
Calculation of Matrix Elements for OneDimensional QuantumMechanical
Problems and the Application to Anharmonic Oscillators
David O. Harris, Gail G. Engerholm, and William D. Gwinn 
 
Citation: J. Chem. Phys. 43, 1515 (1965); doi: 10.1063/1.1696963 
View online: http://dx.doi.org/10.1063/1.1696963 
View Table of Contents: http://jcp.aip.org/resource/1/JCPSA6/v43/i5 
Published by the AIP Publishing LLC. 
 
Additional information on J. Chem. Phys.
Journal Homepage: http://jcp.aip.org/ 
Journal Information: http://jcp.aip.org/about/about_the_journal 
Top downloads: http://jcp.aip.org/features/most_downloaded 
Information for Authors: http://jcp.aip.org/authors 

Downloaded 24 Jun 2013 to 129.186.149.35. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://jcp.aip.org/?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/2052096014/x01/AIP-PT/JCP_PDFCoverPg_0613/comment_1640x440.jpg/6c527a6a7131454a5049734141754f37?x
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=David O. Harris&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=Gail G. Engerholm&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/search?sortby=newestdate&q=&searchzone=2&searchtype=searchin&faceted=faceted&key=AIP_ALL&possible1=William D. Gwinn&possible1zone=author&alias=&displayid=AIP&ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://link.aip.org/link/doi/10.1063/1.1696963?ver=pdfcov
http://jcp.aip.org/resource/1/JCPSA6/v43/i5?ver=pdfcov
http://www.aip.org/?ver=pdfcov
http://jcp.aip.org/?ver=pdfcov
http://jcp.aip.org/about/about_the_journal?ver=pdfcov
http://jcp.aip.org/features/most_downloaded?ver=pdfcov
http://jcp.aip.org/authors?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS VOLUME 43, NUMBER 5 1 SEPTEMBER 1965 

Calculation of Matrix Elements for One-Dimensional Quantum-Mechanical Problems 
and the Application to Anharmonic Oscillators 
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Department of Chemistry, University of California, Berkeley, California 

(Received 14 April 1965) 

A simple method using the techniques of transformation theory for the generation of the matrix elements 
of unusual potential fUnctions for. one-dimensional quantum-mechanical problems is described. It is ap­
plicable both to functions which exist as a set of points, for example, a curve or table, as welJ as to those 
in explicit form. Some representative calculations have been made for anharmonic oscillators. 

OF the various methods available for the practical 
solution of quantum-mechanical problems having 

unusual potential functions, the one we have found to 
be most convenient uses the matrix formulation of 
quantum mechanics. The energy levels are obtained 
by setting up the Hamiltonian in some convenient 
representation and diagonalizing the resultant matrix. 
The expectation values of various dynamical variables 
and transition dipole moments are then obtained by 
transforming the matrices of the appropriate operators 
to the energy representation. Systems having infinite 
basis sets can be easily handled simply by truncating 
the matrices to some convenient size. This procedure 
has given, for example, the first 20 quartic oscillator 
energy levels and associated eigenvectors very ac­
curately by starting with 100 harmonic-oscillator basis 
functions. l 

The matrix formulation requires a set of matrices 
which satisfy the basic commutation rules for the co­
ordinates and momenta; it also requires being able to 
generate the appropriate matrix to represent the po­
tential function. These matrices may be computed by 
direct integration, or by the use of generating func­
tions, or, as Chan has done, by combining generating 
functions and commutation relations.2 Often, however, 
the generation of these matrices can be the most difficult 
and tedious part of the problem. A well-known method 
which makes use of transformation theory can be used 
to greatly facilitate the computation.3 An analysis of 
residual errors due to the truncation has been made and 
is described in the last section of this paper. 

The method is applicable to almost any system; 
for example, the computation of exp( -f3x2) in the 
representation of the harmonic oscillator or of 

for a torsional oscillator in the exp( ± imO) representa­
tion. In addition, the function need not be expressed 
in explicit form; all that is needed is to be able to supply 
the value of the function for a series of values of the 

1 S. I. Chan and D. SteIman, J. Mol. Spectry.l0, 278 (1963). 
2 S. I. Chan and D. SteIman, J. Chern. Phys. 39, 545 (1963). 
3 See, for example, B. Friedman, Principles and Techniques of 

Applied Mathematics (John Wiley & Sons, Inc., N ew York, 1956), 
Chap. 2. 

variable. This makes the method quite attractive . . ' SInce, In many cases, the function may exist only as 
a curve, graph, or table over the range spanned by the 
problem. The only limitation on the method is that 
the function be capable of being expressed as a con­
vergent power series in the variable. 

