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1.0 ABSTRACT

This report describes an investiqation into the problem (,f the "exact"

calculation of three-dimensional lifting potential flows. The designation

"exact" is used to denote a method that makes no approximations in its basic

formulation, such as small-perturbation or lifting-surface theories do.

Obviously, numerical realities require some approximate techniques in the

computer, but "exact" metheds can be numerically refined in principle to give

any degree of accuracy.

The first part of the study is a look at the problem of three-dimensional

lifting potential flow from a fundamental standpoint, something almost totally

lacking in the literature. Unlike nonlifting flow whose "physics" and mathe-

matical description seem basically related, the mathematical description of

the lifting problem is merely a model to describe by means of an inviscid flow

a phenomenon that is ultimately due to viscosity. This is true even in two

dimensions, but in three dimensions it leads to certain logical difficulties.

The method of this report and all current "exact" mpthnds of calculating

lifting flows are based on the author's previous work on three-dimensional

nonlifting flows. This report describes the present method in general and

in detail, including all formulas and logic. Alternatives are discussed, some

Of which are discarded, while others are incorporated into the program. The

present method differs from other current methods mainly in its use of finite-

strength surface vorticity distributions instead of concentrated line vorticity

interior to the body and in its application of the Kutta condition. Comparisons

indicate advantages for the formulation of the present method.

A variety of cases calculated by the present method are presented to

illustrate its versatility and usefulness. Comparisons of the calculations

with experimental data are presented. The importance of viscosity in the

experimental results is illustrated.
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4.0 PRINCIPAL NOTATION

AIj velocity induced at the i-th control point by a unit value of
source density on the j-th element. If there are N on-body
control points where a normal-velocity boundary condition is
applied, this is an N x N matrix. It is the coefficient
matrix for the linear equations for the values of source
density. The same coefficient matrix applies to all onset
flows.

B Constant of proportionality for the dipole strength along an
N-line. Local dipole strength along an N-line equals B times
the arc length along the N-line from the trailing edge. By
theorem of Appendix A, this means B equals the value of
bound vorticity at the spanwise location of the N-line. Used
with superscript k to indicate value lof B at the midspan
of the k-th lifting strip.

b32, b41  intercepts of slanted sides of a trapezoidal element with the
41 x-axis of its own coordinate system (figure 20).

CL lift coefficient for a complete body.

Cp pressure coefficient. Equals difference of local static pres-

sure from freestream static pressure divided by freestream
dynamic pressure.

c denotes an integration path. Also a constant multiplying a
second order dipole term used to produce cdrtlnuity.

csection lift coefficient. Lift force on a stiip of elements

on a wing divided by the projected area ol th strip in a
Dlane containing the chord line and ',y freestream Jynamic
pressure.

d used with double subscript to denote length of a side of a
quadrilateral element.

F, S subscripts and superscripts used to denote quantitie, dssoci-
ated with the two N-lines bounding a strip of elements. F
denotes "first" N-line and S thp 'seconnt' N-line. i
also used to denote number of uniforr onsEt 4low".

normalized moment of the - atr.,- Vl
respect to the axis of the .,. , ,, ..

tions (7.2.24) an, ,7 .2.;'7)

a subscript used to denote cu4 ' t i A. ,

i-th control point, partiar, vi cu1ie'; a lo '
Used as superscript to depofi , p(r

ij double subscript used to :i'rfv~I; Ll '.'" &.

i-th control point, parti 'u1t 1r h .,



TE, JE' -E unit vectors along the axes of a coordinate system based on

an element.

k subscript used in various ways. k = 1, 2,13, 4 denotes
quantities associated with the four corner points of an element.
Also used as subscript and superscrlipt to denote k-th lifting
strip or vorticity onset flow asociated with that strip.

L arc length along an N-line. Also denotes otal number of

lifting strips of surface elements!

M used in figure 42 to denote freestream Mach number

m32, m41  slopes of the slanted sides of a trapezoidal element with
respect to the y-axis of its own coordinate system (figure 20).

N total number of surface elements at which normal-velocity boundary
conditions are applied. Includes both lifting and nonlifting
elements.

N-line curve in wing surface, usually a fixed spanwise location, along
which input points are given. N-line continues aft to define
the trailing vortex wake. A strip of elements lies between
two consecutive N-lines.

n unit normal vector.

0 number of off-body points at which flow is to be computed

P a general point in space.

r distance between two points. Used with subscript o to denote
distance frem centroid of an element to point where velocity
is being computed. Used with subscript k to denote distance
between such a point and the corner point of an element.

S de.iotes a body surface on which a normal-velocity boundary
condition is applied.

arc lenqth, especially arc length along an N-line.

a ,-tr'u ,iagonal of an element (figure 20)1.

...... ,,, , ,,, .. : : ; ) ,' ,v o it , ' I,  
. I

: .,,. n,. . .. ... ......... . ........ .. ..... a nd v o rt ic itv -w,. t

A Wi.h sper rin



v perturbation velocity due to body.

v .k) total flow velocity at i-th control point due to flow induced
1 about the body by the k-th vorticity onset flra. With super-

script () the nonlifting flow about the body in a uniform
freestream,equation (7.13.4).

Vx , Vy Vz  velocity components induced by an element at a point space
with respect to the coordinate system of the element.

vij velocity induced at the i-th control point by a unit value of

source density on the j-th element.

V sF) v, 5S velocities induced at the i-th control point by a dipole
iJ iJ distribution on the j-th trapezoidal element that varies

linearally from zero on one parallel side to unity on the
other. Superscript denotes the N-line containing the side
with nonzero dipole strength.

w width of a trapezoidal element in direction normal to the

parallel sides (figure 20). Also used with subscript k to
denote width of lifting strip for parabolic fit (section 7.11).

x, y, z coordinates of a point in element coordinate system.

x', y', z' coordinates of a point in the reference coordinate system used
to input the body.

xo, yo' z coordinates of the centroid of an element in the reference
0 0 0 coordinate system.

