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Calculation of electronic coupling matrix elements for ground and excited
state electron transfer reactions: Comparison of the generalized
Mulliken–Hush and block diagonalization methods

Robert J. Cave
Department of Chemistry, Harvey Mudd College, Claremont, California 91711

Marshall D. Newton
Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973

~Received 28 October 1996; accepted 25 February 1997!

Two independent methods are presented for the nonperturbative calculation of the electronic
coupling matrix element (Hab) for electron transfer reactions usingab initio electronic structure
theory. The first is based on the generalized Mulliken–Hush~GMH! model, a multistate
generalization of the Mulliken Hush formalism for the electronic coupling. The second is based on
the block diagonalization~BD! approach of Cederbaum, Domcke, and co-workers. Detailed
quantitative comparisons of the two methods are carried out based on results for~a! several states
of the system Zn2OH2

1 and~b! the low-lying states of the benzene–Cl atom complex and its contact
ion pair. Generally good agreement between the two methods is obtained over a range of
geometries. Either method can be applied at an arbitrary nuclear geometry and, as a result, may be
used to test the validity of the Condon approximation. Examples of nonmonotonic behavior of the
electronic coupling as a function of nuclear coordinates are observed for Zn2OH2

1. Both methods
also yield a natural definition of the effective distance (r DA) between donor (D) and acceptor
(A) sites, in contrast to earlier approaches which required independent estimates ofr DA , generally
based on molecular structure data. ©1997 American Institute of Physics.
@S0021-9606~97!00621-1#

I. INTRODUCTION

The electronic coupling between localized donor (D)
and acceptor (A) sites can be an important factor in control-
ling the rates of electron transfer (et) reactions.1 This is
especially true in biological systems, where electrons transfer
over large distances (.5 Å), generally assisted by the inter-
vening medium.2 In addition, the electronic coupling be-
tween different pairs of states of a given donor–acceptor pair
often plays a role in determining the relative rates of trans-
fers among the various states.3 It is thus of critical impor-
tance to be able to estimate the electronic coupling matrix
elements in order to understand the behavior of long distance
electron transfer reactions. We denote such a coupling ele-
ment asHab , wherea andb refer generically to the initial
and final diabatic states~i.e., the charge-localized valence
bond structures which characterize the reactant and product
states in the process of interest!.1 In contrast, adiabatic states
~i.e., eigenfunctions of the electronic Hamiltonian! are de-
noted below by numerical labels~1,2,...!.

A number of methods based on quantum chemical cal-
culations have been proposed and applied to obtain estimates
of Hab . The determination ofHab is a two-stage process
involving first the specification of the states and, then the
actual calculation of the coupling element. In many cases the
coupling element between many-electron states (Hab) may
be replaced to a good approximation by the corresponding
one-electron matrix element (HDA) between localD andA
orbitals.1 Using electronic wave functions obtained either
from semiempirical or ab initio techniques, previous

studies4–15 have evaluated and analyzedHab on the basis of
various perturbative and nonperturbative approaches, often
cast in terms of partitioning theory5 or Green functions,15 and
involving either direct~i.e., in terms of localized states or
orbitals! or indirect ~i.e., splittings of delocalized state ener-
gies! treatments.1 All of these studies have assumed the va-
lidity of the two-state approximation, in which the space of
the two states of interest~i.e., either the diabatic states,ca

and cb , or their adiabatic counterparts! is well separated
energetically from the other states of the system.1

Approaches based on semiempirical quantum chemical
methods are attractive because of the ease of application to
large molecular systems, and the values obtained forHab are
in reasonable agreement with results fromab initio
calculations8~c! or from experiment9,16 in cases where com-
parison has been made. Difficulties may however arise in
application of such methods when nondynamical electron
correlation effects17 are important, especially in reactions in-
volving excited states, or when parameters in the model are
unavailable or insufficiently tested. In such cases it is impor-
tant to be able to applyab initio methods. Extensive appli-
cation ofab initio methods has been made to study electron
transfer in hydrocarbon systems10–13 and systems involving
metal atoms or ions.7,8Most studies have used Hartree–Fock
~HF! wave functions and thus have been limited to reactions
involving the lowest state of a given symmetry, but some
studies have used correlated wave functions.11~b!,13 TheHab

values are obtained as:~i! one-half of the adiabatic state
splitting in the case of symmetry-equivalentD and A
groups;10–13 ~ii ! the matrix element between the two nonor-
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thogonal symmetry-broken diabatic states characterizing the
initial and final states of the system,7,8,12~b! or ~iii ! the mini-
mum splitting between two adiabatic states adjusted suitably
by the application of an external field or variation of
geometry.11~b! The first of these methods should be quite gen-
eral whenever one is dealing with a symmetrical system,
provided that the two-state model is adequate. The second
method is generally applicable only in weakly coupled sys-
tems, and the inclusion of correlation can lead to ambigu-
ities, since symmetry-breaking does not occur in the limit of
fully correlated wave functions. Also, in the nonsymmetrical
cases, in which the two diabatic states are not degenerate,
averaging is required to maintain the Hermitian property of
the coupling~i.e.,Hab5Hba , where the matrix elements are
real!.1 The third method is an attempt to circumvent the
problems of the first two methods, but it is not always obvi-
ous which coordinates are best varied and/or whether one has
reached the true minimum in splitting, especially for weakly
coupled systems. When these problems are combined with
the inherent difficulties in treating excited states, none of the
above methods offers a fully satisfactory choice.

With the above limitations and difficulties in mind we
have developed two alternative methods for calculating
Hab , which are broadly applicable to charge-transfer pro-
cesses. Our criteria for acceptable methods of calculating
Hab are that they should:

~a! treat excited states as well as ground states,
~b! be capable of treating several states of interest simulta-

neously,
~c! be applicable to arbitrary molecular geometries,

thereby allowing tests of the validity of the Condon
approximation1,2 ~which neglects the variation ofHab

with respect to all molecular coordinates except those
which affect the effective donor–acceptor separation
distance,r DA! and avoiding the need to search for the
crossing of a pair of diabatic surfaces in order to cal-
culateHab , and

~d! allow the inclusion of electron correlation for all states
of interest.

Both methods presented here meet these four goals and they
are, to our knowledge, the first methods to do so. The first
approach is the generalized Mulliken–Hush approach,
~GMH!,18 which uses a transformation of the adiabatic di-
pole moment matrix to define diabatic states. The second
method ~denoted below as BD! is based on block
diagonalization19 of the adiabatic Hamiltonian using configu-
ration interaction~CI! coefficients obtained in a basis of con-
figurations constructed in terms of a diabatic molecular or-
bital basis.20 The applications reported here involveet
processes occurring in the Zn2~H2O!1 system18~a! and the
benzene–chlorine atom contact ion-pair system.21 The calcu-
lated results for these systems, which are dominated by di-
rect @or ‘‘through-space’’~TS!1,7# D/A coupling, allow criti-
cal comparisons of the GMH and BD methods.22 We find
that the two methods yield quite similar results and that ei-
ther is a robust, general means for calculatingHab for ground
or excited stateet processes. In addition toHab , the meth-

ods yield values of the effective distances separatingD and
A sites,1~b!,16,18~a! defined asr DA5uDmabu/e, whereDmab is
the dipole moment difference for a pair of diabatic states,
ande is the magnitude of the electron charge. These values
of r DA may be contrasted with previous estimates (r DA

0 )
based on molecular structural or other empirical
data.18~c!–18~h!

It should be emphasized that while we concern ourselves
here withab initio applications, either approach~GMH or
BD! can also be applied using semiempirical methods, al-
though in practice the GMH model is the easier of the two to
apply in general. Lastly, as noted previously,18~a! since the
GMH model is defined entirely in terms of adiabatic state
properties~state energies, dipole moments, and transition
moments!, it can also be applied using purely experimental
data to yield experimental estimates ofHab and r DA.

