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Abstract: In the urban environment, there are strict control requirements for deep foundation pit
deformation, resulting in earth pressure on the flexible supports often being in a nonlimiting state.
Therefore, it is important to consider displacement when calculating earth pressure. In this study,
lateral unloading stress path triaxial compression tests were performed to investigate the radial
stress–strain relationship of soft clay in an active region. Herein, a displacement-dependent earth
pressure model is proposed with the assumption of the soil strain distribution in the disturbed area.
From the surface of the ground to the deepest part of the support structure, the sufficient active
displacement inversed by the proposed model decreased, which confirmed that the earth pressure
along the entire wall could not achieve its active conditions simultaneously. The efficacy of the
proposed model is demonstrated through a comparison of the predicted earth pressure with the
experimental results reported in the published literature.

Keywords: excavation; displacement-dependent earth pressure; flexible support structure;
soft soil; displacement

1. Introduction

With the exploitation of underground space, many deep excavations occur. In order to
improve the safety of foundation pit engineering, which can reduce potential harm to the
environment, there are strict control requirements for the deformation of the supporting
structure. For key foundation pits, lateral wall deformations are controlled within 0.18% and
0.2~0.5% of the excavation depth in Shanghai (DG/TJ 08-6l-2018) [1] and Zhejiang province
(DB33/T 1096-2014) [2], respectively. Meanwhile, the excavation deformation in clay at
full active state is 1~2% of the excavation depth [3,4] (Clough and Duncan, 1991; Becker
and Moore, 2004); additionally, measurements performed using a centrifuge test in a paper
by Yue and Zhang [5] determined that the active limiting deformation in clay is 0.9~1% of
the excavation depth. Therefore, the support does not show sufficient lateral movement
to achieve an active condition. The Rankine and Coulomb earth pressure theories are
commonly used in design and are only valid for the limiting condition; therefore, these
theories are not useful in calculating the magnitude and distribution of displacement-
dependent earth pressure in nonlimiting states.

Many field monitoring [6,7] and experimental results [8–10] have shown that earth
pressure is closely related to the deformation of the retaining walls. The research methods
of these studies focus on the relationship between earth pressure and the deformation of a
rigid retaining wall, which can be summarized in three aspects. First, the classical equation
of active earth pressures adopts the mobilized shear strength value instead of the limiting
strength value. Bang [11] assumed a linear variation in the mobilized angle of internal
friction along the entire depth of the wall. Chang [12] set a linear relationship between
the mobilized shearing resistance represented by the tangent and the corresponding wall
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displacement. According to the Mohr circle of stress under the situation of an intermediate
active state and the unloading stress–strain relationship, Lu and Yang [13,14] established
the relationship between the mobilized internal frictional angle and the wall movement.
Using the same approach, Xu et al. [15] provided the mobilized shear strength for clay.
In addition, the strength reduction method [16] and the disturbed state concept [17] have
also been applied to calculate the mobilized shear strength. Second, various empirical
functions have been proposed to fit the earth pressure–displacement relationship. On the
basis of two centrifugal test results, the hyperbolic function model was derived by Lu.
Based on the well-known curve [18] of the earth pressure–displacement relationship in
practice, as shown in Figure 1, various functions, including the sigmoid functions [19,20],
the exponential function [21], the sine function [22], and the hyperbolic function [23,24],
can be assumed to fit the relationship. Third, earth pressure can be determined on the
soil strain state. Zhang et al. [25] extended the Rankine and Coulomb theories depending
on the strain increment ratio. With a new insight, Mei et al. [26] proposed a method of
taking the isotropic stress state as the turning point, where the lateral strain has zero value.
Tang et al. [27] developed a model based on the hyperbolic stress–strain relationship to
predict earth pressure with different wall movements.
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Current methods of predicting earth pressure that account for wall deformation focus
on rigid retaining walls. However, the supporting structure of a deep foundation pit is
thinner than a rigid retaining wall, the so-called flexible retaining wall, which can cause
obvious deflection. A series of model tests [28–31] were carried out to investigate the non-
linear earth pressure distribution of the cantilever retaining walls, while the effects of wall
displacement on the earth pressure were not considered. Based on the progressive rupture
mechanism that occurs in backfill, Li et al. [32] proposed a modified solution for earth
pressure against the cantilever retaining wall. Considering the typical deformation mode of
deep multi-strutted excavation, Ying and Cai [33] deduced the magnitude and distribution
of the active earth pressure using the differential flat element method. Ying et al. [34]
simplified the soil behind the wall as the combination of nonlinear springs and a rigid
plasticity object; in this way, earth pressure on the flexible retaining walls under any lateral
deformation can be obtained. Although nonlimited earth pressure against flexible supports
has attracted attention from researchers [35–39], these new methods are not friendly and
put forward higher technical requirements for designers. Thus, a simple model should be
proposed which can be achieved by conventional methods and be easy to be used widely.

