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We show that the Helmholtz free-energy variational principle is the physical principle underlying the ensemble
variational theory formulated in seminal papers by Theophilou and by Gross, Oliveira, and Kohn. A method of
calculating electronic excitations of atoms and molecules is then proposed, based on the constrained minimization
of the free energy. It involves the search for the optimal set of Slater determinant states to describe low electronic
excitations and, in a second step, the search for optimal rotations in the space spanned by these states. Boltzmann
factors are used as weights of states in the ensemble since for these the free energy achieves a minimum. The
proposed method is applied to the Be atom and LiH and BH molecules. The method captures static electron
correlation but naturally lacks dynamic correlation. To account for the latter, we describe short-range electron-
electron interaction with a density functional, while the long-range part is still expressed by a wave-function
method. Using the example of the LiH molecule, we find that the resulting method is able to capture both static
and dynamic electron correlations.

DOI: 10.1103/PhysRevA.87.062501 PACS number(s): 31.15.E−, 31.15.xt, 31.15.ag

I. INTRODUCTION

Predicting the electronic structure of the molecules is one
of the most important contributions of quantum chemistry
to other disciplines of science, e.g., spectroscopy, molecular
physics, or biochemistry. The calculation of electronic excita-
tions is of particular interest for scientists studying molecular
systems, especially those designing new materials. While in
recent years a significant progress has been made in this
area, the existing methods of calculating excitation energies of
molecules are often not sufficiently accurate or too expensive
to apply to a system of interest.

Although ab initio methods such as complete-active-space
second-order perturbation theory (CASPT2) or methods based
on coupled cluster theory allow one to make accurate pre-
dictions for excitation energies of molecules, they are still
prohibitively expensive computationally. Other routinely used
methods are based on the time-dependent density functional
theory (TDDFT). They have become the method of choice
for predicting excitation energies of different systems mainly
due to their relatively low computational cost and reasonable
accuracy for some excitations. Most TDDFT methods rely
on the adiabatic approximation and consequently they usually
fail in describing states of multiconfigurational character. Also,
the problematic behavior of charge-transfer and Rydberg states
can be traced back to the wrong asymptotics of the approximate
local potential underlying the method. A few remedies have
been proposed to cure some of the problems of approximations
to TDDFT but, in general, their accuracy still lags behind
ab initio methods.

The above problems signal a need for different methods
of calculation. This brings in the spotlight Theophilou’s

*pernalk@gmail.com

variational principle [1] and the more general Gross-Oliveira-
Kohn (GOK) variational principle [2], which was in fact
derived first by Theophilou [3]. Theophilou’s variational
principle states that if ψ1, ψ2, . . . ,ψm are m orthonormal trial
N -electron states and if E

(0)
1 , E

(0)
2 , . . . ,E(0)

m are in increasing
order the m lowest eigenvalues of the N -electron Hamiltonian
Ĥ , then the following inequality holds:

m∑
i=1

〈ψi |Ĥ |ψi〉 �
m∑

i=1

E
(0)
i . (1)

The GOK principle is more flexible and specifies that for the
m real, positive weights ωi � 0 in decreasing order,

ω1 � ω2 � · · · � ωm > 0,

it holds
m∑

i=1

ωi〈ψi |Ĥ |ψi〉 �
m∑

i=1

ωiE
(0)
i . (2)

Both Theophilou’s and the GOK variational principles have
led to several formulations of the ensemble Hartree-Fock (HF)
method.

In the case of equal weights (Theophilou’s variational prin-
ciple), the ensemble energy functional E = ∑m

i=1〈ψi |Ĥ |ψi〉
reduces to the trace of the Hamiltonian in the m-dimensional
space spanned by the orthonormal basis {ψi}. Since the trace
is invariant under rotation of the basis vectors and depends
only on the m-dimensional space, Theophilou named the
approach based on his theorem the subspace method, i.e.,
the subspace Hartree-Fock [4] as well as the subspace DFT
[1,5,6]. The GOK variational principle with the flexibility
of different weights (for nondegenerate states) affords not
only the energies of the first m states, but also of the wave
functions themselves. The GOK principle provided a basis
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for the ensemble DFT method [7,8] and its variants which
employ the optimized effective potential (exchange only)
[9–11]. Despite the substantial theoretical investigations of the
ensemble variational theories, the practical implementations
of the method have been rather scarce and limited to the
calculation of excitation energies of atoms and small molecules
at equilibrium geometries [12–16].

Although the results were quite promising, the imple-
mentation difficulties prevented those methods from being
developed further. One of the problems is the enforcement
of the orthogonality for the wave functions, but it is also
clear that the ensemble HF or ensemble DFT methods
inherit the disadvantages of the corresponding ground-state
methods. These include the lack of correlation energy in
Hartree-Fock and single-reference character of Kohn-Sham
DFT that results in the wrong description of long-range
electron-electron interactions. In addition, a serious problem
is the absence of appropriate density functionals developed
especially for ensembles. The existing density functionals,
often heavily parametrized, were developed to accurately
describe the ground states of systems and while they often
do that successfully, they may behave erratically when dealing
with a whole ensemble.

The GOK principle allows treating all (or a chosen number
of lowest) excited states of a system as one supersystem
containing molecules (or atoms) in all states included in
the ensemble. The weights in such interpretation are the
occupation numbers of each of those states. The description of
such a system resembles the methods of describing electronic
structure in finite temperature: the thermal Hartree-Fock [17],
thermal single-determinant approximation [18], and finite-
temperature DFT [19–21] that make use of the variational
principle for the Helmholtz free energy known in statistical
mechanics.

In this paper, we show the relation between the ensemble
variational method and the variational principle for the
free energy of canonical ensemble derived from statistical
mechanics (Sec. II). This allows us to employ Boltzmann
factors as weights in the ensemble variational method we
propose (Sec. III). The method aims to describe efficiently both
dynamic and static electronic correlations. The latter type of
correlation is captured by going beyond a one-determinantal
approximation and considering a space of configurations of
highest importance for the description of the considered states.
In order to include the missing part of the dynamic correlation,
we exploit the idea of Savin et al. who proposed to describe
the short-range electron-electron interaction by an appropriate
density functional while having the long-range component
of the interaction to enter the effective Hamiltonian [22–24].
Consequently, the ground-state energy emerges as the lowest
eigenvalue of the effective Hamiltonian that includes the
long-range electron interaction operator and the short-range
local potential. Over the years, a number of methods exploiting
the idea of range separation have been proposed that involve
an effective wave function or a one-electron reduced density
matrix description of the ground state [25–30]. Recently, the
ground-state range-separated functionals have been employed
in the time-dependent linear response framework to predict
excitation energies of molecules [31,32]. We extend the idea
of range separation to describe an energy of an ensemble and

propose a practical algorithm that yields energies of states
present in the ensemble. In Sec. IV, we show some illustrative
results that confirm the usefulness of the approaches we
introduce. The paper is summarized and concluded in Sec. V.

