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1.0 ABSTACT

This report describes a method for calculating, with the aid of an

electronic computer, the incompressible potential flow about arbitrary, non-

lifting, three-dimensional bodies. The method utilizes a source density dis-

tribution on the surface of the body and solves for the distribution neces-

sary to make the normal velocity zero on the boundary. Plane quadrilateral

surface elements are used to approximate the body surface, and the integral

equation for the surface source density is replaced by a set of linear alge-

braic equations for the values of the sourrce density on each of the quadri-

lateral elements. After this set of- quations has b•Žen solved, which is

accomplished by a Seidel iterative procedure, the flow velocities at points

both on and off the body surface are calculated. This approach is completely

general. Bodies are not required to be slender, analytically defined , or

simply connected. In fact the flow about an ensemble of bodies may be cal-

culated, so that interference problems may be investigated. It is only

necessary that the body can be satisfactorily approximated by the maximum

number of surface elements permitted by the storage capacity of the computing

machine. For the IBM 7090 this number varies from 675 for completely general

bodies to 4400 for bodies with three planes of symmetry.

in the text of the report, the basic formulas of the method are derived

and the computational procedure is described in detail. The accuracy of the

calculated surface velocities is exhibited by comparing them with analytic

solutions for a sphere, ellipsoids of revolution, and tri-axial ellipsoids.

Finally, the scope of the method is illustrated by presenting calculated

velocity or pressure distributions for a variety of bodies including wing-

fuselage combinations, ducts, a body in a wind tunnel, two bodies side by

side, and ship hulls.
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4.0 DEFINITION OF SYMBOLS

A area of a plane quadrilateral surface element

component of velocity normal to the body surface induced
at the null point of the i-th element (i-th basic element
in cases of symmetry) by a unit source-density on the J-th
element (J-th basic and reflected elements in cases of
symmetry)

a1 1 a12 a 1 3  elements of the transformation matrix used to transform the
coordinates of points and the components of vectors between

21 a22 23 the reference coordinate system and the element coordinate
a a 31 ' 3 system

b base of an isosceles triangle (figure 23)

b1 2  quantity defined by eq.(33)

C Pipressure coe5ficient at the null point of the i-th element,Cpi C =1 -- Vi

pi

D12 D23 quantities defined by eq.(93)
D 34 D 41

d magnitude of the common projection distance of the four input
points us--I to form an element into the plane of the element

dk k = 1, 2, 3, Lo Signed projection distance of the four input
points us~4 to form an element into the plane of the element

d12 d.23 length of the four sides of a quadrilaterai element (eq. (45),

d34 d4 1  ad1 2 also given by eq.(27)

e k k = 1, 2, 3, 4. quantities defined by eq.(48), eI and eo
also given by equation (4o)

F function defining the body surface

f perpendicular distance of a field point from the extension
of a side of a quadrilateral (figure 8)

h altitude of A'n isosceles triagn1P (figure 23)

hk k = 1, 2, 3, 4. Quantities defined by eq.(49), h1 and h2
also given by equation (41)

i I I second moments or moments of inertia of the area of a quadri-
xxy y lateral element about the origin of its element coordinate

system

M number of input points on the n-th input ''column'" or n-line
n
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AM M -- Mn n+lJ n

M M first moments of the area of a quadrilateral element aboutx y the origin of its element coordinate system

m integer denoting the position of an input point on an input
" column" or n-line or an element formed from this point

2m slopes of the sides of a quadrilateral in its own planem13 m23 (eq.(46), m.12 also given by (32))
m34 tm l1

1! the number of quadrilateral elements formed from input points
(basic elements in cases of symmetry). Also used in eqs.( 6 6)
and (67) to denote the length of the normal vector to an
element

Ni normal velocity induced at the null point of the i-th element

by all quadrilateral elements together (eq.(124))

NT number of "?columns'' or n-lines of input points in a section

N N N components of -the vector normal to an element in the reference
X Y z coordinate systcm

N vector normal to an element

n integer denoting the ''column" or n-line to which an input
point belongs or an element formed from this point. Also used
in Section 6.0 to denote distance normal to the body surface

n n n components of the unit normal vector to an element in thereference coordinate system

nix niy niz components of the unit normal vector to the i-th element
(t-th basic element in cases of symmetry) in the reference
coordinate system

n unit normal vector to an element

n. unit normal vector to the i-th element (i-th basic element
in cases of symmetry)

P general field point where the potential and velocity com-
ponents are evaluated

p field point on the body surface where the potential and
velocity components are evaluated. Also a quantity defined
by eq.(62)

q source puint or integration point on the body surface. Also
a quantity defined by eq.( 6 2)

q12  a quantity defined by eq.(34)
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R' the region exterior to the body surface

r distance frcm a field point where the potential and velocity
components are evaluated to a source point or integration
point

rk k = 1, 2, 3, 4. Distances from a field point where the
potential and velocity components are evaluated to the four
corner points of a quadrilateral element (eq.(47), r1 and
r 2 also given by eq.(27) and figure 8)

r distance from a field point, where the potential and velocity
components are evaluated, to the origin of the coordinate
system of an element

S surface of the body about which the flow is computed

s arc length along a side of a quadrilateral. Also used in
figure 44 to denote arc length along the centerline of a duct

sI s2 projection of r and r along the extension of a side of

a quadrilateral '(figurer28)

T1 length of vector T!-I (equation (74))

TIx Tly T z components of vector T in the reference coordinate system

T2x T2y T2z components of vector T2 in the reference coordinate system

T 1 T-2 diagonal vectors of a quadrilateral element (equation (64))

t maximum diagonal of an clement. The larger of tI and t2.

1 t2 Iengths of the diagonals of a quadrilateral element (eq.( 8 14 ))

tly tly tlz components of the vector t in the reference coordinate system

t2x t2y t2z components of the vector t2 in the reference coordinate system

tI t2 unit vectors in the plane of an element. These vectors are,
respectively, along the x or ý and y or q axes of the

element coordinate system

u the quantity x --

V magnitude of total flow velocity

V. magnitude of total flow velocity at the null point of the
i-th element

10



V V V velocity components in an element coordinate system; in
x y z particular, the velocity components induced by that element

at a field point

V' V' V' velocity components in the reference coordinate system
x y z

V 0velocity magnitude in a constant diameter region of a duct
where the velocity varies only slightly with position

V 0magnitude of the velocity of a uniform onset flow. Usually
taken as unity

V ix V.z components in the reference coordinate system of the total
iy lY flow velocity at the null point of the i-th element

V total normal velocity at the null point of the i-th elementn.

V V V components in the element coordinate system of the velocity
X1 2 l2 1l2 at a field point due to the fundamental potential function

of the side of a quadrilateral between corner point 1 and
corner point 2

V V V coia puuunts of a uniform onset flow in thc rcference coordinatecox coy co z
system

V normal component of a uniform onset flow at the null point
con.1 of the i-th element

V i total flow velocity vector at the null point of the i-th
element

V onset flow vector
co

vector velocity induced at the null point of the i-th element
(i-th basic element iln cases of symmetry) by a unit source

density on the j-th element (j-th basic and reflected elements
in cases of symmetry)

w 1/r ; when subscripted with x, y, and z, this denotes the
partial derivatives of w in the directions of the axes of
the element coordinate system

X Y Z components of V.. in the reference coordinate system
ij ij ij i

x y z Cartesian coordinates of a point in space. In sections of the
report where the coordinates of points are required in both the
reference and element coordinate system, these variables are
used for the coordinates in the element coordinate system,
while primed coordinates are used for coordinates in the re-
ference coordinate system. In sections where only one coordinate
system is consiclered, either the reference or element coordinate
system, these variables are used.
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x' y' z' Cartesian coordinates of a point in space. These variables
are used for the coordinates of points in the reference
coordinate system in sections of the report where the co-
ordinates of points are required in both the reference and
element coordinate system

x*p yp p-th approximation to the coordinates of the null point in
the element coordinate system

X Y o 0 0coordinates of the origin of the element coordinate system
in the reference coordinate system. Also used for the co-

ordinates of the centroid of a quadrilateral in the reference
coordinate system, since this point is used as the origin of
the element coordinate system as soon as it is computed.

"x y z coordinates of the average point in the reference coordinate
system (eq. 6 8))

"• Yk zf Zk = 1, 2, 3, 4. Coordinates of the four coraer points of a
kquadrilateral element in the reference coordinate system

"xnp Ynp coordinates of the null point of an element in the coordinate
system of that element

x' y' z' coordinates of the null point of an element in the reference
np np np coordinate system

Xk Yk Zk k = 1, 2, 3, 4. Coordinates in the reference coordinate system
of the four input points used to form a quadrilateral surface
element

YM maximum distance of points on a ship hull from the midplane
or ''keel plane'' of the ship. Equals half the beam of the
ship.

zM maximum depth below the free surface of points on a. ship hull.
Equals the draft of the ship.

Pi P2 angles defined in figure 8.

7ixyiy7iz direction cosines with respect to the axes of the referencecoordinate system of the total flow velocity vector at the
null point of the i-th element

A Laplacian operator (except AMn defined above)

112 1 coordinate of a general point on the side of a quadrilateral
between corner point 1 and corner point 2

angular variable used in several figures and defined pictorially
on each one
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TI Cartesian coordinates of a point in an element coordinate
system, especially a source point or integration point on
a quadrilateral element

ýk Tý k =-I, 2, 3, 4. Coordinates of the four corner points of a
quadrilateral in its element coordinate system, ix particu-
lar when that coordinate system has the centroid of the
quadrilateral as the origin

t 0o coordinates of the centroid of a quadrilateral in its elementcoordinate system based on the average point as origin

k = 1, 2, 3, 4. Coordinates of the four corner points of a
k 'quadrilateral in its element coordinate system based on the

average point as origin

Pi ratio of the values of 6 a obtained in two successive
iterations during the solution of the linear equations for
the values of the surface source density (eqs. (131) and (132)

o surface source demsity

Ci a values of the surface source density on the i-th and J-th
elements, respectively, (i-th and J-th basic elements in
cases of symmetry)

6 a i change in the value of a. produced by one iteration in the
solution of the linear equations for the surface source density
(equation (128))

total potential of the flow

I- disturbance potential due to the body. Also used as an
angular variable in certain figures and defined pictorially
on each one.

'Poo potential of a uniform onset flow

, angular variable used in several figures and defined pictori-
ally on each one

Subs cripts

denotes quantities associated with the i-th element (i-th basic
element in cases of symmetry), in particular velocity com-
ponents evaluated at the mull point of that element

denotes quantities associated with the J-th element (J-th
basic and reflected elements in cases of symmetry)

13



k integer subscript taking on the values 1, 2, 3, 4. It denotes
quantities associated with the four corner points of a quadri-
lateral element, in particular their coordinates

V identifying subscript used to designate an off-body point
and quantities associated with it, in particular velocity
components evaluated there

x y z when used with a vector quantity, these subscripts denote
the components of that vector along the coordinate axes.
When used with a scalar quantity, these subscripts denote
the partial derivatives of that quantity with respect to
that coordinate, except that when used with the moments of
the area of a quadrilateral, M , I , etc., these subscripts
denote the coordinate axes about whfxh the moments are taken.

Superscripts

p denotes the value of a quantity after p applications of am
iterative procedure, in particular the values of the surface
source density a after p iterations of the Seidel pro-
cedure for the solution of the linear equations

r denotes velocity components induced by a reflected element
in cases of one plane of syrtunetry

lr 2r 5r denote velocity components induced by first, second, and third
reflected elements, respectively, in cases of two planes of
symwetry. The superscripts 4r, 5r, 6 r, and 7r are used in
cases of three planes of symmetry to denote velocity com-
ponents induced by the fourth, fifth, sixth, and seventh
reflected elements, respectively.

s integer superscript having the values 1, 2, and 3, and de-
noting the onset flow. Nornally, calculations are performed
for three onset flows simultaneously, and this superscript
is used to denote the components of a particular onset flow
and all quantities, velocities, source deasities, etc.,
associated with that onset flow. In the text, this super-
script is used both as a general value, e.g., Ai. , and as
a specific value, e.g., A, ) .

0o denotes values of the source density after infinitely many
iterations of the Seidel procedure for the solution of the
linear equations

14



5.0 INTRODUCTION

This report describes a method of calculating., by means of an electronic

computer, the non-lifting potential flow about arbitrary three-dimensional

bodies. This work is an extension of that described in references 1 and 2,

whose formulas permit the calculation of potential flow about arbitrary

two-dimensional and axi-symmetric bodies. This method utilizes a distribu-

tion of source density on the surface of the body and solves for the distri-

bution necessary to meet the specific boundary conditions. Once the source

density distribution is known, the flow velocities both on and off the body

surface may be calculated. The basic equation defining the source density

distribution is a two-dimensional Fredholm integral equation of the second

kind over the body surface.

The method of this report has two advantages over network methods.

First, the equation that miist be solved is a two-dimensional one over the

body surface rather than a three-dimensional one over the entire exterior

flow field. (In two-dimensional and axi-symmetric cases the reductlon in

dimensionality is from two to one.) Secondly, any body may be conveniently

calculated without the difficulty network methods may encounter when the body

surface intersects the coordinate net in an arbitrary manner. The advantage

of this method over methods that utilize a distribution of singularities

inside the body surface, e.g., in a plane, is that this method can calculate

flows about arbitrary bodies. There is no restriction that the body be

slender, analytic, or simply connected or that the disturbance velocities due

to the body be small com'pared with the velocity of the onset flow. There is

one further advantage. Although at present the method will handle only the

case when the body is immersed in a uniform stream, a relatively minor modi-

fication will allow the case when the body is in an arbitrary, non-uniform,

potential onset flow to be calculated. Cases for which the onset flow cannot

be described by a potential function can also be calculated, but the signi-

ficance of the results is not clear.

Section 6.0 formulates the mathematical problem and states the basic

idea behind this method of solution. Section 7.0 is a general outline of the

particular way in which the solution is carried out. Some alternative

15



possibilities are also discussed in this section. The formulas for the

velocities induced by a plane quadrilateral source element that form the basis

of this method are derived in Section 8.0. Section 9.0 gives a detailed

description of the method of computation together with all the relevant

equations. The accuracy of the method is exhibited in Section 10.0, where

the calculations are compared with analytic solutions, while Section 11.0

shows examples of the flows calculated for a variety of bodies that were

selected to show the versatility of the method. The derivations and results

of Section 8.0 and the complete lizting of equations given in Section 9.0

will probably not be of interest to most readers. Accordingly, these sections

my be omitted without loss of continuity. Section 8.0 and the lengthier parts

of Section 9.0, specifically 9.2, 9.3, 9.5, and 9.6, need not be read even by

someone who intends to use the method. The remainder of Section 9.0, namely

9.1, 9.4, 9.7, 9.8, and 9.9, explains the input and output of the program

and lists computation times and size limits for the cases.

The set of machine programs that perform the computations of this method

has been designated the V150 series of programs for three-dimensional poten-

tial flow.

16



6.0 MATHEMATICAL STATEIENT OF THE PROBLEM

The problem considered here is that of the steady flow of a perfect

fluid about a three-dimensional body. Let the surface of the body be denoted

S, and let S have an equation of the form

F(x , y , z ) -- 0 (1)

where x , y , z are Cartesian coordinates as shown in figure 1. The onset

R

•\ , /
\ /"

\ /
7/

/ \

/
/

/

Figure 1. - The body surface.

flow is taken as a uniform stream of unit magnitude. Thus this flow may be

represented by the constant vector V with components VCox, V0oy, V 0oz,

respectively, along the coordinate axes x , y , z , where

V VV  2V 2  + V2()0 Voox ooy ooz

The restriction to a uniform onset flow is not essential, but is made for

definiteness and simplicity. Non-uniform onset flows may be considered with

a minor- increase in complexity.

17



The fluid velocity at a point may be expressed as the negative gradient

of a potential function • The function . satisfies Laplace's equation in

the region R' exterior to S, has a zero normal derivative on S, and

approaches the proper uniform stream potential at infinity. Symbolically,

A = 0 in R' (3)

t grad F = 0 (4)

--o-- (VCoxx + VooyY + Voo0Z ) for x 2+ y + z2 ---* (5)

Here A denotes the Laplacian operator and ' is the unit outward normal

vector at a point of the surface S, i.e.,

+ F (6)S[ gr a.. F1 F = 0

where the sign in (6) is chosen to make h an outward normal vector. It is

convenient to write ý as

where

S=-(V 0X +v00y +V ooz) (8)

is the uniform stream potential,and (p is the disturbance potential due to

the body. Then qc satisfies

A 0 in R' (9)

C) n S n- grad Fp I + D I = 0 (10)

fo x2 2 2
T-0- 0 for x 2 + Y2 + Z2 ---* 00 (11)

it is shown in reference 5 that the body surface may be imagined to be covered

with a surface source density distribution a and that the potential p may

then be written

18



Cp (xyzC(q) as (2
Sy ~ z ) - r (P ,

S

where r(P, q) is the distance from the integration point q on the surface

to the field point P with coordiuates x , y , z where the potential is

being evaluated (see figure 2).

P (Y .V',j)

Figure 2. - Notation used ini describing the potential due to a surface source density distribution.

The form of cp shown in equation (12) automatically satisfies equations (9)

and (ii) for any function cs. The function o must be determined so that

Cp satisfies the normal derivative condition, equation (10). Applying equa-

tion (10) requires the evaluation of the normal derivative of the integral

in equation (12) at a point p on the surface S. It is shown in reference

3 that as the surface S is approached, the derivative of this integral

becomes singular and its principal part must be extracted. Physically, this

corresponds to the contribution of the local source density to the local

normal velocity. The contribution of the remainder of the surface to the

local normal velocity is given by the derivative of an integral of the form

given in equation (12) evaluated on the boundary, i.e., P = p, and this

integral is now taken to mean the finite part. From reference 3 the principal

value is - 2w'(p), so on the body surface the normal derivative of T is
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gI - (p, q 5)(

Inserting this into equation (10) gives the integral equation for c as

27r ( l'(p))a(q•S =-(p) Corp,( (14)
9 Fnp -- p q)

S

where the unit normal vector has been written A(p) to explicitly show its

dependence on location. This is seen to be a two-dimensional Fredholm

integral equation of the second kind over the surface S. Once this equation

is solved for a, the disturbance potential ( may be evaluated from equation

(12) and the disturbance flow velocities from the derivatives of equation (12)

in the coordinate directions.

This method of solution is valid for completely arbitrary bodies. The

surface S is not required to be slender, analytic, or simply connected. It

is required, however, that the body surface have a continuous normal vector

n. Otherwise the integrand in equation (14) is singular and the right hand

side is discontinuous. Thus this method cannot be guaranteed to give correct

results for bodies having discontinuities in slope, i.e., corners. This re-

striction is not of great practical signifieance, since the corner can be re-

placed by a small region of large but finite curvature without significantly

affecting the flow at other points. Even this, however, is often unnecessary.

Experience in applying this method to two-dimensional flows, where analytic

solutions for certain bodies with corners are available, has shown that the

method gives correct results for cases of true corners if these corners are
convex. For concave corners the method fails, and the corner must be rounded

in a small region to obtain correct results at other points. These facts

often indicate the proper procedure in three-dimensional cases. It appears

that the flow around convex corners is calculated correctly, while unrounded

concave corners may or may not cause an appreciable error.

The case when the onset flow is not a uniform stream, i.e., when 1 is

not independent of position, is handled in exactly the same way as the uniform

stream case. It is simply a matter of defining (o0 so that the variable V

is its gradient and of using thc variable 1 0 on the right hand side of equa-

tion (4). 20



7.0 GF*EAL DESCSIPTION OF THE KMETHOD OF SOLUTION

7.1 The Approximation of the Body Surface

There are several possible schemes for the numerical solution of equation

(14). In all of them a basic question is how to approximate the body surface.

If it were desired to represent this surface exactly by means of analytic

expressions, the type of bodies that could be handled would have to be re-

stricted. Since the basic method has no such restriction, it seems unde-

sirable to impose one merely to represent the surface. Moreover, to include

all bodies of interest in applications, e.g., wing-fuselages, inlets, ducts,

etc., the defining analytic expressions would have to be extremely elaborate.

Also, the equation for the source density will have to be solved approximately

even if the body is represented exactly.

To allow arbitrary bodies to be considered, it is natural to require the

body surface to be specified by a set of points in space. These points are

presumably exactly on the body surface and are utilized by the method to ob-

tain an approximation to this surface, which is then used in subsequent cal-

culations. There are two basically different typt.s of approximation, The

first uses a single analytic expression or a few such expressions to approxi-

mate the surface as a whole. The other uses a large number of analytic ex-

pressions, each of which approximates the surface in a small region. While

the first of these is more satisfying in many ways, it possesses the unde-

sirable feature described above for exact representations, namely that very

elaborate expressions are required.

After the method of approximating the body surface has been decided

upon, there are several possible approaches to the numerical solution of

equation (14). The equation may be attacked directly as an integral equation

using an iterative procedure for the solution of Fredholm integral equations.

In this process the integral in (14) is evaluated by numerical means. Alter-

natively, equation (14) may be replaced by a set of linear algebraic equations.

There are various ways of accomplishing this, all of which are equivalent to

evaluating the integral in (14) by some quadrature formula in terms of certain

unknown values of the source density. These last may be the actual values of
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the source density at selected points of the body surface or they may represent

mean values of the source density in some sense over certain regions of the

surface. In any case requiring (14) to hold at a certain number of points

of the surface gives a set of linear equations for the unknown values of the

source density.

The scheme adopted here is as follows. The body surface is approximated

by a large number of small plane elements, which are formed from the original

points defining the body surface. (Figure 3 shows an example of a body surface

that is approximated by plane quadrilateral elements. Although the discussion

of this section is applicable to any kind of plane elements, quadrilaterals

were eventually chosen for this method. This choice is discussed in a sub-

sequent section.) The source density is assumed constant over each of these

Figtire 3. - The approximate representation of the body stirface.

elements. This assumption reduces the problem of determining the continuous

function o to the problem of determining a finite number of values of a -

one for each of the planar elements. The contribution of each element to the

integral in (14) is obtained by taking the constant but unknown value of a

on that element out of the integral and then performing the indicated integra-

tion of known geometrical quantities over that element. Thus, requiring

equation (14) to hold at one point p gives a linear relation between the

unknown values of c on the plane elements. On each element one point is

22



selected where equation (14) is required to hold. This gives a number of

linear equations equal to the number of unknown values of a. Once these are

solved, flow velocities may be evaluated at any point by summing the contri-

butions of the plane elements and adding proper components of the onset flow.

Flow velocities may be ccmputed at pýints either on or off the body. If

velocities are evaluated on the body, they must be evaluated at the same

points where (14) is required to hold, i.e., at the points where the normal

velocity is made to vanish. Velocities at other points of the body surface

must be obtained through interpolation of these values rather than by direct

calculation. This restriction is imposed by the form of the approximation of

the body surface. For example, direct calculation by summing the contribu-

tions of the plane elements gives an infinite velocity at a point on an edge

of one of the elements.

There were three reasons why this relatively crude approach to the solu-

tion of equation (14) was adopted. First, it is simpler than any other method

that is versatile enough to handle all the body shapes of interest in applica-

tions. It seemed logical to first attempt a solution by the simplest means to

determine whethcr or not a more elaborate method is necessary. The chiet

disadvantage of a simple procedure is that large computation ti(ILe1 may be re-

quired for high accuracy. The computation times requirl for thlis method are

indeed large, as is described in a later section, but probably acceptable for

most applications. A second reason is that the physical significance of this

approximation is evident. This is true both with regard to the degree of

approximation to the true body surface afforded by the plane elements and with

regard to certain intermediate mathematical results, e.g., the velocities in-

duced by the source elements at points in space. Not only was this fact ex-

tremely useful in checking out the method and eliminating errors, but it is of

continuing value to users of the method, because it makes clear to a certain

extent how the original points defining the body surface should be distributed

for best results. The third and most important reason for the selection of

this method is that it is the three-dimensional analogue of the method that

gave very satisfactory results for two-dimensional and axisymmetric bodies

(References 1 and 2).
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7.2 The Computational Method

7.21 Description of the Method.

This section describes briefly the manner in which this method of solu-

tion is carried out on the computing machine.

The body surface is defined by a set of points in three-dimensional

space. These will be called the input points. The coordinate systen in which

these points are given is designated the reference coordinate system. These

points should be distributed in such a way that the best representation of

the body is obtained with the fewest possible points. In particular, points

should be concentrated in regions where the curvature of the body surface is

large and in regions where the flow velocity is expected to change rapidly,

while points may be distributed sparsely in regions where neither the body

geometry nor the flow properties are varying significantly. If the body

possesses symmetry planes, only the non-redundant portion of its surface need

be specified by input points. The other portions are automatically taken into

account by suitably reflecting this portion in the symmetry planes. The

symmetry planes are assumed to be coordinate planes of the reference coordinate

system.