Underground excavation for construction is a typical lateral unloading process, in
which the stress field and the displacement field of the soil around the foundation pit
are disturbed, especially in soft soil. Therefore, it is necessary to explore the variation in
earth pressure during the excavation process. In this study, reduced triaxial compression
(RTC) tests, which simulate the lateral unloading stress path during excavation, were
performed for the stress–strain relationship of soft clay in an active region. Combined with
an assumption of soil strain distribution in the disturbed area, an active earth pressure
model considering wall displacement was proposed and verified with experimental results
from centrifuge model tests and full-scale tests.
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2. Materials and Methods

Excavation-induced soil unloading causes variation in the stress state of soil masses
at the back of a wall, as shown in Figure 2. Vertical stress is a constant, as a result of the
gravity affecting soil, while horizontal stress decreases during the excavation process. The
conventional triaxial compression test is inappropriate for simulations of the stress path of
the unloading process.
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Figure 2. Diagram of excavation.

2.1. Test Apparatus

Test equipment was required to measure the radial strain of a soil sample during
the lateral unloading process. Existing methods for monitoring radial strain include the
digital image measurements [40,41], the Hall effect transducers measurement [42,43], and
calculation using the back volume change [44].

GDSTTS, an advanced, automated stress path triaxial testing system, was used in the
tests. The fundamental system hardware elements are shown in Figure 3. The GDS system
provides two ways to measure lateral strain: one is a direct measurement by a Hall effect
transducer, and the other involves a conversion using the vertical deformation. A Hall
effect transducer needs to be installed in such a way that it passes through the middle
of the sample, which causes heavy disturbance to the sample. The operation is difficult
to complete, especially for soft soil, and it is an intensive process that can only measure
the strain of a specified section. The second approach was used to obtain the equivalent
uniform radial strain in this experiment. The equivalent radial strain can be converted
using Equation (1), in which the axial displacement change ∆h was monitored using an
external LVDT, the volume change ∆V was monitored by a back pressure controller, and
other values included the initial parameters of the soil samples. It is worth noting that the
radial strain obtained by this method is an average value of the diameter change rate along
the whole height, which is different from the local strain measurement.

ε =
∆r
r0

=

√
∆V + πr2

0h
π(h− ∆h)r2

0
− 1 (1)
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2.2. Test Specimens

In order to eliminate the influence of complex factors such as the preconsolidation
pressure and the structure of clay on the measurements, only the behavior of the reconsti-
tuted soil was studied in the tests. The soil sample, which belonged to the ancient Qinhuai
River floodplain landform, was taken from a construction site (Figure 4) in Nanjing, China,
at depths of 8.5–9.5 m (the red circle in Figure 4). The averaged values of the main physical
properties of the sampling location are listed in Table 1.

Table 1. Physical properties of the excavation site.

Soil Strata
Layer

Thickness
(m)

Specific
Gravity

Gs

Plasticity
Index IP

(%)

Liquidity
Index IL

(%)

Unit
Weight

γ (kN/m3)

Void Ratio
e

Water
Content
Ω (%)

Cohesion
c (kPa)

Friction
Angle ϕ (◦)

Fill 2.61 2.72 13.4 0.64 19.12 0.78 28.4 20.1 17.4
Silty Clay 2.13 2.72 12.9 0.57 19.01 0.81 28.5 17.4 19.8

Silty 3.63 2.71 9.9 0.68 19.33 0.72 26.5 14.8 29.9
Muddy Clay 10.52 2.74 14.7 1.14 18.42 1.07 39.02 10.9 11.9

Silty Clay 9.69 2.74 14.9 0.43 19.59 0.74 25.3 49.3 18.3

Field soil was dried in a constant-temperature oven for no less than 12 h; then, the dry
soil was crushed and filtered with a 1 mm aperture screen to obtain soil powder, as shown
in Figure 5a. The powder was stored in a covered container. The void ratio and saturation
density of the specimens were 1.03 and 1.86 g/cm3, respectively; therefore, a sample with a
diameter of 50 mm and height of 100 mm equated to 265 g dry powder. The specimens
were prepared with dry soil powder in five layers using three split molds constituting
circular cross-sections, as shown in Figure 5b. The dry soil specimens, created with the
three split molds, were moved to a vacuum-saturated cylinder, as shown in Figure 5c. An
atmospheric pressure vacuum was applied to the specimens for more than 1 h. Water was
poured into the cylinders slowly, and the specimens were soaked in the water for no less
than 12 h. Figure 5d shows the specimen after it was removed from the mold.
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2.3. Testing Program