L, , direction cosines of a point in space with respect to the
coordinate system of an element based on the centroid as
origin. Also used with subscript k to denote the same
direction cosines with origin shifted to a corner point.

r total circulation around a closed path.

y circulation about a cosed path due to perturbation velocity

field of the body.

dipole strrngth per unit area.

, r ':, y coordinates of a point of an element in its own coordinate

;y:tem. Used with suhscripts k to denote coordinates of the
corn(_ -,-/!its.

plt (2 aostance criteria used to decide when multipole and far-field
formulas are to be used.

source density per unit area. Used with subscript j to denote
value on j-th element and with superscript k to denote values
cal,:ulated for k-th vorticity onset flow.

9
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velocity potential especially that due to a body or that due

to a surface element.

tpq velocity potential due to a dipole distribution on an element
that varies as the p-th power of C and the q-th power of

nI equation (7.4.4).
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5.0 INTRODUCTION

5.1 Statement of the Problem of Potential Flow

The problem considered is that of the flow of an incompressible inviscid

fluid in the region R' exterior to (or interior to) a given boundary surface

S. For definiteness S is shown as a single three-dimensional surface in

figure 1, but S may consist of several disjoint surfaces, and the problem

may be either two- or three-dimensional. It is convenient to express the

fluid velocity field V at any point P as the sum of two velocities:

+=+T (5.1.1)

The velocity V is denoted the onset flow and is defined as the velocity

field that would exist if all boundaries were simply transparent to fluid

motion. It is assumed that _V is known. Most commonly V represents a

uniform parallel stream and is thus a constant vector. The vector v is the

disturbance velocity field due to the boundary surface S. Since the flow is

incompressible, both 7 and v have zero divergence. It is further assumed

R

X I V

Figure 1. Potential flow about a three-dimensional body.
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that v is irrotational, i.e., has zero curl. Thus, v may be expressed as

the negative gradient of a potential function c,

v = -grad € (5.1.2)

The con .ion of zero divergence then yields Laplace's equation for *,

72 = 0 in R' (5.1.3)

The boundary condition on S is derived from the requirement that on a

stationary impervious surface S the normal component of fluid velocity must

vanish. Thus,

-=grad •n = v •*n on S (5.1.4)an G

where n is the unit outward nonmdI vector to S. Since the right side is

known, equation (5.1.4) expresses a Neumann boundary condition for €. If the

boundary S is moving or if a nonzero normal velocity is prescribed, the

right side of (5.1.4) is modified in an obvious way.

A regularity condition at infinity is also required. In the usual

exterior problem the condition is

Igrad fl + 0 at infinity (5.1.5)

In addition to the above equations, some applications require certain auxil-

iary conditions to be satisfied. However, in the absence of such conditions

and for a simply connected region R', the equations (5.1.3), (5.1.4), and

(5.1.5) comprise a well-posed problem for the potential €.

In two-dimensional exterior problems, the region R' is not simply

connected, and equations (5.1.2), (5.1.3), (5.1.4), and (5.1.5) do not define

a unique velocity field. Define the total circulation r around any closed

path c in the fluid as the line integral

r= ft. n fv- + r + - (5.1.6)

C C c

12



where

Ss "(5.1.7)

c -

is the circulation associated with the disturbance velocity due to the body.

In the above

ds ds (5.1.8)

where S is arc length along c, and t is the unit tangent vector. If c

does not enclose all or part of S, then y = 0. If S is a single surface,

it can be shown (reference 1) that the velocity field v is rendered unique

by specifying y for any c that encloses S. If S consists of several

disjoint surfaces, y must be specified for a set of paths, each of which

encloses exactly one of the disjoint surfaces that comprise S. The potential

is unique If and only if y = 0 for all closed paths.

5.2 Potential-Flow Model for Lift

The reasoning leading up to the formulation of the potential flow problem

in terms of equations (5.1.3), (5.1.4), and (5.1.5) seems very plausible.

However, when the problem defined by these equations is solved, the resulting

flow gives zero net force on a closed three-dimensional body. This is due to

the fact that all components of force cn a body - both the lift, which is per-

pendicular to the freestream, and the drag, which is parallel to the freestream -

are ultimately due to viscosity. Nevertheless, the goal of calculating at least

the lift component of the for-e by a purely inviscid technique has been con-

tinuously pursued. It is important to realize that any such formulation is

simply a potential-flow model of real lifting flow, and that the two flows

are not necessarily related in any fundamental way. Formulation of the commonly

accepted potential-flow model of three-dimensional lifting flow has relied

heavily on results for the two-dimensional case.

In two-dimensional flow advantage can be taken of the indeterminacy

of the solution as described in section 5.1. For a single closed body in a

uniform stream, the drag force is zero, and the lift is proportional to the

13



circulation y, whicn is arbitrary. (For a uniform onset flow the total cir-

culation r equals y, the circulation due to the disturbance velocity.)

Thus, in two-dimensions the problem is not that no lift is obtained but that

the lift can have a,.y magnitude. Some auxiliary condition is nect< to fix

the value of lift. For bodies with continuous slope no satisfactory auxiliary

condition has ever been formulated. However, a conventional airfoil has a

sharp corner at its trailing edge, and there is a unique value of y (and thus

a unique lift) that makes the potential-flow surface velocity finite at this

corner. Determining the value of circulation in this way also insures that a

streamline of the flow leaves the airfoil at the trailing edge with a direction

along the bisector of the trailing-edge. This condition of finite velocity

at the trailing edge, the so-called Kutta condition, is so well accepted that

it is normally not considered a mere modeling device but is assumed to have

a more fundamental connection with the real flow. However, the Kutta condi-

tion is inapplicable to smooth bodies, and for airfoils with sharp trailing

edges it gives values of lift that differ from experimental values by up to

20 percent.