The body surface is approximated by a set of plane quadrilateral source

elements, each of which is formed from four input points. To avoid having

to actually input four points for each element, the input points are or-

ganized in a certain way, so that they may be associated in groups of four to

form elements with each irnnut point being used. in the formation of up to four

elements. In order to accomplish this, each point is considered to be identi-

fied by a pair of integers, one specifying the ''row'' of points to which it

belongs and the other specifying the ''column''. The choice of what constitutes

a "row" or "column" is very free. The only restriction is that if all

points of each ''column'' are conirectod by a curve lying in the body surface,

no two such curves cross each other, and similarly for ''rows''. It can be

seen that these curves connecting all points on the same ''row'' or ''column''

are essentially coordinate curves of a two-dimensional coordinate system lying

in the body surface, (see figure 4). The points are input ''column'' by

"column". The order of a point in a ''column'' determines its ''row'', and
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the number of points on a "column'" may vary. Provision has also been made

COLUMNS

Figture 4. - Organization of input points into "rows" and "columns".

fQr dividing the body into a certain number of distinct sections, each of which

consists of a certain number of "columns". This is a natural procedure for

many types of bodies, e.g., a wing-fuselage, and permits a great deal of

flexibility. For example, it allows points to be concentrated in certain

regions very easily. The four points used to form a particular surface ele-

ment are the two points in one ''column'' in consecutive ''rows'' and the two

points in the adjacent "column" that are in the same two ''rows''. In

general these four points do not lie in a plane.

The plane quadrilateral surface elements (figure 3) are formed from the

four appropriate input points as follows. First two vectors are calculated.

These are the two "diagonal'' vectors, each of which is the difference of

the position vectors of two points that are neither in the same "row'' nor in

the same "column". The cross product of these vectors divided by its own

length is taken as the unit normal vector to the plane of the eleent. The

cross product is performed in such a way that it produces an outward normal

to the body surface. To completely specify the plane of the element a point

in the plane is also required. This point is taken as the point whose coordi-

nates are the averages of the coordinates of the four input points, and it is

designated the average point. Four points in the plane are obtained by pro-
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jecting the input points into the plane along the normal vector. Because of

the way in which the plane is defined, all four input points are equidistant

from it - the two used to form one ''diagonal" vector on one side and the

other two on the other side. The four points in the plane are the corners

of the plane quadrilateral source element, and they are designated corner

points. It is these points that are used in all calculations once the comp-

lete set of surface elements has been formed, rather than the input points.

It is convenient to derive and to use the formulas for the velocities

induced by a quadrilateral source element of uniform strength at points in

space assuming the element to lie in a coordinate plane. This necessitates

constructing a coordinate system having two of its axes in the plane of the

element. Thus three mutually perpendicular unit vectors are required, two

of which are in the plane of the element and one of which is normal to it.

The unit normal vector has already been found. One of the "diagonal" vectors

divided by its own length serves as one unit vector in the plane of the ele-

ment, and the cross product of the unit normal with this vector is the other.

This establishes the desired coordinate system, which is designated the ele-

ment coordinate system. The origin. of this system is temporarily taken as the

average point. The nine components of the above three unit vectors comprise

the elements of the transformation matrix which is used to transform points or

vectors between the reference coordinate system and the element coordinate

system. In particular, the corner points are transformed immediately into the

element coordinate system so that certain geometric properties of the quadri-

lateral may be computed more easily.

In computing the velocities induced by a plane quadrilateral source

element at points in space, it turned out to be very time consuming to use the

exact velocity formulas at all points. For this reason, approximate formulas

derived from a multipole expansion are employed for points that are sufficient-

ly far from the element for the approximation to be acceptably preclse. These

approximate formulas require the area of the quadrilateral, the coordinates of

the centroid of the area, the second moments of the area, and the length of the

maximum diagonal of the quadrilateral. Once computed the centroid replaces

the average point as the origin of the element coordinate system.
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Next it is necessary to select a particular point on each quadrilateral

element where the normal velocity will be required to vanish and where the

flow velocities will be computed. This point is taken as the point where the

quadrilateral induces no velocity in its own plane. It is designated the

null point.

At this stage certain of the quantities described above are output from

the machine and the calculation terminated. _The purpose is to provide a

means of finding and eliminating errors in the input data before the lengthy

flow calculations are performed. Such errors arise fairly often because of

the large amount of input that is required. An examination of the variation

of the above geometrical quantities from element to element will often reveal

these errors.

Now the velocities induced by th,- quadrilateral source elements at each

otherts null points must be computed. This is done under the assumption that

the source density on each element is of unit strength. In computing the

velocity components induced at a particular null point by a particular element

one of three sets of formulas are used depending on the distance between the

null point and the centroid of the eleijient. If the ratio of this distance to

the maximum diagonal of the element is less than a certain prescribed value,

the exact velocity formulas arc used. If' the ratio is larger than this value,

the velocity is calculated by formulas appropriate for either a point source

plus a point quadrupole or a point source alone. (Te dipole moment is zero

since the multipole expansion is based on the centroid.) The choice between

these last two possibilities is made by comparing the above ratio to a second

prescribed value. The final result of this calculation is the complete set of

the velocities induced at each null point by every quadrilateral element, all

of which are assumed to have a unit source density. This array may be thought

of as a "matrix of influence coefficients", the elements of which are

vectors in three-dimensional space. A row of this matrix consists of the

velocities induced at a single null point by every quadrilateral element, while

a column consists of the velocities induced by a single element at every null

point. To minimize computing time the various quantities associated with each

element that are required to compute the induced velocities are stored simul-

taneoiisly in the high speed memory of the computing machine and the "matrix
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of influence coefficients'' is calculated row by row. Twenty-eight quantities

for each element are required. The result is that the maximum number of ele-

ments that may be used to define the body surface is limited by the high speed

storage capacity of the machine, which is taxed at this stage of the procedure.

The above paragraph applies to non-symmetric bodies. For bodies having

one or more symmetry planes, the procedure is iclentical to the above except

that after the velocity components induced by an element at a particular null

point have been calculated, the velocity components induced at the same null

point by the image or images of the element are also computed by the same

method. Thus, while in the non-symmetric case there is a single set of induced

velocity components representing the effect of an element at a null point,

there are, respectively, two, four, or eight sets of induced velocity compo-

nents in cases of one, two, or three planes of symmetry. These are combined

in the ways appropriate for use with onset flows in the three coordinate

directions. The result is two "matrices of influence coefficients'' in cases

with one symmetry plane and three such matrices in cases with two or three

symmetry planes.

To obtain a set of liear algebraic equations for the unknown values of

the source density on the elements, the first step is to calculate the normal

velocities induced at each null point by thei various elements, each of which

is still assumed to have a unit source density. This is done by taking the

dot product of the induced velocities described above with the normal vectors

of the elements at whose null points these velocities were evaluated. The

result is a scalar matrix whose elements are the normal velocities induced at

the various null points by the various quadrilateral elements with unit source

density. This matrix is the coefficient matrix of the required. set of linear

equations, since multiplying this by the column matrix of the unknown values

of the source density on each element evidently gives a column matrix whose

elements are th. true normal velocities induced at the null points by the

entire approximate body surface. A coefficient matrix is formed from each of

the "matrices of influence coefficients'' described above, so there are two

such matrices for cases of one plane of symmetry and three such matrices in

cases of two or three planes of symmetry. The right hand sides of the linear

equations are the negatives of the normal components of the onset flow at the
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various null points. The method has been constructed so that it will handle

three onset flows at one time. Normally, these are unit uniform streams,

each one of which is along one of the axes of the reference coordinate system,

although they may be any three onset flows for non-symmetric bodies. Each

onset flow is used to form a right hand side for use with the appropriate

coefficient matrix. In non-symmetric cases the same matrix is used. for all

onset flows, while in cases of one plane of symmetry one matrix is used for

two onset flows (the two in the symmetry plane) and the other matrix is used

for the third onset flow. In cases of two or three planes of symmetry a

distinct coefficient matrix is used for each onset flow. In any case, three

sets of simultaneous linear equations are solved for three complete sets of

values of the surface source density. The solutions are effected by a Seidel

iterative procedure.

Once the values of the surface source density have been found, the velocity

components at each null point are calculated by multiplying the above described

induced velocity components (which were calculated assuming a unit source

density) by the proper calculated values of the source density and summing all

such products that are appropriate for the nu.]o point in question. (This

summation is thus over all elements of a row of the "matrix of influence co-

efficients''.) To thp results of this summation must be added the proper com-

ponents of the onset flow. The resultant velocities and pressures are easily

computed from the velocity components. The above quantities and certain others

of interest are the final result of the method and comprise the second output

of the machine program. There is a complete set of results for each of the

three onset flows. If the flow at points off the body surface is desired,

these points must be specified, and then velocities and pressures are computed

there also. Again there are three sets of results. If results for flow in-

clinations other than the basic three along the coordinate axes are desired,

they can be obtained by a simple combination of these results.

7.22 Discussion of Some Possible Alternatives.

The basic decision underlying this method of solution is described above

in Section 7.1 together with some alternative approaches. In implementing this

method and constructing a. practical calculational procedure, several decisions

were made that are not basic to the method. In this section the reasons for
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some of these choices are given and alternatives discussed.

It was decided to take the plane source elements that approximate the

body surface as quadrilaterals rather than same other plane figures and to

organize these elements by the use of a coordinate system in the body surface,

i.e., the ''rows'' and ''columns"' described above, despite certain unde-

sirable features of this approach. An objection to the use of quadrilaterals

is that adjacent elements do not in general have coincident edges. This is,

however, an extremely small effect for normal body shapes. For example,

quadrilateral elements can be distributed so that their edges are coincident

on any axisymmetric body. The errors from this source are apparently small

compared to the errors that result from the basic approximation of the body

by plane elements. The organization of the quadrilateral elements by means

of a coordinate system in the body surface has the undesirable feature that

normally such a coordinate system has a concentration point where one set of

coordinate lines comes together. (See figure 4) When this occurs it causes

several difficulties related to the element distribution in the neighborhood

and in the determination of null points. Moreover, the results of the calcu-

lations are generally less accurate near such a point. In practice, con-

centration points can be avoided for many common types of bodies, e.g., ship

hulls, wings, ducts, and inlets. However, the use of "'rows'' and "'columns''

so greatly simplifies the input that their use is judged to be justified in

any case. In fact, one of the reasons for choosing quadrilateral elements

was that they are most compatible with this organization scheme. -"his scheme

simplifies the input in two ways. First, it permits a given input point to

be used in the construction of several elements. Thus in normal cases the

required number of input points is only slightly larger than the r..bc. of

elements. This contrasts with a method where all corner points for each ele-

ment are input for which the required number of input points is four times

the number of elements in the case of quadrilaterals. Reduction of the re-

quired input as far as possible is important not only because the possibilities

of error are reduced but also because a large amount of required input leads

to a reluctance to use the method. Secondly, the organization scheme is easy

to visualize and simplifies the input conceptually. It attains its greatest

advantage over competing schemes in the frequently occurring case when it is

natural to have every point on a ''column'' at the same value of one of the
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coordinates, e.g., providing input at constant ''chordwise'' or ''spanvise''

stations. This property is not a trivial consideration. It has been found

in practice that conceptual difficulties can greatly increase the difficulty

of intelligently distributing the input points. Similarly, interpretation

of the output is simplified by making the order of points on the output sheet

(which is the same order as the order of the input) correspond to physical

points in a natural sequence. Triangular elements, whose use is suggested in

reference 4, were the only others seriously considered. They have the ad-

vantages that the edges of adjacent elements are coincident and that concen-

tration points might be avoided, but there is no apparent way of organizing

them to simultaneously obtain a minimum of required input points plus con-

ceptual simplicity. It would be possible to obtain triangular elements from

the present organization scheme by dividing the four points associated to form

an element into two groups of three, i.e., a sort of '"cutting each quadri-

lateral in half'' before the input points are projected into a common plane.

However, this scheme eliminates many of the advantages of the triangular re-

presentation, and introduces certain calculation errors due to the fact that

all ele-ments are not constructed in a completely equivalent manner. Triangular

elements also have the disadvantage compared to quadrilaterals that the choice

of the point on the element where velocities are to be calculated is more

critical (see below).

The location of the point on the quaAri lateral element where velocities

are to be evaluated is a matter of some importance in that it may have an

appreciable effect on the accuracy of the calculation. Unfortunately, there

is no obvious choice for this point, and indeed there is no way to decide that

a particular choice is better than even one other, much less all others. It

seems evident that on a rectangular element the proper point is the center.

Therefore, the point selected must be defined in such a way that it reduces

to the center when the element becomes rectangular. This restriction, however,

still allows many possibilities. On most bodies of interest the quadrilateral

elements are nearly rectangular over most of the body surface, and thus the

final answers do not depend greatly on the point used. However, there are

often certain regions of the surface where the elements are not approximately

rectangular,and the calculated flow velocities may change appreciably with the

choice of this point. Such a region occurs, for example, near the concentration
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points discussed above, where the elements usually become triangular (see

figure 3). It is felt that this fact is part of the reason why the calcula-

tions are normally found to be least accurate near concentration points. The

three points considered as possibilities were the null point, the centroid,

and the average point. The null point was selected for no better reason than

a personal opinion that the choice should tend to minimize errors. A small

number of cases that were run with either the centroid or the average point

replacing the null point did not indicate that any one of the three is signifi-

cantly better than the others. It seems evident that this question is in need

of further study, but it was decided to postpone this for a while and to use

the null point in the meantime. The null point is much more difficult to

calculate than either the centroid or the average point and thus a change to

either of these would represent a simplification of the method.

There are two further difficulties connected with the u'p of the null

point that were discovered after the machine program had been written. Namely,

there are two situations were the iterative procedure used to determine the

null point does not converge to the correct point. The first occurs when an

element is triangular or nearly triangular (as. for example, may occur near

a concentration point). If an element has two long sides and two short ones

and is nearly triangular in shape in the sense that either the two long sides

are adjacent or one short side is less than about one-fifth the other short

side, and if the base to altitude ratio of the triangular shape is less than

about one-thirtieth, then the calculated null point lies outside the element.

In this case the centroid is used in place of the null point for that element,

and the fact is noted on the first output. The second situation occurs when

an element has one diagonal much shorter than the other and much shorter than

all four sides, e.g., a long, thin, parallelogram. If the ratio of diagonals

is less than about one-thirtieth, the iterative procedure does not converge

because the induced velocity is very sensitive to position in the vicinity of

the null point. In this case the approximate null point obtained in the

thirtieth iteration is used, and this fact is noted on the first output.

(These considerations are discussed further in Section 9.3, which also in-

cludes sketches of the umfavorable elements.) Neither of these cases is of

much practical significance. A point distribution that leads to elements of

such extreme shape is probably not a very good one, and the appearance of
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either of these situations usually implies that the input points should be re-

distributed. In any case the errors arising from the use of these alternatives

in place of the null point are probably less than those due to the basic distri-

bution of elements.

In many cases the most time consuming portion of the calculation is the

compution of the velocities induced by the quadrilateral elements at each

other's null points - the "matrix of influence coefficients". Hence the

dominant consideration in arranging the calculation of this matrix was the

minimization of computation time. As a result, the maximum permissible

number of elements that may be used to approximate a body surface is somewhat

lower than it would otherwise have been. The most important time reduction

came from the replacement of the exact induced velocity formulas by formulas

derived from a multipole expansion at distances where the latter are suffi-

cletLly accuraLet. The accuracy of this approximation is described in another

section. With the accuracy criterion adopted, the use of the multipole ex-

pansion reduces the time of computation of the ''matrix of influence coeffi-

cients'' by a factor of about five. The accuracy criterion is arbitrary and

can be adjusted so that -the exact formulas are used exclusively if desired

with a corresponding large increase in computation time. A further reduction

In computation time is obtained by computing the induced velocities, except

those due to the simple source, in the element coordinate system, with the

result that the transformation matrtx for the elements must be used to trans-

form velocities and points between the element and reference coordinate systems.

Altogether, twenty-eight geometric quantities for each element are used to

compute induced velocities, while about half this number would suffice if

computation time were not a factor. These ným•bers are computed only once and.

saved to avoid unnecessary calculation. If the ''matrix of influence coeffi-

cients'" were computed column by column, the velocities induced by a particu-

lar element at all null points would be computed consecutively. Thus at any

given time only the twenty-eight quantities for a single element would have to

be available in the high speed storage of the machine. Since the methods used

to solve the linear equations for the source density use the coefficient matrix

row by row, this procedure would require transposing the matrix. A large co-

efficient matrix exceeds the high speed storage capacity of the machine by a

factor of about twenty-five, and thus transposing the matrix is rather time
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consuming. Therefore, the ''matrix of influence coefficients" is computed

row by row, and so the twenty-eight quantities for all elements must be

simultaneously available in the high speed memory. The high speed storage

capacity of the machine may thus limit the maximum number of elements that may

be used to define a body surface. This problem was not significant on the

IBM 704 for which this method was originally programmed, because the capacity

of the low speed tape storage was the limiting factor in all cases with

symmetry and permitted only a 25 percent increase in elements over the high

speed storage limit in nonsymmetric cases. Moreover total computing times for

large cases were typically fifteen hours, so an increase in the number of

elements did not seem desirable. However, the IBM 7090, to which the program

has been converted, has available high density tape units that greatly increase

the available low speed storage. The result is that high speed storage capaci-

ty is the limiting factor on this machine for both symmetric and nonsymmetric

bodies and that the limits imposed by low speed storage capacity would permit

a considerable increase in the maximum number of elements. Typical total

computing times for large cases on the IBM 7090 are about four hours, so that

an increase in the number of elements might be desirable.

In taking into account any planes of symmetry that a body might possess,

it is assumed that the elements adjacent to symmetry planes have edges lying

in these planes. Thus flow velocities, which are evaluated at null points,

are not computed at points of the body surface that lie in the symmetry planes.

This seemingly trivial point is often irksome, because vclocitics at points

in a symmetry plane are frequently desired, and they must be obtained by extra-

polation.

The simultaneous linear equations for the values of the surface source

density on the various elements are solved by one of two alternative forms of

a Seidel iterative procedure. The first of these obtains in each iteration

a complete set of values of the source density from the values in the previous

iteration, while the second always uses the most recently calculated values of

the source density to obtain improved values. The second has proven at least

as fast as the first in all cases and. in often much faster. It is, therefore,

employed unless the other is specifically called for. The coefficient matrix

of induced normal velocities is well suited for this relatively simple
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iterative scheme, because the diagonal elements are much larger than the off-

diagonal elements. If a more sophisticated iteration scheme were to be con-

sidered, it would require a very careful initial investigation to insure that

the solution time would not be increased. In many cases the time required to

solve the linear equations is smaller than that required to compute the set

of induced velocities, and a reduction of the former would not significantly

reduce the total computation time. There are certain kinds of body shapes for

which the time required for solution of the linear equations is a large frac-

tion of the total computation time, and a reduction would be quite beneficial.

This matter has been investigated, and one very promising means of accelerating

the convergence of the iterative procedure has been found. However, it was

decided not to incorporate the technique into the method at this time.

The method has been constructed so that it computes flaw velocities for

three distinct onset flows. Normally, it is desirable to utilize this feature

since the elimination of one or two onset flows affects only the time re-

quired to solve the linear equations, and thus often does not significantly

decrease the total computation time. Any onset flow may be effectively elimi-

nated by specifying a zero vector for that flow, in which case the true zero

va1u'-s of thý. source denrity for that flow are simply obtained in the first

iteration. This should be done with reluctance, however, since if additional

onset flows are required later, the entire computation must be repeated.
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8.0 THE VELOCITIES INDUCED BY A PLANE SOURCE QUADRILATERAL

8.1 Exact Expressions for the Induced Velocities

In this section the exact formulas for the velocity components induced

at points in space by a plane quadrilateral source element with a unit value

of source density are derived. These formulas are the basis of the present

method of flow calculation. The derivation is such that the extension to the

case of any plane polygonal source element is obvious.

8.11 Formulation of the Problem and Construction of the Fundamental Potential

Function for a Side of the Quadrilateral.

Consider a plane quadrilateral source element lying in the xy-plane as

shown in figure 5. (Taking the clement to lie in the xy-plane is equivalent

to working in the element coordinate system.) The value of the surface source

P

of~ ~ ~~~~~~~~2 th7orcre oit12) igtequdiaea r gl l,(2 1)

iduensity a nthis suc element istsetgeneral touinty Th in sp r ith coordinates

x, y, z. The potentbial at the point P is
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SA A V (x )2+ (y _)+ z

where r is the distance from P to a point on the quadrilateral with

coordinates (g, ,, 0), and the range of integration is the area A of the

quadrilateral. The velocity components at P are given by

- ý = (x - ) dt dil (16)

A

V (y-T)= y (17)r3
A

z�z d•d• 8Vz §z- = rf 18

A 
r

It is convenient to divide the effect of the entire quadrilateral into a sum

of functions, each of which depends only on one side of the quadrilateral.

This division also allows the results to be generalized to the case of any

polygonal source element. To accomplish this one of the corner points is

taken as the initial corner point and the others are numbered in the order they

are encountered in traversing the perimeter of the element with the exterior

of the area on the left; see figure 5. For each side of the element a right

and a left can then be defined with respect to the direction of traversal of

the side from a lower numbered end point to a higher numbered endpoint. The

area of the element is on the right. Now a fundamental potential function for

each side is constructed as the sum of the potentials of two semi-infinite

source strips whose boundaries consist of the side of the quadrilateral and

semi-infinite lines parallel to one of the coordinate axes. The strip on the

right of the side has a value of source density a = + 1/2, while the strip

on the left has a = - 1/2. The semi-infinite boundaries of the strips may be

parallel to either coordinate axis, but they must all be parallel to the same

one. These strips, which are now taken parallel to the y-axis, are shown in

figure 6 for the four sides of the quadrilateral sketched in figure 5. It

can be seen that if the sides shown in figure 6 are put together to form the

quadrilateral of figure 5, the source densities on the strips cancel outside
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Figure 6. - Fnidamental p)otentials for sides of a quadrilateral.

the quadrilateral and add inside to give a unit value. Thus the potential

and velocity due to the quadrilateral arc sums of the potentials and veloci-

ties due to the four pairs of semi-infinite source strips shown in figure 6.

It can readily be verified that this statement is true regardless of the re-

lative positions of thc corner points and moreover that it is true for poly-

gons of any nurnber of sides.

I ii ~

Ii p

I Ie l -

I I r

Figure 7. - Two possibilities for the fuundariuental potential of a side.
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The problem of finding the velocities induced by the quadrilateral is

thus reduced to the problem of finding the velocities induced by the pair of

semi-infinite strips associated with one side. For definiteness the side

between (El,) I) and Q 2' q2) is selected. A fundamental potential f-.ac-

tion may be constructed using semi-infinite strips that are parallel to

either coordinate axis, and the two possibilities are shown in figure 7.

8.12 Derivation of the Induced Velocity Components Parallel to the Plane

of the Quadrilateral.

The induced velocity component V is most conveniently obtained usingx

for a fundamental potential function the potential of a pair of strips parallel

to the x-axis as shown in figure Tb, while the component V is obtained morey

conveniently using a fundamental potential function due to strips parallel to

the y-axis as shown in figure 7a. Th- latter componcnt will be calculated

first.

The velocity V due to the pair of strips shown in figure 7a is obtainedY

as an integral of the form (17) carried out over the total area of the strips

and using the proper values of a. Specifically,

ý2 1i1P 00

V d9.~i~ (19)Y1 2  2i - - 2 212 2

where q12 is being used to denote the r, coordinate of a point on the line

between (• 1) ) and (E2' 12). This is the correct form if E2 > El" If

1 > ý2,' the signs of the integrals with respect to q are reversed, and the

sign of the integral with respect to ý is also effectively reversed. The

final result is valid for either sign of ý2 - 1i, as may be verified. The

integral with respect to ý in (19) is a standard form. When the integration

is performed, the contributions of the infinite limits cancel, while the contri-

butions of the finite limits add. The result is

t2 •

2 / - ) )2 2' 1 f + z
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where r is the distance from the point P to a point on the line between

(tl' 'i) and (92' r0)" The integration variable in (20) may be changed to

the arc length a along the line between (Ely qi) and (t2k 12) by means

of the substitution

_ _ ..... _2 -ti (21)
E) )+ (rL_ - i)

where d is the length of the side. Then (20) becomes
:1.22

v k2 - E d r ds

VMi ,2l d (22)
Y1 2  d12 0

0

The integral in (22) is seen to be the potential at P due to a finite line

source of unit linear source density coincident with the side of the quadri-

lateral. The integration is most conveniently performed by working in the

plane containing the point P and the line between (El, 71) and (2 92')

as shown in figure 8. In this figure, rI and r 2 denote the distance from

the point P to the points ( 1 T1 ) and (k2' 2 I2 ), respectively, while s1

and s 2  are the components of these distances along the side of the quadri-

lateral. With this notation (22) becomes
P

SI/ / 1
Figure 8. - The potential due to a finite line source.
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d 12
VyI12 d 12 f e 2 2

o 2s21s + si +f

t2_-_ 2 + d12-a1 E2- r2-2 (
d12 log r- s 1 d 2 log r _ s1 (23)

- -2tilog r 2 (1 cog 2 )

d12 rl 1 COG 1)

This result is indeterminate when P= 0 , i.e., on the extension of

the side of the quadrilateral. The difficulty can be removed in the following

way. From the 3aw of cosines

2 2+ 2rI - 2 d12
co g f 'j 1 2 r I d l2

(24)

2 2 2

r 1 r 2 -- 1 2

Cos 
2r2 a 1 2

So,

2 2 ,2
r 2 i-- Cos B 2  2r2d12 - rl + r2 + Q!2
r, 1 -cos 2 _22

1 1± 2r 1d 12-r1 + r 2-d1

(r 2 + d1 2 )2 - r 1
2

(r 2+ d 12- r 1 )(r 2 + r1- d12 )

rI + r2 + d12

rI + r 2 -d12

The argument of the logarithm in (23) can accordingly be written in terms of

the distances rl, r 2  and d 1 2 . These distances can be expressed in terms

of the original coordinate system. Thus finally the y-component of velocity
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at the point P with coordinates x, y, z due to the fundamental potential

function of the side between (ti' ql) and (t.' n2) can be written

Y EvE2 -g r+r2-d1 (26)
Y12 d 12 rI + r2 + d12

where

r (x -- t2)2 + (y -- ,)2 + z_

2 2r 2 = '(x-- 2 )2 +(y -- q2 ) + z (2cr)

dl 2 = J(-2 - E)' + (nI - Y

The x component of velocity is obtained by integrating over strips

whose semi-infinite sides are parallel to the x-axis, with order of integration

reversed. The procedure is the same as that used above for the y-component.