II. THEORETICAL METHODS

A. Generalized Mulliken–Hush method

The Mulliken–Hush method18~c!–18~h! for relating the
adiabatic transition dipole moment,m12, to Hab was origi-
nally derived for a two-state system with weakly interacting
diabatic states, thus justifying the use of first order perturba-
tion theory. In addition, it was assumed that the diabatic
states were localized and that one could takemab50. With
this second assumption one could write the electronic cou-
pling matrix element as

Hab5
um12uDEab

uDmabu
, ~1!

whereDEab is the diabatic state energy gap, approximated
by the observed~adiabatic! excitation energy (DE12) for op-
tical et, with m12 andDmab ~i.e., the diabatic dipole moment
difference! taken as scalar quantities since it is assumed that
all dipole vectors are collinear, aligned along a direction de-
fined by the centroids of theD and A orbitals. Since the
diabatic states are not known in general, the Mulliken–Hush
treatment makes a third assumption, namely thatuDmabu in
the denominator of Eq.~1! can be approximated byerDA

0 ,
wherer DA

0 is generally inferred from structural data, as noted
in Sec. I. It has recently been shown18~g!,18~h! that Eq.~1! may
be extended to the nonperturbative regime by replacing
DEab with DE12.

In the generalized Mulliken–Hush~GMH! model18~a! we
retain the assumption that the diabatic states localized at dif-
ferent sites have zero off-diagonal dipole moment matrix el-
ements, and exploit this assumption as a means of defining
diabatic states in ann state framework. The method is not
restricted to a perturbative treatment~within the n states of
interest!, nor is there a need to approximateDmab in terms of
structural data~i.e., r DA

0 , as noted above! in order to obtain
Hab . In fact, the GMH model yields directly a value for
Dmab as well asHab .

The GMH model takes as its starting point the vector
components of the dipole moment matrix and the energy
eigenvalues~i.e., the diagonal Hamiltonian matrix! for the
desired manifold ofn adiabatic states. The GMH analysis
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employs only the vector component of each dipole matrix
element in the direction defined by the dipole difference vec-
tor for the initial and final adiabatic states~two-state case! or
by the average of such differences when severalet processes
are considered for a given system.16,18~a! As a first step we
diagonalize this dipole moment matrix (mad) and apply the
same transformation to the adiabatic~i.e., diagonal! Hamil-
tonian matrix. However, full diagonalization ofmad is too
restrictive since the central assumption of the GMH model
requiresmab50 only for state pairsa,b in which the trans-
ferring electron is localized on different sites. Since the pro-
cesses under investigation here are of the long-rangeet type,
one can easily group the eigenfunctions of the dipole matrix
into blocks associated with different localization sites, as de-
fined by the corresponding eigenvalues. Within each block
we then diagonalize the Hamiltonian, thus obtaining states
which areadiabaticwithin a given local block, but stilldi-
abatic with respect to states localized at different sites.18~a!

Applying the same block-by-block transformation to the di-
agonal dipole moment matrix yields the diabatic state dipole
moments (maa) and transition moments within each local
block.

The formulation of the GMH given above was cast in
terms of a generaln-state system involving long-rangeet. In
the limiting case of a two-stateet system one obtains the
following GMH results:

uHabu5um12uDE12/uDmabu, ~2a!

uDmabu5@~m112m22!
214~m12!

2#1/2, ~2b!

displaying explicitly the manner in which the diabatic quan-
tities ~Hab andDmab! may be expressedentirely in terms of
adiabatic state information. This reliance exclusively on
adiabatic states applies, of course, to the generaln-state situ-
ation as well as the simple two-state case and allows one to
evaluateHab andr DA ~i.e., uDmabu/e! using either the output
of conventional quantum chemistry codes or experimental
data.1~b!,16,18~a! Finally, it should be clear that the GMH pro-
cedure can be performed at any geometry, not merely that
corresponding to degeneracy of the diabatic states~in which
case they are mixed 50/50 in the corresponding adiabatic
states!.

Previous examples of the use of diagonalization of the
dipole moment matrix in defining diabatic states have been
discussed in recent literature, but applied in a pairwise
fashion.23

B. Block diagonalization of the adiabatic electronic
Hamiltonian

The block diagonalization~BD! procedure outlined here
closely follows the methods developed by Cederbaum
et al.19 and Domckeet al.20 but with particular focus on di-
abatic states suitable for representing in a chemically intui-
tive manner~i.e., in terms of ‘‘valence bond’’ structures!, the
initial and final states~and possibly intermediate states! per-
tinent toet processes, as introduced in Sec. I. Diabatic states
defined in this manner, in contrast to the adiabatic states~i.e.,
those which diagonalize the electronic Hamiltonian!, are ex-

pected to vary slowly with respect to nuclear coordinates,
and thus their matrix elements over the nuclear momentum
and kinetic energy operators are generally quite small.19,20,24

The BD approach can be applied to any configuration inter-
action ~CI! wave function and associated electronic Hamil-
tonian matrix, while the extension of the method by Domcke
et al.20 relies on the use of a state-averaged complete active
space self-consistent field wave function~denoted below as
nSA/CASSCF wheren indicates the number of states aver-
aged in the orbital optimization!.25 This latter method allows
a multistate treatment with a common set of orbitals, a prop-
erty of great convenience in the formulation of a diabatic
electronic Hamiltonian with eigenvalues identical to the
original adiabatic state energies20 ~in the following, ‘‘Hamil-
tonian’’ is understood to refer to the electronic Hamiltonian,
denotedH!.

1. Definition of diabatic states

In implementing the BD approach foret processes of
interest in any given system, we first obtain the desired set of
diabatic states,$c j

P0%, for a corresponding zeroth-order ref-

erence system. This set,$c j
P0%, denoted collectively as the

P0-space, of dimensionnP>2, a subspace of the
nSA/CASSCF space (nP<n), includes the important
valence-bond structures of the type described above~i.e., the
appropriate charge-localized states!. For each bimolecular
et system discussed below, the zeroth-order reference system
~denoted by the coordinate set$x0%! is chosen as the ‘‘non-
interacting’’ system in which the two reactants are at large
separation~for intramolecularet, alternative noninteracting
systems may be defined26!. In the noninteracting reference
systems, each of the relevantnP adiabatic solutions,C j

P0,
selected from thenSA/CASSCF space (nP<n), when ex-
pressed in terms of a suitable set of diabatic orbitals, as de-
scribed below, is found typically to be strongly dominated by
a single~or, in some cases, a few! charge-localized electronic
configurationXj

0 ~taken here as a spin-adapted set of single-
determinants associated with a given electronic configura-
tion! denoted below as a configuration state function
~CSF!.27 Taking this set ofnP CSF’s as the reference diaba-
tic states~c j

P05Xj
0 , j51 to nP!, we obtain the desired di-

abatic set$c j
P% at the geometry of interest~denoted collec-

tively as$x%! in a ‘‘least-motion’’ fashion19 by projecting the
$c j

P0% onto the corresponding space (P) of nP adiabatic
states,$C j

P%, from thenSA/CASSCF calculation for the sys-
tem at $x%. The direct result of this projection~for which
details are given below! may be represented as

~c j
P!85(

k

nP

Ck
PCk j8 , j51,nP , ~3a!

where

Ckj8 [^Ck
Puc j

P0&. ~3b!

~In view of the foregoing thec j
P0 may be referred to as

‘‘projectors’’.! Since the finiteP space does not provide a
complete basis, theCkj8 do not yield an orthonormal set

9215R. J. Cave and M. D. Newton: Coupling matrix elements for ground transfer reactions

J. Chem. Phys., Vol. 106, No. 22, 8 June 1997

Downloaded¬23¬Feb¬2011¬to¬134.173.131.83.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions



$(c j
P)8%. For convenience, we orthonormalize the$(c j

P)8%,
maintaining the ‘‘least motion’’ approach by applying a
Löwdin transformation28

c j
P5(

k

nP

~ck
P!8Skj

21/25(
k

nP

Ck
PUk j , j51,nP , ~4a!

where

Skj[^~ck
P!8u~c j

P!8&5(
m

nP

Cmk8 Cmj8 , ~4b!

and whereU is a unitary matrix, an alternative to the unitary
transformation defined by the GMH procedure discussed
above.

