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CALCULATION OF GAUSS-KRONROD QUADRATURE RULES

DIRK P. LAURIE

Abstract. The Jacobi matrix of the (2n+1)-point Gauss-Kronrod quadrature
rule for a given measure is calculated efficiently by a five-term recurrence
relation. The algorithm uses only rational operations and is therefore also
useful for obtaining the Jacobi-Kronrod matrix analytically. The nodes and
weights can then be computed directly by standard software for Gaussian
quadrature formulas.

1. Introduction

A (2n+ 1)-point Gauss-Kronrod integration rule for the integral

If =

∫ b

a

f(x) ds(x),(1)

where s is a nonnegative measure on the interval [a, b], is a formula of the form

K(2n+1)f =

2n+1∑
i=1

wif(xi)(2)

with the following two properties:

• n of the nodes of K(2n+1) coincide with those of the n-point Gaussian quad-
rature rule G(n) for the same measure;
• K(2n+1)f = If whenever f is a polynomial of degree less than or equal to

3n+ 1.

A thorough survey of the history, existence and other theoretical properties, and
computational aspects of Gauss-Kronrod rules and their generalizations is given by
Gautschi [9]. In this paper we are concerned with the efficient calculation of the
nodes xi and weights wi of Gauss-Kronrod rules. Several methods for computing
these formulas have been suggested [2, 3, 4, 6, 14, 15, 21, 22] but most of them, as
Gautschi puts it, compute the Gauss-Kronrod formula “piecemeal.” That is to say,
the new points and their weights are found by one method, and the new weights
for the old points by another.

The present author is aware of only two methods for computing the entire formula
K(2n+1) in a single algorithm. One of them [2, 6] is based on solving by Newton’s
method the 3n + 2 equations that express the exactness of the quadrature rule.
In [6] the authors remark about this method: “ . . . by careful choice of initial
approximations and continued monitoring of the iteration process, the method could
be made to work for rules with up to 81 nodes . . . .” The other [4] is a very general
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1134 DIRK P. LAURIE

algorithm for embedded quadrature formulas that uses among other tools the full
eigenvector matrix of a tridiagonal matrix and the singular value decomposition.
Both these methods therefore require O(n3) operations.

The main contribution of the present paper is an O(n2) procedure for computing
specifically the Kronrod extension. It is not applicable to more general embedded
quadratures. The procedure is derived in Section 4 and given in pseudocode in
the Appendix. We do not claim that this procedure is more accurate than the
“piecemeal” methods, or even that it is computationally more efficient — such issues
will need a thorough investigation — but only that it is an efficient way of reducing
the computation of a Kronrod rule to the well-studied problem of computing a
Gaussian rule from recurrence coefficients.

For the calculation of Gaussian quadrature rules, the definitive algorithm (in-
cluded in the recent software package of Gautschi [10]) is that of Golub and Welsch
[11], which is based on the recurrence relation

p−1(x) = 0;(3)

p0(x) = 1;(4)

pj+1(x) = (x− aj)pj(x)− bjpj−1(x), j = 0, . . . 1,(5)

satisfied by the polynomials pj orthogonal with respect to the weight s. Since b0
only appears as a multiplier for p−1 (which is zero), any finite value will do: we
follow Gautschi [7] in putting b0 = Ip2

0, which leads to the useful property that

Ip2
j = b0b1 . . . bj.(6)

Golub and Welsch show that for all integers m ≥ 1 the nodes of the Gaussian
formula G(m) are the eigenvalues, and the weights are proportional to the squares
of the first components of the normalized eigenvectors, of the symmetric tridiago-
nal matrix (known as the Jacobi matrix associated with the Gaussian quadrature
formula)

Tm =


a0

√
b1√

b1 a1

√
b2

. . .
. . .

. . .√
bm−1 am−1

 .(7)

Remark. Although the routine in [10] works explicitly with the quantities in Tm
(which are formed by taking square roots of the bj) there exist square-root free
eigensolvers for tridiagonal matrices that work directly with the bj (see [19], Sec-
tion 8–15, and [20]). An investigation of which eigensolver is most accurate for the
special purpose of computing Gaussian quadrature formulas would be worthwhile,
but is outside the scope of the present article. The claim in [20] that small com-
ponents of eigenvectors are computed with high relative accuracy is of particular
interest here.