Since the soft soil is generally distributed within 20 m, the cell pressures of the tests
were 50, 100, and 200 kPa, respectively. The specimens were 50 mm in diameter and 100 mm
in height. The consolidated undrained (CU) test was divided into four stages: specimen
preparation, saturation, K0 consolidation, and lateral unloading process. The specimens
were prepared following GB/T 50123 [45] and Esmaeili-Falaki [46,47]. The specimens were
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saturated by applying a vacuum and back pressure until the B-value was greater than 0.98.
K0 consolidation was controlled by commercial software, using a ramp of radial stress with
back volume change measurement, as displayed in Figure 6. The axial displacement of the
specimen was adjusted slowly to maintain the initial diameter. The loading time of the OA
stage was 1000 min, while the consolidation step was terminated when the back volume
change was less than 5 mm3/5 min. During the lateral unloading stage, the cell pressure
decreased at a constant rate of 0.2 kPa/min in the BC stage, with constant axial stress, until
the axial strain ε1 increased by 15% (GB/T 50123-2019).
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The effective stress path of the whole RTC test under three initial cell pressure values
is shown in Figure 7. In first stage, the path reached the K0 consolidation state along
an oblique line. From the figure, we can see that the performance of the consolidation,
conducted by the automatic K0 consolidation module, was satisfying. In the unloading
shear stage, the lateral pressure decreased while the axial pressure remained constant,
so that the mean effective stress, p’, decreased and the deviator stress, q, increased. The
path approached the critical state along the upper left, and the theoretical slope of this
direction was 2/3. In the shear stage, the volume of the soil sample remained constant
under undrained conditions, so the curve of the v-lnp’ relationship was a horizontal line.
The stress conditions of the soil specimens in the K0 state of the tests are listed in Table 2.
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2.4. Test Results and Analysis

The radial stress–strain curves corresponding to the 15% axial strain range are plotted
in Figure 8. It can be seen from the figure that the nonlinear relationships of the three
curves are hyperbolic representations; therefore, the radial stress–strain relationship can be
described on the basis of the Duncan–Chang model.
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The hyperbolic model of the soft soil is proposed in Equation (2), as follows:

εr

σr0 − σr
= a + bεr (2)

where σr0 is the initial radial stress, σr is the radial stress, and εr is the radial strain.
Figure 9a–c shows the linear relationship of the test results processed by Equation (2). The
coefficients of determination R2 are both larger than 0.99.
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The tangential modulus of the nonlinear curve can be obtained as follows:

Et =
d(σr0 − σr)

dεr
=

a

(a + bεr)
2 (3)

When εr approaches 0, a is a reciprocal of the initial tangential modulus Ei. The
intercepts of the line vary under different initial radial stress values, as shown in Figure 9a–c.
According to the suggestion by Janbu [48], Ei can be described as follows:

Ei = Kpa(
σr0

pa
)

n
(4)

When εr→∞, b is a reciprocal of the asymptotic value of σr − σr. If the failure ratio Rsf
is defined as

Rsf =
(σr0 − σr)f
(σr0 − σr)ult

(5)

then
b =

Rsf
(σr0 − σr)f

(6)

In this case, the initial radial stress is the static earth pressure σr0 = e0 = K0γz, while
the radial stress at failure is the active earth pressure (σr)f = ea. Thus (σr0 − σr)f = e0 − ea.

The expression for the displacement-dependent active earth pressure can be obtained
as follows:

eδ = σr = e0 −
(e0 − ea)εrEi

(e0 − ea) + RsfεrEi
(7)

2.5. Model Validation

From Equation (7), if the parameters K and n of the initial tangential modulus are
determined by the RTC tests, then the earth pressure can be derived from the soil strain
of any position. As mentioned earlier, K and n were determined to be 209.94 and 0.73,
respectively. The predictions for the radial stress–strain relationship under different initial
radial stresses and assuming the failure ratio Rsf = 0.85 [49] are included in Figure 10.
As shown in Figure 10, the agreement between the experimentally measured results and
the predicted results proves that the proposed model can describe the radial stress–strain
relationships well while considering various initial radial stresses.
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3. Expression for Displacement-Dependent Active Earth Pressure
3.1. Soil Strain Distribution