The result is

n, - r! rl + r. - dip

V 1 - d2 log 1 .1 r2 + (l2 (28)

wher._ the quantities rl, r2P and d12 are agair given by (27).

8.13 Derivation of the Induced Velocity Component Normal to the Plane

of the Quadrilateral.

To obtain the component V of the velocity at the point P, the funda-z

mental potential function for -the side of the quadrilateral between Q., 711)

and (ý2' 12) is constructed using semi-infinite strips parallel to the y-axis

as was done for V . The region of integration is thus the one shown inY
figure 7a and the velocity component is given by an integral of the form (18)

with the same integration limits as for equation (19). Specifically,
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t2 12 00

Sdr"z1 2  [1x 2 f)2+ (y _ 1)2+ 2]3/2
"9 1 0) 112 I -t)z(29)

The integral with respect to I is a standard form. Again the contributions

of the infinite limits cancel, while the contributions of the finite limits

add. The result is

E2 (y -- q12 ) d -

v = z • ,2,_- (30)

ý1 I~~x -t) + z (x-q2+z

There is no obvious physical interpretation of equation (30) as there was for

the analogous equation (20), and so it will be integrated directly. Recall

that 112 denotes a variable point on the line between (E, 11) and (ý2' ý2)"

Thus 112 can be expressed as a function of t in the form

ý12 = m12 • + b12 (31)

where
M 2 91 (321- l (52)

is the slope of the side of the quadrilateral and

E21l - Ei T12

12 2 - ýl

Also define the quantities

q1 2 = y - b1 2 - ml2y (34)

u = x - (35)

In terms of these variables equation (30) becomes
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"xF•2 (m1 2 u + q 1 2 )du

v = ZJ f __ (36)
12 x-t (u 2 + z 2 ) \u 2 + (m1 2  + q1 2 ) 2 + z2

By the methods of Hardy (reference 5)

2 (m12 u + q1 2 ) du

N2 )t1 + (' -1 + 1) + .2
12 12'

(37)

1 _ tan-i q q 2 +m 2 z2  [ .2 .z - 1 2 1 2 ]

z 2 21-2 22
q1 2 [ 12 m1 2 q1 2 u- 2 + •q 12 + m1 2 q 1 2u] [(l + m2lJz +12 12

After some algebraic nanipulation, tue cancellation of common terms in the

numerator and denominator, and the use of equations (31) and (34), the above

result can be written

(38)
(M]Im'Du + q~)d lz2) (q 1-q2)u "

_= -- tan'{ --- . .
(3)

ta- M 12( +u z (y -,112) 2 )U

Using the integration liaits of equation (36) with equation (38) gives as the

z-component of velocity at the point P with coordinates x, y, z due to

the fundamental potential function of thu side between (yl, 1 ) and (E2' 1]2)

V2 =tanl( ml2el-lhl ) tan'l( ml2e2 - h2 (39)
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where 2 =22
e= z + (x - )2 e 2 =z2 + (x - 2 )2 (40)

hi (y - ( TI)(x - t2) h 2 = (y - 12)(x -2•t) (41)

and where ma1 is given by (32)and rI and r2 by (27).

8.14 Summary of the Exact Induced Velocity Formulas for a quadrilateral

Source Element.

The velocity components induced by any polygonal source element of unit

source density are obtained by adding terms of the form derived in the pre-

vious section. For each velocity component there is one term of the above

form for each side of the polygon. The terms for the other sides are obtained

from those for the side between (il' 91) and (E2' q2 ) by a cyclic per-

mutation of the corner points. Since quadrilateral source elements are the

ones of interest for this method, the induced velocity formulas for this case

are written down explicitly here.

A quadrilateral source element of unit density lying in the xy-p½ane with

corner points (ýl' Yl) (t2' 12), ((, E3), and ( 94 T, 4 ) as shown in figure

5 induces the following velocity components at a point P with coordinates

x, y, z:

V =log 1 d 1 2 ) d log r_+x d 12 rl+ r2+ dl12 25 r2 r + d23

(42)
- ((r +rd-____o( _____

+ " • log r3 + ) 4d4 1  14 l r4+ rIdJ 1 1
d54r r+r4 + d3 4  + d 4 1  gr 4 + r 1 4 d 1 )

•i- •2 (/rl 1+r+r2 -- d 1 2 ,\ •2 - r+(r2 + r-,d 2 3 \•

S log r + - log r2+ r3 d

1y dl2 rI+ d12 d 3 d231

(43)
-(r+ r d-- )-- /r 4 ++ rl- dI.

-+ - log (3r +4 .... log 4 d4 1

Sr4d
4  r45+ r1 +
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'me_. -o l hl (me-h

(44)
+ tan-1 2 1 3 h -tan-' h4)

( m 3 z r4

+ tan'l 2 4 2) - tan-1  ('41% h,

d t2 V9r 1 + N - h)
tan = '/(mh)e-- hh2) + ( (m[e--.rh,2)2

12 21
d 2ý T( 5 t2 + TI3- q~2)

_ _ _ 
F 

( 4 5 )

d -44)2 + (nl - q4

where n- I3 -2

St(46)
714 - n5 q1 q 4

m}4 = 4- r3 1 =

and
I '2

rk = V(x - kk) 2+ (y - nk)2+ z2  k = 1, 2, 5, 4 (47)

ek = .+ (x - Ek- , k = 1, 2, 3, (8)

S= 
(y - lk)(x - tk) , k = 1, 2, 3, I (49)

These are the basic formulas of the method.
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In actually evaluating these expressions V and V cause no trouble.
x y

They become infinite on the edges of the quadrilateral, but in practice they

are never evaluated there. The component Vz requires special handling in

certain cases. As z --w 0, V -- * 0 if the point P is approaching a point
z

in the plane outside the boundaries of the quadrilateral. If P approaches

a point within the quadrilateral V --- 27 (sgn z) as z -- * 0. TheseZ

facts may be verified from equation (44). In the course of this method of

flow calculation it is required to evaluate V at points in the plane ofz

the quadrilateral elements. In particular, the null point of each element

is in the plane of that element and within the quadrilateral. At such a point

V should equal + 2r, since the case of interest is that for which z -• 0z
through positive values, rather than through negative values, i.e., the field

point approaches the body surface from the exterior flow field rather than

from the interior of the body. It may also be required to evaluate induced

velocity components at points in the plane of a quadrilateral outside the

boundaries of the quadrilateral, for example, at the null points of other

elements if the body surface has a flat region. Points in the plane of a

quadrilateral element should have z = 0, but, because of round-off error, they

may have small values of z with either sign. Thus, for points inside the

quadrilateral, equation (44) may give 27w with either sign. To avoid this

error, the absolute value of z is tested before velocities are computed,

and if it is less than some small prescribed number, which is nevertheless

large compared to the expected round-off error, it is set equal to plus zero

and each inverse tangent of equation (44) is set equal to 7r/2 with the sign

of the numerator of its argument. This gives V = 0 for points outsidez

the quadrilateral and Vz = +2w for points inside the quadrilateral. Another

situation that may cause trouble in the computing machine is when the slope

of a side of the quadrilateral is infinite, i.e., when a side is parallel to

the y-axis. It is evident from equation (44t) that in this case the two in-

verse tangents corresponding to that side cancel each other. To avoid diffi-

c.lties each of the quantities (t2 - Y1)' (t5 - k2)' (.4 - t3), and (tl - W

are tested to determtine whether they are zero, and if any one of them is zero,

the two inverse tangents corresponding to that side are set equal to zero.

Finally, it should be mentioned that the inverse tangents in equation (44) are

evaluated in the normal rarge .- v7/2 to + 7r/2. It is tempting to combine
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some of the inverse tangents in this equation u3ing the tangent addition law,

but if this is done, great care must be exercised with regard to the range

in which the resulting inverse tangents should be evaluated.

8.15 An Example of the Velocity Induced by a Quadrilateral Element.

In addition to their basic use, formulas (42), (43), and (44) are of

some interest by themselves. Shese formulas were used to compute induced

velocity components for a variety of quadrilateral shapes. The results for

two of the shapes, the square and the isosceles right triangle are used in a

subsequent section to evaluate the accuracy of the multipole expansion. In

this section a single example is given. Figure 9 shows curves of constant

velocity magnitude due to a unit source density on the quadrilateral shown

in the figure. Figure 9a shows the velocity in the plane of the element, z 0,

while figure 9b shows the velocity in a plane above the element, z = 1. In

figure 9a the velocity magnitude is computed from x and y components only. The

velocity normal to the plane of the elements, which is non-zero inside the

element, is neglected. In this figure it can be seen that there is a single

point inside the quadrilateral where the velocity is zero. It is the null

point discussed elsewhere. In the z = 1 plane (figure 9b), there is no point

where the velocity is zero. Instead, there is a point of maximum velocity.

As car, be seen in the figure, the maximum velocity magnitude in the plane z = 1

is 2.14.

8.2 Approximation of the Induced Velocities by a Multipole

Expanr ion

The evaluation of the induced velocity components by the exact formulas,

equations (42) through (49), is quite time-consuming. To reduce computing time

approximate expressions are used instead of these formulas wherever possible.

In this section approximate expressions are derived by means of a multipole

expansion.
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8.21 Derivation of Aproximate Formulas for the Induced Velocity Components.

Consider again the potential at a point P with coordinates x, y, z

due to a quadrilateral element of unit source density in the xy-plane. The

origin of the coordinate system is taken as a point inside the quadrilateral

as shown in figure 10. (This is actually not necessary for the validity of

the expansion, but it is the only case of interest in the present application.)

Figure 10. - The nltipole expnnsion.

The potential at P is, as before

= i dA _ d~ drh(0

A •(x - )2+ (y 2 )2+

Now in the muitipole expansion the integrand in equation (50), i.e., l/r, is

expanded in a power series in • and q about the origin. When that is done,

each term of the series contains a certain derivative of 1/r evaluated at

S= = 0 multiplied by certain powers of • and iq. The first of these

depends only on x, y, z and may thus be taken out of the integral. The

result is that the potential may be expressed as a series of terms each of

which is a product of' a function of x, y, z, which is independent of the

shape of the quadrilateral, and an integral of certain powers of • and T),
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which depends only on the shape of the quadrilateral and is independent of

the point where the potential is being evaluated. First define

2 2 21
ro = X+ y + z (51)

W -= (52)r

Then through terms of second order the expansion of equation (50) is

cp=Aw-(Mw 1 (1 w + 21 w + I w ) + .. (53)
x x y y 2 xx x YX yy

where

A •' dt dq (54)

A

Mx d= ~d d9 ~dt dr (55)

A A

I = 1Rdt d9 Ixy = t i dý d9 Iyj = dt dj

A A A (56)

and where subscripts x and y used on w denote partial derivatives with

respect to thuse variables. The designation of multipole expansion arises from

the fact that the various tems in the expansion (1,) can be interpreted as the

potentials of point singularities of various orders, each of which is construc-

ted by the c ,::."'uence of two singularities of the next lowest order. For

example, the first term of equation (53) is the potential of a point source of

strength A located at the origin. The second term is the sum of the poten-

tials of a dipole of strength Mx oriented along the x-axis and a dipole of

strength M oriented along the y-axis, both of which are located at the

origin. The third term is the sum of the potentials of the three independent

quadrupoles at the origin with strengths proportional to Ix, Ixy, and I .

Such a multipole expansion can be shown to converge for all points sufficiently

far from the origin. In the present application convergence is not a problem.

The multipole expansion is used here only at points sufficiently far from the

element so that the expansion not only converges but converges rapidly enough
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so that terms of higher order than secorid may be neglected. A more general

discussion of the multipole expansion can be found in any electrodynamics

text, for example reference 6.

Equations (54), (55), and (56) show the geometrical significance of the

strengths of the various singularities. The source strength A is the area

of the quadrilateral, the dipole strengths, M% and M are the first
y

moments of the area about the origin, and the quadrupole strengths, IXx, Iy,

and Iyy are the second moments or "tmoments of inertial' of the area about

the origin. In the present application the origin of the coordinate system

in which the quadrilateral lies in the xy-plane, i.e., the element coordinate

system discussed elsewhere, is taken as the centroid of the area of the quadri-

lateral. With this choice of origin the first moments, M and My, vanish,

and there are no dipole terms.

The approximate equations for the induced velocity components are obtained

by truncating equation (53) after the second order terms shown and differentia-

ting with M = M = 0. The results are
x y

Aw + TI vx + I, w ilyyW _(57)

.. . + I + I W +--I w (58)

Vz [ y 2xx xxy xy xyy 2 yy -yy

V [w ! Iw Iw + I 1 ] (59)

In these equations A, I ,, Ixy, and I j are the geometrical quantities dis-

cussed above, while the derivatives of w are

W = •X r3
x 0

S= -y r3 (60)

z 0
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w = 3x(3p + lOx2) r"
7

x 0

w=7 = 3y p r- 7

WVy = 3x q r_7

xyy

Wxz -- 3z p ro7

0

V = - 5xyzr-
7

xyz 0

w = 3z qr- 7

yyz 0

where r 0is given by (51) and. where
2 z2 2

p= y + - 4x2

x2 z2 2 (62)q x -- 4y

8.22 Comparison of the EBact and Approximate Induced Velocity Formulas.

The approximate induced velocity formulas, (57), (58) and (59) are used

in two forms. Iu one they are used exactly as they stand, which is equivalent

to replacing the quadrilateral element by a point source and a point quadrupole.

In the second, only the first term in each equation is retained, which is equi-

valent to replacing the quadrilateral by a point source alone. The velocity

components computed by these formulas are seriously in error if they are used

at points near the quadrilateral element, but they are quite accurate if the

point where the velocities are being evaluated is sufficiently far from the

quadrilateral. The criterion used to decide when the use of either fuiii u

the approximate equations is valid for a particular point is the ratio of the

distance between that point and the centroid! of the quadrilateral to some

characteristic dimension of the quadrilateral. If this ratio is larger than

a certain prescribed number, tH6 quadrilateral is replaced by a source and

quadrupole, unless the ratio is also larger than a second prescribed number,

in which case the quadrilateral is replaced by & source alone. The character-

istic dimension of the quadrilateral used to form this ratio is a quantity

called the msaximum diagonal of the quadrilateral. This quantity, which is

denoted by the symbol t, is defined following equation (84) in Section 9Q-.

For most quadrilateral elements it is just what its name implies, i.e., the

maximum dimension of the quadrilateral. For certain kinds of elements this is
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not true. In particular for triangular elements, the maximum diagonal may

turn out to be the length of the second longest side. In any case of interest

it is, however, within a factor of two of the largest dimension.

Comparisons were made between velocities computed by the exact and

approximate formulas for a variety of quadrilateral shapes having unit source

density to determine values of the ratio of distance between field point and

centroid to maximum diagonal that insure sufficient accuracy in the induced

velocity computation. The results of some of these comparisons for two quadri-

lateral shapes are presented here. The first quadrilateral is a square whose

maximum diagonal is just the common length of its diagonals. Figure 11 shows

velocity magnitudes computed by the exact formulas, together with the absolute

values of the errors in the velocity magnitudes computed by the source-quadru-

pole formulas and the source formulas. For clarity of presentation, the two

error curves have been multiplied by ten. Each set of curves represents

velocities computed at points along a particular line. As shown in the

sketches on the figure, two such lines are in the plane of the square - one

intersecting the square at a corner (figure lla) and one at the mid-oint of a

side (figure llb) -, while the other two lines are normal to the plane of the

square - one intersecting this plane at the centroid (figure llc) and one at

a corner (figure l1d). In all cases except that shown in figure lic the

velocity magnitude computed by the exact formulas becomes infinite at a finite

distance from, the centroid, i.e., on the edge of the quadrilateral, so that

the error curv'cs i these cases have vertical asymptotes. The locations of

thc as&y ptotes can be inferred from thc sketches. The axis is a vertical

asymptote for the error curves of figure llc, since both sets of approximate

formulas give infinite values of the velocity magnitude at the centroid while

the exact formulas give a finite value. The square is a particularly favorable

case for the multipole expansion and it can be seen that the approximate

formulas are quite accurate even very near the square. As a measure of the

absolute size of these velocities, it might be recall'ýd that the normal velocity

at points on the square is 2v. The second quadrilateral shape chosen is the

isosceles right triangle. The maximum diagonal is taken as the length of one

of the legs of the triangle. Figure 12 shows velocity magnitudes computed by

the exact formulas, together with the absolute values of the errors in the

velocity magnitudes computed by the two sets of approximate formulas. Again,
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VELOCITY MAGNITUDE FROM EXACT FORMULA

ERROR(x 10) IN VELOCITY MAGNITUDE USING SOURCE QUADRUPOLE FORMULA

ERROR(x 10)IN VELOCITY MAGNITUDE USING SOURCE FORMULA

IN PRACTICE, EXACT FORMULA USED FOR rQ/t < 2.45,
SOURCE QUADRUPOLE FORMULA FOR 2.45 . ro/t < 4.0,
SOURCE FORMULA FOR ro/t ?4.0

0.7 0.7

0.6 0.6

05 Ve0.5
V V
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03 03 i

02 G02 I
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O1 • "" 0 .--... 0

0 1.0 2.0 3.0 4.0 0 .0 2.0 30 4.0
ro/e r .o/¢

(c) I_

Figure 11. - Errors in the velocity magnitudes computed by the source and source-quadrupole formulas
for a square element. In parts (a) and (b) the velocities are evaluated at points along
lines in the plane of the element as shown in the sketches. In parts (c) and (d) the
velocities are evaluated at points along lines perpendicular to the plane of the element.
The intersections of these lines with the plane of the element are shown in the sketches.
In all cases the abscissa represents the distance between the centroid of the element and
the point where the velocity is evaluated.
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VELOCITY MAGNITUDE FROM EXACT FORMULA

ERROR(x 10) IN VELOCITY MAGNITUDE USING SOURCE QUADRUPOLE FORMULA

ERROR(x IO)IN VELOCITY MAGNITUDE USING SOURCE FORMULA

IN PRACTICE, EXACT FORMULA USED FOR ro/t 1 2.45,
SOURCE QUADRUPOLE FORMULA FOR 245 S ro/t - 4.0,
SOURCE FORMULA FOR rlet >4.0
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Figure 12. - Errors in the velocity magnitudes computed by the source and source -quadrupole formulas
for an isosceles right triangle element. In parts (a) and (b) the velocities are evaluated at
points along lines in the plane of the element as shown in the sketches. In parts (c) and
(d) the velocities are evaluated at points along lines perpendicular to the plane of the ele-
ment. The intersections of these lines with the plane of the element are shown in the
sketches. In all cases the abscissa represents the distance between the centroid of the
element and the point where the velocity is evaluated.
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the error curves have been multiplied by ten. As was done for the square,

the points where the velocity is evaluated are distributed on four lines:

two in the plane of the triangle, one of which intersects the triangle at a

corner (figure 12a) and one at the midpoint of a side (figure 12b), and two

normal to the plane of the triangle, one of which intersects the triangle at

its centroid (figure 12c) and one at a corner (figure 12d). As before, the

abscissa of these plots is the ratio of the distance of a point from the

centroid of the triangle to the maximum diagonal. The error curves for the

triangle have vertical asymptotes at various locations as was explained above

for the square. The isosceles right triangle is a relatively unfavorable

case for the multipole expansion, but still the approximate formulas give

accurate values of the velocity at some distance from the centroid.

Comparisons similar to the above were made for a variety of quadrilateral

shapes and for the individual velocity components as well as the velocity

magnitude. It was decided that the simple source formulas are sufficiently

accurate if the point where the velocity is being evaluated has a distance

from the centroid of the quadrilateral element of at least 4 times the length

of the maximumt diagonal of the element. The source-quadrupole formulas are

sufficiently accurate if this distance is at least W6 = 2.45 times the

length of the maximum diagonal. If these values are used, the maximum error

in any velocity component due to using the approximate formulas is less than

0.001 in the worst case.
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9.0 THE EXPLICIT COMPUTATION METHOD

The manner in which this flow computation method has been implemented

for the computing machine is explained in detail in the various parts of

this section.

9.1 Input Scheme

9.11 General Input Procedure.

The way in which a body surface is input to the machine program is ex-

plained below together with certain restrictions. The information will

probably be of interest only to those who intend to use the method.

The input to this program consists of the coordinates of a number of

points. These points define the surface of the three-dimensional body around

which the flow is to be computed. Their coordinates are given in the reference

coordinate system. For the purpose of organizing these points for computation,

each point is assigned a pair of integers, m and n. These integers need not

be input, but their use must be understood to insure the correctness of the

input and to facilitate the interpretation of the output.

For each point, n identifies the "column" of points to which it be-

longs, while m identifies its position in the "column", i.e., the "row''.

The first point of a ''column" always has m = 1. To insure that the program

will compute outward normal vectors, the following condition must be satisfied

by the input points. If an observer is located in the flow and is oriented so

that locally he sees points on the surface with m values increasing upward,

he must also see n values increasing toward the right. Examples of correct

and incorrect input are shown in figure 13. In this figure the flow field lies

above the paper, while the interior of the body lies below the paper. Occasion-

ally, it happens that despite all care a body is input incorrectly. If the

entire body is input incorrectly - not some sections correctly and some in-

correctly --, the difficulty can be remedied by changing the sign of one co-

ordinate of all the input points. This trick will give a correctly input body

of the proper shape at perhaps a peculiar location. Otherwise, the input will

have to be done ever.
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quadrilateral elements are computed from

groups of four neighboring points. Two of

these points are on one "tcolumn" or

n-line and have consecutive values of m.

mm3 M=3 The other two are on the next highest

M - 2 M:? n-line at the same values of m. respective-

±= m n=2I± ly, as the first two. An element is identi-

fied by a pair of integers that are the sameIn B3 n • -3

as those used to identify the point with the
t"r? n l2 lowest values of m and n of the four

_lil-,_- n I used to form the element. The elementM-2, M=2 M=- M=l M=2 M=:3

in. -- m=. identified by the integers m, n is formed
M=2 M=2 from the points corresponding to: m, n;

-21 r - 3 m + 1, n; m, n + 1; and m + 1, n + I.

n=3 f•=2 n=fl n = nl=2 fl3

COPPE>T INtORREIT

INPUT INPUT The body surface is imagined divided

into sections, which may be actual physical

divisions or may be selected for convenience.

A section is defined as consisting of a

certain numbe-r of n-lines, say V T, and this

Figure 13. - Examples of correct - number, which must be at least two, must be

inlcorrect input, specified on the input at the beginning of

the section. Within each section the n-

lines are input in order of increasing n.

On each n-line the points are input in order of increasing m. The number of

points on each n-line, say Mn, must be specified on the input at the beginning

of each n-line. The first n-line of the first section is n = 1. From then on

the n-lines are numbered consecutively through all sections, i.e., the number-

ing is not begun over at the beginning of each section. Elements will be

formed that are associated with points on every n-line except those that are

last in their respective sections. Points on these latter n-lines are used

only to form elements associated with points on the next lowest n-lines.

The logic of the computation proceeds as follows. Suppose the program is

ready to compute the elements associated with the points on a particular n-

line, say the line n. To do this it uses the points on the line n and the
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line n + 1. Let the number of points on the line n be Mn and the number

on the line n + 1 be M n+. The difference A Mn = Mn+I -- Mn is computed.