2. Diabatic hamiltonian

Dividing the total many-electron space associated with
thenSA/CASSCF calculation for the system of interest~i.e.,
at $x%! into the P-space and the remainder~denoted as the
Q space!,29 we see that the least-motion transformation
yielding $c i

P% casts the Hamiltonian in block diagonal form
~with respect to theP andQ space blocks!. The variational
nature of thenSA/CASSCF procedure guarantees that all
Hamiltonian coupling elements between theP space and the
Q space are zero. The generally nondiagonal diabatic Hamil-
tonian matrix (HP) in theP space is given by

Hjk
P 5^c j

PuHuck
P&5~U†LPU! jk , j ,k51,nP , ~5!

whereLP is the ~diagonal! adiabatic Hamiltonian in theP
space, with elementsL jk

P 5^C j
PuHuC j

P&d jk , j51,nP , where
$C j

P% is the set of adiabatic states introduced above@see Eq.
~3a!#, and whereU is defined by Eq.~4a!. SinceU is unitary,
Hi j

P is easily seen to preserve theP-spacenSA/CASSCF
energies.

3. Relationship between diabatic states and the
noninteracting reference states

While the projection scheme just outlined yields diabatic
states (c j

P) as ‘‘close as possible’’~as obtained by ‘‘least
motion’’19! to the reference set,c j

P0, we emphasize the cru-
cial physical distinction between the two sets. The reference
set is strongly charge-localized: e.g., the pair of states in the
reference set which corresponds to the initial and final states
in the et process of interest, which we denote ascD

0 and
cA
0, will have the transferring electron strongly localized,

respectively, in a donor (fD
0 ) and an acceptor (fA

0) orbital.
The direct~TS! coupling1,7 betweenfD

0 andfA
0, and hence

alsocD
0 andcA

0, will generally be negligible at the reference
geometry ($x0%), but may attain appreciable magnitude after
translation so as to correspond to the geometry of the system
of interest~$x%!. Further substantial modification of the cou-
pling strength may occur as a result of the subsequent pro-
jection @Eq. ~4a!# of the reference diabatic states onto the
adiabaticP-space~for $x%!, which implicitly ‘‘dresses’’ the
zeroth-order reference states with contributions from outside
the reference (P0) space, thus yielding the effectiveD/A
coupling element

HDA
P [^cD

PuHucA
P&. ~6!

The most important role of the ‘‘dressing’’ is to include hy-
bridization or polarization effects, and whenD and A are
separated by solvent or spacer groups, to incorporate super-
exchange pathways1 involving excess electrons or holes at
sites in the spacer between theD and A sites. When an
intervening medium is present, superexchange coupling gen-
erally provides the dominant mechanism forD/A coupling in
long-rangeet. Dressing of the$c j

P0% may also involve elec-
tron correlation contributions, although such effects typically
do not have a major influence onHDA magnitudes,1~b! and
are expected to be small contributors~relative to the dressing
of the directDA coupling due to superexchange! when su-
perexchange effects are present.

4. Choice of active space orbitals

The reference~noninteracting! diabatic states,c j
P0, de-

fined above in terms of specific CSFs in thenSA/CASSCF
wave functions are, of course, contingent on the choice of
active space orbitals. We recall that while CASSCF wave
functions and energies are invariant with respect to an arbi-
trary rotation of orbitals within the active space~since a full
CI is carried out within the active space!, the constituent
CSFs, the dominant members of which define thec j

P0 set,
obviously depend on the choice of orbitals used to represent
the nSA/CASSCF wave function. We have obtained a suit-
able set of charge-localizedc j

P0 diabatic wave functions by
choosing as orbitals the average natural orbitals~ANO’s! as-
sociated with thenSA/CASSCF states.30,31 In general, the
ANO’s for the noninteracting$x0% reference system are
strongly localized on the different sites associated with theet
process. In the special case of symmetry equivalentD/A
sites, the ANO’s will be delocalized. However, in this case
they occur in essentially degenerate symmetric–
antisymmetric pairs~where we refer to the degeneracy of the
eigenvalues of thenSA/CASSCF density matrix!, and local-
ized ANO pairs are straightforwardly obtained by taking the
plus and minus combinations of the members of each
quasidegenerate pair.

5. Computational implementation

In projecting the reference diabatic states,c j
P0, onto the

adiabatic space of interest~i.e., the set$C j
P%!, as displayed in

Eq. ~3!, we employ the procedure reported in Ref. 20; i.e., in
order to simplify the computational implementation of Eq.
~3!, the reference CSFs (Xj

0), defined in terms of the refer-
ence diabatic orbitals,$f j

0% ~the ANO’s, as described above!,
are replaced to good approximation by the corresponding
CSFs defined in terms of orbitals obtained by projecting the
$f j

0% onto the orbital space of the system of interest~i.e., at
$x%! as follows: the active space reference ANO’s are
projected20 onto the active space of orbitals from the
nSA/CASSCF calculation for the$x% system and then or-
thonormalized in a ‘‘least motion’’ fashion by the Lo¨wdin
transformation28 @analogous to that given in Eq.~4!#. For-
mally, one could treat the inactive@doubly occupied orbitals

9216 R. J. Cave and M. D. Newton: Coupling matrix elements for ground transfer reactions

J. Chem. Phys., Vol. 106, No. 22, 8 June 1997

Downloaded¬23¬Feb¬2011¬to¬134.173.131.83.¬Redistribution¬subject¬to¬AIP¬license¬or¬copyright;¬see¬http://jcp.aip.org/about/rights_and_permissions



~the core!# in a similar fashion, but since the CASSCF CI
coefficients are invariant to a rotation of the core space one
may simply employ any convenient orbital representation of
the core orbital space for the system at$x%. With these ap-
proximations, the projection in Eq.~3! is easily carried out
~since all matrix elements involve a common orthonormal
basis!, thus yielding@via Eqs.~4! and~5!# the desired diaba-
tic Hamiltonian (HP) at $x%.

C. Choice of state space

The two approaches delineated above have the important
advantage of generality with respect to the size of state space
adopted@denoted, respectively, asn ~GMH! andnP ~BD!#.
The choice of optimal size depends, of course, on the details
of the system investigated, as exemplified in Sec. IV, but is
guided in general by considerations of compactness~i.e., as
small as possible, subject to the constraint of adequately
spanning the space of states important for the processes of
interest! and energy separation~i.e., being adequately sepa-
rated energetically from the states outside of the primary
space!.

III. COMPUTATIONAL DETAILS

A. Many-electron wave functions

Except for the results of Table I, all the wave functions
used were state-averaged CASSCF wave functions~i.e.,
nSA/CASSCF;25 however, neither method~GMH or BD! is
limited to this choice of wave function. In Table I single-
state CASSCF results are reported. The CASSCF calcula-
tions are denoted asl /m CASSCFs, wherel denotes the
number of electrons correlated andm denotes the size of the
active orbital space used in the calculation. All calculations
were performed using theMOLCAS software.32

B. Structural model and one-electron basis sets

1. Zn2
1 and Zn 2OH2

1

The basis set used to describe the Zn atom is obtained
from the Wachters (14s,9p,5d) set.33 The 14s functions,
9 p functions, and 5d functions were contracted using a
Raffenetti scheme34 based on the coefficients supplied in
Ref. 33, yielding 4s, 2 p, and 1d contracted functions, re-
spectively. The two most diffuses functions and the most
diffusep andd functions of the original set were also added
as independent uncontracted functions. Finally, we included
two additional s functions ~0.3960,0.015!, 4 p functions
~0.310, 0.120, 0.047, 0.018! and 1d function~0.155!.35 Tests
were performed augmenting the above Zn basis with more
diffuse s, p, andd functions. At the largest Zn–Zn separa-
tions examined here (r Zn–Zn59 Å), the largest change in a
coupling matrix element due to the increased basis set size
was 12%. Thus it was felt the above basis set was adequate
for the present study.