The theorem that guarantees a unique solution for the flow about a two-

dimensional body with prescribed circulation y is quite general. However,

in a specific calculation procedure the question arises of how the condition

of prescribed circulation is to be applied. All procedures accomplish this

with the help of vorticity. A distribution of vorticity, consisting of either

concentrated filaments or finite-strength surface or volume distributions are

hypothesized to lie on or within the body in question. The total strength of

the vorticity distribution establishes the prescribed circulation.

Consideration of the above two-dimensional model suggests certain elements

of a model for lifting flow about a three-dimensional wing of the type shown

in figure 2. If the trailing edge of the wing is a sharp corner, a plausible

three-dimensional Kutta condition requires that the velocity remain finite

there all across the span, which means that a stream surface leaves the

wing from the trailing edge. Define the circulation about a particular wing

section as the line integral of the velocity in the form of equation (5.1.7)

about a closed curve lying in the wing surface as shown in figure 2. The

precise definition of this so-called section curve is not considered now. A

reasonable definition is that the curve lie in a plane parallel to the plane

14



CiPORNWiSE OR

STREAMWISE '~> SPANWiSE
DIRECTION I IREC T ION

SEC.TION CURVE

TRAILING EDGE'

Figure 2. Nomenclature for a three-dimensional wing.

of symmetry of the wing. But for certain purposes the curve could lie in a I

plane normal to the leading or trailing edge. In any case the value of the

circulation is different for curves at different locations, so that there is

a "spanwise" variation in "section circulation." By analogy with two-

dimensions, it is expected that a proper adjustment of this spanwise variation

could render the velocity finite all along the trailing edge. Presumably, the

circulation can be generated by some distribution of vorticity lying on or

within the wing. It seems evident that the direction of this so-called

"bound vorticity" should be generally alonq tle span, roughly parallel to the

trailing edge. The net vorticity strength through each "section" is

proportional to the circulation around that section.

Define Y, and as the values of circulation about two sections of

the wing, where the positive sense of the integral of (5.1.7) is taken as

clockwise to an observer at the wing midplane looking towards the right wing

tip. Unlike the two-dimensional case, the region exterior to a closed three-

dimensional body is simply connected, so that if the flow is potential, i.e.,

has zero curl, and is free from singularities, then

r - 0 (5.2.1) _ 4

c
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for any closed path c, which implies Y1 = Y2= 0. Thus, to obtain nonzero

values of section circulation, there must b. some form of singularity in the

exterior flow. The nature of the singularity can be exhibited by considering

the path c shown in figure 3a. The line integral of velocity around this

path is

f -V- r = Y - 2 + -s(5.2.2)
c I

where I is the straight path joining the two section curves and v+ and

are the limiting velocities obtained by approaching I from two different

directions on the surface. If the line integral of (5.2.2) is to vanish, then

either YI = Y2 or V+ # v., and there is a discontinuity of tangential

velocity along I. If sharp corners in streamlines are to be avoided, such a

discontinuity can occur only across a stream surface of the flow, and thus

either I is a locus from which a stream surface leaves or joins the body or

else I Is a portion of a streamline on the surface. In any event I repre-

sents the intersection of a sheet of vorticity with the body surface. To

complete the potential flow model, the first possibility, a stream surface

SECTON 2 TRAILING EDGE

TRAILING VORTICIT'r

(a) (b)

Figure 3. Circulation on a three-dimensional wing. (a) Integration

path c. (b) Discontinuity at the trailing edge.
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leaving the body, is selected, essentially on physical grounds. It is

reasoned that vorticity is introduced only to the fluid that passes by the body

and that the path I of (5.2.2) must lie along the trailing edge of the wing

(figure 3b). Thus, a vortex sheet issues from the trailing edge and for

steady flow it proceeds to infinity. The average strength of the sheet along

I is proportional to the difference Yl - Y2 . Taking the limit as the two

section curves approach each other gives the result that the local strength

of the trailing vortex sheet is proportional to the "spanwise" derivative of

the "section circulation."

It follows from the above that the local strength of the "trailing

vorticity" that issues from the wing trailing edge equals the "spanwise"

derivative of the "bound vorticity." Thus, trailing vorticity is of precisely

the right form so that the entire oound-plus-trailing vorticity system may

be thought of as being composed of constant-strength vortex lines of infin-

itesimal strength, each of which proceeds "spanwise" along the wing and then

turns and proceeds "streamwise" to infinity, the familiar "horseshoe" vortices.

This is crucial because, as pointed out in reference 2, the velocity field

due to a variable-strength vortex filament or a nonclosed constant-strength

vortex filament of finite length is not a potential flow. Only infinite or

closed vortex lines of constant strength give rise to irrotational velocity

fields.

As mentioned above, the trailing vortex sheet must he a stream surface of

the flow. Also, on physical grounds the pressure must be continuous across

the sheet. In principle, these two conditions allow the complete shape of the

trailing vortex sheet to be calculated. The basic flow problem is nonlinear

because the location of the sheet changes for different onset flows. In

particular, the sheet changes location if the angle of attack of the freestream

changes.

The above contains the general features of the potential-flow model of

three-dimensional lift. It is considerably more complicated than the simple

formulation of equations (5.2.3), (5.1.4), and (5.1.5), which represent the

nonlifting case. However, the nonlifting formulation appears to be fundamental,

while the lifting formulation is basically a model adonted to simulate certain

17
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properties of real viscous flow by means of a potential flow. The nonfunda-

mental nature of the lifting model leads to some logical difficulties which

may or may not be important in a particular case. Some of these are discussed

in the next section.