If this is non-negative, the program computes the Mn - 1 elements associated

with the points m = 1, 2, ... , Mn- 1 on the line n. The last point on the

line is skipped, and the program proceeds to the next point which is the first

point on the line n + 1, and prepares to compute the elements associated with

the points on the latter line. If the difference A Mn is negative, the pro-

gram computes the M n+1 - 1 elements associated with the points m = 1, 2, ... ,

M n+- 1 on the line n. The next J2AM n i+ 1 points are skipped, and the

program proceeds to the (1A Mni + 2)th point after that, which is the first

point on the line n + 1, and prepares to compute the elements associated with

the points on the latter line. When the first point on the last n-line of

a section is reached, say the line NT, the program skips all MN points on

that line and proceeds to the first point on the first n-line of The new sec-

tion. This process continues until elements have been computed for all sec-

tions.

To illustrate this procedure, consider the plan view of a body shown in

figure 14.
m =26

m: i--= 13 n=14 n=15m=13

- / SECAION4

M= fz4 fl175

flz =1 32 fl =3 h:4 67 5 9 fl 11 [.1
'n n 5 "n 1 Io

I I I

I SECTION I SEC-TION 2 SECTION 3

Figure 14. - Plan view of the input points on a body divided into sections.
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This body has been divided into four sections. The first section contains

four n-lines, n = 1, 2, 3, 4; the second, five n-lines, n = 5, 6, 7, 8, 9;
the third three n-lines, n = 10, 11, 12; and the fourth, three n-lines,

n = 15, 14, 15. In the first section the number of points on each n-line is:

n =1 2 54

m = 4 6 6 4
n

The program finds A = 6 -t 2 > 0. so it computes M 1 = 5 elements

for this line corresponding to the points m = 1, 2, 3. It skips the point

m = 4, n 1 and proceeds to the next point, which is m = 1, n = 2. Since

A M = 6 - 6 = 0, M,- 1 = 5 elements are computed for this line corresponding

to the points m = 1, 2, I5 t, 5. The point m = 6, n = 2 is skipped, and

the program proceeds to thp next point, which is jia = 1, n .3. Here it

finds A M= = 4 -- 2 < 0, so it computes M4- 1 = 5 elements for this

lin( corresponding to the points m = 1, 2, 5. Now IA Mi + 1 5 3 points,

i.e., m = 4, 5, 6, are skipped, and the program proceeds to the point in = 1,

n = 4. Notice that the line n = 4 has only four points, the points

m =, 2, 5, i in the m-grid of section 1, which Is listed in the figure

along the n = 1 and n = 2 lines. It is these points that are used to form

the elements associated with the points of line n = 5. When the program

reaches the point m = 1, n = 4i, it realizes it has attained the fourth and

last n-line of section 1, so it skips M4 " 4 points and proceeds to point

m = 1, n = 5, the first point of section 2. Notice that this point is identi-

cal with the point m = 1, n = 4 that the program just left, and indeed the

lines n = 4 and n 5 are physically identical. Some of the points on the

two lines are physically identical but correspond to different values of m.

This is of no consequence. In this scheme sections are completely independent.

The program determines that it has entered a new section with five n-lines and

proceeds to compute. Since Mn = 7, A Mn = 0 for all n-lines in this section,

Mn - 1 = 6 elements, corresponding to the points m - 1, 2, 3, 4, 5, 6, are

computed for each of the lines n = 5, 6; 7, 8. The fifth n-line of section 2,

n = 9, is skipped and the program proceeds to the first point of section 3,

m = 1, n = 10. Again notice that lines n = 9 and n = 10 are physically identi-

cal. Now three elements are computed for each of the lines n = 10 and n = 11 of

section 3, and the program skips to the physically isolated section 4. Notice
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that the n = 13 line of this section is aligned with the n = 7 line of

section 2 and that the points for which m = 2 are aligned with the m = 6

points of section 1. These facts are irrelevant because of the independence

of the sections. After one element is computed for each of the lines n = 13

and n = 14, the program realizes it has completed the last section and goes on

to other computations. Notice that no elements were computed corresponding

to points on lines n = 4, 9, 2l, 15.

rn-4 m=3 m=2 m=I

SECUT ION 2

m =2__4 f7 _______

rn z

YI- 'n =2 "-n 73 TI =4 rl :5 T 6

I I
flI Il3 fz

SECTION I

Figure 15. - Another possible division into sections.

There is no restriction that the m and n lines of different sections

have to be roughly parallel. The arrangement shown in figure 15 is per-

missible.

Bending the n-lines at their ends to form triangular or nearly triangular

elements is sometimes useful in cases of thin bodies of rounded planform.

Figure 16 shows an example of a triangular element. Notice that the point

m + 1, n may be located anywhere on the line between points m, n and m + 1,

n + . without changing the element. In particular, it may be taken coincident

with either m, n or m + 1, n + 1. An example of the use of this device to

fit a rounded planform is shown in figure 17. Notice that the number of points

on each n-line is increasing by one per line on the left portion of the body

and decreasing by one per line on the right portion..
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m/ i, n

M ~ , "n M , "n --

Figure 16. - The location of input points to form a triangular element.

4 4

44

3 a

2~ 2 2 21 2 2

2 2"

11-1 2 3 4 5 6 7 8

Figure 17. - The use of nearly triangular elements on a thin hody of rounded planform.
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B G C

A

E D

Figure 18. - A restriction on the division of tile body into sections.

As a final example, consider the planform in figure 18. The first point

on every n-line must be m = 1. Neither line AF nor line ED can corres-

pond to m = 1 imless the body is divided into sections, e.g., along FG. A

single section may be used by letting line CD correspond to m = 1 with n

increasing from D to C or by letting line BC correspond to m = 1 with

n increasing from C to B.

If it is desired to compute flow velocities at points off the body surface,

the coordinates of these points, which are designated off-body points, must

also be input. TPhe order in which off-body points are input is immaterial.

For good accuracy, the distance from an off-body point to the body surface

should be at least twice the characteristic dimension of the elements on that

portion of the surface. The flow properties at points nearer the surface

should be obtained by interpolation between the off-body points and the null

points. The interpolation is simpler, amnd the ba•sic calcu+ntonal accuracy is

higher, if the off-body points near the surface are located along normals to

the surface that intersect the surface at null points. Off-body points located

near the edges of elements are particularly susceptible to error because of

the infinite velocities occurring at these edges.

9.12 Bodies with Sylmetry Planes.

If the body surface possesses planes of symmetry, the fact may be noted

in the input to the program and only the non-redundant portion need be specified

by input points. The other portions are automatically taken into account. The
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symmetry planes are assumed to be coordinate planes of the reference coordinate

system. To facilitate the calculations the choice of which coordinate planes

are symmetry planes for a given body is not left open. Particular coordinate

planes are selected once and for all as symmetry planes, and the body surface

must be input to conform with this selection, or the calculated flow veloci-

ties will be meaningless. The assumptions for the symmetry planes are listed

below.

If a body has one plane of symmetry this plane must be the xz-plane of

the reference coordinate systerm. The y-coordinates of all input points must

have the same sign - either positive or negative. If the body is closed, i.e.,

if it intersects its symmetry plane, the points in the symmetry plane, i.e.,

the points having y = 0, must be included among the input points. Usually,

the points in the symmetry plane are taken as on a common m-line or n-line.

If a body has two planes of symmetry, these planes must be the xz-plane

and the xy-plane of the reference coordinate system. The z coordinates of

all input points must have the same sign, and similarly for the y coordinates.

They may be of either sign; and the sign need not be the same for the y-co-

ordinates as it is for the z-coordinates. If the bo•dy intersects its symmetry

planes (or plane), the points in these planes, i.e., the points having y = 0

or z 0 0, must be included among the input points.

If a body has three planes of symmetry, these must be the three coordinate

planes of the reference coordinate system. The x-coordinates of all input

points must have the same sign, and similarly for the y and z coordinates.

Any coordinate may have either sign. If the body intersects its symmetry

planes, the points in these planes, i.e., points having zero value of a co-

ordinate, must be included among the input points.

Thus with the usual orientation of coordinate axes. a body may h.Sve a
" right and left'' symmetry, a ''right and left" and ''up and down'' symmetry,

or a ''right and left", ''uIp and down",, and ''fore and aft'' symmetry. In

some cases this may not be the most natural way to specify the body, but the

resulting inconvenience should be minor. Any direction of the onset flow may
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be specified for all cases.

Off-body points in cases with symmetry planes are handled the same way

as was described previously.

9.2 Formation of the Plane Quadrilateral Surface Element.

Suppose now that the stage of the calculation has been reached at which

it is required to form a plane surface element from the four points whose

identifying integers are m, n; m + 1, n; m + 1, n + 1; and m, n + 1. Since

only one element is considered here, it is convenient to identify the points

by the subscripts 1, 2, 3, and 4 respectively. See figure 19. Notice that

the points are numbered consecutively around the elements as was illustrated

in figure 5. Let these points have input coordinates in the reference coordi-

nate system as follows:

2

m +'I M+ I, ni j- I

71 T 2

4

m~n m n- I

Figure 19. - The formation of an element from four input points.
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xi i i

1 Yl 01

i i i
2 : x 2  Y2  m2

i i i 
(63)

3 3 Y3 '3

The superscript i identifies the coordinates as input coordinates. Now the

two "diagonal" vectors are formed - the vector T from point 1 to point 3

and the vector 12 from point 2 to point 4: In general these vectors are

not orthogonal. Their components are:

i T i i i i
lx 3 1 ly 3 Y 1 lz 3

(64)
i i i i i i

2x= - y -yh T~. =z.-

The vector N is taken as the cross product of these, i.e., N = T2 x T . Its

components are:

N = T2y Tlz T ly T2z

y Tlx T2z T2x z (65)

Nz =T Ty-T T•
Nz T2x Tly Tlx T2y

The unit normal vector, n, to the plane of the element is taken as N divided

by its own WYngth N i.e.,,

Nx
x N

N
n ---Ny (66)

NZz
z N

where

N N +N +N (67)
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The plane of the element is now completely determined if a point in this plane

is specified.. This point is taken as the point whose coordinates x, y, z

are the averages of the coordinates of the four input points, i.e.,

- 1 2 3ii i1
1 i i i ii

- 12 [3 +4Z =g L:+z2 +z + zJ

Now the input points will be projected into the plane of the element along the

normal vector. The resulting points are the corner points of the quadrilateral

element. The signed distance of the k-th input point (k = 1, 2, 3, 4) from the

plane is i i i
= n (X-- ) + ny(y--y k) + n z(Z- zk) k = i, 2, 3,4

(69)

It turns out that, due to the way in which the plane was generated from the

input points, all tbe d. k' hgve the same magnitude, those for points 1 and 3

having one sign and thosfv for points P and )4 having the opposite sign. Sym-

bol4Cally,

uk -( )kd k 1, 2, 3, I (70)

Thc magg enu of the common projection distance is called d. i.e.,

d = Id1 (I-.)

The coordinates of the corner points in the reference coordinate system are

given by
i

= xk +nxdk
$ i

= + ny d k 1, 2, 5, 4 (72)
i

z = z + n
k k z±

Now the element coordinate system must be constructed. This requires the com-

ponents of three mutually perpendicular unit vectors, one of which points along

each of the coordinate axes of the system, and also the coordinates of the
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origin of the coordinate system. All these quantities must be given in terms

of the reference coordinate system. The unit normal vector is taken as one

of the unit vectors, so two perpendicular unit vectors in the plane of the

element are needed. Denote these unit vectors t and t 2 The vector t

is taken as T divided by its own length T., i.e.,
t T 1 ie.

T 1

T (73)tly T TI

Tlztlz - T1

where

T,= TVý2 +ly2 + T 1 (7 4)

The vector t,% is defined by t 2 = n X t, so that its components are

t2x n ytlz n ztly

t2y= nzt -- nXtlz (75)

t2z n xtly -- ytlx

The vector tI is the unit vector parallel to the x or ý axis of the

element coordinate .ystc.., while t- is . arallr1 to the y or q axis, and

77 is parallel to the z or t axis of this coordinate system.

To transform the coordinates cf points and the components of vectors be-

tween the reference coordinate system and the element coordinate system, the

transformation matrix is required. The elements of this matrix are the com-

ponents of the three basic unit vectors, t1, t 2 , and n. To make the nota-

tion uniform define
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al = tlx a12 = ly a13 = lz

8221 = 2x a.2 = t2y a23 = t2z (76)

a31 =nxa a 3n = nz

The transformation matrix is thus the array

a11  a12 a13

a2 ! a 22 a25 (77)

a a2 a,31 32

To transform the coordinates of points from one system to the other, the

coordinates of the origin of the element coordinate system in the reference

coordinate system are required. Let these be denoted xo y., zo. Then if a

point has coordinates x', y', z' in the reference coordinate system and

coordinates x, y, z in the element coordinate system, the transformation from

the reference to the element system is

x = all(X' -- x ) + a 1 2 (y' - Yo) + al-(Zf -z 0 )

y = a 2 1 (x' - X ) + a 2 2 (y' - Yo) + a -3(z' --z ) (78)

z = a 5 1 (x' - X0 ) + a 3 2 (y' - yo) + a33(z1 z0 )

while the transformation from the element to the reference system is

X' = X 0 + 1 1 +a 21Y + a31z

Y' = Yo + a-2x + a 2 2 Y + a3 2 z (79)

z' = zo + a13x + a23y + a3 z

Vectors are transformed in a similar way. If a vector has components Vx, Vy,

V in the element coordinate system and components Vx, V', V1, in the
z x y z
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reference coordinate system, these are related by equations (78) and (79),

where Vx, Vy, V replace x, y, z, respectively, in these equations and
X y' z

V1, VI, V'z replace (x' -- x ), (y' -yo)P (z' - ZO). The origin is tem-

porarily taken as the point whose coordinates are the averages of those of

the four input points, i.e., the point with coordinates x, y, z in the

reference system.

The corner points are now transformed into the element coordinate system

based on the average point as origin. These points have coordinates x', yt,

z' in the reference coordinate system. Their coordinates in the element

coordinate system with this origin are denoted by t kq' 0. Because they

lie in the plane of the element, they have a zero z or t coordinate in the

element coordinate system. Also, because the vector tl, which defines the

x or t axis of the element coordinate system, is a multiple of the,
"tdiagonal" vector from point I to point 5, the coordinate and the co-

*

ordinate 9. are equal, This is illustrated in figure 20. Using the above

transformation these coordinates are explicitly

-- .4cENLPOI D

AVRGDOINT

Figure 20. - A plane quadrilateral element. Transfer of origin from average point to null point.
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k-l, 2, 3, 4 (80)

"k _21( - + a 22 (yk' -) a23(z' -'

These corner points are taken as the corners of a plane quadrilateral which is

the fundamental source element employed in this method.

The origin of the element coordinate system is now transferred to the

centroid of the area of the qyadrilateral. With the average point as origin

the coordinates of the centroid in the element coordinate system are:

1 * 1 [4(n - n*) + ý( - Il

12 - 14

(81)
1*

These are subtracted from the coordinates of the corner points in the element

coordinate system based on the average point as origin to obtain the coordinates

of the corner points in the element coordinate system based on the centroid as

origin (see figure 20). Accordingly, these latter coor-dinates are

ýk - k - -o

* k 1 1, 2, 5, I (82)
flk -- k - 0

Since the centroid is to be used as the origin of the element coordinate system,

its coordinates in the reference coordinate system are required for use with

the transformation matrix. These coordinates are

x° x + all~o '20o

Yo =y + a 1 2 0 + a2 2 qo (83)

z° = z + a 13 0 + a 253°
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Since in all subsequent transformations between the reference coordinate

system and the element coordinate system the centroid is used as origin of

the latter, its coordinates are denoted xo0 YO, z0  to conforn with the

notation of equations (78) and (79). The coordinates of the average point

are no longer needed. The change in origin of the element coordinate system

of course has no effect on the coordinates of the corner points in the

reference coordinate system.

The lengths of the two diagonals of the quadrilateral, t1  and t2P

are computed from
2= - 2

(84)

t 2
2  ( -4 2)2 + (N, 2)

The larger of these is selected and designated the maximum diagonal, t.

The coefficients of the zeroth and second order terms in the multipole

expansion of the velocity induced by a quadrilateral element consist of the

area of the quadrilateral and the three second moments of the area (see See-

tion 8,2l). In terms of the coordinates of the corner points. the arca of

the quadrilateral is

A (85)
2 3 1(2

while the second moments are

1: -I-44 (t- )II+ E 2+
XX 1 -E4 (t-41 2)(11+ E3)

"+ (2-14) (g12+ tlt3 + k32) + (86)

"+t •22(ýil+ t3+ 2) -•44(tl + E + E0)1

T iP4ý(t,- F2) 2 2 2 2 2

(87)

+ (g + E 3)(12- q4)(2q1+ 12+ q4)]
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= A_( t - )(1 2-_ (88

In obtaining these formulas use has been made of the fact that Y

9.3 Determination of the Full Point

The point of the quadrilateral element at which induced velocities are to

be computed is the so-called null point, i.e., the point where the element

itself induces no velocity in its own plane. The x and y coordinates of

this point in the element coordinate system are obtained as the solution of

two simultaneous non-linear equations. These equations are

V,(x, y) =0 (89)

V (x, y) = 0
Y

where the expressions for V and V are those given in equations (42) andx y
(43) with z = 0 and the tk' qk' k = 4,2,3, 4, set equal to the co-

ordinates of the corner points which were obtained in the previous section.

These equations are solved by means of an iterative procedure, which

utilizes analytic expressions for the derivatives of V x and V . With thex y
notation ( )x = 6/ax, ( )y = 6/6y. these derivatives can be written

(VXX ý 2 l+ rl2) - D 32 3 r+L 1t- 35 Ox -- D41

(Vxy= 92- - 1 (rl+ r 2 )x4" 2  (r 2 + rx+ -- 'D;1 (r 3 +4 r4)x+ D 4  (r 4 + rl)

D( ) 12 r rD) 2 y 34 5 (r 4 +V 2-l (rl+ r)y - (r 2 + r,)y+ D 4  (r + r 4  + (r+ r)

D( ) D 22 22 3 D34 D'41 4l

•2-5 •--'4•4- l~ 4 rix

(V) =1 tl-2 (r+t2)-. 3 (r2r)+ (r + r)+ (r41
1 2 yI D 2 3 D 34 v •

D12 23 D34 . 41

(90)
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where x-- x

(r 1 + r 2 )x = rl + r2

x 2

(r 2 + r)= r 2  + r 3

(rx - E3 x - E4
(r5 +r)x= r 3 r 4

(r r~x x - t4 x - a,
(r4 +r) = 4

(rI +r 5 )y = rl + r2
Y -2 1 Y - 92

y rT~ I

(r 2 + r )y = - - +1
r2 r(2

(r -- q3 Y " 94(3 + 4)y r- 3 r 4h

(r Y - q4 Y - 11(r + rl)y +- r+
4 Y r 4 r I

and
2 22

2D 2 (rI+ r -) dil

=22
2 D 23 (r 2+ r)- d2

(95)
2 D 3 (r,+ rQ 4) d3

2 DL! (r4+ r) 2 _. d41

These derivatives can be evaluated very quickly. The time required for their

computation is much less than that required for the computation of V and V .x y
Since the velocity is the negative gradient of a potential function (, it is

true that (V )y = (V)... However, it was found convenient to calculate each

separately and to use this fact as a check on the correctness of the program-

ming.
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The iterative procedure is as followg. Let xp and y denote the p-th

approximation to the x and y coordinates of the null point, and let the

notation [ ](P) denote the quantity in brackets evaluated at x = xp, y = yp

Once the p-th approximation has been found, the (p + l)-th approximation is

obtained by solving the following pair of linear algebraic equations for

xp+l, Yp+l"

Ivx) (xp+I- xp) + vx ) (Yp+- Yp) [

Lvy)x] (xp+l- Xp) + Vy) ] (Yp+l- ) y L -VyI

The first approximation is x = y = 0, i.e., the centroid of the quadrilateral.

The iterative procedure is terminated when the induced velocity components at

the approximate null point are both less in absolute value than a prescribed

value. This value is set at 0.0001.

This iterative procedure is thus a gradient method in that the non- ineear

equations (89) are replaced by the linear equations (94), whose coefficients

are the derivatives of the non-linear functions. The correcLions to the values

of xp and yp computed from (94) are correct to first order and ure in error

by terms proportional to the second derivatives of V and V . The methodx y
is seen to be the two-dimensional analogue of the Newton-Raphson procedu.re for

a single non-linear equation. Usually the convergence is fairly rapid - three

or four iterations. This is partly due to the fact that for most quadrilaterals

the centroid is quite close to the null point.

There is one case where the procedure converges to the wrong point. This

occurs for quadrilateral elements that are approximately long thin triangles.

More precisely, the unfavoLrble case occurs when an element has two sides that

are much longer than the other two and either the long sides are adjacent, as

shown in figure 21a or one of the short sides is large compared to the other,

o- ThoIn in figure 21b. A. can be seen inL figue 2., in both Lhebe cases the

quadrilaterals are approximately triangles with a large "?altitude"' to ''base''

ratio. The iterative procedure fails if this ratio is larger than about thirty.
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Figure 21. - Elements for which the calculated null point is outside.

For such elements the induced velocity is a slowly varying function of

position along the long dimension of the element and the first correction

obtained from (94) using the centroid is such that the next approximation is

a point outside the element. From then on successive approximations are

points further and further away from the element as the procedure seeks out

the ''null point" at infinity, where the induced velocity is obviously zero.

While an iteration scheme could probably be devised that converged in such

cases, it has not been done. Tnistead, after the iterative procedure has con-

verged, the distance between the computed null point and the centroid is com-

puted. (It is Just the distance of the null point from the origin since the

calculation is performed in the element coordinate system.) If the distance

is smaller than the maximum diagonal of the element as defined following

equation (84). the calculation procceds noirmally, for the truc null point is

the only noint this near the centroid where the induced velocity components

are sufficiently small for the iterative procedure to converge, If this

distance is larger than the maximum diagonal, the computed null point is out-

side the element, and it is discarded. In this case the centroid replaces

the null point in all subsequent calculations.

There is another type of element for which the procedure does not con-

verge, namely an element having one d.iagonal much shorter than any side as

shown in figure 22. For such elements the induced velocity varies rLpidly

with distance along the short dimension. Pteoessive approximations to the

null point form a non-convergent sequence, all of which are quite close to the
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Figure 22. - An element for which the null point iterative procedure does not converge.

true null point. The procedure is simply terminated after thirty iterations

and the last approximation used. in subsequent computations.

It should be mentioned that no systematic study of the convergence of

this iterative procedure was conducted, but difficulties were remedied as they

occurred in the actual calculation of potential flows. There may be other
tpe i fo £ W11ch .,he fi .cii•, cnnot be calculated in this manner,

but if so they have not been encountered in almost a year of using this method

for a variety of body shapes. In fact, It is intuitively clear that if any

of the above types of elements occur in practice, it implies that the points

used to define the body surface were not intelligently distributed.

If either of the above substitutes for the null point are used rather

than the null point itself, this fact is noted on the first output from the

machine as described in the next section. In any event a point r the element

is selected at which induced velocities are to be evaluated, and this point

will subsequently be referred to as the null point regardless of what it

actually is. The coordinates of this point in the element coordinate system

are denoted xnp y np" These are transformed into the reference coordinate

system by means of the transformation matrix as shown in equation (79) to

obtain the coordinates,xn' , yn'p, zn , of the null point in the reference

coordinate system.

Finally, to illustrate the location of the null point, calculations were

performed for a series of isosceles triangles of various altitude to base

ratios. The results are given in figure 23. It can be seen that for very

small altitude to base ratios the null point occurs at half the altitude,

while for large values of this ratio it approaches the base of the triangle.
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The null. point coincides with the centroid when the triangle is equilateral,
1

i.e., y = h for an altitude to base ratio of 0.866.

9.4 The First Output

After the quantities described in the previous sections have been can-

puted for all the quadrilateral elements formed from the input points, certain

geometrical properties of the elements are output from the machine- The order

in which the elements are listed is the order in which they were formed as

described above. Recall that each element is associated with one of the input

points used to construct it and is designated by the same pair of integers,

m and n, used to identify the input point. The elements are listed n-line

by n-line, starting with the first and continuing through all sections. On

each n-line the elements are listed in order of increasing m. The tabulated

information for each element occupies threc lines of printing. The quantities

listed are: the identifying integers m and n, the coordinates of the four

input points used to form the element, the components of the unit normal

vector, the coordinates of the null point in the reference coordinate system,

the common projection distance d of. the four input points into the plane of

the element, the maximum diagonal t, and the area of the quadrilateral. The

format of this listing is as follows:

ni i i xx Y xI d (1 or 2)
3 x4 x np

i i y i y i n y' t
YJ Y2  y 4 V np

i i i iz z2 z3 Z4 n z' A
4 z np

The designation 1 or 2 on the extreme right identifies elements for which

the null point iterative procedure failed as discussed above and is absent

for normal elements. A symbol 1 denotes that the computed null point was

outside the element and thus that the listed null point is actually the

centroid. A symbol 2 denotes that the iterative procedure did not converge

and thus that the listed null point is only approximate. In both exceptional

cases the listed value of d is incorrect.
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The main purpose of this output is to enable errors in the input points

to be discovered before the lengthy flow calculations are performed. Errors

in the input points occur fairly often because of the large amount of input

required. Usually, these are simply errors of transcription such as misplaced

decimal points or transposed digits, but they are often difficult to find.