II. ENSEMBLE VARIATIONAL THEORY: FORMULATION
FROM THE STATISTICAL MECHANICS PERSPECTIVE

In this section, we shall formulate the ensemble variational
theory by minimizing the Helmholtz free energy for a
canonical ensemble. For this purpose, let us first write the
Helmholtz free energy for an N -electron system described
with the Hamiltonian Ĥ :

A[�̂N ] = Tr�̂N (β−1 ln �̂N + Ĥ ). (3)

As is well known [17], the free energy is minimized by
the density matrix �̂N

eq = exp[−βĤ ]/Tr exp[−βĤ ] which can
be written explicitly as a mixture of the eigenstates of the
Hamiltonian weighted with Boltzmann weights, i.e.,

�̂N
eq =

∑
i

ω
(0)
i

∣∣�(0)
i

〉〈
�

(0)
i

∣∣, (4)

where

ω
(0)
i = exp

[−βE
(0)
i

]
∑

k exp
[−βE

(0)
k

] . (5)

In practice, we cannot deal numerically with a density
matrix representing an ensemble of an infinite number of states.
In the following, the minimization of the free energy will be
restricted to cover N -electron density matrices representing
ensembles of a finite number (m) of states, namely,

�̂N
m =

m∑
i=1

ωi |ψi〉〈ψi |, (6)

where
m∑

i=1

ωi = 1. (7)

When we restrict to the subset of such density matrices, the
Helmholtz free-energy functional becomes a functional of the
(orthonormal) states {ψi}i=1,...,m and a function of m weights
{ωi}i=1,...,m, normalized to 1. We find it convenient to denote
this functional by Am:

Am[�̂N
m ] =

m∑
i=1

ωi

(
1

β
ln ωi + 〈ψi |Ĥ |ψi〉

)
. (8)

Since it is derived from the Helmholtz free energy, the two
terms in the functional Am afford a clear physical inter-
pretation. The first one represents the negative entropy S,

S = −
m∑

i=1

ωi ln ωi ; (9)

the other term is the average energy of an ensemble

E =
m∑

i=1

ωi〈ψi |Ĥ |ψi〉. (10)
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Minimization of the functional Am is equivalent to the
minimization of the free-energy functional (3) with respect
to a subset of �̂N comprising density matrices of m nonzero
weights. In other words, only the set of density matrices �̂N

m

defined in Eq. (6) is searched. The variational equations for
the functional Am that take into account the normalization
condition for the weights and the orthonormalization of the
wave functions read as

∂{Am[{ωj },{ψj }] − α
∑m

j=1 ωj }
∂ωj

= 0, (11)

δ{Am[{ωj },{ψj }] − ∑m
jk λjk〈ψj |ψk〉}

δψ∗
j

= 0 (12)

[and equations analogous to (12) with derivatives taken with
respect to ψi], where α and {λij } are pertinent Lagrange
multipliers. Solutions to Eqs. (11) are easily found and they
read as

ω̄i = exp[−β〈ψi |Ĥ |ψi〉]∑m
j=1 exp[−β〈ψj |Ĥ |ψj 〉]

. (13)

For fixed wave functions, the functional Am achieves a
minimum for the optimal weights {ω̄i}, i.e.,

Am[{ωi},{ψi}] � Am[{ω̄i},{ψi}], (14)

which is immediately seen upon employing Gibbs inequality
that in the considered case takes the form

∑m
i=1 ωi ln[ωi/ω̄i] �

0.
After performing the functional differentiation, the varia-

tional equations shown in Eq. (12) yield

ωiĤψi −
m∑

j=1

λijψj = 0. (15)

Depending on the relations between the weights, solutions
to Eq. (15) take the form of either eigenfunctions of the
Hamiltonian {�0

i } or their linear combinations. In particular,
if all weights are equal, one obtains

∀i=1,...,m ψi =
m∑

j=1

Cij�
(0)
j , (16)

where the matrix C is unitary and the functions ψi are
expanded in an m-dimensional space spanned by m arbitrary
eigenfunctions. In the case of all weights being different,
Eq. (15) is satisfied by the eigenfunctions �

(0)
i [notice that

in this case linear combinations of �
(0)
i do not satisfy Eq. (15)

since the matrix of Lagrange multipliers λ would not be
Hermitian]. Finally, in the intermediate case, ω1 = · · · = ωn

and ∀ i > n

j �= i

ωi �= ωj (this may be generalized to more than one

blocks of equal weights)

∀i�n ψi =
n∑

j=1

Cij�
(0)
j , (17)

∀i>n ψi = �
(0)
i , (18)

where the sets {�(0)
i }i=1,...,n and {�(0)

i }i=n+1,...,m are disjoint
and they include, respectively, n and m − n arbitrarily chosen
eigenfunctions. Clearly then for the fixed weights the con-
sidered functional Am possesses in general infinitely many

extremum points regardless of the weights. The minimum of
Am [and at the same time of the energy E given in Eq. (10)]
is achieved for the extremum point determined by the m

eigenfunctions corresponding to the m lowest eigenvalues
of Ĥ . This can be seen immediately since for an arbitrary
extremum point given by Eqs. (17) and (18) after exploiting
the unitarity of C the energy reads as

E =
m∑

i=1

ωiE
(0)
i , (19)

and it takes the lowest value if the set {E(0)
i }i=1,...,m includes m

lowest eigenvalues and additionally the following condition is
satisfied:

∀i,j ωi � ωj ⇒ E
(0)
i � E

(0)
j . (20)

Consequently, reordering if necessary the weights in decreas-
ing order ω1 � ω2 � · · · � ωm � 0, one writes

Am[{ωi},{ψi}] � Am

[{ωi},
{
�

(0)
i

}]
, (21)

where the eigenstates correspond to the first m values of the
energies and the ordering of �

(0)
i corresponds to the increasing

ordering of E
(0)
i .

Taking into account relations (14) and (21), one writes

Am[{ωi},{ψi}] � Am[{ω̄i},{ψi}] � Am

[{ω̄i},
{
�

(0)
i

}]
� Am

[{
ω

(0)
i

}
,
{
�

(0)
i

}]
, (22)

where the weights {ωi} are normalized to 1 but otherwise they
are arbitrary, ω̄i are obtained according to Eq. (13) using the
orthonormal wave functions ψi , the set of states {�(0)

i }i=1,...,m

is a set of eigenstates corresponding to the first m eigenvalues
E

(0)
i , and the weights ω

(0)
i are given in Eq. (5). One should

notice that the chain of relations shown in (22) is valid if
the weights {ω̄i} are in a decreasing order. It follows that for
m → ∞ the functional Am[{ωi},{ψi}] achieves the minimum
for the density matrix given in Eq. (4).