5.3 Some Logical Difficulties in the Potential-Flow Model

The principal device by which lift is introduced into potential flow of

either two or three dimensions is the trailing edge. To some extent the defini-

tion of a trailing edge is a matter of legislation by the user of the method

rather than a fundamental concept. Accordingly, difficulties may arise. In

two-dimensions the situation is rather simple. There is no logical difficulty

if the trailing edge is a sharp corner (the agreement of the model with real

flow may or may not be acceptable). On the other hand, if there is no sharp

corner, the difficulty is crucial, because the trailing edge cannot be

rationally defined. In three-dimensions some rather subtle borderline cases

arise in ordinary design applications. In regions where the wing has a sharp

corner as shown in figure 2, the choice of trailing edge is straightforward.

Difficulty arises where the locus of the sharp corner ends. The question

arises whether the trailing edge ends or continues, and, If the latter, in

what matter.

A wing tip is the place where the above-mentioned difficulty most

frequently arises. Consider the type of tip shown in figure 4a, whose Dlan-

form is a semicircle. The trailing edge is well-defined by a sharp corner

out to the beginning of the tip. On the tip itself, the downstream side of

a "section" curve has a finite radius of curvature which approaches zero at

the point A. Should the trailing edge end at A or should it continue over

the tip region despite the fact that there is no sharp corner? If the

"section" curves on the tip region had sharp corners, presumably the trailing

edge would continue into the tip region all the way to the point B. For

highly yawed flow, the point B appears to be part of the leading edge.
Where should the trailing edge end in that case? The tip in figure 4b is a

half-body of revolution formed by rotating the symmetric section curve at

AA' about its symmetry line. In this case, ending the trailing edge at the

point A would probably be the choice of most users. However, the tips in

figures 4a and 4b differ mainly in their values of the ratio of "spanwise"
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Figure 4. Wing planforms showing various tip geometries.

extent to "streamwise" extent. For the "squared-off" tip shown in figure 4c

agreement to terminate the trailing edge at the point A would be virtually

unanimous. Nevertheless, the question arises as to what exactly does happen

on the tip itself. This type of tip occurs, for example, at the edge of

deflected flaps. Objections of the sort mentioned here are basic to the

potential-flow model and do not depend on the particular implementation used

to produce an actual program.

One "answer" to the above is that certain viscous effects are important

at wing tips, and potential flow is not expected to apply in that region. The

"tip vortex" leaves the wing well forward of the trailing edge with a finite

diameter (see Appendix B ) in contradiction to the potential flow model. Thus,

the assumed potential flow model treats wing tips in an approximate fashion

and is not applicable to very low "aspect ratios".

A wing-fuselage junction (figure 5a) is another important application

where the trailing edge must end at point A. It would make little sense to
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Figure 5. Examples of teminating trailing edges. (a) Wing-fuselage

intersection. (b) A tip tank.

continue the trailing edge downstream along, say, the line AR. However,

the trailing vortex wake intersects the fuselage along AB and must do so

without numerical problems. The question arises of what happens to the

"bound vorticity" at a wing-fuselage junction, but that is as much a problem

of implementation as a problem In the basic formulation (see section 6.8).

A situation with elements of both the above is a wing with a tip tank

(figure 5b). Depending on its size, the tank may be considered a small

fuselage or a big wing tip. Unlike the usual situation for a fuselage, the

flow about the tip tank has no right-and-left synmetry, and there is vorticity

trailing downstream from the tip tank, which must be accounted for.

There are certainly other situations where the details of the potential-

flow model of three-dimensional lift are unclear. The examples of this

section simply serve to illustrate that such basic problems exist, regardless

of the pdrticular implementation used to reduce the model to practice. The

implementations of course lead to problems of their own.
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.. 0 GEiERAL FEATURES OF THI Mt**TW)D DF OU.TfION

6.1 The Method for Nonlifting rhrr.e-rlnensional l ,ow

References 1 and 2 review the long-tem effort of r a-tter and his

colleagues in the field of potential-flu c(iculatto. £hrona thp method,

described are those for lifting two-dimensicnAl ! ovs and ncolf'tin-i rtr,'M-

dimensional flows. The latter is described in t :cewhat qretter Jet.-P or

reference 3. This nonlifting method forms tte Na5.: on whicIs 1 -) b, the

lifting method to be described here. By way of !"trc~d ct*, the nninliftn;

program is outlined briefly here, bue the references tire relied v', t.:. supp!.

all details.

All the potential flow methods of references 1 and : are bisd . ,t dis-

tribution of source densit.V over the surface of ttw body aWrit ,,h'ct f1ow is

to be computed. The norm~ll component of flui elr.ity i. ,jivn " tie

surface of the body. Usdally the normal vel, City is zero. Applfcrt!on -f the

normal-velocity boundary condition yields an inteqr(( ,.quition !o'r the di.-tri-

bution function of the source density, where the & lin r-? i't-rgtij )n It te

body surface. Once this equation is solved for the sw-ct, distributi,.r, fl,'.

velocities both on and off the body surface can e calculatmd. Inmpltietfni

this method for the computer requires an approxitate r 'r.'rsertrtion -,f th.-

body surface and.a numerical integration routine.

In the nonlifting program of reference 3, t0e body i,; s,,ifed to t -

computer by a set of points, which presumably lie exactly r;r the hod.i ru face.