For essentially all of the geometries examined here the
CASSCF wave functions for Zn2

1 are stable with respect to
symmetry breaking. In order to perturb the symmetry equiva-
lence of the two Zn atoms in a controlled fashion a water
molecule was added on the periphery of the Zn2

1 molecule so
as to form aC2v Zn2~H2O!1 complex~with the H2O twofold
axis collinear with the Zn2

1 axis, and with the negative~O!
end of the water closest to the Zn2

1 moiety!. The water mol-
ecule was assigned the experimental36 equilibrium structure
~rOH50.957 Å and\HOH5104.5°!. Variation of the dis-
tance between O and the nearest Zn atom (r ZnO), was used to
control the degree of symmetry-breaking~within the local
Zn2

1 unit! and to allow a test of the Condon approximation.1,2

To sample states near the Zn~OH2! minimum we usedr ZnO
53.05 Å, which is near the calculated equilibrium distance
for the neutral species. For this limited purpose it was felt
adequate to employ a minimal atomic natural orbital basis set
for water.37 The main role of the water molecule in these
model calculations is to shift the Zn energy levels, although
some donation of charge to the water was observed in ex-
cited states of Zn2~H2O!1, even with the minimal basis. Of
course, the Zn2~H2O!1 system may be considered anet sys-
tem of potential interest in its own right, warranting further
study employing more flexible water basis sets.38Most of the

TABLE I. Ionization energies for separate species~eV!.a

Stateb Zn ZnOH2 (3.05 Å)c ZnOH2 (2.05 Å)c

11S 8.55 ~9.39!d 7.77 6.68
13P 5.04 ~5.34!d 3.86 3.29

aNeutral species obtained based on 2/5 CASSCF calculations~see the text!,
with ions based on SCF.
bFor molecular species the state designation is the atomic state of Zn to
which the molecular state would correlate at larger ZnO. This is in all cases
the lowest state of the given spin symmetry at the given distance.
cThe Zn–O distance is given in parentheses.
dExperimental values~Ref. 40! are given in parentheses.

TABLE II. Electronic coupling elements vs distance for Zn2
1.a

r ZnZn ~Å! Method Hss8 Hpp8 Hsp8/ps8

5.0 GMH 7.26 13.9 24.4
BD 6.15 12.8 18.7

6.0 GMH 2.16 7.07 10.8
BD 2.04 6.94 8.03

7.0 GMH 0.623 3.41 4.49
BD 0.610 3.39 3.36

8.0 GMH 0.171 1.54 1.80
BD 0.170 1.54 1.38

9.0 GMH 0.0440 0.651 0.704
BD 0.0338 0.651 0.553

b GMH 2.55 1.53 1.78
BD 2.58 1.49 1.76

aGMH and BD matrix elements reported in mhartrees, and labeled by the
dominant Zn valence orbitals involved in the coupling, based on 3/8 4SA/
CASSCF calculations as discussed in the text~one of the two equivalent Zn
atoms is distinguished by a ‘‘prime’’!. All Hab quantities listed in Tables II,
III, and V–VII correspond to themagnitudesof the coupling elements.
bb values come from fits of the data to the formsHab5A exp(2br/2),
wherer5r ZnZn .
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calculations reported below were carried out forr ZnO52.05
or 3.05 Å, near the calculated equilibrium values, respec-
tively for ZnH2O

1 and ZnH2O.

2. Benzene1Cl atom

A split valence~VDZ! atomic natural orbital37 basis was
used on all atoms. The five states of interest~the lowest five!
were described with a 9/5 5SA/CASSCF~comprising the
three close-lying states of benzene plus chlorine, and two
low-lying excited states corresponding toet from either of
the twop HOMOs of benzene to the chlorinep shell!. The
geometries used for the present comparative study of the
GMH and BD methods had benzene centered at the origin in
the xy plane, with thex axis bisecting two parallel CC
bonds. The Cl atom was placed in a plane a distancer
53 Å above thexy plane at two different distances (d)
along thex axis @d51.208 Å, centered above a CC bond~in
a ‘‘p complex’’18~a!,21!#, and d50.6 Å!.39 We obtain three

distinct matrix elements, corresponding to transfer from ben-
zene to~a! the Cl pz orbital ~pointing at the ring!, ~b! the
Cl py orbital, and~c! the Cl px orbital. Symmetry dictates
the member of the nearly degenerate pair of highest occupied
orbitals on benzene from which the electron is removed in
each case~i.e., a8 or a9 in theCs point group!.

IV. RESULTS

A. Zn0/1 and Zn(H 2O)
0/1

Prior to dealing with the full clusters, Zn2
1 and

Zn2~H2O!1, we consider the ionization energies of the con-
stituent units, Zn and Zn~H2O!. In Table I we report the
ionization energies~IP! of Zn and ZnH2O from their two
lowest electronic states. For the neutral Zn species we per-
formed 2/5 CASSCF calculations, which for the ground-state
amounts to correlation of the 4s electron pair on Zn via
excitation into the 4p and 5s orbitals. In ZnH2O the active
space has similar character, but for Zn–O distances in the 2
to 3 Å range there is significant water character to the cor-
relating orbitals, as well as some 4s–4pz mixing ~Zn–O lies
along thez axis! in the nominally doubly occupied orbital.
For the ions we performed single-configurational open shell
SCF calculations~no correlation being required for the un-
paired electron! as the appropriate counterparts to the neutral
2/5 CASSCF calculations. The IPs are of interest since they
yield some estimate of the decay with distance of the highest
occupied orbital in the neutral species, and thus should be
related to the decay with distance of the electronic coupling
matrix element7 ~see below!. The calculated IPs for Zn are
found to be within 1 eV of experimental values.40

B. Zn2
1 and Zn 2(H2O)

1

We now consider the coupling elements which encom-
pass the various electron transfer processes between the va-
lences andp orbitals of the two Zn atoms in the Zn2

1 and
Zn2~H2O!1 systems~we focus specifically on orbitals of
‘‘sigma’’ symmetry ~i.e., a1 in C2v point-group symmetry!.
A minimal representation of these processes, which include
thermal ~from ground or photoexcited states! and optical
transfer, requires inclusion of the four lowest-energy states
of appropriate symmetry for each system@2Sg or 2Su for
Zn2

1, and2A1 for Zn2~H2O!1#. While these processes from a
fundamental point of view involve many-electron rearrange-
ments, they may typically be cast to a good approximation as
effective one-electron~or one-hole! transfers betweenD and
A orbitals.1,8~b! In this spirit, we employ an obvious orbital
notation in labeling the following processes connecting the
various diabatic states~identified by the dominant Zn and
Zn1 valence states!:

Zn~1S!1Zn1~2S!→Zn1~2S!1Zn~1S! s→s8, ~7a!

Zn~3P!1Zn1~2S!→Zn1~2S!1Zn~3P! p→p8, ~7b!

Zn~1S!1Zn1~2S!→Zn1~2S!1Zn~3P! s→p8, ~7c!

Zn~3P!1Zn1~2S!→Zn1~2S!1Zn~1S! p→s8, ~7d!

FIG. 1. Plot of lnuHabu vs r ZnZn for Zn2
1 based on the GMH~circles! and BD

~triangles! methods:~a! Hss8 , ~b! Hpp8 , ~c! Hsp8 .
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wheres andp denote valence 4s and 4ps ~i.e., 4pz! orbitals
and where a ‘‘prime’’ is used to distinguish the two Zn sites
@for the case of Zn2~H2O!1, the ‘‘prime’’ denotes the Zn
atom closest to the H2O ~see Sec. III!#. The sp8 and ps8
matrix elements are equal by symmetry41 for Zn2

1 @and, of
course, for Zn2~H2O!1 with r ZnO5`#.

The description of the above processes@Eq. ~7!# as ef-
fectively one particle in nature requires not only that the
overall spin state is conserved but also that no additional
electronic excitations~‘‘shakeup’’! occur @e.g., as discussed
in Ref. 8~d!#. These conditions are all satisfied in the present
study. While all of the calculations reported here were for
doublet states~as noted above!, for process~7b! an overall
quartet state would also be possible. In the case of states
involving excited neutral Zn atoms, we note that of the two
independent doublet states possible for the important CSF’s
with three singly occupied orbitals, the CSF with local
Zn(3P) character is strongly dominant in the CASSCF wave
functions.