Based on the deformation compatibility between a supporting structure and the
surrounding soil, the soil strain behind a wall will change with structural deformation
during an excavation. In practice, measuring soil strain with conventional methods is
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difficult; therefore, the method for determining the soil strain is a bridge to establish the
relationship between deformation and earth pressure. Caspe [50] divided the soil behind
retaining walls into the plastic zone, the elastic zone, and the undisturbed zone and took
the logarithmic spiral as a separation line [51,52]. simplified the boundary into a straight
line, as shown in Figure 11.
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The horizontal displacement of the supporting structure can be expressed by the
following integration:

δ(z) =
∫ L(z)

0
ε(x)dx (8)

The width of the disturbed zone, letting L(zi) = l, is determined by

l = (Hi + Dn − zi) tan(45◦ − ϕ

2
) (9)

Dn = 2Die
π(45◦−ϕ/2) tan ϕ

180 cos(45◦ − ϕ

2
) (10)

where Hi is the excavation depth and Di is the depth from the pit bottom to the zero
displacement point of the supporting structure, i.e., Di = (1~1.2) Hi [52].

In this study, according to the continuity and isotropy hypotheses of the soil, the soil
strain distribution in the disturbed area was assumed to be reduced linearly, as follows:
ε(x) = a + bx. Introducing the boundary conditions ε(0) = εr and ε(l) = 0, the soil strain on
the interaction surface was obtained: εr = ε (0) = 2δ (z)/l. Substituting εr into Equation (7),
the displacement-dependent active earth pressure can be written as follows:

eδ = e0 −
2(e0 − ea)Eiδ(z)

(e0 − ea)l + 2RsfEiδ(z)
(11)

The calculation from Equation (11) shows that earth pressure decreases monotonically
with an increase in displacement, i.e., deδ/dδ < 0, which is in accordance with the variation
in earth pressure with displacement in the active condition.

3.2. Validation of Earth Pressure Prediction

To validate the applicability of the model, an excavation case with homogenous soil
was constructed. The final excavation depth was 9.5 m, and the depth of the diaphragm
wall was 20 m. The properties of the homogeneous soil were the weighted averages of the
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values in Table 1: the unit weight was 18.79 kN/m3, the cohesion was 17.07 kPa, and the
friction angle was 15.61◦. For excavation to the bottom of the pit, the relationship curves
between earth pressure and displacement at 1 m, 5 m, 10 m, 15 m, and 20 m below the
surface are shown in Figure 12.
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As shown in Figure 12, the soil pressure decreased with increasing displacement at
different depths. For the same deformation amount, the deeper the position, the more the
soil pressure changed. The earth pressure variations at 1 m and 10 m below the surface
were 6.3 kPa and 27.89 kPa, respectively, for the deformation from the resting condition to
20 mm. As the deformation increased, the reduction rate of the earth pressure decreased.
For example, 10 m below the surface, the earth pressure decreased by 15.49% and 2.63% for
deformation from the resting condition to 10 mm and from 40 mm to 50 mm, respectively.
From the curve of the earth pressure at 1 m below the surface, the proposed model can
develop a tensile stress area in the cohesion soil; that is, the earth pressure is negative.
After 50 mm deformation, the earth pressure at different depths tends to be constant, and
approaches the limiting active state. However, the deformation required for Rankine active
earth pressure is variable at different depths. Through inversion of Equation (11), the active
deformation corresponding to the limiting state at different depths is shown in Figure 13.
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The deeper the soil layer, the smaller the deformation that corresponds to the limiting
active earth pressure. In this case, the deformation required for fully active earth pressure
near the excavation surface was 100 mm, while the required deformations were 150 mm
and 46 mm at 5 m and 20 m below the surface, respectively. In practical deep foundation
pit engineering, the allowable deformations controlled in the design and monitoring pro-
cesses are the maximum lateral deformation of the supports, so it is impossible to reach a
fully active earth pressure at the same time; the earth pressure of the support above the
excavation surface should be greater than the active limiting value. This is based on the
assumption that the support deflection mode is the quadratic parabola and that maximum
deformation occurs at the excavation surface. If the active earth pressure behind the wall
at the bottom of the pit reached the limiting value, then the earth pressure at 5 m below
the surface would be 16.46% more than the Rankine active earth pressure, while the earth
pressure at 15 m below the surface would have already reached the limiting value.