In (21) and in the second inequality in (22), the entropic
parts of Am[{ωi},{ψi}] and Am[{ωi},{�0

i }] coincide and can be
dropped. The inequalities then reduce to the GOK inequality
[2] (with weights ωi or ω̄i)

m∑
i=1

ωi〈ψi |Ĥ |ψi〉 �
m∑

i=1

ωiE
(0)
i . (23)

We conclude that the underlying variational principle is the
statistical mechanics variational principle for the Helmholtz
free energy. When we restrict the density matrix in the
free-energy expression to belong to a subset of density matrices
representing ensembles with fixed weights, we recover the
GOK variational principle. In the limit of equal weights, we
then recover Theophilou’s variational principle. The opposite
limit where all the weights vanish, except the first one, leads
to the Rayleigh-Ritz variational principle for the ground state.
For fixed weights ω̄i given by (13), Theophilou’s result is
obtained in the high-temperature limit β → 0, while the
ground-state Rayleigh-Ritz variational principle is obtained
at low temperatures β → ∞.

We have shown that minimization of the functional Am[�̂N
m ]

defined in Eq. (8) leads to obtaining m lowest energies of
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the system and the corresponding wave functions. Clearly,
the same is achieved if one exploits the variational principle
given in (23). Upon full minimization, the trial function ψ1

corresponding to the lowest expectation value from the set
{〈ψi |Ĥ |ψi〉}i=1,...,m and thus to the highest weight ω̄1 will turn
into the ground-state wave function. On the other hand, ψ2

corresponding to the second highest weight will become the
wave function of the first excited state, etc. One should notice
that in the case of a degenerate Hamiltonian, the functional Am

is invariant to rotations among degenerate states. Intuitively, it
would be desirable if the degeneracy was also reflected in the
equality of the weights pertinent to the degenerate states. This
requirement is satisfied naturally with the choice of Boltzmann
weights (on condition, of course, that the pertinent trial wave
functions are degenerate). Overall, the usage of Boltzmann
weights for the ensemble should, in principle, ensure that
the ordering of the expectation values of the trial functions
will be preserved after the optimization (so the numerical
phenomenon such as root flipping that plagues for example
the multiconfiguration self consistent field (MC-SCF) will not
occur). Additionally, by choosing the temperature parameter β

different from zero (as already explained above, setting β = 0
leads to all weights being equal), the high-lying states are
effectively removed from the ensemble.

III. COMPUTATIONAL ALGORITHMS BASED ON THE
ENSEMBLE VARIATIONAL PRINCIPLE

Our aim is to exploit the variational principle (23) written
with Boltzmann weights (13) and to propose a method capable
of capturing dynamic and static electron correlation effects that
yields a few low-lying excited-state energies. Being interested
in the m low-lying states of a given system, we consider a
set of m Slater determinants {�I }, which are built from M

orthonormal spin orbitals {ϕi(x)}. The choice of the most
relevant determinants to describe the sought states is not
unique. It may be based on the energy criterion or on chemical
intuition. As discussed later, we have followed the latter route.
In case of degeneracies, all configurations from a multiplet
should be included in the ensemble. In the first step, the
ensemble energy is optimized with respect to the spin orbitals
at fixed weights given by Eq. (13). This will already capture
part of the dynamic correlation energy. Since

〈�I |Ĥ |�I 〉 =
M∑
i=1

nI
i hii + 1

2

M∑
ij

nI
i n

I
j 〈ij ||ij 〉, (24)

where {〈ij ||ij 〉} are the antisymmetrized two-electron integrals
in the representation of the spin orbitals {ϕi}, nI

i is an
occupation number of the ith orbital in the I th configuration,
i.e.,

nI
i =

{
1, i ∈ I

0, i /∈ I
(25)

the expression (10) for the energy of an ensemble being
a mixture of one-determinantal states can be conveniently
written as

E[{ϕi}] =
M∑
i=1

nihii + 1

2

M∑
ij

Gij 〈ij ||ij 〉, (26)

where

ni =
m∑

I=1

ω̄I n
I
i , (27)

Gij =
m∑

I=1

ω̄I n
I
i n

I
j (28)

and the Boltzmann weights ω̄I are computed according to
Eq. (13) with the trial functions {�I }. The energy given
in Eq. (26) is minimized with respect to the spin orbitals
for fixed values of the occupation numbers ni (the weights
are normalized to 1 and, consequently, 0 � ni � 1 and∑M

i=1 ni = N , therefore, the numbers ni can be interpreted
as the occupation numbers). It is worth noticing that the form
of the functional (26) is equivalent to the recently proposed
natural spin-orbital functionals that include only the Coulomb
and exchange integrals [33–35]. One can therefore employ
one of the algorithms (and codes) proposed to find optimal
orthonormal spin orbitals for such functionals [36–38].

The aim of the optimization is to bring in some portion of the
dynamic correlation to states of interest. The static correlation
is introduced by forming linear combinations of determinants
built of the optimal orbitals. Namely, the m states are given as

ψI =
m∑
J

CIJ �
opt
J , (29)

where the configurations {�opt
I } are of the same type as initially

assumed ({�I }) but they are formed from the optimal spin
orbitals obtained in the first step. The ensemble energy written
for the m wave functions ψI takes the form

E[C] =
m∑

I=1

ω̄I

m∑
JK

C∗
IJ CIK

〈
�

opt
J

∣∣Ĥ ∣∣�opt
K

〉
. (30)

Its minimization under the constraint that the wave func-
tions ψI stay orthonormal leads to the following variational
equations:

ω̄I

m∑
K

〈
�

opt
J

∣∣Ĥ ∣∣�opt
K

〉
CIK =

m∑
K

IKCKJ , (31)

where � is a Lagrangian. If all weights are different, Eq. (31)
is solved by the matrix C(0) that diagonalizes the Hamiltonian
HIJ = 〈�opt

I |Ĥ |�opt
J 〉, namely,

C(0)HC(0)T = �ω̄−1, (32)

where the matrices � and ω̄ are diagonal and the latter collects
weights on its diagonal. Consequently, the optimized states
read as

ψ (0) = C(0)�opt (33)

and the approximations to the energies of the system follow
simply as eigenvalues of the Hamiltonian. On the other hand,
in the case of all weights being equal (equiensemble), the
variational equation (31) is satisfied by any unitary matrix C,
which is a direct consequence of the fact that the functional (30)
is invariant to orthogonal rotations among the states {�opt

I }.
In other words, for equiensembles the diagonalization of the
Hamiltonian present in Eq. (30) does not lead to lowering the
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energy of the ensemble but it can be still used to obtain better
approximations for the energy levels of the system by taking
expectation values of Ĥ with ψ (0). In this sense, the actual
values of the weights do not play a role in this step of the
algorithm.