Let us now suppose that the 2n + 1 nodes and weights of the Gauss-Kronrod
formula K(2n+1) can be found in a similar way from the symmetric tridiagonal
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CALCULATION OF GAUSS-KRONROD QUADRATURE RULES 1135

matrix

T̂2n+1 =


â0

√
b̂1√

b̂1 â1

√
b̂2

. . .
. . .

. . .√
b̂2n â2n

(8)

which we shall call the Jacobi-Kronrod matrix associated with the Gauss-Kronrod
formula K(2n+1). We do not know T̂2n+1, but we do know a lot about it: some
theoretical questions are discussed in Section 2. Our main result in Section 4 is a

rational algorithm that computes T̂2n+1 efficiently in O(n2) arithmetic operations.
A related problem is considered by Boley and Golub [1], where the double-

dimension Jacobi matrix T2n is to be found when all its eigenvalues are known and
Tn is specified. They use the available information to compute the weights of G(2n)

in O(n2) arithmetic operations, after which any algorithm (three such are cited in
[1]) for recovering a Jacobi matrix from its Gaussian quadrature formula may be

used to compute T2n. Since we do not know all the eigenvalues of T̂2n+1, a similar
algorithm is not possible here.

The main tool that we require is the theory of mixed moments, which is implicit
in the work of Salzer [25] and appears more explicitly in the work of Sack and
Donovan [24] and Wheeler [26]. An accessible exposition is given by Gautschi [8].
For the sake of clarity, we give the essentials of the theory in Section 3.

2. Properties of the Jacobi-Kronrod matrix

In the literature on Kronrod formulas and Stieltjes polynomials (see the surveys
[9, 18]) some non-existence theorems on these formulas are given. It is therefore
of interest to relate existence questions to the Jacobi-Kronrod matrix. We use the
following terminology [16]:

• A quadrature formula exists if its defining equations have a (possibly complex)
solution.
• The formula is real if the points and weights are all real.
• A real formula is internal if all the points belong to the (closed) interval of

integration. A node not belonging to the interval is called an exterior node.
• The formula is positive if all the weights are positive.

It is well known (see e.g. [7]) that there is a one-to-one correspondence between
Jacobi matrices and quadrature formulae with positive weights: if we knew the
Kronrod formula itself, we could in principle find the Jacobi-Kronrod matrix, even
though the computation may be delicate [12]. So we have:

Fact 1. The Jacobi-Kronrod matrix exists and is real if and only if the correspond-
ing Kronrod formula exists and is real and positive.

Note that this fact does not imply that the Kronrod formula contains no exterior
nodes. In view of Monegato’s result [17] that positivity of the weights of the new
points is equivalent to the interlacing property (i.e. that there is one Gaussian node
between any consecutive pair of Kronrod nodes), all that can be said is that at
most two nodes, one at each end point, are exterior. It is, however, easy to diag-
nose whether the formula is interior once the Jacobi-Kronrod matrix is available:
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1136 DIRK P. LAURIE

one simply factorizes T̂2n+1 − aI = LDLT , where L is lower triangular with unit
diagonal, and D = diag{d0, d1, . . . , d2n}. It is well known (see any standard text

on linear algebra) that there is one eigenvalue of T̂2n+1 less than the end point a
if and only if there is one sign change on the diagonal of D. This algorithm is also
rational, since d0 = a0, dj+1 = aj+1− bj+1/dj. A similar test can be applied at the
other end point b.

As pointed out in [16], the fact that the formula K(2n+1) is exact for polynomials
of degree less than or equal to 3n + 1 implies that the first 3n + 1 coefficients in

the sequence {â0, b̂1, â1, b̂2, . . . } equal the corresponding coefficients in the known
sequence {a0, b1, a1, b2, . . . }. Only the remaining n coefficients are unknown. They

are determined by the condition that n of the eigenvalues of T̂2n+1 are fixed to
be equal to the eigenvalues of Tn. At first sight this seems to be a partial inverse
eigenvalue problem, subject to all the difficulties that surround the solution of such
problems, but we shall show in Section 4 that the n unknown coefficients can be
determined efficiently in O(n2) arithmetic operations.