In order to verify the proposed model, two cases with similar soil characteristics
were selected from the published literature. A centrifuge model test was reported by
Xu et al. [53] for a 38 m deep, multi-strutted, soft ground foundation pit. The test included
constant centrifugal acceleration of 120× g, the height of the model wall was 542 mm,
and the excavation depth in stage 9 was 316 mm. The unit weight, the cohesion and
the friction angle of the soft clay were 17.3 kN/m3, 19 kPa, and 20.1◦ respectively. The
unit weight of the sand was 19.5 kN/m3 and the friction angle was 26.9◦. The measured
earth pressures were compared with the predictions under different test displacements,
as shown in Figure 14. The measured earth pressures showed that the soil was under
compression within 10~30 m depth, while the lateral wall moved towards the pit according
to the measured displacements. The proposed method was based on the Rankine pressure
theory, so the soil arching effect caused by the interaction between the supporting structure
and the soil mass was neglected. The error of the prediction results from the arching
effect, which the measured that earth pressure was larger than the prediction above the pit
bottom. Aside from this, the proposed model provided a good prediction of earth pressure.
The nonlinearity of the active earth pressure distribution can be described well using the
proposed model.
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Figure 14. Comparison between predicted earth pressures and the experimental results by
Xu et al. [53].

The proposed model was also verified by the full-scale test carried out by Sheng [54].
For simplicity, the weighted average soil parameters were calculated with respect to the
soil layer thickness. Figure 15 shows that the predicted earth pressures from the proposed
model were in good agreement with the results measured during the last excavation.
Unfortunately, the phenomenon that the earth pressure decreased sharply at the bottom
of the wall, where the displacement was close to zero, was unreasonable. In contrast with
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Case 1, the soil arching effect of the cantilever excavation without the support constraint
is minimal, and the predicted earth pressures of the cantilever excavation match the
measurements well.
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Figure 15. Comparison between the predicted earth pressures and the experimental results by
Sheng [54] According to the analyses, the proposed earth pressure model, which considers displace-
ment, can predict both nonlinear distribution and magnitude. In practice, these results are significant
for predicting earth pressure while accounting for support deformation based on the RTC triaxial test.

3.3. Illustrative Example

A further illustrative study was conducted on an excavation with a width of 50 m and
depth of 14.85 m. Therein, 29 m deep bored piles and four levels of struts were adopted as
support structures. The unit weight was 18.79 kN/m3, the cohesion was 17.07 kPa, and the
friction angle was 15.61◦; other details are shown in Figure 16.
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Figure 16. Cross section of the deep excavation.

The internal forces of support structure were calculated using the vertical elastic
foundation beam method. According to the simplified method of deformation prediction
for excavations [55], the maximum lateral deformation of the support was 36.05 mm, and
the deformation at the surface and the support end were 1.80 mm and 3.60 mm, respectively.
The earth pressure on support can obtained by the proposed model. According to JGJ120,
parameters required for the design are listed in Table 3. The stiffness of soil springs was
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calculated by ki = m(yi − h), where m is horizontal foundation coefficient, yi is the depth
of the soil spring, and h is the excavation depth.

Table 3. Design parameters.

Stiffness (MN·m2/m)
m (MN·m4/m)Support Concrete Strut Steel Strut

1189.43 142.63 36.40 5.68

The calculation was implemented using ABAQUS, and the nonlinear earth pressure
was conducted by the Dload subroutine. The internal forces obtained from the proposed
model were compared with the results calculated from the Rankine active pressure based
on JGJ120, as shown in Figures 17 and 18. From the figures, the shear force and bending
moment calculated by existing engineering design guidelines are both less than the present
method, where the maximum differences of the bending moment and shear force between
the two methods are 11.31% and 11.48%, respectively. Thus, the existing design guidelines
are unsafe for foundation pit engineering. This issue can be resolved by the proposed
method in this study.

Appl. Sci. 2022, 12, 7289 14 of 17 
 

 

Figure 17. Bending moment diagram. 

 

Figure 18. Shear force diagram. 

4. Conclusions 

In this paper, a method for calculating the displacement-dependent active earth pres-

sure of flexible support structures in deep foundation pit engineering was investigated. 

The following conclusions were drawn from the work: 

(1) Based on the analysis of the lateral unloading stress path triaxial test results, a hyper-

bolic model was proposed. The comparison between the predictions and test results 

showed that the proposed model can successfully estimate the radial stress from the 

soil strain for soft clay under various initial radial stresses. 