These points are associated into groups of f:ijr "adjacont" MInts 4nd a least-

squares plane passed through them. The four point!, ere !hen projected intn

this plane to form the corners of a plane qubdrilateral stirface eleient. We-

this process is completed for all of the pointi, the Pody surrace Is app-ots-

mated by a set of plane quadrilaterals. A hrothetfca exaxple is snaki, in

figure 6. Because of the process of Frojectf!Y,, the edge% of edlacent elterts

may be not quite coincident, but errors from thA source are small co'~ared tv

errors from the other numericAl approximatims iohe*,ent In the meth-1.
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'e-tai't feat,,trps of the tne&nd of approximating the body surface Ar* of

imortAnCP tc the 11ftirm application. The pciirts defivnn the body are input

or, swi~h An ;der that they deftne a famidly ol alpproxirmtely parallel r.;rvS

',yir'j in t"e so~ t-rface. TW-, e curves, wt~cl. havo some of the features of

S2-aze coo rilnatss have been desiqnmt "N-lines," as sbo. in figure 6.

(In r,!frcnce 3 the derlgnation "Colton" is used instead, of "N-line." oth

have t;t same meaning.) First all ponsalong a cert*',r6 N-line are inpv.t 'n

orie~r from bottom~ tn top, and ther; the 5-me is done for the adjecent !-'Ire to

ttY; rigft", Two adij3cent N-liwes houn~d a t strio' of eleiients of apvroxirwtely

,:,.-stant oidth. The elements are genere1 quddrilatiprals and t4o not riecessaily

,lave two p~r~llfr1 sides or two nid?,- of equal lenet. As a loqical 0evice a

moebor of ?.-.Inps car, be associated into d "section.* Often d sectlart is

sirno1y &,, eirpr 5,ody, but serarate sectionis are often used t( rerf,,!nt

;em~eLrIcally different parts nf the samie body; f'or !xitJmple, f wing anid a

fu &.dle. Also sections a;*^ uscd to concefltrdt-, '%lenrts ir certain legloo-

of nn~oy. Logically, the ccnr~pt of a sectoni means only thAt the last (or

';-lt *ine of the sectiivv 4s not associated with the next far previwi;)

1rc form, a strip of eleerets.

SURFACEC

N - NE -

CQNTK,%_~
POINTS

s rf '~e e9.erX S
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On each element one point is selected where the normal velocity boundary

condition is to be applied and where flow velocities are to be computed. This

point, which is designated the control point of the element, has been defined

various ways in the past but currently is Identified with the centroid of the

element. Formulas have been derived that give the component! of velocity

induced at a general point in space by a unit value of source density on a

general quadrilateral element. These formulas allow the velocities induced

by the elements on each other's control points to be calculated. Equating the

normal velocity induced by all elements at each control point to the negative

of the normal component of the onset flow (for the case of zero total normal

velocity) yields a set of linear algebraic equations for the values of source

density on the elem~ents. Once these are solved, flow velocities can be

computed at the centroids and at any selected point in the flow field. For

the lifting application it is important to point out that the onset flow need

not be a uniform stream. Moreover, solutions for several onsets may be

obtained simultaneously. The onset flow affects only the right side of the

linear eauations for the source density not the coefficient matrix. Thus, if
I.

a direct matrix solution is employed, several onset flows may be treated in

nearly the same computing time as a single onset flow.

6.2 Surface Elements for the Lifting Case

A lifting body and its trailing vortex wake are approximated by quddri-

lateral surface elements in a manner very similar to that described in

reference 3 for a nonlifting body. The approximation procedure is outlined

here with emphasis on the differences from the nonlifting case.

As pointed out in section 5.3, certain portions of a general aerodynamic

configuration do not have well-defined trailing edges and are not normally

thought of as having their own bound vorticity; e.g., a fuselage. These

portions are denoted nonlifting portions to signify that they do not possess

independent bound vorticity and that a Kutta condition is not applied on them. A

However, in general, the fluid exerts nonzero pressure forces on nonlifting

portions due to interference pressures from other nearby portions of the

configuration and due to extentions of the bound vorticity from lifting portions

(see section 6.8). Nonlifting portions are approximated by general plane

quadrilateral elements in exactly the same way as in the nonlifting method of
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reference 3. In the main calculation such elements have source density but

not vorticity. The organization of the input data by sections (see above) is

a natural way of isolating lifting and nonlifting portions.

Portions of a general configuration that possess definite trailing edges

(usually sharp corners) and contain bound vorticity are denoted lifting portions.

The most frequently occurring application with both lifting and nonlifting

portions is a wing-fuselage. Accordingly, this configuration is used as an

illustrative example in figure 7. On a lifting portion the N-lines are

approximately in the freestream direction. On each N-line points are input

beginning at the trailing edge, continuing around a "section curve" of the

wing, returning to the trailing edge, and proceeding downstream to define the

trailing vortex wake. The wake may be defined as far downstream as desired.

Provision has been made to consider the last element of the wake semlinfinite

so that wake definition may be terminated at any point aft of which the wake

curvature In the stream direction may be neglected. Usually a lifting portion

such as a wing is considered a single lifting section, but it may be divided

N / \,

LIFTING STRIP . 2 
'

OF ELEMENTS ."

BOUND ... "-
t ZTRAIUNG EDGE

' SEGMENT

N-LNES .

' " -TRAILING

TRAILING EDGE 0 VORTE WAKE

Figure 7. Typical lifting configuration.
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into several lifting sections if desired.Within each lifting section all N-lines

must contain the same number of input points. Points on adjacent N-lines of a

lifting section are associated to farm surface elements. The set of elements

formed from points on a pair of adjacent N-lines is denoted a "lifting strip"

of elements. The strip contains elements both on the body and in the wake.

Although two adjacent N-lines are not quite parallel in general, they are

nearly parallel in most cases.