The algorithm given in Section 4 is rational and the only divisions are by quan-

tities that can only be zero if some b̂j = 0. We therefore have:

Fact 2. The algorithm of Section 4 cannot break down if the corresponding Kron-
rod formula exists and is real and positive.

This does not imply that the algorithm will break down if the Gauss-Kronrod
formula is not real and positive: it may very well still succeed. But in that case, by
Fact 1, the Kronrod-Jacobi matrix cannot be real, so at least one of the computed

recurrence coefficients b̂j must be negative. This means, of course, that the Golub-
Welsch algorithm, which always produces real non-negative formulas, can no longer
be used to compute the Gauss-Kronrod formula.

There does not seem to be an easy way of distinguishing between the cases of
negative weights and non-real nodes. For example, when trying to construct a
7-point extension of the 3-point Gauss-Hermite formula (proved to be impossible

in [13]), we obtain b̂6 = −1, and indeed the corresponding Kronrod formula has
complex nodes. When trying to construct a 9-point extension of the 4-point Gauss-

Hermite formula (not proved to be impossible in [13] 1) we obtain b̂7 = − 1
4 , b̂8 = 1

4 ,
and the formula indeed turns out to have real nodes but negative weights at two of
the old points.

It is also possible to use the Jacobi-Kronrod matrix as a theoretical tool. In
[5] the authors investigate whether the Gauss-Kronrod formula associated with the
Jacobi weight function

ds(x) = (1− x)α(1 + x)β dx(9)

is real, positive and internal. In the case n = 1 they obtain analytic results,
and thereafter give graphs based on numerical calculations. It is easy to code the

algorithm of Section 4 in an algebraic language and obtain the numbers b̂j and dj
analytically. To illustrate this point we have computed the critical coefficients in

1The results of [13] are often misquoted as implying that a positive extension of the 4-point

Hermite formula exists, but the abstract only claims “ . . . do not exist with positive weights when
n > 0 in the Laguerre case and n = 3 or n > 4 in the Hermite case.” The corollary on p. 985 of
[13] does state “ . . . only exist for n = 1, 2, 4” but the proof is a non-existence proof of the other
cases, so the quoted phrase is clearly a misprint for “ . . . can only exist for n = 1, 2, 4.”
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the case n = 2, namely

b̂4 =
2 (α+ β + 5)P3,3(α, β)

(4 + β) (α+ β + 3) (α+ β + 4) (α+ β + 6)2
,

d4 =
P2,4(α, β)

(α+ β + 3) (α+ β + 6)
2
(α+ β + 8)

2 ,

where

P2,4(α, β) = [ 1 α α2 ]

 72 213 137 21 1
−3 4 21 2 0
11 0 1 0 0




1
β
β2

β3

β4


and

P3,3(α, β) = [ 1 α α2 α3 ]


576 336 −71 −23
336 434 51 1
−71 51 2 0
−23 1 0 0




1
β
β2

β3

 .
One can therefore conclude that the 5-point Gauss-Kronrod formula is real and
positive when P3,3(α, β) > 0 and is internal when P2,4(α, β) ≥ 0 (there is no node
less than −1) and P2,4(β, α) ≥ 0 (there is no node greater than 1). The lines marked
b and c in the first graph on p.241 of [5] are thereby obtained analytically.

The following lemma gives an essential property of the Jacobi-Kronrod matrix

T̂2n+1, which will later be the key to its efficient computation.

Lemma 1. The characteristic polynomial of the trailing principal n×n submatrix

of the Jacobi-Kronrod matrix T̂2n+1 is the same as that of its leading principal n×n
submatrix.

Proof. Denote by φk and ψk respectively the characteristic polynomial of the

leading and trailing k × k principal submatrices of T̂2n+1. Expand φ2n+1(λ) =

det(T̂2n+1 − λI) along the (n+ 1)-st row. Then (suppressing the argument (λ) for
the sake of readability)

φ2n+1 = −φn−1b̂nψn + (an − λ)φnψn − φnb̂n+1ψn−1.(10)

Clearly any common zero of φn and ψn is a zero of φ2n+1. Conversely, if φ2n+1

is to have φn as a factor, then φn−1ψn must be divisible by φn since b̂n = bn,
which is nonzero by (6). But φn−1 and φn are consecutive terms in a sequence of
orthogonal polynomials and therefore mutually prime. It follows that ψn is divisible
by φn. Since the two polynomials have the same leading coefficient, they must be
identical.