The aforedescribed algorithm, called from now on Ens-WF
(WF refers to wave functions), based on employing Boltzmann
weights given in (13) and consisting in minimization of (26)
followed by optimization of the functional (30) constitutes a
straightforward implementation of the ensemble variational
principle (23). Despite its simplicity and including some
portion of the dynamic correlation by relaxing the orbitals,
a large portion of electron correlation is likely to be missed.
A possible improvement could be achieved by significantly
expanding the space of the considered configurations �I

and including all possible determinants built of the assumed
active spin orbitals. Such an approach would be similar to
the state-averaged MC-SCF calculations [39]. Unfortunately,
expanding the space of configurations leads to a rapid increase
in the computational cost. We propose to employ density
functionals in the ensemble formulation to add a missing
part of the dynamic correlation to our approach. In order to
achieve this goal, we follow the idea of Savin et al. [23,24]
who introduced separation of the electron-electron interaction
operator into the short- and long-range parts υSR

ee and υLR
ee ,

respectively, i.e.,

1

r
= υSR

ee (r) + υLR
ee (r), (34)

where limr→∞ r υLR
ee (r) = 1 and limr→0 r υSR

ee (r) = 1 and
formulated a density-functional-based formalism within which
the short-range part of the electronic repulsion is effectively
taken into account by a proper density functional. A number of
methods that exploit short-range density functionals have been
proposed for the prediction of ground-state energies. These
methods employ either a wave function [25–28] or a reduced
density matrix [29,30] description for the long-range regime
of the electronic repulsion.

In analogy to these methods, the idea of range separation of
the operator 1/r can be also applied for the prediction of the
energy of an ensemble and, consequently, for the prediction
of excited-state energies. With this idea in mind, we propose
a universal ensemble energy functional of the density

Fm,ω[ρens] = min
{ψi } → ρens

∀ij 〈ψi |ψj 〉 = δij

m∑
i=1

ωi〈ψi |T̂ + V̂ee|ψi〉,

(35)

defined for m states in the ensemble and for fixed ensemble
weights {ωi}i=1,...,m normalized to 1. The notation {ψi} →
ρens means that the ensemble yields a given density ρens .
Notice that the functional is defined for any ensemble N

representable ρens , i.e., any density for which there exists a
set of m wave functions {ψi}i=1,...,m with the corresponding
densities {ρi}i=1,...,m such that ρens = ∑m

i=1 ωiρi . Therefore,
the domain of the functional embraces a larger class of
densities than that of the Gross-Oliveira-Kohn universal
functional [2] defined for ensemble υ-representable densities.
The values of both functionals coincide at the density given by

ρmin
ens = ∑m

i=1 ωi〈�(0)
i |ρ̂(x)|�(0)

i 〉, where ρ̂(x) stands for the
density operator, {�(0)

i } are eigenfunctions of the Hamiltonian
Ĥ = T̂ + V̂ee + V̂ext (T̂ and V̂ext being, respectively, the
kinetic and external potential operators), and it has been
assumed that the weights are in a descending order. Exploiting
the range separation of the electronic interaction (34), long-
and short-range ensemble density functionals are introduced as

FLR
m,ω[ρens] = min

{ψi } → ρens

∀ij 〈ψi |ψj 〉 = δij ,

m∑
i=1

ωi〈ψi |T̂ + V̂ LR
ee |ψi〉

(36)

and

FSR
m,ω[ρens] = Fm,ω[ρens] − FLR

m,ω[ρens], (37)

respectively. The ensemble energy functional based on the
range separation of the electron-electron interaction reads as

Em,ω[{ψi}] =
m∑

i=1

ωi〈ψi |T̂ + V̂ LR
ee + V̂ext |ψi〉 + FSR

m,ω[ρens],

(38)

where ρens corresponds to the ensemble determined by
{ωi} and {ψi}. For given weights, minimization of such a
defined functional under the constraint that the functions are
orthonormal yields the exact energy of the ensemble and the
exact ensemble density (19), namely,

min
{ψi }

∀ij

〈
ψi |ψj

〉 = δij

Em,ω[{ψi}] = Em,ω

[ {
�LR

i

} ] =
m∑

i=1

ωiE
(0)
i

(39)

and

ρ(0)
ens(x) =

m∑
i=1

ωi

〈
�

(0)
i

∣∣ρ̂(x)
∣∣�(0)

i

〉 =
m∑

i=1

ωi

〈
�LR

i |ρ̂(x)|�LR
i

〉
.

(40)

It should be noticed that the minimizing wave functions {�LR
i }

are different from the eigenfunctions {�(0)
i } of the Hamiltonian

Ĥ since �LR
i solves the eigenequation of the modified

Hamiltonian involving the long-range electron-electron
interaction and the local short-range potential, i.e.,(

T̂ + V̂ LR
ee + V̂ext + V̂ SR

m,ω[ρens]
)
�LR

i = ELR
i �LR

i . (41)

The short-range potential V̂ SR
m,ω is given by a density derivative

of the functional (37), namely,

V̂ SR
m,ω[ρens] =

N∑
i=1

δF SR
m,ω[ρ]

δρ(xi)

∣∣∣∣∣
ρ=ρens

. (42)

Interestingly, one can employ the range-separated
functional (38) to define a functional Ãm:

Ãm[{ωi} , {ψi}] = Em,ω[{ψi}] + 1

β

m∑
i=1

ωi ln ωi. (43)

Then, taking into account Eqs. (8), (22), and (39), one
concludes that the minima of the Helmholtz energy Am and
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the functional Ãm coincide and, what is more, one obtains

min
{ωi } , {ψi }∑m

i ωi = 1 ∧ ∀ij

〈
ψi |ψj

〉 = δij

Ãm[{ωi} , {ψi}]

= Am

[{
ω

(0)
i

}
,
{
�

(0)
i

}] = Ãm

[{
ω

(0)
i

}
,
{
�LR

i

}]
, (44)

where the optimal weights take the form of the Boltzmann
factors [Eq. (13)] computed with the exact energies of the
first m states, i.e., ω

(0)
i = exp[−βE

(0)
i ]/

∑m
j=1 exp[−βE

(0)
j ].

This means that full minimization of the functional Ãmthat
is based on the range-separation electron-electron interaction
would yield the ensemble density and the ensemble energy
coinciding with those obtained at the minimum of the
Helmholtz energy functional Am. What is more interesting is
that the optimal weights corresponding to the minimum of Ãm

would give an access to the excitation energies of the exact,
fully interacting system [that is due to the fact that the optimal
weights are simply the same as {ω(0)

i } that allows one to
determine the exact energies up to a constant shift, cf. Eq. (5)].