Elements of lifting sections are taken as plane trapezoids. Each of the

two parallel sides is formed from two input points on the same N-line. Thus

the parallel sides are approximately along the N-lines. Of course, in the

general case the four input points that are associated to form an element do

not even lie in the same plane, much less form a trapezoid. They must be

"adjusted" to do this. In the nonlifting program of reference 3 the input

points are adjusted to lie in the same plane but not to be trapezoidal. Thus,

the "adjustment" required is somewhat more for lifting elements than for non-

lifting. Adjacent elements have two input points in common, but the adjustment

that these points are subject to is usually different for the two elenents.

Thus, in general, after adjustment the sides of adjacent elements are not

coincident, and there are gaps between the elements. Such gaps exist for both

lifting and nonlifting elements. For the nonlifting case the unimportance of

the gaps is discussed in references 1 and 3. For lifting elements the gaps are

presumably greater than for nonlifting elements, but it seems that in both cases

the gaps should have the same order of magnitude. Thus, errors from this source

should be unimportant. It is pointed out in references 1 and 3 that for some

bodies the gaps between elements vanish. For lifting bodies the i:1orCd: case

for which this occurs is an untwisted wing, possibly swept and tapered, V 'ing

the same airfoil section at all spanwise locations.

The centroids of the elements are used as control points. Thus, for each

lifting strip the locus of control points is approximately midway between the 4

two N-lines used to generate the strip. Elements of lifting strips have

source densities whose strengths are determined to give zero (or prescribed)

normal velocity at the control po4nts.
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6.3 Bound and Trailing Vorticity

In addition to the source densities on the elements, lifting portions

also possess a distribution of bound vorticity. As pointed out in section

5.2, the form of the bound vorticity uniquely determines the strength distri-

bution of the trailing vorticity, which lies along the input wake. The form

assumed for the bound vorticity contains a number of adjustable parameters

equal to the number of lifting strips on that lifting portion. The values

of these parameters are determined by applying a Kutta condition at the

trailing edge segment (figure 7) of each lifting strip. The simplest form

of the bound vorticity distribution utilizes a set of individual distribu-

tions, each of which is nonzero only on one lifting strip. The complete

distribution consists of a linear combination of these. Inaividual distribu-

tions, each of which is nonzero on a different lifting strip. The combination

constants of the linear combination are the required adjustable parameters.

This is the type of distribution used in the present method. Other existing

methods (references 4, 5, 6, and 7) also use this type of distribution.

The value of the parameter multiplying the distribution associated with a

particular lifting strip represents the strength of the bound vorticity at

the "spanwise" location of that strip. Thus, as expected, the "spanwise"

variation of bound vorticity is determined by the Kutta condition. More

precisely the "spanwise" variation of vorticity from one lifting strip to

another is determined by the Kutta condition. The "spanwise" variation of

vorticity within the small but finite span of each individual lifting strip

is basically a question of the order of accuracy of a numerical integration

(see below for the options of the present method).

Even if the bound vorticity is of the type mentioned above, various

forms of this vorticity are possible. In addition, the "chordwise" or

"streamwise" variation of vorticity on a "section curve" at a particular

"spanwise" location may be chosen at will. In the limit where an infinite

number of surface elements are used to approximate the body, it appears that

the calculated flow velocities are independent of the assumptions made con-

cerning bound vorticity. However, for practical element numbers, the form

assumed for the bound vorticity and its "cho. .ise" variation have an

appreciable effect on the accuracy of the sol -.i. The methods of
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references 4, 5, 6, and 7 all use the same form for the bound vorticity,

which consists of concentrated vortex filaments lying in the camber surface

of the wing. Some details are illustrated in figure 8a, which shows a

single N-line representing a section curve of the wing. An equal number of

elements is placed on the upper and lower surfaces. The input points defining

the elements are arranged so that a pair of points, one on the upper surface

and one on the lower, lie nearly on the same perpendicular to the mean

camber surface. The bound vorticity filaments, which appear as points in

figure 8a, lie midway between corresponding points on the upper and lower

surface. This arrangement maximizes the distance of the vortex filaments

from the wing surface and presumably reduces numerical problems associated

with the flow singularities at the filaments. Thus, in general the number

of vortex filaments is one less than half the number of surface elements in

the lifting strip, although In certain formulations some vortices may be

given zero strength. The strengths of the bound vortex filaments are main-
tained constant over the "span" of each individual lifting strip. Thus,

SURFACE ELEMENTS D-- OEFINING POINTS

VORTEX MEAN CAMBER
FLAMENTS SURFACE

(a)

TRAILING VORTICITY \
FILAMENTS(b)\

Figure 8. Representation of the bound vorticity by concentrated vortex
filaments lying in the mean camber surface. (a) A section
curve of the wing. (b) The complete three-dimens., nal
vortex pattern.
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the trailing vorticity is also in concentrated filaments. Forward of the

trailing edge these lie in the mean camber surface beneath the edges of the

strip, i.e., midway between the portions of the N-lines on the upper and

lower surfaces of the wing. Downstream of the trailing edge the trailing

vortex filaments lie along the N-lines defining the assumed wake. A view of

the entire three-dimensional arrangement is shown in figure 8b. The formula-

tions of the references use different "chordwise" variations of the vortex

strengths. Reference 4 presents results for a distribution of zero strength

from 0% to 20% chord and from 80% to 100% chord. From 20% to 80% chord the

distribution is constant. However, both reference 4 and the subsequent

development of the method presented in reference 5 recommend use of a

"chordwise" vorticity variation approximately the same as the "chordwise"

lift distribution. In a practical case this last might be determined from

linear theory or might be estimated from results for similar wings. Quite

different are the distributions used in references 6 and 7. Apparently,

reference 6 uses a vortex strength proportional to the local thickness of

the airfoil section, while reference 7 uses a strength proportional to the

square root of the local thickness. Since exact solutions are not available

and experimental results are affected by viscosity, compressibility, and

testing error, the results of these calculations must be judged largely on

their "reasonableness," e.g., lack of extraneous wiggles, etc.