Remark. Once we know that φn = ψn, it is of course possible to divide equation
(10) by ψn to obtain

φ2n+1

ψn
= −φn−1b̂n + (an − λ)φn − b̂n+1ψn−1,(11)

which gives an explicit expression for the polynomial with zeros at the Kronrod
nodes.
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3. Mixed moments

Suppose that two different systems of monic orthogonal polynomials are being
considered: the system defined in (5), which we shall sometimes call the ‘old’
system, and a similar system (the ‘new’ system) defined by

π−1(x) = 0;(12)

π0(x) = 1;(13)

πj+1(x) = (x− αj)πj(x)− βjπj−1(x), j = 0, 1, . . . .(14)

The new system (12–14) is assumed to be orthogonal with respect to some inner
product (·, ·)σ with the property that for any three polynomials f, g, h,

(f, gh)σ = (fg, h)σ.(15)

As before, it is convenient to put β0 = (π0, π0)σ.
Salzer [25] considered the problem of converting a finite expansion in terms of

the old polynomials pj into one in terms of the new polynomials πj . Expanding
each pj in terms of the πj , one finds

pl =

l∑
k=0

σk,l
σk,k

πk(16)

where the mixed moments σk,l are given by

σk,l = (πk, pl)σ.(17)

The crucial observation is that a five-term recurrence for the mixed moments can
be derived by putting j = l in (5), j = k in (14), taking the new inner product with
πk and pl respectively, and subtracting. Thanks to the property (15), the terms
that do not immediately reduce to mixed moments cancel, and we are left with

σk,l+1 + alσk,l + blσk,l−1 − (σk+1,l + αkσk,l + βkσk−1,l) = 0.(18)

The equation (18) can be written in a visually appealing manner familiar to
practioners of finite difference methods as −βk

bl al − αk 1
−1

 σk,l = 0.(19)

Here k is the row index and l is the column index, and the rows are numbered from
top to bottom as is usual with matrices. Values of σk,l that are known in advance
are

σ0,0 = β0;(20)

σ−1,l = 0, 1 = 0, 1, . . . , n,(21)

σk,−1 = 0, k = 0, 1, . . . , n,(22)

σk,l = 0, l = 0, 1, . . . , k − 1.(23)

Equation (23) holds because πk is orthogonal in the new inner product to all poly-
nomials of lower degree.

In the application considered by Salzer [25], all the new recurrence coefficients
are known. Then σk,l can be computed for l increasing, with the ‘East’ moment
in (19) the unknown, as in Figure 1. The solution to the problem is obtained
by substituting (16) into the given orthogonal expansion. (This explanation of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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l 0 1 2 3

k 0 0 0 0
0 0 β0 ∗ ν · · ·
1 0 0 ∗ ν · · ·
2 0 0 ν · · ·
3 0 0

. . .

4 0 0

Figure 1. Build-up of mixed moments σk,l in Salzer’s algorithm.
The stars denote moments that have already been computed, and
each ν denotes a new moment that is being computed at that stage.

l 0 1 2 3 · · · 2n− 4 2n− 3 2n− 2 2n− 1

k 0 0 0 0 · · · 0 0 0 0
0 0 µ0 µ1 µ2 µ3 · · · µ2n−4 µ2n−3 µ2n−2 µ2n−1

1 0 0 ∗ ∗ ∗ · · · ∗ ∗ ∗
2 0 0 ν ν · · · ν ν

3 0 0
. . . · · · . .

.

Figure 2. Build-up of mixed moments in the Sack-Donovan-
Wheeler algorithm. The stars denote moments that have already
been computed, and each ν denotes a new moment that is being
computed at that stage.

Salzer’s algorithm, simplified to emphasize its kinship with the other algorithms
considered here, does not do full justice to its ingenuity. In fact, it employs a five-
term recurrence involving the expansion coefficients directly, rather than doing the
last-mentioned substitution.)

