum in a fundamental way that cannot be char-
acterize.d simply as a perturbation. 2 2

The fiber power spectrum P 1(/), calculated from
(C'*(x,y,0)6 '(x,y,z)) with a four-term Blackman-
Harris window, is displayed in Fig. 4 for the profile with
dip. The heights of the peaks are, of course, propor-
tional to the power excited in the individual modes.
Figure 4 also shows the presence of leaky modes, which,
however, are disregarded in the computation of dis-
persion, since previous calculations show that leaky
modes can decay in a short distance if a strongly ab-
sorbing outer jacket is present.1 Values of the eigen-
values /3, were obtained by quartic interpolation from
Pi((3), and the derivatives a3'/ao. were determined as
A#',/ACV from the results of two separate calculations
at wavelengths of 1 gm and 0.8 gm, respectively.
Equation (10) was then used to compute the modal
delays an/3/O, which are shown in Fig. 5 plotted against
-/n. The modal delays were found to be insensitive
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to halving the wavelength interval, to the propagation
distance, and to whether the eigenvalues 3'n were de-
termined with or without interpolation. Therefore, the
jagged appearance of Fig. 5 can be assumed real and due
to the discrete nature of the mode spectrum.

The rms pulse dispersion per unit propagation dis-
tance is given by o. = ((r2) - ()2)1/2, where (Tm ) is
determined from the relation

(rm) = E Wn(vn)-m,

25

13

Ca

C

C
(30)

and summation is over strictly guided modes. The
dispersion corresponding to Figs. 4 and 5 is cr = 3.67
nsec/km. The evolution with distance of an initially
Guassian-shaped pulse with an initial e 1 intensity
width of 1 nsec, calculated with the impulse-response
function (.1) and the convolution (I.3), is shown in Fig.
6.

In Fig. 7 the rms dispersion plotted against the profile
dispersion parameters = In A/A is shown for (a)
the profile without a dip and (b) the profile with dip. It
is seen that the profile with dip is far less sensitive to
profile dispersion than the profile without dip.

The calculated dispersion corresponding to Figs. 4
and 5 is rather large by experimental standards, but so
too is the assumed ratio Ria 0.2. However, the modal
weights excited by the randomly phased beam also play
a role in the large calculated value of dispersion. In
order to test the effect of mode excitation on dispersion,
the fiber with dip was assumed to be illuminated by a
beam having the Gaussian shape

& = exp[-(X2 + y 2 )/2ar],

where (7a is determined by Eq. (23). This is, of course,
a good approximation to the fundamental mode for the
fiber without a dip. The impulse-response function at
1 km for the fiber with dip corresponding to this illu-
mination is shown in Fig. 8, where it is evident that
relatively few modes are excited. The most prominent
peak in Fig. 8 corresponds to the fundamental mode.
The peaks have been arbitrarily given a Gaussian shape
with a le width of 100 psec. The rms dispersion for
this impulse response function is 2.24 nsec/km. How-
ever, this number is rather deceiving, since an important
contribution to of comes from the group of trailing
modes containing little energy. If, for example, only the
first four mode groups which contain 87% of the pulse
power are considered, the dispersion reduces to 0.732
nsec/km.

The intensity as a function of radius at z = 2.45 cm
resulting from the Gaussian beam illumination is shown
in Fig. 9. This should be compared with Fig. 10, which
shows the intensity distribution of the fundamental
mode for the profile with dip, determined from a solu-
tion of Eq. (5) with iz substituted for z. Replacement
of z by iz causes the normal mode solutions [Eq. (7)] to
grow exponentially. The largest A' value corresponds
to the fundamental mode. Consequently that mode
will prevail over the others after a sufficiently large
propagation distance. In the present case that distance
is of the order of 2 cm.
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Fig. 9. Intensity distribution at z = 2.45 cm; same conditions as in
Fig. 8.

V. Conclusions

It has been previously shown that a propagating-
beam solution of a scalar wave equation based on a
discrete Fourier representation provides an accurate
discription of the spatial and angular properties of the
electric field in an optical waveguide.

In this paper we have shown how the same compu-
tation can also furnish accurate and detailed informa-
tion on both the axial or mode spectrum and the relative
power excited in various modes under general launch
conditions. This information can be used to compute
the impulse response and the pulse dispersion for a fiber
of general refractive index profile. The latter compu-
tations, however, require a minimum of two propagation
calculations, since group delays must be computed by
a numerical evaluation of the derivatives of mode ei-
genvalues with respect to frequency.

Naturally the accuracy with which mode propagation
constants and weights can be computed increases with
the propagation distance encompassed in a given cal-
culation. However, we have determined that with the
help of digital signal-processing techniques, accurate
information can be gained from propagation distances
of the order of centimeters.

The propagating-beam method thus provides an ac-
curate and unified description of most phenomena of
current interest associated with optical waveguides.

This work was performed under the auspices of the
U.S. Department of Energy by the Lawrence Livermore
Laboratory under contract W-7405-ENG-48.

Appendix: Treatment of Profile Dispersion
If we make use of Eq. (16) and keep only terms to first

order in A, we can write the parabolic equation (5) as

(Al)2i PC'= V2 2 -
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Fig. 10. Intensity distribution of fundamental mode for propagation
in fiber with dip obtained by solving Eq. (5) with z replaced by iz.

Substitution of 6" = u' (x) exp(-i 3 'nz) into Eq. (Al)
gives

2/ nhut V12u' + 2Anl (j2 [1 - i (r)I u. (A2)

It will be assumed that f (r/a) is independent of X but
that the material parameters no, nI, and A can vary with
Co.

From first-order perturbation theory,23 one has

0 ( ) 0 [d n2 (-0 = en | f (r I nfl (A3)
Ow ci Ow \cj ~ a)

where

(n 1 -f (a) n = fJf"W(x) [1-f dxdy. (A4)

Let us call 3',° the eigenvalue of Eq. (A2) for no variation
of the material parameters with w. In that case Eq.
(A3) becomes

no (-n+d ) = And C2 In| n(a (A5)

Equation (AS) can be used to eliminate the matrix ele-
ment, (nl -f (r/a) In), from Eq. (A3). When this is
done, Eq. (A3) becomes

O'ne8f3' 09 ln(An )1 0I10ln(An') 0In no]
d9u Od 1 2 dw 2 Ow aw I

(A6)

Equation (A6) can also be expressed in terms of deriv-
atives with respect to wavelength as

d 'n ' 1 lnn 1 lnA) +01 A a + nA

Ow Ow Ox 2 OX/w 2 1-A OA

(A7)
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