The present method uses a completely different form for the bound

vorticity. Instead of concentrated vortex filaments interior to the wing,

there is a finite-strength sheet of vorticity on the surface of the wing,

i.e., the vorticity lies on the quadrilateral surface elements. The nature

of the singularity is thus reduced from , "ne srngularity to a surface

singularity. Some features of this formull..r ire illustrated in figure 9

which may be compared with figure 8. The "cnordwise" variation of the surface

vorticity strength may be chosen at will. In the present method the strength

is taken as constant all around the airfoil section. This choice was influ-

enced by requirements of simplicity and by the fact that constant-strength

surface vorticity gives good results in two-dimensional cases (see below).

The variation of vorticity over the "span" of a lifting strip of elements has

two options: constant and linear. In the former option the "spanwise" vari- 4

ation of vorticity over the wing is a step function (figure lOa) whose values
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Figure 9. Representation of the bound vorticity by a finite-strength
vorticity distribution lying on the wing surface. (a) A section
curve of the wing. (b) The complete three-dimensional vorticity
pattern using a step function spanwise variation. (c) The
complete three-dimensional vorticity pattern using a piecewise
linear spanwise variation.
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figure 10. Two forms of the spanwise variation of bound surface4
vorticity. (a) Step function. (b) Piecewise linear.
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are determined by the Kutta condition. This form of the bound vorticity

has the advantage of simplicity and does not require special handling at

the end of a lifting section, e.g., a wing tip. However, the trailing

vorticity takes the form of concentrated vortex filaments along the N-lines

(figure 9b). This situation can be avoided by using a linear vorticity

variation over the span of the lifting strip. In this case the trailing

vorticity takes the form of a vortex sheet over the surface of the strip,

i.e., over the surface elements (figure 9c). If the vorticity distribution

were exactly continuous at the edges of the strips, i.e., at the N-lines,

there would be no vortex filaments on the N-lines. This is not possible in

general because, as mentioned in section 6.2, the edges of adjacent elements

are not quite coincident. Thus, there are small geometrical discontinuities

in the vortex sheet along the N-lines. It is thus not worthwhile to attempt

to determine the "spanwise" rate of change of vorticity over a strip from a

condition of continuity of strength along the N-lines. Moreover, this type

of variation leads to serious numerical difficulties (reference 8). Instead

the spanwise rate of change on a strip is determined from a centered parabolic

fit over values of bound vorticity at the midspan of three consecutive strips

and strict continuity of strength at the N-lines is obtained only if the

"spanwise" variation is truly parabolic. However, the discontinuity is of

high order, and the vortex sheet may be considered continuous to within the

order of the overall approximation. In this option the "spanwise" variation

of vorticity is a piecewise linear function as shown in figure lOb. The

trailing vorticity continues as a sheet into the wake, so that the velocity

has the desired behavior of discontinuity across the wake. The behavior does

not occur if the wake is composed of concentrated filaments as it is in the

methods of the references and in the above "step function" option of the

present method. The chief disadvantage of the "piecewise linear" option is

that special handling is required at the first and last lifting strips of a

section to determine the "spanwise" rate of change of vorticity (section 7.11).

Mcreover, in most cases that have been run with the present method using

both options for the bound vorticity, the calculated results are not very

diferent.

The accuracy to be obtained using various forms for the bound vorticity

may be investigated by considering the two-dimensional case for which exact
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analytic solutions are available. Indeed this is a very natural procedure

because the essential three-dimensional feature is the "spanwise" variation

of vorticity which is determined by the Kutta condition. The form of the

bound vorticity and its assumed "chordwlse" variation have direct two-

dimensional analogies, which are very similar ,unerlcall., to what is being

calculated in three dimensions. The two-dimensional cases are obtained by

simply considering the "section curves" of figures 8a and 9a as two-

dimensional airfoils. The cases were run with the rather small element

numbers that are characteristic of the three-dimensional case rather than

the much larger element numbers that are available i, two dimensions to

obtain very high accuracy. Two cases are presented here that illustrate

different aspects of the situation.

The first case is a Karman-Trefftz airfoil, for which coordinates of

points on the body may be obtained very accurately using analytic expressions.

A rather extreme geometry was chosen so that differences in the solutions

could be seen more easily. The airfoil is 8.2 percent thick, has a 90

trailing-edge angle and the rather large camber value of 24 percent. A sketch

of the shape is given in figure 11. Calculations were performed for an angle

of attack of 1.205'. The exact solution from the well-known formulas gives

a lift coefficient of 3.37. Using 50 surface elements, calculations were

performed with a constant-strength surface vorticity, as is done in the

present method, and also with interior vortex filaments whose strength is

proportional to the local airfoil thickness, as is done in the method of

reference 6. The calculated surface pressure distributions are compared with

the exact solution in figure 11. Neither calculated result is very good

because of the extreme geometry and the limited element number. However, the

error for the surface vorticity approach is about half the error for the

interior vortex filament approach. The "wiggles" in the solution generated

from the interior vortex filaments are not due to inaccuracies in the points

defining the airfoil. These points are exact. The "wiggles" are apparently

due to changes in element lengths along the surface. Adjacent elements differ

in length by no more than 25 percent, which appears quite reasonable. The

solution obtained from the surface vorticity does not respond to this situa-

tion and is perfectly smooth.
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Figure 11. Surface pressure distributions on a Karfuan-Trefftz airfoil
of large camber at 1.205 degrees angle of attack.
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The second case is the conventional airfoil section shown in figure 12.