If the flow computations are performed with an incorrect input point, they

must be completely redone. There is no provision for saving those parts of

the computation that might be correct. The computation time up to the first

output is usually a fraction of one percent of the total computation time for

the case, and if an error can be discovered at this stage, a great saving

results. Experience to date indicates that about half the input errors are

discovered by examining the first output. Thus its use has proved very worth-

while.

Unfortunately, there arc no precise rules for discovering input errors by

means of the first output. It is a technique that must be learned from ex-

perience. Ytoreover, there is a considerable individual variation. Different

people will find a gjvpn error in different ways. The one general principle

is that all quantit'ies should vary systematically from element to adjoining

element. Thus, in particular, there should be a systematic variation along

an n-line, which is readily verified on the first output. There should also

be a systematic variation along m-lines, which cannot be conveniently checked

on the first output.

The first Output is also the only listing of the input points produced

by the program and provides the only convenient method of associating input

points with elements, if this should be desired.

9.5 Formation of the Vector Matrix of Influence Coefficients.

The Induced Velocities

9.51 Organization of the Elements.

It is now required to compute the velocities induced by the quadrilateral

elements at each other's null points. All elements are assizaed to have unit

source density. In this and succeeding calculations, some of the quantities
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used to form the elements are superfluous and are discarded. Subsequently, an

element is thought of as being defined by the following quantities: the co-

ordinates of the null point and the centroid, which is the origin of the

element coordinate system, in the reference coordinate system, the elements

of the transformation matrix, the coordinates of the four corner points in

the element coordinate system, the maximum diagonal and the area and second

moments of the quadrilateral. Thus the following twenty-eight quantities

are required for each element:

x1 yp ZI
np np np

X0 0O 0

a11  a 1 2  a13

a 2 1 a2 a

al a2 a}
a51 a52 a 35

ti i 2 n12

•3 3 4 4

t A

I I I
xx xy yy

The components of the unit normal vector are also needed but by equation (76)

these are given by the last row of the transformation matrix. 'To minimize

computing time these are computed only once and saved.

The elements are now considered to be ordered in the sequence in which

they were listed on the first output. That is, the elements on the first

n - line are listed in order of increasing m, followed by the elements of the

second n-line in order of increasing m, and similarly for all n-lines.

(This, indeed, is the way they are stored in the machine.) Thus each element

may be designated by a single identifying integer, i or J, which represents

its position in this sequence. This identifying integer never appears on the

input or the output of the method, but is basic to the logic of all the
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computations to follow. The total number of elements is denoted N.

The basic calculation described in this secLion is the computation of

the velocity components induced at the null point of the i-th element by a

unit source density distribution on the J-th element. This calculation re-

quires the coordinates of the null point of the i-th element and may require

any of the above-listed twenty-eight quantities associated with the J-th

element except the coordinates of the null point. To avoid complication

these quantities will not at first be subscripted I and j in the ex-

planation to follow. It need only to be kept in mind that the null point is

always that of the i-th element where velocity components are being evaluated,

while all other quantities correspond to the j-th element, which is inducing

the velocity.

The method calculates the velocity components induced at one particular

null point by all N elements in turn and repeats this procedure for each

null point. Thus the induced velocity matrix or ''matrix of influence co-

efficients'' is computed row by row, each row being put into the low speed

storage of the machine as it is completed. The computation of each row re-

quires the above list of twenty-eight quantities for all elements, and to

minimize computation time these must all be in the high-speed storage of the

machine simultaneously. If thcse were computed as ne ed9ed or obtained from
low speed storage, the process would have to be repeated N2 times, which is

very time consuming. The result is that high speed storage capacity is often

the limiting factor in the number of elements that may be employed. If the

matrix were computed column by column, i.e., if the velocity components in-

duced by one particular element were calculated at each null point in turn,

and the process repeated for each element, this storage limit would not exist.

Only one set of twenty-eight numbers are needed for each column. These could

be computed as needed, since this would require only N such calculations -

a trivial matter. Since the matrix is eventually used row by row, this latter

method would require transposing the matrix, which is a time consuming pro-

cedure, and the method employed was chosen to avoid it.
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9.52 Non-symmetric Bodies.

The first step in computing the velocity components induced at the null

point of the i-th element by the J-th element is to compute the distance r

between this null point and the origin of the J-th element coordinate system.

This is

r= (xnp- xo)2 + (ynp- Yo)2 + (znp- zo)2 (95)

where, as mentioned above, subscripts i and j are omitted. This distance

is now compared with the product of the maximum diagonal of the j-th element

and a prescribed number PV which is customarily set equal to 4, but may have

any desired value. If

r 0 P t (96)

the J-th element is approximated by a point source at the origin of its co-

ordinate system. (This approximation in equivalent in accuracy to a point

source plus a point dipole, since the dipole moments of the quadrilateral

with respect to its origin are zero.) The velocity components are computed

by formulas equivalent to those obtained from equations (57), (58), and (59)

by retaining only the first terms. These equations, however, are expressed in

the element coordinate system. To avoid transforning the null point into the

element coordinate system, which in this case would be a significant fraction

of the computation time, the velocity components are evaluated directly in

the reference coordinate system by well-known formulas that are easily ob-

tained from these. S'pecifically, if equation (96) is satisfied, the velocity

components in the reference coordinate system are given by

Vx' = A r-3 (Xn - x
x 0 np 0

Ve= A, t5 I- -Y (
y o up o(V1 = A r-3Z f-'

v, :Ar-- (z' =z )
z o rip o

If, on the other hand,

r° < P2t (98)
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the coordinates of the i-th null point x IPYnp, Z' are transformed into
rip np np

the J-th element coordinate system obtaining Xnpy Ynpp Znp" This allows

the formulas of Section 8.0 to be employed. The transformation is accomp-

lished by means of equation (78). Now r0  is compared with the product of

the maximum diagonal t and a second prescribed number p,, which is set

equal to -6= 2.45 unless otherwise specified. If

r t (99)

the J-th element is approximated by a point source plus a point quadrupole at

the origin of its coordinate system. The velocity components at the i-th

null point are computed by equations (57), (58), and (59) using equations (60),

(61), and (62). The coordinates of the i-th null point in the J-th coordinate

system, Xnp. Ynp' znp, replace x, y, z, respectively, in the equations,

while the value of r0  used is that already computed by equation (95) using

coordinates in the reference coordinate system. If r were computed using0

Xnpl Ynpl Znp in (51), the same value would of course be obtained. The

velocity components V , Vy, Vz thus obtained are in terms of the element
x

coordinate system.

If, instead

r <0 < , (1oo)

the velocity components are evaluated from the exact formulas for a quadri-

lateral, i.e., from equations (42), (43), and (44) using equations (45)

through (49). Again Xnp) Ynp' znp replace x, y, z in these formulas, while

tk' Ik' k = 1, 2, 3, 4, are the coordinates of the corner points of the j-th

element. In the evaluation of these formulas attention must be paid to the

discussion following equation (49) with regard to certain limiting cases, in

particular the case i = j where the null point is on the element in question.

As above, the velocity components V , Vy, V thus obtained are in terms of

the element coordinate system.

In the last two cases, the induced velocity components Vx, V , Vz in

the element coordinate system must be transformed to obtain the components

Vx, V, V'z in the reference coordinate system. This is done using the form
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of equation (79) appropriate for vectors as is discussed immediately below

the equation. Thus finally in one of three ways the components V1, V1, V'

of the velocity components induced at the i-th null point by the J-th element

are obtained.

The notation is now changed to bring in i and j explicitly. Define

the vector ViJ as the vector velocity induced at the null point of the i-th

element by a unit source density on the J-th element. Let the components of

this vector in the reference coordinate system be Xij' YiJ' Zijj, so that the

change of notation may be expressed symbolically as

Xi = Vt

ii x

Yij = Vy (101)
y

z = V1
ii z

MTe complete set of Vij for all i and j comprise the vector elements of

the ''matrix of influence coefficients " for non-symmetric bodies.

The normal velocity induced at the null point of the i-th element by a

unit source density on the J-th element is obtained by taking the dot product

of VJ with the unit normal vector of the i-th element n;" Tihis induced

normal velocity is denoted Aij. It is given by

Aij = n i * V j = nix Xij + niy Yij + niz giJ (102)

The complete set of Aij form tha coefficient matrix for the set of linear

equations for the values of the surface source density on the quadrilateral

elements. For non-symmetric bodies the matrices V iJ and Aij are used

for all onset flows.

9.53 Bodies with One Symmetry Plane.

If a body has one plane of symmetry, only the non-redundant portion of

the body need be input. The other half of the body is generated by reflecting

the half that is input in the symmetry plane. As stated above, the symmetry

plane is the xz-coordinate plane of the reference coordinate system. Figulre 24
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Figure 24. - A body with one symmetry plane.

is a sketch of a typical body with one symmetry plane. Input points define

the half of the body surface on one side of the Y7-plane. Elements are formed

from these points in the manner described above, and such elements are denoted

basic elements. The other half of the body is taken into account by being

covered with elements that are the reflections of the basic elements in the

symmetry plane. These latter are denoted reflected elements, and thus refer-

ence will be made to the J-th basic element and the J-th reflected element.

Because of the symmetry of the body surface, the value of the surface

source density on any reflected element is related to the value of the source

dunsity on the corresponding basic element in a very simple way, and thus only

the latter need be calculated. The relation between the values of source

density on a basic and reflected elenimnt depeias on the direction of the

uniform onset flow,. By inspection of figure 24, it is clear that if the onset

flow is parallel to the x or z axis of the reference coordinate system,

the source density on a reflected element is equal in value to the source

density on the corresponding basic element. (This is true in fact for any

onset flow in the xz-plane.) If the onset flow is parallel to the y-axis of

the reference coordinate system, the source densities on corresponding basic
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and reflected elements are equal in magnitude but of opposite sign. The re-

lation is more complicated for other flow inclinations, but these are not

considered, since the results for such inclinations may be obtained by a

simple combination of the cases mentioned above.

The calculational procedure is identical to the nonsy~metric case until

the stage is reached at which the matrix of induced velocities is to be com-

puted. That is, the basic elements are formed from the input points in the

same way to obtain the twenty-eight defining quantities for each element

that are listed in Section 9.51. Also, the velocity induced at the null point

of the i-th basic element by a unit source density on the J-th basic element

is calculated in the way described in Section 9.52. Immediately after this,

the velocity induced at the null point of the i-th basic element by the j-th

reflected element must be calculated. Thus the twenty-eight quantities de-

fining the J-th basic element are required.

Since a reflected element is the mirror image of the corresponding basic

element in the xz-plane of the reference coordinate system, its twenty-eight

defining quantities are identical to those for the basic element excepL tiat

the signs of the y reference coordinates of all points and the y-components

of all vectors are changed. Referring to the list in Section 9.51, this

means that the signs of the following quantities must be changed:

Ynp Yo a 1 2  a 2 2  '5 2

However, since velocities are not evaluated at the null points of reflected

elements, the sign of yp' need not be changed. Moreover, the reflection

haq made the element coordinate system left-handed. To make the coordinate

system of the reflected element right-handed, the sign of Uiu _iiLi

vector, i.e., the third row of the transformation matrix, is reversed. This

means that the signs of a3! and a7 3  are changed, while the sign of a32

goes back to what it was originally. Thus finally, a reflected element is

obtained from a basic element by changing the signs of five of the twenty-

eight defining quantities. The five whose signs are changed are:

YO al2 a22 a31 a 5
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For the purposes of this method the reflection of an element in the xz-plane

may be defined as the change of these five signs. The velocity components

induced by the J-th reflected element at the null point of the i-th basic

element are then computed by the method of 9.52. When this is completed,

the signs of the above quantities are returned to their original values.

Suppose that the above calculations have been completed. Let 7iJ be

the vector velocity induced at the null point of the i-th basic element by

the J-th basic element, and let I(r) be the velocity induced there by the
ij

J-th reflected element. These vectors have components Xij4  Yij, ZiJ and

x(r) v(r) z(r) respectively, in the reference coordinate system. These
ij' ii, ijs

vectors are now combined in two ways. Define tht vector

. + -( r) (103)ij Ii Vij

with components

X(2) x(r)
ij ij ij

y(1) 'j ý)(lo4)

iJ Xi ij

Z(1) + Z(r)

ij ij j. j

and the vector
;7 (2 ) - - -:r ( 0 5
vij j V(105J

with components

X (2) = :j-x(r)

Y ij ij

Z(2) Z _(r%
Yij Y iJ - YiJ (o

-((2)

The vector Vij) is thus the velocity induced at the null point of the i-th

basic element by the j-th basic and reflected elem.ents when these latter two

have equal values of source density. Similarly the vector 7(2) i h

velocity induced at the null point of the i-th basic element by the J-th basic

and reflected elements when these latter two have source densities equal in
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.V~l) -2
value but of opposite sign. The complete sets of iJa V iJ are
accordingly the vector ''matrices of influence coefficients'' for bodies with

one plane of symmetry. The second of these is appropriate for use with an

onset flow parallel to the y-axis of the reference coordinate system, i.e.,

flow normal to the symmetry plane, while the first is appropriate for use

with onset flows parallel to the x or z axes of the reference coordinate

system, i.e., flows in the symmetry plane. These matrices are N x N, where

N is the number of basic elements only.

Taking the dot products of the vectors Vij) and 7 with the unit
iJ ij

normal vector of the i-th basic element gives the induced normal velocities

A(') and A(2) in a manner similar to that shown in equation (102) for theij Aij(1(2

non-symmetric case. The complete sets of Aij and Aij form the coefficient

matrices for the sets of linear equations for the values of the surface source

density on the basic elements.

9.54 Bodies with Two Symmetry Planes.

Bodies with two planes of symmetry are handled by an obvious extension

of the procedure of the previous section. Only one-fourth of the body surface

is specified by input points, while the other three-fourths is taken into

account by reflections. As before elements formed from input points are

designated basic elements. To each basic elemen t there now correspond three

reflected elements, which arc obtaincd by successive reflections in the

symmetry planvr. The twu bymmnetry planes are the xz and xy coordinate planes

of the refeience cootriiri.aL syiLuin. Figurt 21, shows a skctch of a typical

body with two planes of symmetry and the relation of the basic and reflected

elements. The first reflected element is obtained by reflecting the basic

element in the xz-plane; the second reflected element is obtained by reflecting

the first refle-ted element in the xy-plane; and the third reflected element

is obtained by reflecting the second reflected element in the xz-p}.iin. The

basic element may be obtained from the third reflected element by a reflection

in the xy-plane.

If the onset flow is parallel to one of the coordinate axes, the values

of the source density on a basic element and the three corresponding reflected

elements are all equal in magnitude. The signs of these source densities
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Figure 25. - A hody with two symmetry planes.

depend on the direction of the onset flow. Inspection of figure 25 shows that:

if the onset flow is poarallel to the x-axis, the signs of the source densities

on all three reflected elements are the same as that on the basic element;

if the onset flow is parallel to the y-axis, the sign of the source density on

the third reflected element is *the same as that on the basic element, while

the source densities on the first and second. reflected elements have the

opposite sign; if the onset flow is parallel L.u th• z-axis, the sign of the

source density on the first reflected element is the same as that on the basic

element, while the source densities on the second and third reflected ele-

ments have opposite sign.

The calculation method for bodies with two symmetry planes is identical

to that for non-symmetric bodies through the first output, and the basic

elements are formed from the input points in the usual way. The first differ-

ence occurs during the computation of the "matrices of influence coefficients''.

After the velocity induced at the null point of the i-th basic e&lement by a

unit source density on the J-th basic element has been calculated, the com-

putation is repeated three more times to obtain the velocities induced at this

null point by the j-th reflected elements. All induced velocities are com-

puted by the method of section 9.52 and thus all that this calculation re-

quires is the set of twenty-eight defining quantities for each of the reflected

91



elements. In the previous section, the reflection of an element in the xz-

plane was discussed and it turned out that twenty-three of the defining

quantities are unchanged, while the following five are changed in sign:

YO a 1 2  a 2 2E a31 a33

A reflection in the xy-plane is acomplished in a similar way except that it

is the z-components of vectors and coordinates of points whose signs are

changed rather than the y-components and coordinates. After each reflection

the signs of the components of the normal vector are changed to make the

element coordinate system right-handed. The result is that the reflection

of an element in the xy-plane is accomplished by changing the signs of the

following five quantities:

z 1 a13 a23 a31 a 3 2

It is convenient to show the relations between the basir and rpflected elements

by means of the following table.

Element Origin Trans formation Signs Changed
Matrix from Previous

Element

x a. ai2 a

Basic yo a21 a 2 2  a25

zo a51 a 2 a 3

x a -a a
First o 11 12 1 Yo

Reflected -Yo a21 -a•22 a23 a12 a 2 2

z -a 3 1  a32 -a3 5 a31 a3

Second x a11  -a 1 2  L z0

Reflected "yo a 2 1  -a 2 2  -a 2 3  a 1 3  a2 3
"zo a 3 1  -a 3 2  -a 3 3  a31 a52

Xo al a1 -a13Y

Third 11 12 13

Reflected yo a 2 1  a 2 2  -a2 3  a1 2  a 2 2
-z -a 3 1  -a a 3 3  a 1  a 33

xo0 a 1 1  a 1 2  al3 zo

Basic y0  a 2 1  a 2 2  a23 al3 a 2 3

z30 a3 a32 a33 a31 a 32
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The signs of any of the twenty-eight defining quantities not listed in this

table are the same for all corresponding elements. After all four induced

velocities have been computed, the basic element is obtained again in the

manner shown in the table.

Suppose now the velocities induced at the null point of the i-th basic

element by the J-th basic, first reflected, second reflected, and third re-

flected elements have been computed. Let these be designated ViPVj ,
•(2r), •~(5r) ,:ez~:ct: ~ly. T•. com =-it- ,• these vcctors in the reference
Sij ' .ij
coordinate system are:

V. : Xij YiJ Zij

-(.Ir) x(1r) Yý (lr) •(1r)
V iJ " i Ij -. -iJ

ij * ij iJ ii

ii ij ii ij

These are now combined in the proper ways for use with onset flows parallel

to the coordinate axes. Define the vector

= Vij + vij + rij + V (107)

with components
) + ~(.r) .2r)+ x(r)

x( X + X +(r X(,v + X8
iJ ij ij ij iJ

!%_•'l ) k" ' ;^-" (;S )
"YO K + Y '• + Y "-• + "I " (LOS)-iJ =ij ij Yij Yij

z(8) z + Z(Ir+ z(2r) z(3r)
iJ =Zij +-j +iJ+ iJ
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the vector 7(2) _(r _ 7(2r) .V(3r)
i = ij ijj +i (J

with components
k(2) - x(lr) _ •(2r) + (3r)

J ij iJ -ij iJ

Y(2) y - Y(lr) _ Y(2r) + y(3r) (11O)
ij iJ ij iJ iJ

Z-) z (lr) _z (2r) + z(3r)= ij --ij --ij +j ij

and the vector
V3) = + (lr) (2r) (3r) (in)ij = i ij -iJ ij

with components

ija i j Ij

Z() = + Z(lr) _ (2r) _ xzr)

iJ = ij + iJ iJ iJ

y (J) -,,(2) 7(5)
The complete sets of V ,(2) and V -. are thus the vector ''matrices of
influence coefficients'' for bodies with -two planes of symmetry. They are

suitable for use with onset flows parallel to the x, y, and z coordinate

aMes, respectively. Each matrix is N x N, where N is the number of basic

elements.

As before, the dot products of the vectors V(l) 7(2) and . (3) with the

ij I ij ' ij

unit normal vector of the i-th basic element are performed to obtain the in-

duced normal velocities A Y() A(2). and A(), in a manner similar to that
iJi 'i

shown in equation (102). The complete sets of these induced normal velocities

form the coefficient matrices for the sets of linear algebraic equations for

the values of the surface source density on the basic elements.
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9.55 Bodies with Three Symmetry Planes.

Bodies with three planes of symmetry are handled by carrying the procedure

of the previous section one step further. One-eighft of the body surface is

specified by input points while the other seven-eighths is taken into account

by reflections. To each basic element, which is formed from input points,

there correspond seven reflected elements, which are designated first re-

flected element, second reflected element, etc. The symmetry planes are the

coordinate planes of the reference coordinate system. Figure 26 shows a sketch of

a typical body with three planes of symmetry and the position of the various

reflected elements.

-------------- ,------ --
1T T H 15-REFL.

I B S ..- -T " . E F- L/

BASIC

LP 7TREPLFL

Figure 26. - A body with three symmetry planes.

Tl1he relationships of the reflected elements, which are obtained by successive

reflections of the basic element in the symmetry planes, are shown in the

table below:
This Element in This To Obtain
is Reflected Plane This Element

Basic X-z Lnd Reflected
I Reflected x-y 2 Reflected
2 nd Reflected x-z 3th Reflected
3 rd Reflected y-z 4 th Reflected
4th Reflected x-z 5 th Reflected
5 th Reflected X-y 6 Reflected

6th Reflected X-y 7th ReflectedthReece -

7th Reflected. y-z Basic
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If the onset flow is parallel to one of the coordinate axes, the values

of the source density on a basic element and the seven corresponding reflected

elements are all equal in magnitude. The sign of the source densities depends

on the direction of the onset flow. The relation of these signs are given in

the table below, which may be verified by inspection of figure 26:

Direction of Reflected Elements Reflected Elements
Onset Flow With Same Sign as with Opposite Sign

Basic to Basic

x-axis 1 st 2 nd 3 rd 4th 5 th 6 th 7th

Y-axis rd 4th 7 th Ist 2 nd 5 th 6th

1st th t nd r'd th th
z-axis 6h 7 th 2 3 4 5

The calculation methrod proceeds in the usual way through formation of the

basic elements and the first output. To compute the ''matrices of influence

coefficients'' it is necessary to compute the velocity induced at the null

point of the i-th basic element by the j-th basic element and by all seven

of the j-th reflected elements. The induced velocities are computed by the

method of Section 9.52, and the twenty-eight defining quantities for each re-

flected element are required. in this case, in addition to reflections in the

xz and xy coordinate planes as was done in the previous section, reflections in

the yz-plane are also performed. After a line of reasoning scimilar to that

used for the other symmetry planes, it turns out that an element is reflected

in the yz-plane by changing the sign of the following five Quantities:

x a 3
o 11 21 52 a3 3

As before, this reflection includes a reversal of sign of the unit normal

vector to make the element coocdinate system right-handed.