The method is as follows: 

(I) Diagonalize X by a similarity transformation, 
i.e., 

A=T-IXT. (1) 

(II) Compute V(Aii)' 
(III) Transform back to the original representation, 

VeX) = TV(X) T-l. (2) 

Step (I) above involves the diagonalization of X. 
This step finds the eigenvalues of (X-A)'l'=O and 
would give a continuum if the matrix is of an order 
which is large without limit; however, since we are 
dealing with matrices of finite order there will be only 
a finite number of eigenvalues of X. For example, there 
would only be 50 if we are dealing with matrices of 
dimension 50XSO. These discrete eigenvalues would 
be spread symmetrically about zero through the region 
of space spanned by the problem. It should be pointed 
out that Step (I) need be carried out only once, if the 
transformation and the eigenvalues are saved from 
problem to problem. Step (II) may be accomplished 
by generating V (Aii) by the use of an explicit expres­
sion, or alternately, the values of V (A;;) may be ob­
tained by interpolation from a graph or table and 
entered into the program as a table. Step (III) in 
practice would probably not be carried out; what would 
be done is to transform the remaining operators of 
interest to the representation where X is diagonal and 
proceed from there in setting up the Hamiltonian 
matrix, finding expectation values, and so on. In this 
case, the final transformation to the energy repre­
sentation is the product of two transformations' one is . ' the Inverse of the transformation which diagonalized 
X, and the other is the transformation which would 
diagonalize the Hamiltonian if it were set up in the 
original representation. 
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TABLE I. The convergence of the elements of exp( _X2) and sinX/X with the increase in the dimension of X. 

Element 10 20 30 40 50 Exact 

a 

(1 \ exp ( - X2) \1) 0.99997762 0.99999999 0.99999999 1.00000000 1.00000000 1.00000000 

(1\ exp(-X2) \19) -0.00063911 -0.00084106 -0.00084113 -0.00084113 -0.00084114 

(10 \ exp( _X2) \10) 0.36142982 0.18839847 

(20 \ exp ( - X2) \ 20) 0.25391532 

(1\ sinX/X \1) 0.85562439 0.85562439 

(1\ sinX/X \19) 0.00000000 

(10 \ sinX/X \10) 0.31260822 0.11767075 

(20 \ sinX/X \20) 0.22671907 

a From Ref. 2. b Not available from other sources. 

APPLICATION TO ANHARMONIC OSCILLATORS 

We have used this method to compute the eigenvalues 
of the Hamiltonian H=P2+X2+aX4+a exp( _j3X2) 
for several values of a, a, and j3 using a 50X 50 matrix 
for X in the harmonic oscillator representation. Com­
parison of the eigenvalues obtained by this method 
and those obtained by Chan et at. show that they are 
identical to ± 1 in the sixth significant figure which 
is the limit of accuracy to which they are reported.2,4 

In addition, we have used this method to obtain the 
eigenvalues of the Hamiltonian 

H=P2+ V/2(1- cos20) +a exp-j3(l- cos20) 

in the exp(± imfJ) representation. In this case, the 
evaluation of the matrix elements of the potential­
energy function in the original representation is quite 
difficult and the solution of the Hamiltonian was 
greatly facilitated by the use of this method. As can 
be seen in the next section, the method works best if 
the function can be expanded in terms of small powers 
of X. As an extreme test, we have carried out the cal­
culation of the energy levels of a particle in a box using 
50 harmonic oscillator basis functions. The potential 
function that was used was defined by the relations 
V=lOlo for IA;I>2 and V=O for I Ail:S;2, where Ai 
is the ith eigenvalue of X. With this particular box 
width there are 10 eigenvalues of X which fall in the 
region where V = 0; when the kinetic energy is added 
to form the Hamiltonian these 10 eigenvalues yield 
the first 10 energy levels of the particle in a box with 
the remaining eigenvalues of the Hamiltonian being 
of the order of 1010. The first nine of these energy levels 
were accurate to ±0.1 %; the tenth was good to 5%. 
The square well of width a can be represented as the 
limit ofaXm as m approaches infinity; since this in­
volves high powers of X, it is unreasonable to expect 

4 S. I. Chan, D. SteIman, and L. E. Thompson, J. Chern. Phys. 
41, 2828 (1964). 

0.18547310 0.18547051 0.18547057 0.18547058 

0.13953067 0.12866183 0.12858544 0.12858532 

b 
0.85562439 0.85562439 0.85562439 

0.00000000 0.00000000 0.00000000 

0.11767075 0.11767075 0.11767075 

0.14343203 0.14343200 0.14343200 

the same high accuracy for this calculation as was ob­
tained for the more conventional functions. It should 
also be noted that since the eigenvalues of X are dis­
crete, all boxes with widths falling between the same 
two eigenvalues are defined exactly the same. In the 
above calculation where a/2 was nominally 2.0, the 
two eigenvalues of X which bracket this value are 
1.995904 and 2.443489; the energies that were obtained 
correspond to a/2 equal to 2.389785. 