The reference~noninteracting! states in the BD method

~i.e., the ‘‘projectors’’! were obtained from the
nSA/CASSCF calculations forr ZnZn520 Å, taken as the
dominant CSFs for each state27 ~expressed in terms of
ANO’s, as discussed in Sec. II B!.

1. Zn2
1

In Table II we report electronic coupling matrix ele-
ments based on both the GMH and BD methods for the
Zn2

1 system. We used 3/8 4SA/CASSCF wave functions~4
orbitals per center, corresponding to the 4s and 4p set at
larger ZnZn andr ZnO!. @In Ref. 8~a! we used a 3/10 space for
the Zn2

1 calculations, which adds an extras-like correlating
orbital on each center. Little difference is found in the elec-
tronic coupling elements obtained with the two spaces.# For
both GMH and BD methods the matrix elements show sig-
nificant variation with orbital type, as do the various decay
rates with distance~seeb values in Table II!. The linear fits
of lnuHabu vs r ZnZn ~see Fig. 1! were quite good, with linear
regression coefficients ofr>0.995 ~the only exceptions be-
ing theHsp8 matrix elements forr ZnO52.05 Å, where there
are significant deviations from linearity, andr is ;0.95!. It
is of interest to note that the trends inb are the same as those
in IP values for the local neutral donor group@Zn(1S) and
Zn(3P)#, as expected from the semiclassical expression for
tunneling through a homogeneous barrier.1,7

b52@2m~ IP!/\2#1/2. ~8!

Using the IP’s listed in Table I yieldsbs,s853.00 Å21 and
bp,p852.30 Å21, in the same order but significantly larger
than those obtained from the detailed quantum calculations.
While the simple model underlying Eq.~8! does not directly
permit an estimate ofb for the ‘‘cross reactions’’@Eqs.~7c!
and ~7b!#, the fact thatbsp8/ps8 is closer in magnitude to
bpp8 than tobss8 is qualitatively consistent with the notion
that the decay is dominated by the ionization energy associ-
ated with the highest-lying~or most spatially diffuse! orbital
involved in theet process.

The GMH and BD methods yield quite similar results
for the s–s8 matrix elements at all distances examined. The
same is true for thep–p8 matrix elements. The GMH
s–p8/p–s8 matrix element is uniformly about 30% higher
than that from the BD method, but theb values are quite
similar.

For thes–s8 andp–p8 matrix elements for Zn2
1, a third

estimate comes from taking half the splitting between the
relevant symmetric and antisymmetric adiabatic states.1 The
resulting values ofHss8 ~in mhartree! are: 6.35~5.0 Å!; 2.08
~6.0 Å!; 0.617~7 Å!; 0.171~8 Å!; 0.0440~9 Å!, with r ZnZn
values in parentheses. The values ofHpp8 ~in mhartree! are:
13.0 ~5.0 Å!; 6.99 ~6.0 Å!, 3.41 ~7 Å!; 1.54 ~8 Å!; 1.54e
23; 0.651~9 Å!. These latter results are in quite good agree-
ment with those obtained from either of the four-state meth-
ods, with values in each case lying between the GMH and
BD values. The splitting approach is not directly applicable
to the cross reactions, where no pairwise~i.e., 2-state! ap-

TABLE III. ~a! Electronic coupling elements vs distance (r ZnZn) for
Zn2H2O

1 with r ZnO52.05 Å.a ~b! Electronic coupling elements vs distance
(r ZnZn) for Zn2H2O

1 with r ZnO53.05 Å.a

r ZnZn ~Å! Method Hss8 Hpp8 Hsp8 Hps8

~a!
4.0 GMH 28.3 23.6 50.4 42.7

BD 18.2 14.9 39.0 46.3
5.0 GMH 10.5 13.0 51.7 22.3

BD 6.28 9.60 30.4 23.0
6.0 GMH 3.73 7.55 41.1 10.1

BD 2.03 6.47 21.3 10.6
7.0 GMH 1.09 4.23 21.8 4.08

BD 0.804 3.79 12.8 4.33
8.0 GMH 0.340 2.57 13.8 1.62

BD 0.274 2.27 7.32 1.78
9.0 GMH 0.0958 1.44 7.36 0.611

BD 0.0921 1.22 3.64 0.710
b b GMH 2.28 1.11 0.81 1.71

BD 2.10 0.99 0.95 1.68

~b!
4.0 GMH 29.7 34.4 59.3 41.7

BD 14.0 18.6 56.8 44.8
5.0 GMH 7.95 14.7 38.5 22.1

BD 5.62 12.4 30.6 21.8
6.0 GMH 2.34 7.83 19.1 9.44

BD 2.01 7.37 16.0 9.48
7.0 GMH 0.698 4.25 9.56 3.84

BD 0.655 4.17 8.80 4.00
8.0 GMH 0.203 2.27 4.78 1.51

BD 0.196 2.25 4.56 1.70
9.0 GMH 0.0558 1.16 2.32 0.574

BD 0.0529 1.14 2.19 0.707
bb GMH 2.49 1.32 1.32 1.74

BD 2.23 1.12 1.29 1.67

aThe results~in mhartree! were obtained from 3/12 4SA/CASSCF calcula-
tions. See the text and footnote a of Table II for state designations. Table I
of Ref. 18~a! listed similarb values~based on the 5–9 Å range ofr ZnZn!.
The ‘‘prime’’ on the orbital labels denotes the Zn atom closest to the water
ligand.
bSee footnote b of Table II for details.
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proach is possible in an adiabatic basis~in the absence of
some artificial external perturbation! and the full~i.e., four-
state! GMH or BD is required in general.

2. Zn2(H2O)
1

a. Hab In Table III we present results for Zn2H2O
1

with r Zn–O52.05 Å ~Table III A! or 3.05 Å~Table III B! for
a range ofr Zn–Zn in each case. A 3/12 4SA/CASSCF describ-
ing the four lowest states of the system was used. The 12
active space orbitals correspond to the 4s, 4p spaces on each
Zn ~the 3/8 space!, with an extras andpz pair on each center
to allow for shape changes in the neutral and cations and
pz orbitals. Unlike the case of Zn2

1 discussed above~corre-
sponding in the present context tor ZnO5`!, none of the
Zn2~H2O!1 energy levels at larger ZnZn approach near-
degeneracy for finite values ofr ZnO ~this contrast is illus-
trated by the energy gaps for Zn2

1 and Zn2~H2O!1 displayed
in Table IV for a variety of geometries!. The following adia-
batic state ordering is observed: ~1! Zn(1S)
1Zn–OH2

1(2S); ~2! Zn1(2S)1Zn–OH2(
1S), ~3! Zn(3P)

1Zn–OH2
1(2S), and ~4! Zn1(2S)1Zn–OH2(

3P). In the
state designations for ZnOH2

1/0 we use the atomic state of Zn
with which the complex would correlate were the water re-
moved to large distance. These designations are the same as
the diabatic state labels introduced above, in connection with
Eq. ~7! ~although the degree of charge localization is greater
for the diabatic states!, except in the limit of very large
r ZnO ~where adiabatic states approach symmetric delocaliza-
tion with respect to the Zn2

1 moiety!. The inequivalence of
the two Zn atoms~for finite r ZnO! leads to distinct values for

Hsp8 andHps8 . In addition to the fouret processes@Eq. ~7!#,
we note that the one-center transitions,s–p and s8–p8,
which would be spin forbidden for larger Zn–Zn, have small
but finite transition moments in general due to the overall
doublet spin state of the system~the so-called trip
doublets42!.

b. Decay coefficients (b). The GMH and BD methods
yield similar values for the matrix element of each orbital
type ~with the agreement being better at larger ZnZn! and also
similar decay withr ZnZn ~ie., b!, as seen in Table III and
Figs. 2 and 3. Theb values for Zn2~H2O!1 are uniformly

FIG. 2. Plot of lnuHabu vs r ZnZn for Zn2~H2O!1 based on the GMH~circles! and BD~triangles! methods, withr ZnO52.05 Å: ~a! Hss8 , ~b! Hpp8 , ~c! Hsp8 , ~d!
Hps8 .