The relatiormbetween the basic and reflected elements are shown in the

following table.
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Element Origin Transformation Signs Changed
Matrix From Previous

Element

Xo 011 a12 1i3
Basic Yo a 2 1  a,22 a 2 3

z0 a31 a 3 2  a3 3

x al -al al5Y

First o 11 12 13

Reflected -Yo a 22  -a 2 2  a 2 3  a 1 2  a 2 2
z "-a3 1  a 3 2  -a33 a31 a33
x a - -aZ

Second o al -a 12 -a13 o

Reflected -yo a21 -a22 "a 2 3  a13 a23
-zO a -a32 -a33 a31 a32

Xo al5 2 33 31

Third0 12 1-0Reflected 0 211 :12 -a21 a 22

-zo 5-al -a32 a33 h31 a33

Fourth a "al a 12 -a13 o

Reflected Yo -a 2 1  a22 -a25 a11 a21

-zo -a l a52 -a3 a52 a33

-x 0 -a 11  -aa -a13Y
Fifth 0 -a -al- -a1 3 o

Reflected -Y -a 2 1  "a 2 2  23 a 2 2  a 2 2
""z a 1 a32 a 3 a l a33

Sixth o "al1 -a12 a13 0

Reflected -Yo -a 2 1  -a 2 2  a23 a 1 3  a23
z "a31 -a32 a 3 a3i a32

-x -a ao

Seventh o 0a11 a12 a13

Reflected Yo -a2 1  a 2 2  a223 a 1 2  a 2 2
zo a31 -a32 -a,, a 3 1  a_33

o al al al
o 11 a12 EL13 o

Basic YO a 2 1  a 2 2  a23 al1 a21

zo_ a131  a3 2  a35  a5 2  a1 5

The signs of any of the twenty-eight quantities not listed in this table are

the same for all corresponding elements. After all eight induced velocities

have been computed, the basic element is obtained agyptin as shown in the table.
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Suppose now the vector velocities induced at the null point in the i-th

bad'ic element by the J-th basic element and its seven reflected elements have

been computed. Let these vectors and their components in the reference co-

ordinate system be denoted:

YV : xij Yij z.j

-.(Ir) x(lr) Y(ir) Z(lr)

i3 ij ij i

-(7r) (7xr) y(7r) z(7r)

ij ij ij

These are now combined in the proper ways for use with onset flows parallel

to the coordinate axes. Define the vector

(i- (lr) + (2r) + .- (4r) -.. (5r) -q(r) - 7(7r) (Vij VIj 3+ ij + ij •, ij iJ ij ij

with components

(i) +(ir) (2r) w(3r) (4r) x(5r) x(6r) (7r)

X(ir+ X +('~) XXr) _(5r) - 6r) - X(7r)
ij -ij iJ ij + J ij ij i- - j

(1) = V 7(1r) + Z(2r) y(3r) _ 7 (4r) _(5r) _ y(6r) - y(7r) (114)ij i ij ij 4 ijL +ij -ij - Y iJ ij

Z) (1r) (.2r) (30 ) Z (4,r) _z(5r) _z(6r) -Z(7.r)
=ZJ + Z•i + Z . + - .

ij I j i3 -ij iJ j Ij ij

the vector

-(2) - (Ir) ;7(2r) + -(5r) + .- (4r) .7(5r) _7(6r) +!(7rl (
-ij Vij ij Vi -ij Vi ij - .j

with components
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X(2) - X(1r) _ X(2r) + x(3r) + X(4r) _ x(r) _ x(6r) , x(7r)ij = xj -j - xj + j ij ij ij ij

Y(2) y - y(lr) _ .(2r) + (3r) + Y(4r) _Y(5r) _ y( 6 r) + y(7r) (116)
ij ij iJ ij i+ ij iJ iJ ij

Z(2)= Z - z ir) -_ (2r) + Z(3r) + Z(4r) - Z(5r) - z( 6 r) + z(7r)

and the vector

V _ 3<Ir) _ .l(2r) - (.3r) 5(hr) - V(5r) + ,(6r) + •(7r) (117)
) ii iJ ij ij iJ iJ ij iJ

with components

x5) ,j 'I r)_ X(2r) _ X(3r) _ X(4r) _ (5r) +(6r) + (7r)
iJ X ij ij ij ij ii + xiJ ij

y(3) Y Ir) Y(2r) _ •r) _ Y(4r) _ y(5r) + Y(6r) + y(7r) (118)
ij ij ij iJ ij ij ij ij ij

Z() + Z (I) (r) _ z (r) _ z (4r) - iý5) + Z(r) + 5ýr)i j = i i j - i JJi - i + i j +1 Z

The complete sets of 7(l), 7(2) and are the vector "'matrices of

iJ 'j I ij'

influence coefficients'' for bodies with three planes of symmetry. They are

suitable for use with onset flows parallel to the x, y, and z coordinate axes

respectively. Each matrix is N x N, where N is the number of basic elements.

. _()•(2) ()wtthAs before, the dot products of the vectors vi, ' J , and with the

unit normal vector of the i-th basic element are performed as shown in equa-

tion (102) to obtain the induced normal velocities A(l) A(2) and AN
ij ' ij . ij

The complete sets of these induced normal velocities form the coefficient

matrices for the sets of linear algebraic equations for the values of the

surface source density on the basic elements.
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9.56 Summary. Unification of Notation, and Designation of Onset Flows.

The resuits of the calculations of the previous parts of Section 9.5

may be described in a unified form applicable to all body surfaces, whatever

the symmetry condition. It may be said that. in all cases three vector

"'matrices of influence coefficients'' are obtained, each of which is ap-

propriate for use with an onset flow parallel to one of the coordinate axes.

These three matrices are identical for non-symmetric cases, while the first

and third are identical for cases of one plane of symmetry. The vector
-1(1) - ),-; and -N." are the vector velocities

elements of these matrices, ij' V__ , and V ij v
induced at the null point of the i-th element (or the i-th basic element in

cases of symmetry) by a unit source density on the j-th element (or J-th basic
element and its corresponding reflected elements in cases of symmetry). In

particular, the actual velocities induced at the null point of the i-th element

(or i-th basic element) by the j-th element (or J-th basic and reflected ele-

ments) is obtained by multiplying these velocities by the true value of the

source density on the J-th element (or J-th basic element).

The sets of induced velocities i7(2) and , are appropriate for

use with onset flows parallel to the xj the y, and the z coordinate axes,

respectively. The method has been constructed to handle these three onset

flows simultaneously. That is, in normal cases three onset flow veeoLor' are

input. These are: the vector V C, with components

V =1 - 0 v(W) -0 (119)Cox 0oy ODZ

the vector V C) with components

0-) = 0 0 -) Vk
1 

- 0 (120)
Cox coy ooz

and the vector V--0 with components

v(5 = 0 v()-ov(3) 0 VN . (121)
0 D 0oy 00Z

The notation may be made more compact by introducing the integer superscript

(s), where s 1, 2, 3. Then the set of induced ventor velocities tv(s)
ij
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and induced normal velocities A(s) is used for the onset flow 1(s) to cm-
i0

pute a complete set of source densities and flow velocities. The onset flows
v(s), s = 1, 2, 5, are given by equations (119), (120), and (121). Thus

normally three complete flow calculations are performed.

There are two cases where the onset flows need not be the three unit

vectors given in equations (119), (120), (121). For non-symmetric body

surfaces there is only one distinct "matrix of influence coefficients", i.e.,

7ý(l) = V(2) z= -(3.) 17-(12

ij ij ij iij

Thus this matrix is suitable for use with any onset flow and the three onset

flov vectors -ýos), s = 1, 2, 3, may be unit uniform streams of arbitrary

inclination. Also, for body surfaces with one plane of symmetry, two of the

" matrices of influence coefficients'' are identical, i.e.,

( = (• (123)ij ij

Thus the onset flows V(') and V(3) may be any unit uniform streams in the
oo 00

xz-plane, i.e., in the plane of symmetry.

For the other cases i.e all flows for body surfaces with two or three

s.ymetry planes and V" for body surfaces with one plane of symmetry, the

onset flows must be as shown in equations (119), (120), and (121), and in all

cases the onset flows must be uniform streams of unit magnitude. If less than

three onset flows are desired, the others may be input with all components

zero. This however will not affect the computation of the ''matrices of

1niluerice C(,oLiLcients' '

9ý6 The Linear Algebraic Equations for the Values

of the Surface Source Density

9.61 Formulation of the Equations.

Now the values of the surface source density on the elements will be ob-

tained as the solution of a set of linear algebraic equations. R.Ccall that

the source density is assumed constant on each quadrilateral element. Thus
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there are N unknown values of the source density, where N is the number

of elements formed from the input points (basic elements in cases of symmetry).

The total normal velocity is required to vanish at the null point of each

element formed from the input points and thus there are N equations for the

N unknown values of the source density.

For any onset flow V(s) (see Section 9.56 for notation) the normal
co

velocity induced at the null point of the i-th clement by a unit source

density on the J-th element is A(s) . (For bodies with symmetry the de-
ij

signations ''i-th basic element'' and ''.j-th basic and reflected elements''

should be used in the previous statement, but the extension to cases of sym-

metry is obvious with the notation of 9.56, and subsequently explicit mention

of cases of symmetry will be omitted.) Thus the actual normal velocity in-A(s) . (s)
duced at the i-th null point by the J-th e!iment may be written i j ,
where () denotes the constant value of the source density on the j-th

eneret0-

element for the onset flow . The total normal velocity induced at00

the i-th null point by all quadrilateral elements is accordingly,
N

Ns) A(s ) (3) (124)

J=l

The normal component of the onset flow at the i-th null point is the dot

product of the onset flow vector and the unit normal vector of the i-th ele-

ment, i.e.,

s) .. •(o) n n V(s) + n V(s) + n V() (125

The total normal velocity at the i-th null point is the sum of (124) and (125).

Thus the requirement that the normal velocity vanish at all null pointq gives

the following set of' linear equations for the values of the source density

N
A is) (s ) -i V 1,2, 1., (i26)

L •ij Oj co°ni, .,

Jt=l

By sucessively taking s = l, 2, 5 in \112), a complete set of source densi-

ties is obtained for each onset flow.
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9.62 Solution of the Equations.

The numerical solution of equations (126) is a major portion of the total

calculation. In typical cases the coefficient matrix A has an order
ijj

N of 500 - 800, and so solution by direct elimination is not feasible. Of

many possibilities, the only ones actually programmed are two forms of the

Seidel iterative procedure. This procedure has the advantage of being ex-

tremely simple so that the time per iteration is minimized, although the

number of iterations required to obtain a sufficiently accurate solution may

be larger than for a more sophisticated procedure. The coefficient matrix

A(s) is rather well suited to this procedure since for most bodies itsij
diagonal elements are much larger than any off-diagonal elements.

In the first form of the iterative procedure the (p + !)st approximation

to the solution a(s)(p+l) is obtained from the p-th approximation a~s)(p)
i 2

by the relation

~1  Lf N onCY(s) (p+l) 1A(s) Os()+VWl 1 1 1.'
O i = i c c) n

j /. (127)

With the definition

O 0(s)(p) = o(s)(p+i)i_ a(s)(p) (128)
i A

this may be put in the following form, which is more convenient for calculation,

b 6(s)(p) = - IF[' A(s) a (s)(p) V(s) i = 1, 2,...,N
i A() Y ii j 0 i

"ii j=l (129)

In this form the entire set of a(s)(p+l) is calculated from the values of
i

the previous approximatJon a~s)(p).
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In the other form of the iteration the most recently calculated approxi-

mations to the 0a.) are used in the right-hand side of (129). Specifically,
te (s )(p+')

the a, are obtaine-d from the a by the relation

i-I N

S(s)(p) A(s) (S)(P+))+ A ) (p) + V(r. (130)

A77 /- =1jý i11 lj~lj=i

In either case the iteration (129) or (130) is repeated until the maximum

value of 18 ,ýs)(p)l for a particulrar p is less than a certain prescribed
I

number. This number has been set at 0.0001.

The- initial values of the us ) are taken as zero in both forms of the

iterations. In uractire three seths of equations are solved simultaneously -

one for each value of s. An iteration is performed for each set of equations

in turn, and this procedure is rmrea te--! one set of i. has converged
to within the prescribed accuracy. Then iterations are performed in turn for

the remaining two sets of equations until one of these sets of con-

verges. Finally the last set of equations is iterated by itself until con-

vergence is attained. If less than three onset flows are desired, the other

onset flows may be set equal to zero. It is evident from the form of (129)

and (150) that for such onset flows convergence to zero is obtained immediately,

and some saving in computation time results.

The second form of the iteration (.i.) always converges at least as

rapidly as the first form (129) and almost always converges consid.erably

faster. Generally, the forn. (129) requires from 7 to 60 iterations for con-

vergence, with typical cases requiring 30 to 40. The form (130) reqtires

7 to 40 iterations for convergence, with typical cases requiring 15 to 25.

Thus the form (130) is always used in practice. The other is presented here

for completeness. The order in which the elements ere considered may affect

the rate of convergence for the second form of the iteration, while for the

first form it canmot. This, however, has never been a factor in the speed

of the solution.
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One method of accelerating the convergence of either (129) or (130) that

has been investigated but not programmed is based on the fact that after a

certain number of iterations the ratio

(s)Cp) 5 a (8)(p)

(s)(p) - 1(s)(p) (131)

i

is practically independent of p (and also practically independent of i,

although this fact is not particularly useful). If this were exactly true,

i.e., if

Pi :Pi(1)

then the final value of a(s)(p) say (s)( could be written
1 ' s i

a~(co() O(s)(p) + n ~)p + F) (js)(p)+l) + v(s)(pi-2)+

(i iv
(133)

U(s)(p) (s ) (P)(F Pi ( (P(s)) 2 1

or, by summing thu geometric series

(s)(p)

In many cases, after a relatively small number of iterations Oi becomes

sufficiently independent of p for the use of' (134) to give a considerable

improvement in the accuracy of the approximation. In such cases the use of

(134) at a particular stage or stages of the iterative procedure (129) or (130)

can significantly reduce the number of iterations required for convergence.

The inclusion of this feature in the method of solution of the linear equatiorn

is primarily a matter of' designing tests on the size of 8 is")(p) and
/ % , and 1

-P-L kAP) -- k P-1) so that (134) will be applied at the proper stage of

the iterative procedure.
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9.7 Calculation of Total Flow Velocities. The Second Output.

9.71 Velocities and Pressures on the Body Surface.

Once the values of the surface source density on all elements have been

determined, the actual flow velocities at the null points are calculated by

multiplying the elements of the "'matrices of influence coefficients'',(which

were calculated assuming a unit value for all source densities) by the

corresponding true values of the source densities, summing, and adding the

onset flow. Recall that the velocity induced at the null point of the i-th

element by a unit source density on the J-th element is the vector 7s

with components Xsj , and Z j where s identifies the corresponding

onset flow V~s). Let the total flow velocity at the null point of the i-th

element be denoted by the vector -V(s) with components V ' is)
iy ' iz"

These components are given by

N

S() 

(s) V(s)vi -- Y xij •j COoX

j=l

V•Y(-)= ('.3(s j) + V(oy (135)

j=1

N

_~s Z~s CFs + V~s=z X ij j 00-z

J=1

Equations (135) are evaluated for all values of i, i.e., for every null point,

and for s = 1, 2, 3 to give flow velocities for all three onset flows. The

velocity components given by (135) are the basic results of this computation

method. For convenience certain other quantities of interest are computed

from the velocity components. These are the velocity magnitude

~ -~\ v8),2 ++ (V s)2+ ý) 16
vlS ) = j. + V \ i(

the pressure coefficient
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and the direction cosines of the total flow velocity vector

(B) = V(s)/v(S) (138)
i)'y y i

Y(S) = V(S)/C(S)
iz iz/ I

It might be mentioned in passing that if the onset flow is input as a uniform

streamn of other than unit magnitude, all calculated quantities are correct

except the pressure coefficient. Finally, as a measure of the accuracy of the

solution, the total normal velocity at each null point is computed from

N

v =1 A(S) U(s) + V(s)i (159)

j=l

The second output of the method has a format similar to that of the first

output, and the elements are listed in the same order. The quantities tabu-

lated are: the identifying integers m and n, the coordinates of the null

point in the reference coordinate system, the components of the total flow

velocity at the null point, the magnitude of this velocity and the square of

this magnitude, the pressure coefficient, the direction cosines of the total

flow velocity vector, the components of the unit normal vector, the total

normal velocity, and the value of the surface source density on the element.

The format of this listing is as follows:

n M Xnt Vs) V )(S)y. n V(s)
np i ix ix x ni

Y I ~s) V~) Yis n a js)unp ly iy ny I

z! V(S) 7 Snp P, i iz nz

In the above listing the notation of the earlier sections has been followed

and the subscript i omitted from the coordinates of the null point and the

components of the normal vector. The above information is l -for eiery
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null point, and there is one complete output for each onset flow, i.e., for

every value of B.

9.72 Velocities and Pressures at Points off the Body Surface.

The velocity may also be computed at points off the body surface. Such

points are designated off-body points. The coordinates of the off-body points

in the reference coordinate system, are input to the machine at the beginning

of the program along with the input points, but they are not used until this

stage of the calculation.

The off-body points are identified by the integer subscript v, which

denotes the order in which they were input.. The coordinates of the V-th off-

body point in the reference coordinate system are denoted x Y' Z

Each off-body point is inserted into the portion of the program that computes

the vector ''matrices of influence coefficients'' and treated exactly like a

null point. That is, for the V-th off-body point a set of Xs), Y(s) I )
vi vj v,

j = 1, ... , N, s = 1, 2, 5, is computed by the methods of Section 9.5 using

the coordinates of the off-bcAvy point in place on the coordinates of a 1iull

point in the formulas of that section. The X s y(s) I(s) are the velocity
vi' ' Vj

components induced at the off-body point by a unit source density on the J-th

element (or by the j-th basic and rpflected elements in cases of symmetry).

The velocity components at each off-body poinL are then calculated from

N(s V, (ý) (s) v S
V~x) L xvji + o

j=l

N
v(s) = V Y (s) 5(s) + v(s) (140)

LV Vj i oy (l)o
J=.l

N

V~s) = z s s 4V(sj=l

Equ;tfons (!40) are evaluated for s 1, 2, 3 to give velocity components

for all three onset flows. Tlhese velocity components are combined in a
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manner similar to equations (136), (137), and (138) to give velocity magnitude

V ,s) pressure coefficient C and the direction cosines of the velocityV() ()() pv
ve(s) C(s) (s) These quantities are listed on separate output.vector 7x • "vy vz* qunite

The format of this listing is as follows:

V vS V~s) v~s ) Y(s)
obv V vx VX

Vc~s) 2 Vs) Y(s)

obv pv vz 7 vz

There is of course a complete listing for each onset flow.

9.8 Storage Limits. The Maximum Number of

Elements

The maximum number of elements that may be used to approximate a body

surface is dictated by the storage capacity of the computing machine. The

method utilizes both the high speed core storage of the machine and the low

speed tape storage. The capacity of either type of storage may be ihe

limiting= factor on the number of elements _These two types of storage limits

are discussed below for the two computing machines for which this method has

been programmed - the IBM 704 and the IBM 7090. The high speea storage

capacity of the machine is taxed during the calculation of the sets of iDduced

velocities or ''matrices of influence coefficients'', described in Section 9.5.

During this computation the twenty-eight quantities defining each element

must be in the core. Also, since the induced velocity matrices are transferred

to tape storage one row at a time, there must be a provision for storing a

complete row of the induced velocity matrices. Thus for each element a set
ns , X (s) (s),of the antities Y Zij s = 1, 2, 3, which are the velocity

components induced by that element at one particular null point, must be

stored along with the twenty-eight defining quantities. For non-symmetric

Dje t i s ) Zj . while there are two sets for

bodies with one symmetry plane and three sets for bodies with two or three

symmetry planes. In all cases the rows of the induced normal velocity

matrices are computed Just before storing,, so for each element only one A

ii
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is stored in the core at any time. Thus, if N is the number of elements

formed from the input points (basic elements in cases of symmetry), the total

storage required for the elements in the various cases is

Non-Symmetric " 32 N

One Symmetry Plane : 35 N

Two or Three Symmetry Planes: 38 N

These requirements are somewhat increased except for the one plane of

symmetry case by other considerations. Up until all the elements have been

formed storage must be provided for the coordinates of the input points,

which then become superfluous once the calculation of induced velocities has

begun. Accordingly, this storage is then utilized for the induced velocity

components. In all cases of symmetry the induced velocities require at least

as much storage as the input points, and there is no trouble. For non-sym-

metric bodies, however, there is only one set of induced velocities, which

thereby require less storage than the coordinates of the input points, since

the number of input points exceeds the number of elements. The additional
''wasted'' storage that must be provided for the input points amounts to

about 1.7 niumbers per element in non=symmetric cases only. (See below for

limits on the number of input points.) Also in cases of two or three sym-

metry planes where (unlike the case of one symmetry plane) the number of

intermediate induced velocities duc to the individual basic and reflected

elements exceeds the final number of combined induced velocities, provision

ha. becn miade for storing one adtUtional set of induced velocity components -

three numbers. 'This additional storage is not essential, but is required

by thf particular programming logic employed. With these adjustments the

t-ota high speed storage required for the various cases is as follows:

Non-Symmetric : 33.7 N

One Symmetry Flane : 35 N

Two or Three Symmetry Planes.: 41 N

The IBM 704 and the IBM 7090 for which this method was programmed both

have a high speed core of 32,000 storage registers. On the IBM 704 the

program of this method requires about 4,O00 words, while the supervisory

program used requires about 1,000. The compatibility program that allows the
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program of the method to be run on the IBM 7090 requires about 4f000 words.

Thus on the IBM 704 there are 27,000 storage registers available for the

elements, while on the IBM 7090 there are 23,000 available. Thus the core

storage limits on the maximum number of elements are as follows;

Core Storage Limits on Element Number

Type of Case IBM 704 IBM 7090

Non-Symmetric 800 675
One Symmetry Plane . 770 650

Two or Three Symmetry Planes: 650 550

The low speed tape storage capacity of the maceijiie is taxed by~ ( 5) (s)
the induced velocities Xis P Yis ' Z's) Y Ais I s = 1, 2, 3. Since the(s) j i j j
matrices Aij are used many times during the iterative solution of the

linear equations, in the program for the IBM 704 they are stored in duplicate

on different tape tinrts. which are then used alternately to eliminate the time

required for rewinding a tape. The requirement is imposed that one complete

set of A•s) be stored on a single tape unit. Thus in the largest cases on

the IBM 704 five tape units are completely filled - one for each set of Aij

and three for the X P Z(G). In this scheme, if larger cases wereandtheefo te ij YiJ i

allowed, three additional tape units would be required - one for each set of
A ~ ~ ~ s ) ndoe o X_ ,) (s

A(s) and one for X5s ) .. z i This would mean a total of eight tape

units, which is more than was available. Increasing the storage capacity by

changing the tape reels is not feasible, since it would have to be done every

iteration during the solution of the linear equations. Thus the low speed

tape storage limit on the number of elements arises from the fact that a

complete set of Ais , s = 1, 2, 3, must be stored on a single tape-unit.ij (s)
The program for the IBM 7090 does not store Aij in duplicate. Nevertheless,

the same tape storage limit was adopted for this program, because of the

possibility that this procedure may be adopted in the future. In any case

the core storage limits are the critical ones for the IBM 7090 program.

For non-symmetric bodies there is only one matrix A(s),
ij while there are

two matrices for bodies with one symmetr-y plane, and three matrices for bodies

with two or three scyetry planes. Thus if N is the number of elements
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(s)fothvaiu
formed from input points, the total number of the As for the various

ij
cases is:

Non-Symmetric :

One Symmetry Plane : 2N2

wo or Three Symmetry Planes: 3N2

The tape units used with the IBM 704 and sometimes with the IBM 7090 uti-

lized low density tape. A new 2400 foot reel of this tape provides 900,000

words of storage. Recently the tape units used with the IBM 7090 have

utilized high density tape, which increases the storage capacity by a factor

of about 2.78. Thus the tape storage limits on the maximum number of elements

are as follows:

Tape Storage Limits on Element Number

Type of Case : Low Density High Density
Tape Tape

Non-Symmetric 945 1580

One SyrnjPtry Plane : 670 1120

Two or ITree Symmetry Planes : 5h5 910

In each case the limits for the high density tape are just those for

the low density tape multiplied by 2.78 • 1.6j.

The actual limit on the number of elements in any case is the smaller of

the core lixit and the Lapee iiiiit. Fom i.he above it is clear that this

limit depends both on the machine and on the type of tape used. By comparing

the two tables above it can be seen that, if high density tape is used, the

core limits are the critical ones for all types of cases on both machines.

If low density tape is used, the core limits are still critical for the

IBM 7090 (except that in cases with two or three symmetry planes the core

and tape limits are essentially equal) while for the IBM 704 the tape limits

are critical except for non-symmetric bodies. Assuming that low density tape

is used with the IBM 704 and high density tape with the IBM 7090, the limits

on the maximum number of elements are as shown in the table below:
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Maximum Number of Basic Elements

Type of Case IBM 704 IBM 7090

Non-Symmetric 800 675

One Symmetry Plane 670 650

Two or Three Symmetry Planes : 545 550

If low density tape is used with the IBM 7090, these limits are unchanged

except that the limit in cases with two or three symmetry planes is lowered

by five elements.

These limits are on the number of elements formed from the input points -

basic elements in cases of symmetry. The total effective number of elements

that approximate the entire body surface is found by multiplying these numbers

by two raised to a power equal to the number of symmetry planes. For con-

venience the maximum effective number of elements for the various cases in

the previous table are listed below:

Maximum Effective Number of Elements

Type of Case : IBM 704 IBM 7090

Non-Symmetric : 800 675

One Symmetry Plane 15%40 1700

Two Symmetry Planes : 2180 2200

Three Symmetry Planes: 4560 4400

There are also core storage limits on the maximum number of input points.

Basically, the input points cccupy the same storage as the induced velocity

components X iJ , YiJ Z ij Since each input point has three coordinates,

this means that the ratio of maximum number of input points to maximum number

of basic elements (core storage limit) equals the number of induced velocity

matrices computed. This would fix the maximum number of input points at N,

2N, and 4N in cases of zero, one, and two or three symmetry planes, respec-

tively. (The limit is 4N rather than 3N in cases of two or three symmetry

planes, because storage is provided for a fourth set of induced velocity

components, as explained above.) These limits, however, have been adjusted.

It is clear from the description of how elements are formed from input points

in Section 9.1 that the number of input points must exceed the number of
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elements formed. Thus in non-symmetric cases provision must be made for

storing more than N input points even though the maximum permissible number

of elements is thereby reduced, as mentioned above. It is difficult to

imagine a situation for which more than 2N input points would be required,

so the limits in cases of two or three symmetry planes have been reduced

to this value. The maximum numbers of input points permitted by the actual

program are as shown below:

Maximum Number of Input Points

Type of Case : IBM 704 IBM 7090

Non-Symmetric : 1250 1125

One Symmetry Plane : 1540 1300

Two or Three Symmetry Planes : 1.-00 1100

From the manner in which elements are formed from the input points it is clear

that the number of input points does not greatly exceed the number of elements.