ERROR ANALYSIS 

Since a finite number of basis functions are em­
ployed instead of the complete infinite set, errors may 
be introduced into the matrices calculated in this way. 
However, the error may be eliminated in all the ele­
ments of interest by increasing the size of the basis 
set until the desired elements no longer change sig­
nificantly. An example of this procedure is shown in 
Table I. Alternatively, in many cases it is possible to 
estimate the maximum error in a particular element 
arising from the truncation of the basis set. For ex­
ample, suppose the function may be expanded in a 
Taylor's series in X as 

V(X) =ao+a1X+a2X2+ .• 'amXm+Rm , (3) 

where Rm is the remainder if the series is truncated 
after m terms. X is the X matrix in the harmonic os­
cillator representation and Xm is evaluated from X 
by matrix multiplication. In this representation, X has 
elements only of the type (n I X I n±l); that is, it 
has elements only one off the principal diagonal. Con­
sequently, the (n I X I n+ 1) element will contribute 
to the (i, j)th element of Xm only if (i+j) >2n-m 
for m even and (i+j) >2n-m+1 for m odd. As a 
result, there will be no error introduced into (i I Xm I j) 
by truncation of the basis set at the nth basis function 
so long as (i+j) :S;2n+1-m. It should be pointed 
out that the eigenvalues and associated eigenvectors 
of X are a function of the dimension of the X matrix , 
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and hence are incorrect in the sense that they differ 
from those that would be obtained if X were an infinite 
matrix. In particular, the eigenvectors are not the delta 
functions they would be if the set of basis functions were 
infinite. The eigenvectors which are obtained simply 
constitute a transformation that brings the finite X 
matrix to a diagonal form. Any effects that the differ­
ence in this transformation and that for the infinite 
basis might have on the calculation of each term in 
Eq. (3) are exactly cancelled by the inverse trans­
formation of Step (III). 

It may then be noted that in the Taylor's series ex­
pansion of the function in terms of an n X n X matrix, 
the X matrix is exact, the X2 is exact except for the 
(n, n)th element, the X3 except for the (n-l, n)th 
element, and so on. In general, the (i, j) th element of 
VeX) is exact up to and including the X2n+l-i-j term; 
thus any error in the (i, j) th element must arise from 
terms higher than this. For example, starting with a 
50X50 matrix for X, the (II VeX) 11) is exact up 
to and including the X99 term in the expansion, and 
the (30 I V (X) I 30) is exact through the term X41, 
etc. 

Through the use of remainder theorems for series 
expansions, the contribution to the (i, j) th element of 
VeX) due to truncation of the series at Xm can be 
estimated. A useful form of the remainder is given by 

(4) 

where A is some number characteristic of the function 
in question. In our case, where we are concerned with 
the error in the (i, j)th element of the matrix expan­
sion, the remainder is given by 

(R)ii75,A(X2n+2-H)ii!(2n+2-i-j)!. (5) 

It is possible to estimate the magnitude of the (i, j) th 
element of X2n+2-i-j as follows: 

(X2n+2-H );j= L XiaXab .. ·XH , "X.;. (6) 
• ··k,!· .. 

Since X has elements only one off the main diagonal, 
the number of nonzero terms in the sum is given by 

the binominal coefficientS 

(
2n+2-i-j\ (2n+2-i-j)! 

n+l-i )= (n+l-i) !(n+l-j)!' (7) 

Therefore, 

. . (2n+2-i-J') ! 
( X2n+2-,.-,) < ( X) (8) 

ij_ (n+l-i) !(n+l-j)! max k! 

where maxXkl is the largest X in the product and is 
the one having the largest index; this index is given 
by the expression 

![(i+j)+power of X]= ![(i+j)+2n+2-i-j] = n+1. 

Hence the maximum X kl is X",,,+l. The matrix element 
of X",n+l in the harmonic oscillator representation is 
given by (n+l)!, so the remainder can be written 

A (n+ 1) (2n+2-i-i1/2 

(R)ii75, (n+l-i) !(n+l-j)!' (9) 

Therefore, given a particular function, the maximum 
error in the (i, j) th element can be estimated. 

For the case where the function of interest is of the 
form V (cos6) and the calculations are made in the 
exp(± imIJ) basis, the errors are much smaller. Since 
(n I cos61 n±1 )=!, and since these are the only non­
zero elements of cos8, the error expression for this case 
reduces to 

A ( .1 ) 2n+2-;-i 
(R)·-< 2 (10) 

"_ (n+l-i) !(n+1-j)!' 
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6 Note added in proof: A more extensive and general theory of 
the X .. matrices in the harmonic oscillator basis is now available 
in a paper by J. F. Kilpatrick and R. L. Sass, J. Chern. Phys. 42, 
2581 (1965). 
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