We propose to proceed with the optimization of the range-
separated functional defined in (38) by applying the approach
already described in the first part of this section pertaining to
the method called Ens-WF. Therefore, in the first step, one
assumes a set of m configurations (Slater determinants) {�I }
that are supposed to be significant in approximating the first
m states of the system under study. For one-determinantal
wave functions, the functional (38) turns into the functional
depending on spin orbitals [cf. Eq. (26)], namely,

Em,ω[{ϕi}] =
M∑
i=1

nihii + 1

2

M∑
ij

Gij 〈ij ||ij 〉LR + FSR
m,ω[ρens],

(45)

where the indices of the occupation numbers ni and the
parameters Gij pertain to the indices of the spin orbitals
and their definitions are given, respectively, in Eqs. (27)
and (28). M , as before, stands for the number of spin orbitals
in the basis set. The antisymmetrized two-electron integrals
〈ij ||ij 〉LR involve the long-range electron-electron interaction
operator υLR

ee (r) [cf. Eq. (34)]. Finally, the ensemble density
in the case of one-determinantal states ensemble takes a
simple form ρens(x) = ∑M

i=1 niϕi(x)2. In order to include
part of the dynamic correlation, the optimal spin orbitals
are found by minimizing the functional (45). Notice that the
form of the latter is similar to that of the recently introduced
range-separated reduced density matrix functional [cf. Eq. (12)
in Ref. [30]], thus the optimization algorithms developed for
the latter can be employed. The long-range static correlation,
crucial for a correct description of molecules at stretched-bond
geometries, is included in the second step, consisting in taking
linear combinations of the initially selected determinants built
of the optimal spin orbitals obtained in the first step and
minimizing the functional

Em,ω[C] =
m∑

I=1

ω̄I

m∑
JK

C∗
IJ CIK

〈
�

opt
J

∣∣T̂ + V̂ LR
ee + V̂ext

∣∣�opt
K

〉

+FSR
m,ω[ρens] (46)

with respect to the elements of the C matrix under the
constraint that it is unitary [cf. Eqs. (30)–(33)]. Note that the
Boltzmann weights ω̄I entering Eq. (46) are computed with
functions �

opt
I . Constrained optimization of the functional (46)

leads to diagonalization of the effective Hamiltonian, the
elements of which read as

H ′
IJ = 〈

�
opt
I

∣∣T̂ + V̂ LR
ee + V̂ext + V̂ SR

m,ω[ρens]
∣∣�opt

J

〉
, (47)

where ρens is fixed. The above-described two-step procedure
allows one to efficiently take into account the long-range
electron interaction. In principle, it can be improved by
extending the set of the initial configurations, but since part of
the interaction is covered by the short-range density functional,
the size of the subspace of configurations required to achieve a
given accuracy is supposed to be much smaller than in the case
of the full-range Hamiltonian (that is also a known advantage
of using range-separated wave-function methods for predicting
ground states [25]).

In the first approximation for FSR
m,ω[ρens], we use one of

the short-range functionals proposed for predicting ground-
state energies, i.e., we assume FSR

m,ω[ρens] = ESR
H [ρens] +

ESR-PBE
xc [ρens], where the first term is the Hartree functional

defined with the operator υSR
ee (r) and ESR-PBE

xc represents a
short-range exchange-correlation Perdew, Burke, Ernzerhof
(PBE) functional proposed in Ref. [27]. Choosing the short-
range PBE functional implies a need for using the error
function in the long-range electronic repulsion, i.e., we employ
the operator υLR

ee (r) = erf(μr)/r , where μ is a positive real
number. Using a ground-state functional in the description
of an ensemble energy might seem to be quite a crude
approximation, nevertheless, as we show below, it leads to
a substantial improvement over the Ens-WF method described
in the first part of the section. In order to obtain approximate
values of energies for the considered m states, one would first
perform the calculation for m = 1, then for m = 2 and by
taking a difference of ensemble energies furnished by such
calculations an approximation to E

(0)
2 would be obtained.

If the procedure is repeated for increasing m, consecutive
values of the energy would be recovered. Such an approach is
neither computationally efficient nor likely to work well with
the assumed ground-state approximation for the short-range
functional. Instead, the energy of the I th state is computed
by taking the expectation value of the Hamiltonian involving
only the long-range electronic interaction with the I th state
ψ

(0)
I obtained from diagonalization of H′ given in (47) and

adding the short-range functional value for the relevant density,
namely,

E
(0)
I = 〈

ψ
(0)
I

∣∣T̂ + V̂ LR
ee + V̂ext

∣∣ψ (0)
I

〉 + ESR
H [ρI ]

+ESR-PBE
xc [ρI ], (48)

where ρI = 〈ψ (0)
I |ρ̂(x)|ψ (0)

I 〉.

IV. ILLUSTRATIVE RESULTS

To illustrate how the static and dynamic electron corre-
lations are captured via optimization of orbitals, employing
range separation of the electronic interaction, and diagonaliza-
tion of the effective Hamiltonian, and to show the influence of
weights on the energies of states under study, we analyze three
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example systems: beryllium atom, boron hydride, and lithium
hydride. In all calculations discussed in the following, aug-cc-
pVQZ and aug-cc-pVTZ basis sets [40,41] were employed for
the Be atom and the molecules, respectively. As a benchmark,
coupled clusters singles doubles (CCSD) values of energies
obtained with DALTON quantum chemistry package [42] in the
same basis sets are used. Following, we use the acronym Ens-
WF for the method based on Eqs. (26)–(33). Ens-WF consists
of three steps: (1) selecting configurations that are significant
for states of interest of a given system, (2) constrained
minimization of the functional (26) with respect to orbitals,
and (3) diagonalization of the Hamiltonian in a space spanned
by determinants built of the optimal orbitals. To elucidate
the properties of variational ensemble methods, the Ens-WF
approach will be compared with the method consisting in
diagonalization of the Hamiltonian involving Hartree-Fock
orbitals. Since the latter approach is simply a configuration
interaction method for a limited space of determinants, we call
it CI. In all calculations we employ Boltzmann weights (13).
Consequently, if the ground state is not degenerate, CI emerges
as a limiting case of the Ens-WF approach when β → ∞ (all
weights equal zero except for the one corresponding to the
ground state). On the other hand, the equiensemble case (all
weights equal) is equivalent to taking Boltzmann weights at
β = 0 value. For each system, we choose configurations that
are the most significant for considered states and for Be, LiH,
and BH they are, respectively, {1s22s2, 1s22s2p, 1s22s3s,
1s22p2, 1s22s3p, 1s22s3d, 1s22s4s, 1s22s4p}, {1σ 22σ 2,
1σ 22σ3σ , 1σ 22σ1π , 1σ 22σ4σ , 1σ 23σ 2}, and {1σ 22σ 23σ 2,
1σ 22σ 23σ4σ , 1σ 22σ 23σ1π , 1σ 22σ 23σ5σ , 1σ 22σ 24σ 2} with
all pertinent spin combinations.