For example, consider a section with 41 n-lines, each of which contains 21

poinfts. Thus this section has a total of hl x 21 - 861 input points, from

which 40 x 20 = 800 elements are formed. it is felt that the above limits

are high enougn so that they will never restrict the input.

Due to assumptions made during the programming of this method, the input

must satisfy two additional conditions, neither of which is thought to be

restrictive. The maximum number of ''columns'' or n-lines of input points

cannot exceed 250, while the maximum number of sections into which the body

surface is divided cannot exceed 40.

The limits on the number of off-body points are determined in a way

similar to that used for the basic elements. It will be recalled that vector

" matrices of influence coefficients'' X (S), Y) , Z , are computed for
vj Y , ci

the off-body points in the same way as they were computed for the null points.

This is accomplished by replacing the coordinates of the null points by the

coordinates of the off-body points in the portion of the program that computes

induced velocities and then repeating the calculations. The core storage

limits on the number of off-body points are thus the same as those given
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above for the basic elements. Moreover, since storage assignments are per-

manent, these limits hold regardless of the number of basic elements used to

approximate the body surface. The tape storage limits on the number of off-

body points are artificial in the sense that they were dictated by programming

logic rather than by the tape storage capacity of the machine. It is re-

quired that the sets of induced velocity components, X•s)) y(•)) Z, ) be

stored on three tape units,as the induced velocity components for the null
A(5)

points were. (The tape units on which the As were stored are thus not

utilized during this portion of the program.) Accordingly, the tape storage

limits on the number of off-body points depend on the number of basic elements.

The restriction is that the product of the number of off-body points and the

number of basic elements be less than the square of the tape storage limit on

the number of basic elements for the type of case in question. Thus the tape

storage limits on the number of off-body points are at least as large as the

corresponding tape storage limits on the number of basic elements. The two

limits are equal if the maximum number of basic elements are used to approxi-

mate the body surface. In summary, if the core limits are critical for the

basic elements (This includes all cases for the IBM 7090.), the limits on the

maximum number of off-body points are the sane as those for the basic elements,

independently of the number of basic elements actually used, If the tape

limits are critical for the basic elements, the limits on the number of off-

body points may be tape storage i which depend on the number of basic

elements used, or core storage limits. The limits on the maximum number of

off-body points are shown in the table below.

Maximum Number of Off-Body Points

Type of Case IBM 704 IBM 7090

Non-Symmetric . 800 675

One Symmetry Plane : (670) 2/N 650
or 770

Two or Three Symmetry Planes : (545) 2 /N* 550
or 650

The smaller is the limit

115



12

9.9 Computation Times

This section presents some analysis that, it is hoped, may prove us-ful

to the user of this method in the estimation of computation times. Basically,

experience in the use of this program is necessary before accurate estimates

of computation times can be made. It is necessary because the time for a

particular case depends not only on the number of elements used to approximate

the body surface but also on the geometry of the body in a manner that is some-

times difficult to predict. The following analysis shows the basic dependence

of the computation time on the number of elements for various portions of the

program and points out where the body geometry is most important. For a known

body geometry this analysis defines computation time as a function of element

number in terms of certain timing constants. Generally, these timing constants

do not represent simple computation times for a basic operation, but are due

to several sources. For this reason they have been determined empirically

by timing the various cases that have been run on the IBM 704 and the IBM 7090.

These constants are thus not known to high accuracy, for the timing of these

cases is subject to many sources of error that cannot be taken into account.

These errors include clock inaccuracies, machine room procedure, and minor

difficulties of machine operation. Ultimately, satisfactory estimates of

the timing constants could be obtained from a large number of cases. It is

believed that the values given below are accurate enough to be useful,

particularly those for the IBM 704 on which considerably more cases have been

run than on the IBM 7090 and for which the computation times are several

times as large.

For the purpose of estimating computation times it is convenient to

divide the total calculation into four parts. These are: (1) the formation

of the elements from the input points (Sections 9.2, 9.3, and 9.4); (2) the

calculation of the induced velocities (Section 9.5); (3) the solution of

the linear equations (Section 9.6); and, (4) the calculation of the total

flow velocities (Section 9.7). The computation time of (1) is negligible,

while that of (4) is definitely minor. Parts (2) and (3) are the time-

consuming ones and either may be the larger. Estimates of these computation

times and their dependence on the number of elements, symmetry planes,and

onset flows in the case being calculated are discussed below.
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The time required to form elements from the input points depends only on

the number N of elements that are formed. It is independent of the body

geometry, the number of symmetry planes ,and the number of onset flows. 5Tis

time is simply proportional to N and is thus negligible compared to the other

computation times that vary as N2 . Its only importance is that it is the

time that elapses up to the first output, and this portion of the computation

is often performed separately. A sufficiently accurate estimate is obtained

by simply ignoring the dependence on N and using the time required for the

larger cases. On the IBM 7014 this portion of the calculation requires 2 to

3 iinutes, -while on the IBM 7090 it requires half a minute to a minute.

The time required to compute the induced velocities or ''matrices of

influence coefficients"' depends on the element number, number of symmetr-

planes and the body geometry, but it is independent of the number of onset

flows. If the induced velocity components were calculated by a single set of

formulas, body geometry would not be a factor, and the computation time would

simply be proportional to N 2, the square of the number of basic elements,

multiplied by two raised to a power equal to the number of symmetry planes.

However, the induced velocity components are computed by one of three

alternative sets of formulas: source, equation (97); source-quadrupole,

equations (57) through (62); or exact, equations (42) through (49). The body

geometry is important, because different body shapes use the various sets of

formulas for different proportions of the elements. The times required to

compute a single set of induced velocity components by each of the three

methods are as follows:

Velocity Formula IBM 704 IBM 7090

Source 0.17 " 3O" min 0.026 • l0-3 min

Source-Quadrupole 0.43 l0-3 min 0.04 " l0-3 min

EbCact 1.75 0l3 min 0.31 " lO-3 min

It can be seen that the ratios of these basic computation times are not the

same for the two machines. The differenue is due to the fact that these times

are not simple instruction times, but include such things as tape reading.
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From the above table time estimates can be made if the number of induced

velocities computed by each type of formulas can be predicted. The last

comes rapidly with experience since a few general bodies are typical of all.

For example, any simply-connected, convex body is quite similar to an ellip-

soid of the same fineness ratio as far as the induced velocity computation is

concerned. Also, these timing constants permit a good estimate of the vari-

ation of computing time with element number to be made for a given body shape.

For many bodies the number of times the velocities induced by each element are

computed by the exact or source-quadrupole formulas is approximately inde-

pendent of element number, and thus the total number of times these formulas

are used varies linearly with N, the number of basic elements. The number of

applications of the simple source formulas varies accordingly, so that the

total number of induced velocities calculated equals Nt multiplied by two

raised to a power equal to the number of symmetry planes. Some examples of

the proportion of the induced velocities computed by each of the three sets of

formulas in actual cases are given below. To quote the results for a typical

case, if a body with three symmetry planes is approximated by 500 basic ele-

ments, there are 8 - (500)2 = 2,000,000 sets of induced velocity components

computed. Of these 50,000 to 100,000 are generally computed by the exact

formulas, 100,000 to 200,000 by the source-quadrupole formulas, and the re-

maining 1,700,000 to 1,850,000 by the simple source formulas. Typical computa-

tion times for such a set of induced velocities might be eight hours on the

IBM 704 and an hour and a half on the IBM 7090.

The time required for the iterative solution of the sets of linear equations

for 'the values of the surface source density depends on the body geometry, ele-

ment number, number of onset flows, and number of symmetry planes. The time

required for a single iteration is independent of the body geometry. However,

the total number of iterations required for convergence for any onset flow is a

function only of body geometry and, moreover, a rather strong function. The

prediction of the number of iterations required for a given body shape is a

skill that comes rapidly with experience. As was the case for the induced

velocities, the results for bodies of the same general shape are quite similar.
A single iteration consists of two onerpt±ri• Vi•-+ +-b m+

4  of 4 1uced

normal velocities are transfered one row at a time from tape storage to core

storage. Second, matrix multiplications are performed one row at a time to

118



obtain new sets of values of the surface source densities frm the values of

the previous iteration. The time required for the first of these operations

is simply proportional to the number of elements in the induced velocity

matrices, which equals N
2
, the square of the number of basic elements, multi-

plied by the number of matrices. It will be recalled that there is one matrix

for non-symmetric cases, two matrices for cases with one symmetry plane, and

three matrices for cases with two or three symmetry planes. All matrices for

a given case are formed and transfered to core storage during each iteration

regardless of which onset flows are actually being computed. The second

operation consists of one matrix multiplication for each onset flow that is

being computed. The time required is thus proportional to N multiplied

by the number of onset flows for which computations are performed during the

iteration in question. The two constants of proportionality were determined

empirically for the IBM 704 and the IBM 7090. The time required for a single

iteration was found to be:

S704 :[-0.07 (No. of Matrices) + 0.07 (No. of Flows)] mi

IBM 7090 : .05 (No. of Matrices 0. No. of Flows)] N

Notice that the time for the computations performed in the core is of the same

order of magnitude as the tape-reading time. The use of these constants is

best illustrated by an example. Consider a body with one plane of symmetry

defined by 500 basic elements for which calculations are being performed for

onset flows parallel to the x, y, and z coordinate axes. Suppose it is known

or estimated that the iterative solutions of the three sets of linear equation-,

will converge in 38, 15, and 47 iterations, respectively. Then there are three

onset flows for 15 iterations, two onset flows for 23 iterations, and one onset

flow for 9 iterations. There are of course two matrices of induced velocities

for all 47 iterations. If the solution is being carried out on the IBM 7090,

the above formulas estimate the computation time as

[0.03(2.47) + 0.015(3"15 + 2-23 + 1"9)j (5)2 = 108 min

The calculation and output of the total flow velocities is a similar opera-

tion to a single iteration of the solution of the linear equations, and its
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computation time varies in the above-described way with element number, number

of onset flows, and number of matrices. In this case, however, the variation

with number of onset flows is more important than the variation with number of

matrices, because both the flow computation and the amount of output are pro-

portional to the former number. Since the time required for this portion of

the program is a small fraction of the total computation time, it is sufficient-

ly accurate to ignore the dependence on the number of matrices and write the

time as

IBM 704 IBM 7090

0.8(No. of Flows) N)2 min 0.3(No. of Flows) /l-m) min

If velocities are computed at off-body points, a "row'' of the induced

velocity matrix must be computed for each such point, and similarly a calcu-

lation of total flow velocities is required. Thus the number of sets of in-

duced velocity components calculated at each off-body point is N, the number

of basic, elements, multiplied by two raised to a power equal to the number of

symmetry planes. The proportions of these induced velocities calculated by

each of the three sets of formulas must be estimated. Often it turns out

that all the induced velocities at off-body points are calculated by the

simple source formulas. The calculation of total flow velocities at off-body

points simply iiibtbe_ Lht .cqnpuLbion -iua-e of that portion of the program by

a percentage equal to the ratio of the number of off-body points to the number

of basic elements.

The basic information, including actual and estimated computation times,

for some typical cases is presented in the tables on the following page. The

accuracy of the time estimates on these tables is about average. No off-body

points are included in any of the cases shown in the table.
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10.0 COMPARISON OF THE CALCULaATe VELOCITIES WITH ANALYTIC

SOLUTIONS

To evaluate the accuracy of this method, the calculated flow velocities

were compared with the analytic solutions for the flow on the surface of

a sphere, ellipsoids of revolution, and tri-axial ellipsoids. Before the

comparisons are discussed, three facts should be mentioned. Since the null

points, where the calculated. flow velocities are evaluated, are seldom

actually on the body surface being approximated, there is some uncertainty

as to how the calculated and analytic solutions should be compared. It was

decided to relate the two solutions by means of the unit normal vector. For

purposes of comparison, a given null point is taken to correspond to the

point on the true body surface where the unit normal vector to the surface is

identical with the unit normal vector of the element on which the null point

in question is located. Tihe accuracy of the calculation obviously increases

with the number of elements used to approximate the body surface. In fact,

the variation of accuracy with element number is one of the important con-

siderations illustrated by the comparisons. The calculated velocities are

always identified by the total effective number of elements used to approxi-

mate the body surface regardless of the number of symmetry planes utilized

by the computation. This number, which is the number of basic elements multi-

plied by two raised to a power equal to the number of syimrnctry planes, is

evidently the significant one for accuracy considerations. Finally, for

simplicity of presentation the calculated and analytic solutions are generally

compared along curves in the boly surfaces that lie in thc symmetry planes.

Many of the calculated cases utilized the symmetry of the bodies, and thus,

as explained previously, velocities were not calculated in the symmetry planes.

In these cases the velocities in the symmetry planes were obtained by parabolic

extrapolation of the velocity components at nearby points ignoring any com-

ponents known to be zero in the symmetry plane under consideration. The

errors resulLing irom this extrapolation appear to be very small.

The errors discussed in this section are those arlslng 1'rom the approxi-

mate mathematical solution of the problem of Potential flow about a body .

When calculated velocities or pressures are compared to those of a real flow,

there is another source of error arising from the fact that a potential flow
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is being used to approximate a viscous, compressible, flow. 'This problem is

not discussed here. However, experience with axisymmetric and two-dimensional

flows, references 1 and 2, indicates that the calculated results agree with

experiment very well in many cases of interest.

10.1 The Sphere

The body shape that received the greatest attention was, naturally

enough, the sphere. A considerable number of spheres were calculattd using

various numbers of eluments to approximate the body surface. In all cases

the distribution of elements is similar, namely the one shown in figure 27.

As can be seen in the figure, the elements are distributed symmetrically about

the x-axis in the following manner. Two numbers are selected. The first is

the number NT of elements in the x-direction and the second is the number

Mn of elements around the circumference at a given x-location. The semi-

circle that is the intersection of the sphere with that portion of the xy-plane

for which y > 0 is divided in NT equal arcs each of which subtends an

angle of !800/N, at the center of the semi-circle. The ''latitude'' circles

formed by rotating the endpoints of these arcs about the x-axis are taken as

the n-lines of thiu element system. The input points are spaced at equal

angles with respect to the x-axis along these ''latitude'' circles, i.e.,

there is a point every 360 0/M around the circless. Thus the m-lines are

' 'longitude'' lines. In the -xample of' figure 27 NT ý-- 9 and Mn = 12 -

a total of 108 elemerts , slaced every 2 0 ° in the x-direction and every 30)

around the "latitudeII circles at constant values of x. This rather crude

representation of the sphere is for purposes of illustration only. In the

cases actually computed a much larger number of elements were used, but the

ratio of the element spacing in the two directions was appyrucxhiiately the sane.

With this distribution of input points, the two points where the sphere inter-

sects the x-axis (the ''north and south poles'') are each common to Mn
elements, and these elements are triangular. It is not a particularly de-

sirable situation, and apparently introduces a certain amount of inaccuracy,

particularly when the flow is parallel to the x-axis, i.e., when these con-

centration points are stagnation points of the flow,
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Because the element distribution does not have spherical symmetry, the

calculated velocity distributions are not exactly the same for various

directions of the onset flow. Accordingly, the velocities were calculated

for two onset flows, one parallel to the x-axis and one parallel to the y-axis.

As can be seen from figure 27, in the case of an onset flow parallel to the

x-axis the element distribution has the same symmetry as the true flow (a sort

of "axial"' symmetry), and the computed velocity magnitude is the same on

all elements lying between the same two 'I' latitude I I circles. If the onset

flow is parallel to the y-axis, the element distribution does not have the

same symmetry as the true flow, and the calculated velocity magnitude will

not be exactly the same, for example, at the concentration points on the x-axis

as it is at the points on Lhe z-axis.

In the following figures, the calculated velocity at every null point

is represented by a symbol. Thus the density of elements may be inferred

directly from the figures.

Figure 28 shows the comparison of the analytic solution with two calcu-

lated velocity distributions for the case of an onset flow para.31el to the

x-axis. One calculation was performed with 1554 effective elements(NT = 29,

Mn = 46), and the other with h320 (NT = 54, Mn = 80). Both calculated cases

are quite accurate in the region of maximum velocity. The more accurate

case of 4320 elements gives an error of 0.03 percent of free stream velocity

in this region, while the other case gives an error of 0.1 percent. The

accuracy of both calculations is quite satisfactory except near the stagnation

point, which is also the concentration point of the elements. in the h320

elment cac, wit: uu.L±L:um' vc.iLucJuy at,• •.e nuiL point nearest the stag-

nation point (the null point of one of the triangular elements shown in

figure 27) is in error by about 1 percent of free stream velocity. The error

falls below 0.1 percent at the third null point, 9 = 8.30 in figure 28, and

remains below 0.3 percent for all larger values of Q. In the 1`5! cl•eul

case, the error at the null point nearest the stagnation point is about 2 per-

cent of free stream velocity. This error falls below 0.5 percent for @ > 100.
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Figure 29 shows comparisons of the isame two calculated velocity distribu-

tions with the analytic solution for the case of an onset flow parallel to

the y-axis. Comparisons are made along two curves in the body surface. The

first, shown in figure 29a, lies in the yz-plane and is thus the ''equator''

of the element distribution of figure 27, while the second, shown in figure

29b, lies in the xy-plane and is thus a ''longitude" line. It can be seen

that the accuracy of the calculated velocities is quite good, particularly that

of the 4320 element case. The concentration point of the elements is at
S= 900 in figure 29b, and some increase in error can be noticed in this

region - up to about 0.6 percent of free stream velocity for the 4320 element

case and about twice this for the 1334 element case. It is, however, smaller

than the error that occurred near the concentration point in the case of flow

parallel to the x-axis,

!O.2 Ellipsoids of Revolution

The calculated velocity distributions were compared with analytic solu-

tions for two ellipsoids of revolution, a prolate spheroid of fineness ratio

10 and an oblate spheroid of fineness ratio 1/10. In all cases of ellipsoids

of revolution, the input points are distributed on a sphere in the manner

described in the previous section, and the y and z coordinates of these points

are then divided by the fineness ratio to generate the input points for the

ellipsoid. This procedure tends to concentrate pointz in the regions of

high curvature of the body surface. The number of elements used to obtain

the calculated velocity distributions are the same a • were used. for the sphere.

Figure 30 shows the comparison of the analytic solution with two calcu-

lated velocity distributions - one obtained using 1ý54 effective elements and

one obtained using 4320 -, for the case of an onset flow parallel to the

x-axis. The accuracy is seen to be quite good. The 4520 element case agrees

with the analytic solution to plotting accuracy even in the region near the

stagnation point where the velocity varies rapidly with position. Figure 31

shows comparisons of these two calculated velocity distributions with the

analytic solution for the case of an onset flow parallel to the y-axis.

Figure 71a shois the comparison around the circumference of the body in the

yz-plane, where the velocity distribution is approximately the same as the
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solution for an infinite circular cylinder, while figure 31b shows the com-

parison of the calculated and analytic velocity distributions along the

meridian curve in the xy-plane. Again agreement is seen to be good.

Similar comparisons for an oblate spheroid of fineness ratio 0.1 are

shown in figures 32 and 33. In the case of an onset flow parallel to the

x-axis (figure 32) the maximum velocity ratio on the body surface is 7.18 •

The 1334 element case calculates the maximum velocity ratio as 7.09 - an

error of 9 percent of free stream velocity in this rather extreme case. In

the 4520 element case there is no null point at the location of maximum

velocity for the reason explained perviously. The null points closest to the

location of maximum velocity have a calculated velocity ratio of 6.90, which

agrees with the analytic solution to 0.8 percent of free stream velocity.

The use of a parabolic extrapolation gives the calculated maximum velocity

for the 4-520 element case as 7.16 - an error of 2 percent of free stream

velocity. It is felt that these results are quite satisfactory considering

the large velocity ratios involved. The comparisons for an onset flow parallel

to the y-axis are shown in figure 33. The flow in the yz-plane shown in

figure 35a exhibits the only noticeable errons in this case - 0.5 percent

of free stream velocity for the 4320 elem-rent case and I percent for the 15j54

element case. Near this plane the curvature of the body surface is quite

high and perhaps more elements should be concentrated in this region for

better accuracy.

It should be noticed that the concentration point of the elements

apparently causes no trouble for either ellipsoid of revolution.

10.3 Tri-Axial Ellipsoids

The one truly three-dimensional family of body shapes for which the

analytic solution can be easily obtained consists of ellipsoids all three of

whose axes have different lengths. The flows about a considerable number of

ellipsoids were calculated and compared with the analytic solutions. The

comparisons presented here are typical examples.
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The ellipsoid whose axes in the x, y, and z directions have the ratios

1:2:0.5, respectively, is representative of rather thick three-dimensional

bodies. The calculated velocities selected for comparison with the analytic

solution were obtained from a case utilizing 4320 effective elements to

approximate the body surface. The element distribution consisted of 54 in

the y-direction and 80 around the elliptical cross-sections at constant values

of y. The comparisons for onset flows parallel to the x. y, and z coordinate

axes are presented in figure 34. For each onset flow these figures show the

velocity distributions along three curves in the body surface - one in each

of the symmetry pla.nes. It can be seen that in all cases the velocity in the

plane perpendicular to the onset flow vector is a constant independent of

position and equal to the maximun velocity of the flow. The analytic and

calculated. velocity distributions are seen to agree to plotting accuracy,

except for the region near the y-axis in the xy-plane for the case of an

onset flow parallel to the z-axis (figure 54c). It is believed that this

error is due to the relatively high curvature of the body surface in this

region and might be removed by concentrating elements there.
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11.0 THE CALCULATED FLOW VELOCITIES AMD PRESSURES ON

A VARIETY OF BODIES

In this section are presented the calculated flow velocities on some

body shapes that are thought to be of interest. For the most part these

calculated solutions stand alone, although in certain cases comparisons are

made with analytic solutions, with solutions obtained by the method of

reference 1, o-A- with experimental data.

11.1 Wing Fuselage Combinations

This section presents the results of the calculations for two wing-

fuselage combinations, for one of which experimental data were available.

It should be mentioned that the restriction of the method to cases of zero

lift essentially limits the airfoils that may be considered to symmetrical

ones. Also, wing-fuselage combinations have concave corners at the Juncture

of the wing and fuselage. Thus, as explained previously, some difficulty might

be expected. However, examination of the results of the calculations has

shown that no significant inaccuracy apparently arises from this source, at

least in the zero-lift, zero-yaw case.

11.11 Warren Wing with Ellipsoidal Fuselage.

Thu first wing considered is that described in reference 7. The root

and tip airfoil sections of this wing are identical, being a symmetric airfoil

of 6 percent thickness. The leading edge is swept 53.50, and the taper ratio

is 1/3. The wing is cut off at the tip parallel to the midplane of the wing.

The zero lift, zero yaw pressure distribution on this wing was calculated for

a variety of conditions.

Figure 35 shows the curves of constant pressure coefficient on the

isolated wing in incompressible flow. Two cases were calculated. In the

first the flat tip of the wing was represented by elements in the usual way,

while in the second the tip was not represented by elements, and the end of

the wing was thus left open. This was done to evaluate tip effects. The two

cases have identical pressure distributions except within 5 percent semi-span

of the tip, so only a portion of the pressure distribution for the wing with-

out tip is shown.



Both the left and right halves of the wing were taken into account, and

the body therefore has two planes of symmetry. A total of 425 basic elements

were employed to approximate the upper surface of the wing on one side of the

midplane. The distribution consisted of 17 elements along the semi-span and

25 along the chord of the airfoil section. In addition 50 elements wer! used

to represent the upper half of the wing tip. (1900 total effective eluments.)

To a first approximation the flow at non-zero subsonic Mach numbers nay

be calculated by applying the Goethert transformation to the body. This is

accomplished by stretching the body in the direction of the onset flow (x.

direction), calculating the incompressible flow about the resulting body, and

multiplying the calculated velocity components by suitable factors, (see for

example reference 8). This was done for the wing without tip described above,

and the resulting curves of constant pressure coefficients are shown in

figure 56. A comparison of the last two figures thus shows the effect of Mach

number on the pressure distribution.

To exhibit interference effects, the pressure distribution was calculated

on the wing-fuselage consisting of the wing with tip described above mounted

as a midvring on an ellipsoidal fuselage. The fuselage selected was a prolate

spheroid of fineness ratio 8 whose length is 3 times the root chord of the

wing. The leading edge of the root airfoil section is located 20 percent of

the fuselage length from the front. The calculated curves of conatant pressure

coefficient are shown in figure 37. The effect of the fuselage on the pressure

distribution on the wing can be judged by comparing these isobars with those

shown In figure 35. It is also interesting to note the manner in which the

isobars on the wing continue over the fuselage. This case is one of two planes

of symmetry. The upper surface of the right half of the wing is approximated

by 187 elements - 11 along the semi-span and 17 along the chord of the airfoil

section. The upper half of the tip is represented by 31, elements. A total of

320 elements define the upper right quarter of the fuselage. The distribution

consists of 40 elements along the length of the fuselage and 8 around the

quarter circulmference. (2164 total effective elements.)
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The effect of the wing on the pressure distribution on the fuselage is

shown in figure 38. This figure presents the pressure distributions in the

midplane of the fuselage both with and without the presence of the wing. The

analytic solution for the isolated fuselage is also shown to establish the

basic calculation error. It should be noticed that thA significant lowering

of the pressure on the fuselage caused by the wing is located downstream of

the intersection of the wing with the fuselage. This is in accordance with

the experimentally observed behavior of swept wings.