TABLE IV. Energy separations for the four lowest adiabatic states of
Zn2OH2

1 and Zn2
1 vs r Zn–Zn.

a

System r Zn–Zn r Zn–O DE1–2 DE2–3 DE3–4

Zn2OH2
1 9.0 2.05 1.74 1.69 1.76

5.0 2.05 1.38 2.15 1.58
9.0 3.05 0.69 2.74 1.06
5.0 3.05 0.64 2.74 1.07

Zn2
1 9.0 ••• 0.002 3.27b 0.04

5.0 ••• 0.35 2.80 0.71

aAll energy differences in eV; see text for valence-bond designations of
states. The Zn2OH2

1 results are from 3/12 4SA/CASSCF calculations, while
the Zn2

1 results are from 3/8 4SA/CASSCFs. For comparison with the sepa-
rated systems of Table I, the sum ofDE1,2 andDE2,3 is the ground singlet–
excited triplet splitting on the Zn atom in the presence of ZnOH2

1, while the
sum of DE2,3 and DE3,4 is the corresponding splitting of ZnOH2 in the
presence of the Zn1 cation.
bThis value differs slightly from the value of 3.40 eV given in the text of
Ref. 18~a! @based on a slightly larger active space (3/10)#.
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smaller than their counterparts for Zn2
1 ~Table II!, as ex-

pected qualitatively from trends in IP’s@Table I and Eq.~8!#.
In a similar fashion we findbsp8,bps8 as expected. We note
that the agreement between GMH and BD results forr ZnO
53.05 Å ~Table III B! is somewhat better than that found at
r ZnO52.05 Å ~Table III A!, and we discuss the reasons for
this in Sec. V. The decay constants forr ZnO53.05 Å are
somewhat different from those for either the symmetrical
Zn2

1 ~i.e., r ZnO5`! system or the systems withr Zn–O
52.05 Å, but this is expected given the different energy
gaps obtained~see Table IV!.

c. Assessment of the Condon approximation.The find-
ing of similarHab magnitudes for differentr ZnO values, for a
given type of process at a fixed value ofr ZnZn, lends support
for the use of the Condon approximation in systems of this
type. This possibility prompted a more detailed assessment
using the GMH approach~Table V!, with r Zn–Znheld fixed at
5.0 Å while r Zn–O was varied from 2.05 to 100 Å. It is seen
that a given matrix element varies as much as 50% over this
range, with some instances of significant nonmonotonic be-
havior, especially for thes–p8 and p–p8 matrix elements
~see discussion in Sec. V!. Nevertheless, the overall varia-
tions ofHab for a given orbital type may still be considered
relatively modest in view of the sizable variation of IP
~;1 to 2 eV! with respect tor ZnO ~Table I!.

d. Sensitivity to details of projector states.One might
wonder how sensitive the matrix elements obtained from the
BD procedure are to the choice of reference diabatic orbitals
and/or CI coefficients in the definition of the diabatic projec-
tor states,c j

P0 ~see Sec. II and Ref. 27!. To test the sensitiv-

ity to the choice of diabatic orbitals we have performed ad-
ditional calculations in which the reference orbitals were
taken as the ANO’s for the system withr ZnZn greater than
that for the actual system of interest by 1 Å, in contrast to the
procedure used above, in which the reference ANO’s were
always obtained forr ZnZn520 Å. We found at most a 3%
difference inb between the two methods of defining the
diabatic orbitals. To test the sensitivity to the choice of pro-
jector coefficients, we carried out further calculations using
the full set of CI coefficients for each adiabatic state within
thenp space of diabatic CSFs at larger , rather than zeroing
out the small contributors from the CSF’s other than the
dominant one. The largest change inb values resulting from
this means of defining projectors was 7%~s–s8 transfer!,

FIG. 3. Plot of lnuHabu vs r ZnZn for Zn2~H2O!1 based on the GMH~circles! and BD ~triangles! methods,r ZnO53.05 Å: ~a! Hss8 , ~b! Hpp8 , ~c! Hsp8 , ~d!
Hps8 .

TABLE V. GMH electronic coupling elements for Zn2H2O
1 vs r ZnO, with

r Zn–Zn55.0 Å.a

r ZnO ~Å! Hss8 Hpp8 Hsp8 Hps8

2.05 10.5 13.0 51.7 22.3
2.25 10.1 15.0 55.5 22.0
2.55 9.07 15.5 50.0 21.9
2.85 8.28 15.1 42.5 22.0
3.05 7.95 14.7 38.5 22.1
4.05 7.27 13.6 29.2 22.6
6.05 6.95 13.1 25.2 23.1

100b 6.85 12.9 23.7 23.7

aAll values in mhartree, based on 3/12 4SA/CASSCF wave functions, and
are in atomic units.
bThese values supersede the values listed forr ZnO5` in Table I of Ref.
18~a!.
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with the remainingb values affected to a much smaller de-
gree. The absolute values of the matrix elements were also
quite similar, irrespective of the particular choices consid-
ered here for defining the reference diabatic states. This sug-
gests that in general, the results for coupling elements may
not be strongly affected by choices regarding fine details of
this type.

e. Comparison of two-state and four-state results.All
of the results for Zn2~H2O!1 discussed so far~Tables III–V!
are based on a multistate treatment (np54). It is now of
interest to compare these results with those based on the
familiar two-state approximation, i.e., where each of the four
processes of interest@Eq. ~7!# is treated in terms of the ap-
propriate pair of adiabatic states~a subset of the full space of
four states!. In addition, within the two-state framework it is
of interest to compare the GMH model@Eq. ~2!#18~a! with its
predecessor, the MH model18~e!–18~h! @Eq. ~1!#, in which
Dmab is equated toerZn–Zn andDEab is replaced with the
appropriate adiabatic energy gap (DE12).

18~g!–18~h! Table VI
addresses these questions, with GMH and MH results based
on r ZnO53.05 Å. In comparison with the results from Table
III B it is seen that at larger Zn–Zn either two-state approach
yields results in excellent agreement with the multistate
treatments. At shortr Zn–Zn significant differences are ob-
served between these and the full four-state GMH, to which
they are approximations. In particular, for both two-state ap-
proaches the increase ofHab with decreasingr Zn–Zn is slower
than that given by the four-state GMH, and for thes–p8
element the MH result decreases more rapidly between 4 and
5 Å than either of the GMH results. It is interesting to note
that at shortr Zn–Zn the two-state GMH actually agrees better
with the BD results than it does with the four-state GMH.
We return to the relative merits of the GMH and BD results
in Sec. V.

C. Benzene1Cl

As another example of the application of the GMH and
BD methods, we consider briefly the case ofet between
benzene and Cl in a complex of thep-type, withCs symme-
try, as described in Sec. III B. Specifically, we place the Cl
atom 3 Å above the benzene plane, either directly over a CC
bond (d51.21 Å) or halfway between this point and the six
fold local axis of benzene (d50.6 Å). Reference diabatic
orbitals were obtained atr57 Å andr55.5 Å, respectively
~little sensitivity to the particular larged value for the calcu-
lation of reference diabatic orbitals is expected in this range!.
As shown in Table VII, the GMH and BD methods give
quite similar results for the various electronic coupling ele-
ments at a givend, and comparison of values for the two
differentd’s shows the sensitivity ofHab to Cl position over
the benzene ring, especially foret involving the 2pz orbital
of Cl @the three lowest-lying states in order of increasing
energy are dominated, respectively, by holes in the 2pz ,
2py , and 2px , manifold of the Cl atom, given the coordinate
system adopted here~see Sec. III B!#. In tests using other
geometries we find that the GMH and BD methods yield
similar agreement. Also included ford51.21 Å are values
of Hab obtained from projectors~c j

P0, see Sec. II B! based
on all np CSFs in the larger CASSCF wave function. It is
seen that theH2pz andH2py elements are insensitive to this
change, but theH2px varies by approximately a factor of 2.
This sensitivity arises largely from the near-degeneracy of
the Cl p orbitals and the significant difference in magnitude
of thepx andpz matrix elements. In additional calculations

39

we have shown that consideration of the first two states with
local benzene triplet character has little effect on the matrix
elements dealt with here.