It is well known that in the beryllium atom the static
correlation plays an important role, i.e., a single Slater
determinant is not sufficient to describe its ground state
accurately. Rather, the ground state is dominated by two
configurations, namely, 1s22s2 and 1s22p2. For this reason,
it is interesting to study the influence of weights (that can
be varied by changing β) on the ground-state energy of this
system. In Fig. 1, one can see that the energy of the ground state
lowers with the β parameter in the small-value range of the
parameter and then stabilizes for the intermediate values of β.
However, in the β → ∞ limit (marked with open symbols on
the plot) when only the weight of the ground state is different
from 0, the 2p orbital is not optimized and the energy increases
with respect to the values obtained for small β. Similarly,
there is a large difference in the accuracy of 1 1D energy (this
state is of a double excitation character dominated by 1s22p2

configuration) obtained at β = 0 (equiensemble Ens-WF) and
β → ∞ (the CI limit) of the method. The errors with respect
to the CCSD values of energies at both limits amount to
0.89 and 1.65 eV for equiensemble and CI, respectively. It is
understandable because the weight of the 1s22p2 determinants
achieves the value zero for large β, and the corresponding
energy is higher than that obtained for small β. On the other
hand, the energies of the two lowest P states vary only very
little with β, which is due to the fact that the total contribution
of the 1s22s2p determinants to the ensemble energy is smaller
than the contribution of the doubly excited determinants. Also,
the singly excited 1 3P and 1 1P states are not as sensitive to
changes in the 2p orbitals as the ground or 1 1D states. Analysis

FIG. 1. (Color online) Energies of states of beryllium atom
calculated for different values of β parameter. Unmarked solid lines:
CCSD, marked lines: Ens-WF, open markers: β → ∞ (CI) limit.
Markers �, ◦, �, �, and � denote states 1 1S, 1 3P , 1 1P, 1 3S, and
1 1D, respectively.

of the dependence on β of the errors of excitation energies
with respect to the CCSD results reveals that for each state the
minimum is achieved for a different value of β and the sum
of errors is minimized at β = 0.5. For this value, the errors
on excitations amount to 0.03, 0.78, 0.02, and 0.04 eV for
excitations from the ground state to the 1 3P , 1 1P , 1 3S, and
1 1D states, respectively. It is clear that while the energy of
excitation to the 1 1P state suffers mainly from inaccuracy of
the calculated ground-state energy, the others benefit from the
cancellation of errors.

Looking at dissociation energy curves of the �+ states
presented in Fig. 2, one can see that while the equiensem-
ble Ens-WF method raises the ground-state energy of LiH
molecule around equilibrium by about 10 mHartree with
respect to the CI value, it improves greatly its dissociation
limit as well as the energies of 13�+ and 21�+ excited states
along the whole curve. As in the case of beryllium, it is
evident from Fig. 3 that also for LiH there is no common
optimal value of β parameter for excitation energies to all
considered states. It turns out, however, that the total error
on excitation energies is smallest for the same value β = 1
for both the equilibrium distance (R = 3.016 a.u.) and the
dissociation limit (R = 8.0 a.u.), the total errors being 0.84
and 0.57 eV, respectively.

The performance of the Ens-WF for the BH molecule is
qualitatively similar to that of the above-discussed LiH. As one
can see from Fig. 4, the ground-state energy obtained at β = 0
is slightly higher around the equilibrium geometry than its CI
counterpart. In the dissociation limit, however, the energy from
the equiensemble calculation is 40 mHartree lower than the CI
one. The equiensemble triplet �+ state is lower than the CI one
by a few dozen mHartree for all distances between the atoms.
The second �+ singlet energy obtained from the equiensemble
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FIG. 2. (Color online) Dissociation curves of the first three �+

states of LiH. Equiensemble Ens-WF, CI, and CCSD results are
shown. Full markers denote CCSD, half-filled Ens-WF, and empty
the CI data. Markers �, ◦, and � denote states 11�+, 13�+, and
21�+, respectively.

calculation is also lower than its CI counterpart, especially in
proximity of equilibrium. Figure 5 shows that the errors on
excitation energies for BH are larger than that of LiH. The
minima of a total error as a function of β do not coincide for
different distances between B and H atoms. The total error for
the optimal β = 1 at R = 2.329 a.u. (equilibrium distance)
equals 1.87 eV, whereas at R = 7.0 a.u., the smallest total

FIG. 3. (Color online) Errors of excitation energies of LiH for the
equilibrium distance and the dissociation limit. Full markers denote
data obtained at R = 3.016 a.u. distance, empty markers correspond
to R = 8.0 a.u.. Markers �, ◦, �, �, and ♦ denote states 11�+,
13�+, 21�+, 13�, and 11�, respectively.

FIG. 4. (Color online) Dissociation curves of the first three �

states of BH. Equiensemble Ens-WF, CI, and CCSD results are
shown. Full markers denote CCSD, half-filled Ens-WF, and empty
the CI data. Markers �, ◦, and �, denote states 11�+, 13�+, and
21�+, respectively.

error amounting to 2.21 eV is attained for β = 0.2. At the
dissociation limit the main source of error can be attributed
to the 2 1�+ state. The shape of the dissociation curve of this
state is not correct and could be improved by adding more
configurations of this symmetry to the ensemble. The errors at

FIG. 5. (Color online) Errors of excitation energies of BH for the
equilibrium distance and the dissociation limit. Full markers denote
data obtained at R = 2.329 a.u. distance, empty markers correspond
to R = 7.0 a.u.. Markers �, ◦, �, �, and ♦ denote states 11�+,
13�+, 21�+, 13�, and 11�, respectively.
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equilibrium geometry are in large part due to the fact that the
minimum of the ground state is too shallow.

We conclude that the determination of the optimal value of
β is a compromise between correct descriptions of the ground
state (usually β → ∞ limit is optimal for a ground state except
for multideterminantal ground states, e.g., in beryllium) and
excited states more accurately described with small values of
β. Interestingly, at β = 1 (the value optimal for most presented
cases), the weight of a ground state is usually close to 0.9 so the
other states contribute very little to the energy of the ensemble.

Overall, as expected the Ens-WF method largely underes-
timates the energies due to a fact that only a small number
of configurations are considered for each system. It is able
to capture static correlation but misses a substantial part of
the dynamic correlation. To recover a missing part of the
dynamic correlation, we applied the range-separated scheme,
Ens-lrWF + srDF, described in Sec. III. The short-range
PBE functional together with the υLR

ee (r) = erf(μr)/r long-
range operator were utilized. Within the Ens-lrWF + srDF
approach, first the ensemble energy calculated according to
formula (45) is minimized with respect to the orbitals. Then,
the functional (46) is minimized with respect to the expansion
coefficients Cij . Both functionals employ Boltzmann weights
defined in Eq. (13). The energy of each state is subsequently
calculated according to the approximate formula (48). In
principle, the range-separation parameter μ can be chosen
arbitrarily. After performing several tests on small systems,
we have chosen μ = 1.0 [a.u.] which seems to work best
for the investigated cases. Here, we present the dissociation
curves for the first three �+ states of LiH. The ensemble
was built in the same space of configurations as in case of
the aforedescribed Ens-WF method, but we chose β = 0.5,
optimal for this particular system and the separation parameter
μ. A comparison of the performance of the Ens-WF and
Ens-lrWF + srDF methods presented in Fig. 6 confirms that
as expected the Ens-lrWF + srDF leads to lower energies of
states than Ens-WF while keeping the shape of the curves
correct. The absolute values of energies are greatly improved.
The excitation energies, however, although improved as well
do not gain as much in comparison to Ens-WF. At the
dissociation limit, the total error of excitation energies (with
optimal β for both methods) stays almost constant (0.56 eV
for Ens-lrWF + srDF versus 0.57 eV for Ens-WF), while for
equilibrium distance it changes from 0.84 to 0.77 eV. The
reason why the excitation energies along the whole curve do
not improve as much as the absolute energies did is that they do
not benefit, as it was in the case of Ens-WF, from cancellation
of errors.