In the application considered by Sack and Donovan [24] and Wheeler [26], the
new recurrence coefficients αk and βk are unknown, but the modified moments

µl = σ0,l, l = 0 = 1, . . . , 2n− 1(24)

are assumed to be known. In that case, the recurrence can be computed for k
increasing, with the ‘South’ moment in (19) the unknown, as in Figure 2. The
essential idea is that when row k has been computed, one can obtain βk and αk by
considering (19) at position (k, k − 1) to yield

βk =
σk,k

σk−1,k−1
(25)

and at position (k, k) to yield
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1140 DIRK P. LAURIE

αk = ak +
σk,k+1 − βkσk−1,k

σk,k
(26)

= ak +
σk,k+1

σk,k
− σk−1,k

σk−1,k−1
.(27)

4. Computation of the Jacobi-Kronrod matrix

The lemma in Section 2 reduces the partial inverse eigenvalue problem of finding
a (2n + 1) × (2n + 1) matrix with n prescribed eigenvalues to a standard inverse
eigenvalue problem in which the number of prescribed eigenvalues is the same as
the order of the matrix. Moreover, this problem can be solved in a finite number
of steps.

Let the old polynomials pl of §2 be the same as those of §1, and let the new
polynomials πk of §2 be given by (12–14) with

αk = ân+k+1, βk = b̂n+k+1, k = 0, 1, . . . , n− 1.(28)

That is, the polynomials πk are those associated with the trailing n× n submatrix
of the Jacobi-Kronrod matrix.

Which mixed moments can we now compute? The first n − 1 entries in the
sequence {α0, β1, α1, β2, . . . } are known: they are just an+1, bn+2, an+2, bn+3, . . . .
So we can compute a number of mixed moments with the East moment as the
unknown, as in the case of Salzer’s algorithm. To progress further, we use the fact
that πn = pn, and therefore

σk,n = 0, k = 0, 1, . . . , n− 1.(29)

This allows us to complete the process in the same way as the Sack-Donovan-
Wheeler algorithm, with the South moment as the unknown, computing new values
of αk and βk as soon as possible, up to σn−1,n−1, which together with the known
σn−1,n = 0 is all that we need. The whole scheme is illustrated for n = 7 in Figure
3. Here we know α0, β1, α1, β2, α2 and β3. The pattern is typical for odd n; when
n is even, a diagonal of asterisked entries starting at σk,k+1 where k = n/2− 1 can
also be computed, because ak is then known.

l 0 1 2 3 4 5 6 n
k 0 0 0 0 0 0 0 0
0 0 ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0

1 0 0 ∗ ∗ ∗ ∗ ∗ ν 0

2 0 0 ∗ ∗ ∗ ν ν 0

3 0 0 ∗ ν ν ν 0

4 0 0 ν ν ν 0

5 0 0 ν ν 0

6 0 0 ν 0

Figure 3. Computation of mixed moments for the Jacobi-
Kronrod matrix when n = 7. The stars denote quantities com-
putable from the known recurrence coefficients, with the recurrence
going ‘Eastwards’, and the ν’s quantities computable with the re-
currence going ‘Southwards’, by using the fact that pn = πn gives
a column of zeros, here indicated by 0.
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Building the table diagonal by diagonal, we obtain the following algorithm.

Initialization:

σ0,0 = 1;

σ−1,l = 0, l = 0 : n;

σk,n = 0, k = 1 : n− 1;

σk,l = 0, l = 1 : n− 2, k = l + 1, l+ 2.

Eastward phase: For m = 0 : n− 2

σk,l+1 = σk+1,l + (αk − al)σk,l + βkσk−1,l − blσk,l−1,

k = dm/2e : −1 : 0, l = m− k.
Southward phase: For m = n− 1 : 2n− 3

σk+1,l = σk,l+1 − (αk − al)σk,l − βkσk−1,l + blσk,l−1,

k = m+ 1− n : dm/2e, l = m− k.

If m is even, αk = ak +
σk,k+1 − βkσk1,k

σk,k
.

If m is odd, βk =
σk,k

σk−1,k−1
.

Termination:

αn−1 = an−1 − βn−1
σn−2,n−1

σn−1,n−1
.

The algorithm uses approximately 3
2n

2 multiplications, and can be implemented
with two temporary vectors of length bn/2c+ 2. The details are given in the Ap-
pendix.