(2) According to a basic hypothesis of the soil, a simplified soil strain distribution as-

sumption was applied to allow for the proposal of a displacement-dependent active 

earth pressure model. The proposed model was validated by comparison with the 

experimental results, showing it to be a valid model for estimating the magnitude 

and distribution of active earth pressure, with a consideration of the displacement of 

the supporting structure. More work needs to be performed given that the prediction 

deviation resulting from the model reflected a neglect in the interaction between the 

support structures and the soil mass. 

(3) Through an inversion of the proposed model, we confirmed that the earth pressure 

along the entire depth of the wall could not achieve the active condition simultane-

ously. This confirmed the validity of our calculation of displacement-dependent ac-

tive earth pressure for deep excavations. The assumption that the required magni-

-800 -600 -400 -200 0 200 400

35

30

25

20

15

10

5

0

Moment(kN·m2)

D
ep

th
(m

)

 Proposed model

 JGJ120-2012

-500 -400 -300 -200 -100 0 100 200 300

35

30

25

20

15

10

5

0

Shear force(kN)

D
ep

th
(m

)

 Proposed model

 JGJ120-2012

Figure 17. Bending moment diagram.

Appl. Sci. 2022, 12, 7289 14 of 17 
 

 

Figure 17. Bending moment diagram. 

 

Figure 18. Shear force diagram. 

4. Conclusions 

In this paper, a method for calculating the displacement-dependent active earth pres-

sure of flexible support structures in deep foundation pit engineering was investigated. 

The following conclusions were drawn from the work: 

(1) Based on the analysis of the lateral unloading stress path triaxial test results, a hyper-

bolic model was proposed. The comparison between the predictions and test results 

showed that the proposed model can successfully estimate the radial stress from the 

soil strain for soft clay under various initial radial stresses. 

(2) According to a basic hypothesis of the soil, a simplified soil strain distribution as-

sumption was applied to allow for the proposal of a displacement-dependent active 

earth pressure model. The proposed model was validated by comparison with the 

experimental results, showing it to be a valid model for estimating the magnitude 

and distribution of active earth pressure, with a consideration of the displacement of 

the supporting structure. More work needs to be performed given that the prediction 

deviation resulting from the model reflected a neglect in the interaction between the 

support structures and the soil mass. 

(3) Through an inversion of the proposed model, we confirmed that the earth pressure 

along the entire depth of the wall could not achieve the active condition simultane-

ously. This confirmed the validity of our calculation of displacement-dependent ac-

tive earth pressure for deep excavations. The assumption that the required magni-

-800 -600 -400 -200 0 200 400

35

30

25

20

15

10

5

0

Moment(kN·m2)

D
ep

th
(m

)

 Proposed model

 JGJ120-2012

-500 -400 -300 -200 -100 0 100 200 300

35

30

25

20

15

10

5

0

Shear force(kN)

D
ep

th
(m

)

 Proposed model

 JGJ120-2012

Figure 18. Shear force diagram.

4. Conclusions

In this paper, a method for calculating the displacement-dependent active earth pres-
sure of flexible support structures in deep foundation pit engineering was investigated.
The following conclusions were drawn from the work:
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(1) Based on the analysis of the lateral unloading stress path triaxial test results, a hyper-
bolic model was proposed. The comparison between the predictions and test results
showed that the proposed model can successfully estimate the radial stress from the
soil strain for soft clay under various initial radial stresses.

(2) According to a basic hypothesis of the soil, a simplified soil strain distribution as-
sumption was applied to allow for the proposal of a displacement-dependent active
earth pressure model. The proposed model was validated by comparison with the
experimental results, showing it to be a valid model for estimating the magnitude
and distribution of active earth pressure, with a consideration of the displacement of
the supporting structure. More work needs to be performed given that the prediction
deviation resulting from the model reflected a neglect in the interaction between the
support structures and the soil mass.

(3) Through an inversion of the proposed model, we confirmed that the earth pressure
along the entire depth of the wall could not achieve the active condition simultane-
ously. This confirmed the validity of our calculation of displacement-dependent active
earth pressure for deep excavations. The assumption that the required magnitude
of movement of the entire soil in the fully active condition is 1% of the excavation
depth is not suitable for a multi-strutted, soft-ground foundation pit; however, this
assumption may be reasonable for the retaining walls rotating around the bottom.

(4) The present experimental work is limited to the Nanjing floodplain muddy clay.
For more generalizable conclusions, further exploration should be carried out for
other soils.
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