V. DISCUSSION

The first point to be made about the above results is the
similarity between the GMH and the BD coupling matrix
elements, both with respect to magnitude and decay with
distance. The GMH and BD methods offer independent

TABLE VI. Two-state GMH and MH electronic coupling elements for
Zn2OH2

1 vs r ZnZn , with r Zn–O53.05 Å.a

r ZnZn ~Å! Method Hss8 Hpp8 Hsp8 Hps8

4.0 GMH 17.7 12.6 85.8 38.9
MH 12.1 7.35 25.3 14.1

5.0 GMH 6.66 13.4 42.3 20.5
MH 5.63 8.34 25.4 14.4

6.0 GMH 2.21 7.69 19.8 9.10
MH 2.00 5.87 15.1 7.80

7.0 GMH 0.682 4.24 9.70 3.77
MH 0.642 3.54 8.17 3.47

8.0 GMH 0.201 2.27 4.81 1.50
MH 0.193 2.01 4.28 1.42

9.0 GMH 0.0555 1.16 2.32 0.572
MH 0.0538 1.07 2.15 0.551

bb GMH 2.31 1.19 1.46 1.70
MH 2.19 0.82 1.05 1.37

aThe results were obtained from 3/12 4SA/CASSCF calculations. The MH
Refs. 18~c!–18~h! result is based onr DA

0 5r ZnZn . See the text for other
details.
bSee Table II for details.

TABLE VII. GMH and BD electronic coupling elements for the
benzene–Cl system withd50.6 Å and 1.208 Å (r53.00 Å).a

Method d ~Å!

Hab

H2pz
b H2py

b H2px
b

GMH 0.6 15.2 18.5 17.3
BD 0.6 16.1 17.0 14.9
GMH 1.208 24.1 14.7 13.1
BD 1.208 26.2 14.0 6.04
BDc 1.208 24.4 14.1 11.3

aResults from 9/5 5SA/CASSCF calculations in a split valence~VDZ!
atomic natural orbital basis~Ref. 36!. All values in mhartrees~see the text
for details of geometry and matrix elements!. Unless otherwise specified,
the projection vectors for the BD analysis are the dominant diabatic con-
figurations (x j

0).
bThe Hab values are denoted according to the dominant Cl orbital-type
involved in each case.
cProjection vectors based on the CI representation of the diabatic state at
larger ~i.e., including contributions from all (np) of the dominant CSF’s!.
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means for defining and calculatingHab , and the fact that
they yield results in generally close agreement lends support
to the concept of diabatic state properties. In addition, the
comparisons with the values obtained for the symmetric sys-
tem, Zn2

1, where a third means of estimating the coupling
can be used lends further support to the utility of the meth-
ods. The comparison of two-state GMH~or Mulliken–Hush!
Hab values for Zn2~H2O!1 with those from the multi-~i.e.,
four! state GMH and BD values shows that a simple pairwise
~i.e., two-state! approach may be adequate when theD–A
interactions are relatively weak. However, even in the weak
coupling regime, the treatment of the ‘‘cross reactions’’
~Hsp8 andHps8! at the two-state level requires nonequivalent
D andA sites~achieved here by the H2O ligand at one of the
Zn sites!.

A. Effective et distances ( r DA)

Aside from direct consideration ofHab values, a conve-
nient way to compare the GMH and BD results and to place
them in perspective is to examine the dipole moment shifts
~Dm! associated with the four types ofet processes given in
Eq. ~7!. Table VIII displaysDm values for Zn2~H2O!1 at
three differentr ZnZn values~4, 5, and 8 Å! and with r ZnO
fixed at 3.05 Å. TheDm values are actually presented as the
scaled quantities (uDm/eu) corresponding to effective charge
transfer distances (r DA), which may be compared with the
‘‘zeroth-order’’ et separations given byr ZnZn. The diabatic
quantities in Table VIII~both GMH and BD! may be com-
pared on the one hand with the corresponding adiabatic
quantities,uDm i j /eu for the i , j pair of adiabatic states, and
on the other hand with the referencer DA values based on the
dipole moments of the systems obtained by the superposition
~at the appropriater ZnZn value! of the separate species
~Zn1ZnH2O

1 or Zn11ZnH2O!. At all values of r ZnZn the

same qualitative pattern is evident for each of the fouret
types: relative to the result for the superposed noninteracting
species, the diabaticr DA values are somewhat reduced, while
theD–A mixing implicit in the adiabatic results yields fur-
ther reduction, increasingly so asr ZnZn is reduced from 8 to 4
Å. In all cases, the GMH and BD results are very similar.
The diabaticr DA values are in general less thatr ZnZn, differ-
ing by up to 30%.

B. Comparison of GMH and BD results

In spite of the good overall correspondence, some appre-
ciable differences are found between the GMH and BD
Hab values in the Zn2

1 and Zn2~H2O!1 systems. We analyze
these differences in terms of various assumptions underlying
the GMH and BD approaches, as formulated in Sec. II. The
GMH method is intended for long range, where the distance
scale for transfer (r DA) is large relative to that for the local
D andA sites. Since the effective radial extent of the Zn sites
may be taken as;2 Å, based on calculated rms radii for the
4s and 4p valence orbitals of Zn, we see~e.g., cf. Table
VIII ! that the assumed separation of distance scales is not
strictly obeyed for the shorter range ofr ZnZn values~near 4
Å!, and this fact helps to account for differences in GMH and
BD results for r ZnZn54 Å ~other factors operative also at
larger ZnZn separations for the case of Zn2~H2O!1 with
r ZnO52.05 Å are discussed below!. A useful diagnostic for
this lack of separation of distance scales is found in the trans-
formed BD dipole moment matrix. Inspection of the full di-
pole moment matrices in the diabatic representation obtained
by the BD procedure~not shown! reveals that in most cases
dipole matrix elements linking states associated with differ-
ent sites have very small magnitude~,10% of the corre-
sponding adiabatic values!, thus justifying the neglect of
such elements in the formulation of the GMH method@Sec.
II A and Ref. 18~a!#. In some cases, one finds the two-center
BD m i j matrix elements to be reduced relative to the corre-
sponding adiabatic matrix element, but still sizeable relative
to the adiabatic value. When this is the case, the MH or
GMH treatments will tend to yield inaccurate results for the

TABLE VIII. Effective charge transfer distances (uDm/eu) for processes in
Zn2H2O

1 (r ZnO53.05 Å).a

r ZnZn ~Å! State definition

Process

ss8 pp8 sp8 ps8

4.0 diabaticb GMH 4.05 2.88 3.29 3.63
BD 4.13 2.72 3.25 3.59

adiabaticc 0.95 0.44 0.47 0.93
noninteracting componentsd 4.00 3.97 3.97 4.00

5.0 diabaticb GMH 4.67 3.60 3.88 4.40
BD 4.68 3.56 3.85 4.39

adiabaticc 3.49 2.27 2.57 3.20
noninteracting componentsd 5.00 4.97 4.97 5.00

8.0 diabaticb GMH 7.68 7.08 7.15 7.60
BD 7.68 7.08 7.15 7.60

adiabaticc 7.67 7.02 7.11 7.58
noninteracting componentsd 8.00 7.97 7.97 8.00

aAll parameters are given in Å units.
bDm[Dmab , using state labels introduced in Sec. I.
cDm[m12m2 , wherei , j are the labels of the adiabatic states which cor-
respond to the diabatic pairsa,b.
dDm obtained by superposition of charge densities for noninteracting com-
ponents~i.e., Zn1Zn~H2O!1 or Zn11Zn~H2O!, with the neutral species in
the ground state or lowest triplet state, depending on the particular process!.