V. CONCLUSIONS

By considering the Helmholtz free energy [Eq. (3)], we
have related its constrained minimization with the ensemble
variational theorem. This has been achieved by considering
minimization of the constrained free-energy functional Am

defined for N -electron density matrices that are mixtures of
m pure states [cf. Eq. (8)]. A resulting chain of relations has
been collected in Eq. (22). Based on them, one concludes that,
clearly, a global minimum of Am is achieved for m eigenstates
of the Hamiltonian that correspond to the m lowest-energy

FIG. 6. (Color online) Dissociation curves of the first 3 �+ states
of LiH Ens-lrWF + srDF (β = 0.5) vs Ens-WF (β = 1.0) compared
to CCSD results. Full markers denote CCSD, half-filled Ens-WF,
empty Ens-lrWF + srDF. Markers �, ◦, and � denote states 11�+,
13�+, 21�+, respectively.

levels, the pertinent weights given by the Boltzmann formula
in Eq. (5). Inequality (21) and the second inequality in Eq. (22)
imply that for fixed weights, the constrained minimization of
the free-energy variational principle reduces to the ensemble
variational principle [2] and in the special case when all
weights are equal (β = 0) to the subspace variational principle
[1] [cf. Eq. (23)]. We proposed a method (Ens-WF), which
is based on inequality (23), that, upon minimization of the
energy of an m component ensemble with fixed Boltzmann
weights, Eq. (13), yields energies for the lowest m states. The
Boltzmann weights, which include the common parameter
β as the inverse of an effective temperature, are computed
initially from the assumed trial functions and then remain
fixed. The minimization of the ensemble energy functional
[left-hand side of Eq. (23)] is carried out in two steps. First,
the optimal space of states is searched for, which in the
practical algorithm involves selecting configurations for the
m states of a system under study and optimizing the energy
with respect to orbitals [Eqs. (24)–(28)]. The second step
consists in finding optimal rotations in the space spanned by
the single Slater determinant states found in the first step. This
amounts to minimizing the functional given in Eq. (30) with
respect to orthogonal vectors of the expansion coefficients CIJ

introduced in Eq. (29). Such a procedure is reminiscent of the
state-averaged, multiconfiguration, self-consistent field (SA-
MCSCF) method [39]. It differs from SA-MCSCF in choosing
Boltzmann weights, splitting the optimization into two steps,
and by employing a much more limited space of states than it is
done in SA-MCSCF, which is more expensive computationally
than Ens-WF. Application of the Ens-WF approach to the
Be atom and LiH and BH molecules leads to the conclusion
that Ens-WF is able to capture static electron correlation but
misses the dynamic correlation. This is expected since we
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employ relatively small configuration spaces. Investigation of
the influence of the inverse effective temperature parameter
β (in Boltzmann weights) on the obtained energy values has
shown that a proper choice of β leads to the reduction of the
average error, thus the β = 0 value (equiensemble limit) does
not provide the most accurate results.

In order to cure the main deficiency of Ens-WF (missing
of the dynamic correlation) and retain its low computational
cost, we have proposed to exploit the idea of range separation
of the electronic repulsion [Eq. (34)] and introduced a short-
range ensemble energy functional of the density, defined in
Eq. (37). Combining the short-range functional with the long-
range wave-function functional has resulted in the ensemble,
range-separated energy functional [Eq. (45)]. Similarly to the
Ens-WF approach, the method, called Ens-lrWF + srDF, based
on the optimization of the range-separated functional with
respect to wave functions at fixed Boltzmann weights involves
two steps: finding the optimal space of single-determinantal
states and finding the optimal rotations of these states. A
preliminary calculation of the potential energy curves of the
LiH molecule confirms that adding the short-range density
functional leads to including dynamic correlation that in turn
results in deepening the potential curves in the neighborhood
of the equilibrium geometry.

In summary, we have provided a theoretical framework
for an approach based on the variational principle for the
Helmholtz energy that in its constrained formulation is equiv-
alent to the ensemble variational theory, with the ensemble
weights taking the form of Boltzmann factors. The practical
algorithm we have proposed is capable of capturing both
static and dynamic correlation. The latter is reproduced
by including the short-range PBE functional. Despite its
simplicity, this functional performs well for small systems
such as LiH but in the future, approximate density functionals
more appropriate for describing ensemble energy should be
developed. It is also of importance for the Ens-lrWF + srDF
method to establish optimal values of the two parameters that
the method involves: the inverse of the quasitemperature β and
the range-separation parameter μ. Work along these lines is in
progress.

ACKNOWLEDGMENTS

This work was supported by the National Science Centre
of Poland under Grant No. DEC-2012/05/B/ST4/01200. K.P.
and E.P. would like to thank the ISIS Theory Group at the
Rutherford Appleton Laboratory in Chilton for their kind
hospitality.

[1] A. Theophilou, J. Phys. C (Solid State Phys.) 12, 5419 (1979).
[2] E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37,

2805 (1988).
[3] A. Theophilou, in The Single-Particle Density in Physics and

Chemistry, edited by N. March and B. Deb (Academic, London,
1987).

[4] N. Gidopoulos and A. Theophilou, Philos. Mag. B 69, 1067
(1994).

[5] V. N. Glushkov and A. K. Theophilou, J. Phys. B: At., Mol. Opt.
Phys. 35, 2313 (2002).

[6] J. C. Stoddart and K. Davis, Solid State Commun. 42, 147 (1982).
[7] E. K. U. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37,

2809 (1988).
[8] F. Tasnadi and A. Nagy, J. Chem. Phys. 119, 4141 (2003).
[9] N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross,

Physica B (Amsterdam) 318, 328 (2002).
[10] F. Tasnadi and A. Nagy, J. Phys. B: At., Mol. Opt. Phys. 36,

4073 (2003).
[11] N. I. Gidopoulos, P. G. Papaconstantinou, and E. K. U. Gross,

Phys. Rev. Lett. 88, 033003 (2002).
[12] L. N. Oliveira, E. K. U. Gross, and W. Kohn, Phys. Rev. A 37,

2821 (1988).
[13] I. Andrejkovics and A. Nagy, Chem. Phys. Lett. 296, 489 (1998).
[14] G. Paragi, I. K. Gyemant, and V. E. Van Doren, Chem. Phys.

Lett. 324, 440 (2000).
[15] G. Paragi, I. K. Gyemant, and V. E. Van Doren, J. Mol. Struct.,

Theochem 571, 153 (2001).
[16] M. Tassi, I. Theophilou, and S. Thanos, Int. J. Quantum Chem.

113, 690 (2013).
[17] N. D. Mermin, Ann. Phys. (NY) 21, 99 (1963).
[18] T. A. Kaplan and P. Argyres, Ann. Phys. (NY) 92, 1 (1975).