11.12 NACA Wing-Fuselage.

To obtain an experimental verification of the accuracy of pressures

calculated by this method for the important class of wing-fuselage bodies,

calculati ons were perfouried for an NACA wing-fuselage combination. The con-

figuration is described in reference 9, which also contains the experimental

results. The wing has Ldentlcal root and tip airfoil sections, both of which

consist of an NACA 65A006 airfoil. The 25 percent chord line of the wing is

swept h45, and the taper ratio is 0.6. The fuselage is a pointed body of

revolution of basic fineness ratio 12. However, the actual fineness ratio

is 10, since one-sixth of the fuselage was cut off to accomodate the sting on

which the body was mounted in the wind tunnel. The forward part of the sting

was taken into account in the calculations. Tests were conducted at a Mach

number of O.h, and this was accounted for in the calculations in the manner

dercriblicd ubce. Th-e cic'mlnt rustriuution used. for the calculatiors differed

only slightly from that described in the previous section for tht Warren wing

with ellipsoidal fuselage.

The calculated curves of constant pressure coefficient for this wing-

fuselage are presented in figure 59. The wing tip was left open in the cal-

culation in the manner previously described for the Warren wing, whil,' the

wing tested had a rounded tip. Accordingly, the isobars of figure 39 are

terminated a short distance from the tip where it is felt they no longer

have validity. The experimental curves of constant pressure coefficient are

presented in figure 40. By comparing figure 59 and 40 it can be seen that

the calculated and experbiental isobars have the same general shape over most

of the surface of the wing, but that the locations may differ significantly.
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This difference is due to the fact that the pressure gradient is small over

most of the wing surface, and thus small differences in pressure lead to

significant differences in the location of the isobars.

To compare the calculated and experimental pressures directly, pressure

distributions along the chord of the wing are shown in figure 41 for three

locations along the span. It can be seen that the calculated and experi-

mental pressure distributions agree quite well except near the leading edge of

the wing where the calculated pressure distribution has a small, sharp, negative

peak. To investigate this phenomenon further, the airfoil section was cal-

culated as a two-dimensional body by the method of reference 1. This method

has been shown to be highly accurate in a variety of applications. Its cal-

culations agree very closely with those of high order Theodorsen solutions

and also with experimental data. The resulting pressure distributions are

shown in figure 42 for M.1ach numbers of zero and 0.6. Also shown is the

theoretical incompressible pressure distribution from reference 10. The

pressure distributions calculated by the method of reference 1 show a small,

sharp, negative pressure peak near the leading edge of the airfoil, and it is

accordingly concluded that this peak is real and was correctly predicted by the

present method for the three-dimensional case. Why the method of reference 10

fai.. .to predict such a ptk is not known. Also unexplained is the failure

to obtain such a peak in the wind tunnel test. It is known, however, that the

pressure distribution near the leading edge of a thin airfoil is extremely

sensitive to the body shape in this region. A very small change in the co-

ordinates of the body could cause the presence or absence of such a peak.

11.2 Ducts

Ducts form an interesting class of body shapes to which the present flow

calculation method is applicable, since the restriction to zero lift is not a

factor. A duct is actually a case of an interior flow problem and '3hould be

calculated as such. That is, the duct should be closed by surfaces at both

ends, and the onset flow should be eliminated. The interior flow is then cal-

culated by specifying zero normal velocity on the interior of the duct walls

and by specifying non-zero normal velocity distributions on the surfaces across

the cross-sections at the ends of the duct. The normal velocities specified
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on these surfaces may have any distributions that satisfy continuity, but

normally they would be taken to give uniform flow at the ends of the duct.

While the m•+Ht•9 ne i1.hq __n•.% o~n nSVrh te nf f'low in a per-

fectly routine manner, the results are subject to inaccuracies related to the

inability of this method to handle bodies having concave corners. It is

usually necessary to simulate the required interior flow by the flow through

the open-ended duct, due to some onset flow. There are several ways that

this can be done, and often the particular application will dictate the proper

approach. The scheme used for the examples of this section consisted of ex-

tending both ends of the duct by means of straight sections of constant cross-

sectional shape to a distance relatively large compared to the region of

interest, e.g., bend, contraction, etc.. This extended duct with open ends

is then taken to be in a uniform onset flow, and the calculations are per-

formed in the same way as for cases of exterior flow. The source density

distribution is determined in such a way that the normal velocity now vanishes

on the inner surface of the duct. The resulting flow is somewhat irregular

near the 'lenirancel' of the duct at the end of the extensions, but, if the

extensions are long enough, the flow smoothes out and is nearly uniform a

considerable distance before the beginning of the region of interest is

reached. The magnitude of the velocity in this uniform velocity region is the

one of real significance for app'licatins rather tan that of the onset flow.

Several ducts of various kinds were calculated. The two main types were:

(1) ducts of constant cross-sectional shape with bends and (2) straight ducts

with varying cross-sectional area and/or varying cross sectional shape. In

most eases the cross-sectional shape of the ducts was either circular or rec-

tangular. The rectangular ducts of course have concave corners, an'd thus the

results for these cases are open to question. An examination of the velocity

distributions around the cross-sections of the rectangular ducts showed that

the computed velocities were seriously in error near the corners. Wnile the

velocities away from the corners are more reasonable, the overall results

were not judged nccurate enough to be included here. Apparently some rounding

of the corners is required. Thus, two circular ducts have been selected for
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11.21 A Straight Circular Contracting Duct having an Area Ratio of Four.

The first duct considered is a straight one of circular cross-section.

The flow is thus axisymmetric. The duct consists of a constant diameter

section followed by a contraction to a cross-section of half the original

diameter. The duct then expands in such a way that it is symmetric about the

section of minumum area. The contracting portion of the duct has a profile

that is a portion of a sine wave having a zero slope at the location of

minimum area and also at the location where the constant diameter section

begins. The length of the contracting section is equal to one and a half

diameters of the constant diameter region.

For exterior flows about smooth convex bodies like ellipsoids the r'c_ rrac

of the calculated results is deteiTrined largely by the total effective number of

elements. The relative number of elements used to approximate the body in the

direction of the free stream and in the direction normal to the free stream is

not too important as long as the resulting distribution is at all reasonable.

The element distribution is soewhat m•oe ciicaL in the case of ducts, and

+hu .certain cases were repeat.. , with the same total numfber of effective ele-

ments but various element distributions.

Figure 413 shuws five calculated velocity distributions for the duct. in

question. Two of these were obtained by means of the axisymmetric method of

reference 1, while the other three were obtained by the present method. The

cases calculated by the present method are identified by the number of effective

elements used axially along the duct and by the number of effective elements

used around the circumference. These numbers apply to the entire duct from

x = -7 to x = +7 and to the full 3600 of circumference even though only

part of the duct is shown in the figure. In the smallest case (case 1) the

duct is specified by 42 elements longitudinally, 21 on each side of the throat,

and by 18 elements circumferentially, one every 20. Case 2 uses the same

number of elements axially as case 1, but has 100 elements around the circum-

ference. In case 3 the number of elements along the length of the duct is

doubled relative to case 2, while the number around the circumference is ap-

proximately halved. Thus the total number of effective elements is roughly

the same for case 2 and case 3. The 42 element axisymmetric solution employed

the same axial distribution of elements as cases 1 and 2, and what amounts to
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an infinite number of elements around the circumference. The high accuracy

axisymmetric solution was obtained by calculating several cases with a very

large number of elements and extrapolating the results to the case of in-

finitely many elements. It may be regarded as the exact solution for the

present purpose. The calculated velocity magnitudes V in the constant0

velocity region around x = 6 differed slightly in the various cases, and

in the figure each velocity distribution has been normalized with respect to

its value at x = 6 in accordance with the fact that this is the velocity of

real significance. Case 2 is seen to be somewhat more accurate than case 3,

and the 42 element axisymmetric solution is considerably more accurate than

either. From these results it is clear that a very large number of elements

is required for good accuracy in cases of ducts having this area ratio, and,

moreover, that it is advantageous to employ a relatively large number of

elements around the circumference even if it is necessary to reduce the number

of elements uoed longitudinally.

11.22 A Constant Area Circular Duct with a 90° Bend.

The case of a constant area circular duct or pipe that makes a rig':t angle

turn was selected as an example of a truly three-dimensional duct. In the

curved region, the centerline of' the duct is a quarter circle of radius five

times the radius of the circular cross-section. of the duct. A sketch of half

of the duct is shown in figure 4)ia, which also shows the calculated velocity

distributions along the length of the duct at three circumferential locations

on the duct wall. The curves A and C, whose velocity distributions are

shown in figurre 44a, are in the plane of the paper as shown in the sketch -

A on the "inside'of the turn and C on the ''outside"'. The curve B is

900 around the circumference from each of these, i.e., at the maximum height

above the plane of the paper. The plots were made versus centerline arc

length so that all three curves could utilize a common abscissa. The velocities

at a given value of centerline arc length are at those points of the curves

A, Bj and C that lie in the plane normal to the centerline at that location.

The straight section of the duct begins at a value of centerline are length

s = 4.353 and the end of the duct is at s = 9.0. The uniform velocity region

around s = 6 is the limit of validity of the calculation for applications.

The end effects near s 9 can be seen in the figure. The calculated velocity

distributions around the circumference of the duct at various locations are
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shown in figure 44b. The calculations were performed using 2100 effective

elements - 42 along the length of the duct and 50 around the circumference.

11.3 Interference Problems

11.31 An Ellipsoid at Angle of Attack in a Round Wind Tunnel.

The use of this method of flow calculation makes it possible to predict

the effect of wind tunnel walls on the velocity and pressure distributions on

the surface of a b-dy. The results of one such calculation are presented here.

The body considered is a prolate spheroid of fineness ratio 10 at 10° angle

of attack in a circular wind tunnel whose diameter is equal to the length of

the body. Figure 45 shows the calculated velocity distributions along three

curves on the surface of the body both with and without the presence of the

wind tunnel. Curves A and C are in the midplane of the ellipsoid on the

upper and lower side, respectively. Curve B is 90" around the circumference

from the other two and is thus at the "'side"t of the ellipsoid. It can be

seen that the effect of the tunnel walls is small but definitely noticeable

in some regions. The maximum change in velocity caused by the presence of' the

tunnel is 0.4 percent of free stream velocity. The velocity distributions on

the top, bottom, and ''side'' of the tunnel wall are shown in figure 46. The

maximum variation from a uniform flow is 0.7 percent of free stream velocity.

The calculations were performed using 1296 total effective elements. These

were distributed as follows: 720 on the ellipsoid, 20 along its length and

56 around its circum-lerence, and 576 on the wall of the tunnel, 16 axially

and 36 c.reumferentially.

11.32 An Ellipsoid below a Free Surface. Two Ulik~oids Side by Side.

The method discussed here can also be used to calculate, to a first

approximation, the flow about a body moving beneath a free surface at the

extremes of the speed range. t1he linearized free surface boundary condition

is such that if the body is moving very slowly (low Froude number) the proper

condition at the surface is satisfied by placing a mirror image of the body

above the surface with a source density distribution identical to that of the

actual body. If the body is moving very rapidly (high Froude number), the

surface condition is satisfied by placing a mirror image of the body above the
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surface with a source density distribution equal to the negative of that on

the actual body. The first of these situation is such that there is no flow

across the free surface and no normal velocity on the image body. This case

is thus equivalent to the flow about two identical solid bodies side by side.

Both cases can be handled by the symmetry feature of this method, with the

second requiring a sign change in the calculation of the effect of certain

reflected elements.

The body chosen to illustrate these calculations is a prolate spheroid

of fineness ratio 10 whose axis of symmetry is parallel to the free surface and

located one diameter below it. Figure 4 7a shows the calculated velocity

distributions along the length of the ellipsoid on the meridian curve nearest

the free surface for the case when the ellipsoid is moving parallel to the

free surface and along its axis of symmetry. To make the results consistent

with the other figures of this report, the velocity distributions are show.n

for the case of a stationary ellipsoid in the presence of a uniform onset flow.

Ln addition to the low and high Froude number flows, the analytic solution for

the ellipsoid alone in an unbounded fluid is also shown. Figure 47b shows

the calculated velocity distributions around the circumtference at the loca-

tion of maximum dLametur for the case of an onset flow (or movement of the

body) parallel to the free surface and perpendicular to the axis of symmetry

of the body. The same three cases are shown as in figure 47a. The ealcullate.

cases utilized 4320 effective elements - 2160 for the ellipsoid and the same

number for its image. The distribution consisted of 54 elements along the

length of the ellipsoid and 40 around its circumference.

11. 4 Ship Hulls

11.41 General Remarks.

The flow about a ship hull is another example of flow in the presence

of a free surface that can be calculated to a first approximation by the

present method. The speeds of ships are such that this is a case of flow at

low Froude number; and thus, as was mentioned earlier, the linearized free

surface condition is approximately satisfied by placing a mirror image of the

hull above Uhe surface with the same source density distribution as the actual
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hull . Since the ship hull pierces the surface, the true situation is thus

approximated by the flow of an unbounded fluid about a single, closed,

" double hull" body, which consists of the portion of the ship hull below

the free surface plus the mirror image of this portion in the free surface.

Thus in using the present method it is necessary to approximate by quadri-

lateral elements, not only the ship hull itself, but also its image in the

free surface, and accordingly in a given case only half of the total effective

elements are on the actual hull. From the point of view of the method, ships

then will always have two symmetry planes - the midplane or "keel plane'',

which is a real symmetry plane, and an artificial symmetry plane coincident

with the free surface, ships with ''fore and aft'' symmetry have a third

symmetry plane. In some applications It is advantageous to assume this last

symmetry even if it is only approximately true, since it doubles the number

of effective elements. To make the results for ships consistent with the

other calculated results, the flows in the examples below have been computed

assuming the body to be stationary in the presence of a uniform onset flow.

In normal practice hull shapes are specified by polynomials. The co-

ordinates used to describe a ship are as given in reference 11. The co-

ordinate x denotes distance along the length of the ship, and the shape is

normalized so that the bow is at x = +1 and the stern at x = -1. The co-

ordinate z denotes depth below the free surface. The keel or the location

of maximum depth or t'he hull is at z = 7.MI eP 7M is the draft of the

ship. Distances pe-rpendicular to the midplane of the ship are represented

by the coordinate y. The maximum distance of points on the hull from the

midplane is YM, and thus the beam of the ship is 2yM. The polynomial re-

presentation of the ship hull expresses y/YM as a function of x und z

The region of definition of the polynomials is the rectangle -1 9 x 4 +1,

0 : z/zM _ 1. If the side view of the hull is not rectangular, e.g., if the

bow curves to meet the keel smoothly, the hull will not completely fill this

rectangle of definition, except in the sense that y = 0 over part of the

region. A polynomial nannot of course be zero over a region, and where the

actual ship is absent, the polynomial representation gives small, variable,

possibly even negative, values of the thickness y. While this may be ac-

ceptable for some purposes, it is niot permissible in the present application.
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Usually, the inclusion of this region will prevent the convergence of the

iterative solution of the linear equations for the values of the source

density. It is possible, however, that absurd results could be calculated.

The body shape used with this method should terminate where the actual shape

terminates. If the input points are generated from the polynomial repre-

sentation, the curve on which y = 0 must be calculated.

In many cases the cross-sections of the hull in a plane normal to the

x-axis inte.-sect the plane y = 0 normally or nearly so, i.e., with slopes

nearly parallel to the free surface. To approximate this condition, the

polynomials defining hull shapes must have terms of very high order in z/zM.

All the results presented below were calculated for the case of an onset

flow parallel to the x-axis, i.e., along the length of the ship. Normally,

the case of an onset flow parallel to the y-axis, i.e., the flow about a ship

in yaw, was also calculated, but these results were felt to be of less

interest.

11.42 Velocity Distributions on Two Ship Hulls.

Calculations were performed for two hull shapes. The polynomial repre-

sentatlons of these shapes were furnished by personnel of the David Taylor

Model Basin.

The first ship hull is a relatively simple, idealized shape, which is

designated the simple ship hull. Its polynomial representation is as follows:

L 2_ (x2_ Ll)1[ - 0.3Y/MI-O,(z/zM)l50] 11
=Y L- - x4 )(z/z) -O(zM)(l)

Since only even powers of x appear in equation (l14), the hull has a ''fore

and. aft'' symmetry about the plane x = 0. The thickness y is zero only on

the boundary of the rectangle of definition of the polynomial. Accordingly,

the keel is the line y = 0) z/zM = 1, -1 f x - +1 and the bow is the line

x = +l, y = 0, 0 6 z/zm- 51. The ohape is well suited to approximation by

quadrilateral elements in the manner employed by this method. In particular,

there is no concentration point of the elements as Lhere is for smooth bodies

like spheres. The limits of the surface, bow, stern, keel, and waterline,
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are simply taken as 'I'n-lines'' and 'r'm-lines'' of the elements distribution.

In fact the selection of input points was quite routine, except for one diffi-

cult region, which seems to occur in many ships. The slope of the surface at

the keel varies rapidly with distance along the hull near the bow. Li this

case, for example, at the bow the unit normal vector to the surface at the

keel has a zero z-component and a y-component of almost unity, while at 5

percent of the length of the ship the unit normal vector at the keel has a

z-component of almost unity and a y-component equal to about 0.01. (The unit

normal has a small x-component at both locations.) Thus the unit normal

vector at the keel rotates almost 90* in 5 percent of the length of the ship.

This fact necessitated a concentration of elements near the keel in the

vicinity of the bow (and, by symmetry, a similar concentration at the stern).

The total number of effective elements used in the calculations was 3816 -

1908 on the actual hull and an equal number on its reflection in the free

surface. The basic element distribution consisted of L2 along the length of

the ihi" li .... At .. ... ..... .. i V L o1 x

from waterline to waterline. An additional 156 elements were concentrated

near the keel at the bow and a like number at the stern.

The simple ship hull on which the flow was calculated had a beam-length

ratio of 0.118 and a draft-length ratio of 0.047, i.e., YM = 0.118 and

ZM = 0.094. Plan and side views of the hull are shown in figure 48a, which

also shows the calculated velocity distributions along the watcrline and the

keel. Figure 48b shows the calculated velocity, distributions around cross-

sections of the hull at several values of x together with the cross-sec-

tional shapes at those locations. From the latter curves it can be seen that

the maximum velocity on a ernss section is attained at the waterline if the

cross-section is near the middle of the ship, but at the keel if the cross-

section is near the bow. The maximum velocity on a cross-section about mid-

way between the bow and the middle of the ship occurs neither at the keel

nor the waterline but somewhere in between. All velocity curves in figure 48

are terminated at the last null points appropriate to the perticular velocity

distributions. This accounts for the fact that the curves end at different

values of the abscissae.
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The second ship hull is a realistic approximation to a ''Series 60''

merchant ship having a beam-length ratio of 0.1333 and a draft-length ratio

of 0.5333. This ship and its polynomial representation are described in re-

ference 11. The polynomial contains 140 terms, consisting of powers of x

from 0 through 13 and powers of (z/ZM) from 0 through 6 and also the powers

20, 40, and 200. The side view of the ship is not rectangular, but the bow

is curved, beginning at about 80 percent of the draft, and smoothly Joins the

keel at about 5 percent of the length of the ship. At the stern of the ship,

x = -1, the thickness y is not quite zero but has a small positive value.

In the calculations, elements were distributed only on the surface defined by

the polynomial, and the stern of the ship was thus left open in a manner

similar to the wing tips described in Section 11.1. This leads to an error

in the calculated velocities over the last three or four percent of the length

of the ship. The slope of the keel changes rapidly near the bow, and. elements

were uoncenLrated in this region as was done for the simple ship hull. Such

a concentration was unnecessary at the stern. A total of 2024 effective

elements were used in the nalculations, - 1012 on the actual hull and the

same number on its image in the free surface. The basic element distribution

consisted of 34 along the length of the ship and 28 around the cross sections

of the hull from waterline to waterline. An additional 60 elements were con-

centrated near the bow in the vicinity of the keel. For illustrative purposes,

a half model of the series 60 merchant ship hull was constructed showing the

distribution of elements. A photograph of this model is shown in the frontis-

piece. Te bow is on the upper left in the photograph, and the concentration
of elpments near the keel can be seen. The doLs on the elements show the

locaticns of lhth null points.

'Ene calculated velocity distributions along the keel and ýne waterline

are shown in figure 4 9a, while the velocity distributions around cross-sections

of the hull at several values of x are shown in figure 49b, together with the

cross-sectional shapes for those locations. All curves are terminated at the

last nu.ll points appropriate to the particular velocity distributions.
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11. 43 The Effects of Variation of Ship Thickness. Evaluation of the Validity

of Thin Ship Theory.

!he vclocity distributions on ship hulls may also be calculated by an

approximate method known as thin ship theory. According to this theory,

for the case of an onset flow parallel to the x-axis, the disturbance velocity

components, V x- 1, Vy, and Vz, at all points of the hull vary linearly with

the thickness of the ship, i.e., with beram-length ratio yM' for a given

normalized ship geometry. Thus the present method of flow calculation may be

used to evaluate the validity of thin ship theory by calculating the flow

about a particular hull shape for several beam-length ratios and determining

whether or not the variations of the disturbance velocity components with

thickness are linear. If the variations are linear, it still must be verified

whether or not the slopes are those predicted by thin ship theory.

The investigation was conducted using the simple ship hull of Section

ll.42. In addition to the case of a beam-length ratio of 0.118 described in

that section, calculations were performed for this bull with beam-length ratios

of half and twice thic value leaving the draft unchanged. Fach of the three

cases can be obtained, from any other by multinlying the y, coordirnt.tm of th.

input points by the proper factor. Thus corresponding input points in the

three cases have the same x and z coordinates, and this is approximately

true of corrospondirg null pointc, so that the variation with ship thickness

of the disturbance velocity components at a given xz location may be determined

by examining the velocitics at corresponding null points in the three cases.

Three locations along the ship were selected for examination - one near the

bow (x = 0.985), one near the middle of the ship (x = 0.025), and. one approxi-

mately midway between (A. C.)25). At each location three null points were

selected -the one nearest the keel (z/zM• 1), the one nearest the waterline

(z/zM Z 0+), and one at a depth equal to about half the draft (z/zM - 0.5),

The calculated disturbance velocity components for these nine locations are

shown as functions of beam-length ratio in figure 50. Also shown are the

straight lines having the same slope as these curves at zero beam-length ratio.

It can be seen that some components at some locations are almost linear with

beam-length ratio, while others are not. The greatest deviations from linear

behavior occur at the location near both the keel and. Lhe bow, figure 50i.
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The behavior of the x disturbance component at the intermediate x-location

(x = 0.525) is quite interestirn. In figures 50d and 50e it is seen that this

component at first increases with beam-length ratio, but reaches a maximum

and thereafter decreases and eventually changes sign. The magnitude of this

component is not large in these cases, but the behavior is evidently of a sort

that could not be predicted by a linearized theory.
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Figure 28. - Comnparison of analytic and calculated velocity distributions on a sphere for an onset flow
parallel to tile x-axis.
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Figure 29. - Comparison of analytic and calculated velocity distributions on a sphere for an onset flow
parallel to the y-axis. (a) Velocities in the yz-plane
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Figure 29. - Continued (b) Velocities in the xy-plane.
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Figure 30. - Comparison of analytic and calculated velocity distributions on a prolate spheroid of

fineness ratio 10 for an onset flow parallel to the x-axis.
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Figure 31. - Comparison of analytic and calculated velocity distributions on a prolate spheroid of
fineness ratio 10 for an onset flow parallel to the y-axis. (a) Velocities in the yz-plane.
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Figure 31. - Continued (b) Velocities in the xy-plane.
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Figure 32. - Comparison of analytic and calculated velocity distributions on an oblate spheroid of
fineness ratio 0.1 for an onset flow parallel to the x-axis.
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Figure 33. - Comparison of analytic and calculated velocity distributions on an oblate spheroid of
fineness ratio 0.1 for an onset flow parallel to the y-axis. (a) Velocities in the yz-plane.
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Figure 33. - Continued (b) Velocities in the xy-plane.
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Figure 34. - Comparison of analytic: and calculated velocity distributions on an ellipsoid with
axes ratios 1:2:0.5. (a) Velocities in the xz-plane.
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Figure 34. - Continued ",b) Velocities in the yz-plane.
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Figure 47. - Calculated velocity distributions on an ellipsoid with and without the presence of
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