TABLE IX. Results from six-state GMH and BD analyses~rZnZn58.0 Å!.a

r ZnO ~Å! Matrix element ss8 pp8 sp8 ps8

2.05 Hi j
GMH 0.0454 3.55 2.14 0.530

Hi j
BD 0.299 1.65 4.81 2.66

uDm i j
GMH/eu 7.63 8.76 8.76 7.64

uDm i j
BD/eu 7.55 8.79 8.96 7.38

uDm i j
adiabatic/eu 7.63 6.38 6.49 7.53

uDm i j
noninteracting/eu 8.25 9.66 9.66 8.25

3.05 Hi j
GMH 0.233 3.31 1.91 0.494

Hi j
BD 0.224 3.56 2.46 3.52

uDm i j
GMH/eu 7.72 7.66 7.54 7.84

uDm i j
BD/eu 7.91 7.57 7.91 7.80

uDm i j
adiabatic/eu 7.67 7.02 7.11 7.58

uDm i j
noninteracting/eu 8.00 7.97 7.97 8.00

aHamiltonian matrix elements in mhartrees,uDm i j /eu values in Å. All re-
sults obtained from GMH or BD analyses based on a 3/12 6SA/CASSCF
calculations. See the text for details.
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electronic coupling when applied at the given distance~e.g.,
an overestimate forHab when the direct and MH contribu-
tions tomad are of the same sign!.

C. Choice of adiabatic state space

Another important assumption underlying the present
formulation of diabatic states is the separation of diabatic
state energies from those of states lying outside the adopted
P space. Expansion of the number of adiabatic states used in
the nSA/CASSCF~and also the GMH or BD analysis! be-
yond 4 ~to 6! reveals that for Zn2~H2O!1 with r ZnO
52.05 Å there is a near-degeneracy~diabatic energy separa-
tion of ;0.005 h! between states dominated by3P character
on ZnH2O and1P character on the Zn atom, such that the
fourth adiabatic state is a strong admixture of these two di-
abatic states. This result helps to explain the fact that for this
r ZnO both BD and GMH tended to yield diabaticDm i j /e,
where i or j involves the local3P state on Zn~H2O!, that
were significantly smaller thanr ZnZn. In order to obtain more
nearly localized states in the GMH sense, then, one might
expand the adiabatic state space. In fact, in test calculations
with an expanded state space~including states with1P-like
character on both the Zn and ZnH2O sites! we find signifi-
cantly more localized Zn3P states, smaller values ofHsp8 ,
and larger values forDm i j /e ~Table IX!. Since our main goal
here has been to compare the GMH and BD methods, we
have not focused on such an expanded state space. When
r ZnO53.05 Å, the four-state assumption is on firmer ground,
since for the pair of diabatic states just discussed~i.e., those
with dominant3PZn~H2O! and 1P Zn character! the corre-
sponding energy separation is nearly three times as large,
and the diabatic states tend to be more localized forn54.

D. The Condon approximation

The data in Table V shows thatHab magnitudes do not
vary strongly with the ZnH2O separation in the Zn2~H2O!1

complex, thus giving some qualitative support for the use of
the Condon approximation. Nevertheless, at the quantitative
level appreciable variation withr ZnO is observed, especially
for Hss8 andHsp8 , where overall reductions by a factor of
about 2 are observed over the full range ofr ZnO. For the
coupling involving p or p8, examples of nonmonotonic
variation are found. To the extent that the Condon approxi-
mation is valid, one may often employ techniques such as
external electrostatic fields or geometric variation so as to
minimize the adiabatic splitting,DE12, thereby permitting
Hab to be estimated as one-half this minimum value, as
noted in Sec. I. However, we reiterate that one of the
strengths of the GMH or BD approaches is the applicability
to an arbitrary configuration of the system.

E. Complementary aspects of the GMH and BD
approaches

To the extent that different diabatization schemes~in the
present case, GMH and BD! yield coupling elements of dif-
fering magnitude, we emphasize that there is noa priori
basis for deciding which scheme has greater validity. In the

present context ofetprocesses, an important criterion of util-
ity for a given set of diabatic states is their ability to serve as
initial and final states in a reliable quantitative formulation of
thermal et rate constants for weakly coupledD–A systems.1

Coupling elements inferred from the GMH~or related MH!
formulation of diabatic states have been successfully em-
ployed in rationalizing experimental kinetic data,2,24 includ-
ing a recent example of photoinduced data,16 and the dem-
onstration here that similar coupling elements may be
obtained from an independent formulation~BD!, underscores
the robustness of diabatic formulations based on quantum
chemical concepts.43

The two methods presented here for the evaluation of the
electronic coupling elements~GMH and BD!, in addition to
providing a useful basis for assessing the sensitivity of di-
abatic state properties to alternative choices of such states,
also serve complementary roles to some extent when it
comes to ease of applicability. Computationally, the GMH
method is significantly easier to implement, as long as one
can evaluate the full dipole moment matrix for the calculated
eigenstates~or obtain it from experimental data1~b!,18~a!!. The
BD method can be used where dipole moments are not avail-
able, but requires some care in the definition of reference
~noninteracting! states. These states may be obtained at a
point of high symmetry20 or one where the donor and accep-
tor are well separated~the procedure employed in the present
study!. This is relatively simple to do when the donor and
acceptor are not covalently bound or when a geometric pa-
rameter~say, for example, a twist angle! can at some point
naturally decouple the diabatic states. When these conditions
do not pertain it is somewhat more difficult to define diabatic
states using the BD method.26 The GMH model avoids the
need for explicit reference states, and this feature makes it an
attractive method to use for rigidly linked donor and acceptor
systems.16

Finally, while the GMH model is designed specifically
to describe charge transfer reactions involving well-separated
charge-localized states, the BD method has greater generality
and may be applied to a variety of chemical processes,19,20

including triplet energy transfer, a two-electron process
closely related to electron~and hole! transfer.43

F. Advantages of the GMH and/or BD methods vis-a-
vis alternative approaches

We have already noted~Sec. I! a variety of problems
associated with other schemes for obtainingab initio and/or
all-valence-electron semiempirical estimates of electronic
coupling elements, including the limitation of being re-
stricted to the diabatic crossing point~either for symmetric
systems or artificially perturbed nonsymmetric systems!, the
difficulty in obtaining reliable estimates ofHab when exten-
sive electron correlation is employed, and the inability to
treat several states at once. It is clear that the present meth-
ods circumvent the first difficulty, but it should also be clear
from the above applications that they do not suffer from the
latter two defects. In fact, the calculated results are found to
be robust when more complete treatments of electron corre-
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lation are used.44 In addition, neither method is limited to the
use of CASSCF wave functions, although as currently imple-
mented the BD scheme does require a common set of orbit-
als. For either method one could use multireference singles
and doubles CI or, for example, multireference second-order
perturbation theories that allow for relaxation of the refer-
ence space weights upon correlation~such methods include
the Bk method of Nitzsche and Davidson,45 the multirefer-
ence perturbation theories of Koslowski and Davidson46 or
Hoffmann47 and various multistate perturbation theories and
coupled-cluster theories.48 While there has been no need to
include extensive treatment of electron correlation in the
cases dealt with here, the need may arise in more complex
systems of experimental interest, and the current methods are
capable of treating these cases as well. We note in passing
that one can use the BD method to approximately correct
single-state perturbation theories for the need to allow corre-
lation to alter the weights of the reference space coefficients,
thus yielding an approximate multistate perturbation
theory.49

VI. CONCLUSIONS

We have tested and compared two methods for the cal-
culation of electronic coupling elements controlling electron
transfer reactions, discussing in detail the results of applica-
tions to the Zn2~H2O!1 and benzene–Cl complexes. It is seen
that the methods yield quite similar results for the coupling
elements, and agree quite well with those obtained in the
limiting case of a system where one can use an independent
means~half the energy splitting of symmetric and antisym-
metric states! for evaluating the matrix element. Tests of the
Condon approximation indicate that it holds reasonably well
over a large range of structural variations, although appre-
ciable variations ofHab with structure~including nonmono-
tonic behavior! were obtained in some cases. Diabatic dipole
moment matrices obtained from the BD approach demon-
strate that the magnitudes of off-diagonal elements (mab)
linking different sites are in general sufficiently small in
comparison with the corresponding adiabatic values
(<10%) to support one of the central tenets of the GMH
method.18
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