[19] N. D. Mermin, Phys. Rev. 137, A1441 (1965).
[20] W. Kohn, Phys. Rev. A 34, 737 (1986).
[21] S. Pittalis, C. R. Proetto, A. Floris, A. Sanna, C. Bersier, K.

Burke, and E. K. U. Gross, Phys. Rev. Lett. 107, 163001 (2011).
[22] H. Stoll and A. Savin, in Density Functional Methods in Physics,

edited by R. M. Dreizler and J. da Providencia (Plenum, New
York, 1985), pp. 177–207.

[23] A. Savin, in Recent Developments and Applications of Modern
Density Functional Theory, edited by J. M. Seminario (Elsevier,
Amsterdam, 1996), pp. 327–357.

[24] J. Toulouse, F. Colonna, and A. Savin, Phys. Rev. A 70, 062505
(2004).

[25] R. Pollet, A. Savin, T. Leininger, and H. Stoll, J. Chem. Phys.
116, 1250 (2002).

[26] E. Fromager, J. Toulouse, and H. J. A. Jensen, J. Chem. Phys.
126, 074111 (2007).

[27] E. Goll, H.-J. Werner, and H. Stoll, Phys. Chem. Chem. Phys.
7, 3917 (2005).

[28] K. Sharkas, A. Savin, H. J. A. Jensen, and J. Toulouse, J. Chem.
Phys. 137, 044104 (2012).

[29] K. Pernal, Phys. Rev. A 81, 052511 (2010).
[30] D. R. Rohr, J. Toulouse, and K. Pernal, Phys. Rev. A 82, 052502

(2010).
[31] K. Pernal, J. Chem. Phys. 136, 184105 (2012).
[32] E. Fromager, S. Knecht, and H. J. A. Jensen, J. Chem. Phys.

138, 084101 (2013).
[33] O. Gritsenko, K. Pernal, and E. J. Baerends, J. Chem. Phys. 122,

204102 (2005).
[34] N. N. Lathiotakis, S. Sharma, J. K. Dewhurst, F. G. Eich,

M. A. L. Marques, and E. K. U. Gross, Phys. Rev. A 79, 040501
(2009).

062501-10

http://dx.doi.org/10.1088/0022-3719/12/24/013
http://dx.doi.org/10.1103/PhysRevA.37.2805
http://dx.doi.org/10.1103/PhysRevA.37.2805
http://dx.doi.org/10.1080/01418639408240176
http://dx.doi.org/10.1080/01418639408240176
http://dx.doi.org/10.1088/0953-4075/35/10/310
http://dx.doi.org/10.1088/0953-4075/35/10/310
http://dx.doi.org/10.1016/0038-1098(82)90371-4
http://dx.doi.org/10.1103/PhysRevA.37.2809
http://dx.doi.org/10.1103/PhysRevA.37.2809
http://dx.doi.org/10.1063/1.1572452
http://dx.doi.org/10.1016/S0921-4526(02)00799-8
http://dx.doi.org/10.1088/0953-4075/36/20/002
http://dx.doi.org/10.1088/0953-4075/36/20/002
http://dx.doi.org/10.1103/PhysRevLett.88.033003
http://dx.doi.org/10.1103/PhysRevA.37.2821
http://dx.doi.org/10.1103/PhysRevA.37.2821
http://dx.doi.org/10.1016/S0009-2614(98)01075-6
http://dx.doi.org/10.1016/S0009-2614(00)00613-8
http://dx.doi.org/10.1016/S0009-2614(00)00613-8
http://dx.doi.org/10.1016/S0166-1280(01)00561-9
http://dx.doi.org/10.1016/S0166-1280(01)00561-9
http://dx.doi.org/10.1002/qua.24049
http://dx.doi.org/10.1002/qua.24049
http://dx.doi.org/10.1016/0003-4916(63)90226-4
http://dx.doi.org/10.1016/0003-4916(75)90263-8
http://dx.doi.org/10.1103/PhysRev.137.A1441
http://dx.doi.org/10.1103/PhysRevA.34.737
http://dx.doi.org/10.1103/PhysRevLett.107.163001
http://dx.doi.org/10.1103/PhysRevA.70.062505
http://dx.doi.org/10.1103/PhysRevA.70.062505
http://dx.doi.org/10.1063/1.1430739
http://dx.doi.org/10.1063/1.1430739
http://dx.doi.org/10.1063/1.2566459
http://dx.doi.org/10.1063/1.2566459
http://dx.doi.org/10.1039/b509242f
http://dx.doi.org/10.1039/b509242f
http://dx.doi.org/10.1063/1.4733672
http://dx.doi.org/10.1063/1.4733672
http://dx.doi.org/10.1103/PhysRevA.81.052511
http://dx.doi.org/10.1103/PhysRevA.82.052502
http://dx.doi.org/10.1103/PhysRevA.82.052502
http://dx.doi.org/10.1063/1.4712019
http://dx.doi.org/10.1063/1.4792199
http://dx.doi.org/10.1063/1.4792199
http://dx.doi.org/10.1063/1.1906203
http://dx.doi.org/10.1063/1.1906203
http://dx.doi.org/10.1103/PhysRevA.79.040501
http://dx.doi.org/10.1103/PhysRevA.79.040501


CALCULATION OF ELECTRONIC EXCITED STATES OF . . . PHYSICAL REVIEW A 87, 062501 (2013)

[35] M. Piris, X. Lopez, F. Ruipèrez, J. M. Matxain, and J. M. Ugalde,
J. Chem. Phys. 134, 164102 (2011).

[36] J. Cioslowski and K. Pernal, J. Chem. Phys. 115, 5784 (2001).
[37] A. J. Cohen and E. J. Baerends, Chem. Phys. Lett. 364, 409

(2002).
[38] M. Piris and J. M. Ugalde, J. Comp. Chem. 30, 2078

(2009).

[39] H. Werner and W. Meyer, J. Chem. Phys. 74, 5794 (1981).
[40] T. Dunning, J. Chem. Phys. 90, 1007 (1989).
[41] B. Prascher, D. Woon, K. Peterson, T. Dunning Jr, and A. Wilson,

Theor. Chem. Acc. 128, 6982 (2011).
[42] DALTON, a molecular electronic structure program, Re-

lease 2.0 (2005), see http://www.kjemi.uio.no/software/
dalton/dalton.html

062501-11

http://dx.doi.org/10.1063/1.3582792
http://dx.doi.org/10.1063/1.1383292
http://dx.doi.org/10.1016/S0009-2614(02)01345-3
http://dx.doi.org/10.1016/S0009-2614(02)01345-3
http://dx.doi.org/10.1002/jcc.21225
http://dx.doi.org/10.1002/jcc.21225
http://dx.doi.org/10.1063/1.440892
http://dx.doi.org/10.1063/1.456153
http://dx.doi.org/10.1007/s00214-010-0764-0
http://www.kjemi.uio.no/software/dalton/dalton.html
http://www.kjemi.uio.no/software/dalton/dalton.html