Remark. A variation may be obtained by reversing the rows and columns of the

leading n × n submatrix of T̂2n+1 before entering the algorithm. Since the char-
acteristic polynomial is unchanged, the values of αk and βk computed in this way
are theoretically the same, even though the modified moments σk,j differ. Our
numerical experiments do not indicate a preference for either version.

5. Numerical example

We illustrate the algorithm by computing the Kronrod extension of the n-point
Gauss-Jacobi formula for the weight function (9) over the interval (−1, 1). In the nu-
merical example shown here, we took α = 0.3 and β = −0.6, and n = 3, 4, . . . , 199.
The computations were performed in double precision on a machine conforming to
the IEEE floating point standard, and for both the normal and ‘reversed’ versions
of the algorithm. Actually, as recommended by Reichel [23], the coefficients were
scaled to the interval (−2, 2) before performing the computation, and the resulting
points and weights (obtained by Gautschi’s routine gauss from [10]) were scaled
back to (−1, 1). On a machine with a small exponent range, this subterfuge is
necessary to avoid underflow of the modified moments.
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1142 DIRK P. LAURIE

Figure 4. Mean absolute difference (units of machine epsilon) in
common points of computed n-point Gauss-Jacobi and (2n + 1)-
point Kronrod-Jacobi formulas (α = 0.3, β = −0.6).

In this example the coefficients b̂j all turn out to be positive, and therefore the
old and new nodes interlace. There is one node less than −1. An a posteriori
indication of the accuracy of the computed formula can be obtained by comparing
every second computed node of the Kronrod extension with the corresponding node
ξi of the original Gaussian formula, computed using gauss in the same precision.
Since there is no reason to think that the eigenvalue solver can discriminate in
accuracy between the original and the new nodes, one may suppose that the new
nodes are computed to an accuracy similar to that observed for the old nodes.
Unfortunately this check says nothing about the accuracy of the weights.

In Figure 4 we show the average difference between these zeros as a multiple of
the machine roundoff level τ, i.e. the quantity

ηn =
1

n

n∑
i=1

|x2i − ξi|
τ

.

Most of the values lie in the range 1 < ηn < 2, although there is a slight tendency
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for ηn to increase with n. The results from the ‘reversed’ version show essentially
the same behaviour and are therefore not shown.

Thanks. The suggestions of an anonymous referee have greatly improved this
paper.

Appendix A. Pseudocode for the algorithm

Input: Vectors a = {a0, a1, . . . , a2n} and b = {b0, b1, . . . , b2n}, in which the
elements a0, a1, . . . , ab3n/2c and b0, b1, . . . , bd3n/2e have been initialized to the re-
currence coefficients of the given weight.
Working storage: Vectors s = {s−1, s0, . . . , sbn/2c} and t = {t−1, t0, . . . , tbn/2c},
initialized to zeros.
Output: The vectors a and b now contain the recurrence coefficients from which
the (2n+1)-point Gauss-Kronrod formula is obtained by Gautschi’s routine gauss
from [10].

We use the notation s ↔ t to indicate that the contents of the vectors s and t
should be swapped. In an actual implementation, only the pointers to the vectors
would be swapped: e.g. the vectors could be rows is and it of a two-row matrix,
and one would swap the indices is and it.

begin generate Jacobi-Kronrod matrix
t0 ← bn+1

for m from 0 to n− 2
u← 0
for k from b(m+ 1)/2c downto 0
l ← m− k
u← u+ (ak+n+1 − al) tk + bk+n+1sk−1 − blsk
sk ← u

end for k
s↔ t

end for m
for j from bn/2c downto 0
sj ← sj−1

end for j
for m from n− 1 to 2n− 3
u← 0
for k from m+ 1− n to b(m− 1)/2c
l ← m− k
j ← n− 1− l
u← u− (ak+n+1 − al) tj − bk+n+1sj + blsj+1

sj ← u
end for k
if m mod 2 = 0
k ← m/2
ak+n+1 ← ak + (sj − bk+n+1sj+1)/tj+1

else
k ← (m+ 1)/2
bk+n+1 ← sj/sj+1
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endif
s↔ t

end for m
a2n ← an−1 − b2ns0/t0

end generate Jacobi-Kronrod matrix
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