The coordinates of the points defining this airfoil were obtained by procedures

usual in design applications, and the result is that the point distribution is

not absolutely smooth but contains small irregularities. Calculations were

performed with 32 surface elements. Figure 12 shows the points defining the

airfoil and the locations of the 15 interior vortex filaments that were used

in the calculations with strengths proportional to local thickness. Calcula-

tions were also performed using the constant-strength surface vorticity of

the present method. Surface pressure distributions calculated by the two

methods are compared with a very accurate conformal-mapping solution in

figure 12. The surface vorticity approach is unaffected by any irregularities

of the points and its results agree very well with the accurate solution.

In fact the point distribution of figure 12 is the one used with the present

method to produce the three-dimensional results of figure 42. The pressure

distribution calculated by the approach based on interior vortex filaments

has rather severe "wiggles" and also has a systematic error in pressure

level so that the lift coefficient obtained by integrating the pressures

differs from the exact value by 20 percent.

From these two examples and others that have been run, it is concluded

that the representation of the bound vorticity by finite-strength surface

vorticity is superior to the representation hy interior vortex filaments.

The former is far less sensitive to inaccuracy of the input data and tends

to give a more accurate solution even when the data is smooth.

6.4 Use of a Dipole Distribution to Represent Vorticity

From the previous section it can be seen that in the present method the

bound and trailing vorticity are represented by a general surface distribution

of vorticity, possibly with concentrated vortex filaments at the edges.

Formulas that express the velocity induced by such a vorticity distribution

are required. Derivation of such expressions is complicated by the fact that

the surface vorticity strength is a vector that varies in both magnitude and

direction. Furthermore, care must be taken to insure that the vorticity

distribution gives rise to a potential flow, i.e., that the individual

infinitesimal vortex lines either form closed curves or go to infinity. Use

of a surface dipole distribution circumvents these complications, because
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the dipole strength is a scalar and any arbiteary dre~e distri!hutu.c qve:;
rise to a potential flow. A general result tvi:qj t4' r e'.#tions$Hrj 1&jettt

dipole sheet and a vortex sheet is given in App~endix A. It Mey tA S Mhrok!z"
as follows: A variable-strength dipole sheet is equlvalsint tn, the. suzri r.f:

(1) a variable-strength vortex sheet on the ,ite surlace !s the dinole hfet

whose vorticity has a direction at right angles to tte qr~ifet of 'Zh Psoipe

strength and a magnitude equal to the magnituide of '..*is pvadi Ant, and (*?) a
concentrated vortex filament around the edge of tirte shitt wO*e strenjth is.

everywhere equal to the local edge value of O~Doie ;tP-.qtk relatic.

which is a straightforward generalization of tit we)]-know~r t.Vo-dfi-,*vroa-

result, does not appear explicitly in the literptu~. its~ plausibility was

discussed early in the present work by the a'!thor,A.M.A. %th.i, ar.1 P.B.S.

Lissaman. The proof of this relation in Appindix A. wtbict wai )rigially

outlined by the author in reference 9, is ap,mrently th flrst. A lat.e)

derivation is contained in reference 10. In the preserct 'iethod all frua

are derived in terms of dipole distributions and thp 3bove relationship is used

to interpret this situation in terms of the more physically significant vo'rticity.

In particular "chordwise'l dipole variation is eqivaient to '"spaiwise" 4-viticity

and "spanwise" dipole variation to Nchordwise' vorti1city. Also, if a dipole

sheet termina tes with a nonzero strength, it results ir~ a croncentratsd vortex
filament.

6.5 The Kutta Con~dition

It is an interesting and important fact tha~t the 'physic~.P Kuttl Condition

of finite velocity at the trailing edge cannot be appliedS in e gerseral num~ericdl

procedure for calculating flow. This is true ft, belt two dimensions and three

dimensions. If the general solution could be writte. dotin in explicit aralytic

form, as is possible in a few simple two-diwensioialc~s theai the approprate

parameters could be adjusted to eliminate the singulir terns in t9~e exprestlon

for surface velocity. However, in a numerical solustion~ there Is no true singu-

larity, and a condition of finiteness without spfing-1 a definite value cannot

determine specific values of a parameter. Accordliraly, the. N~tta condition is

applied by indirect means . What is done is to deduce another property of the

flow at the trailing edge that is a direct consequen~ce of the finiteness of vel-
ocity and to use this related property as "th,: Kutta condition.' Various properties

may be derived. Some are strictly valid oni' fer the true flow (limit of infinite
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,rer o i :eonts) ind are a!M ,a :ase of finite element number as an

:-r OXi , Ct. r .ap*ir. to t- tp f-ir fi,lte element number, and still

.thers hav, dlifere;t forva:i " ,'s ' f nfinite and of finite element numbers.

In qeneral, conlticns .r. .nt e.,- exactly at the trailing edge if a

fiie aInb " -ele-0Wts iv used ,Pxcept In the sense that quantities can

be extrapoiatee tr. the troltH* *" e~Q). Thus, "the Kutta condition" is applied

a small. aw.y fr tr nq ege, and determining an appropriate

vatue for this fl-,iiance and its effect or the solution is part of the problem.

the situation ran te ffected 5- Vie far(t that some flow conditions at the

tradiig edle are extrermelv loc il, and their values are quite different even

a 'i;r-31 dist~nce away. Suich vry locil conditions cannot be applied to

case:. ' reasonalvf elernt nu~h.ters.

'., . related prpertles that may be deduced from the Kutta condition

are as follOw :

7WO-Itirnens IOAS:

(a) A streamlire of the 'low leaves the trailing edge with a direction

Along ftie hisettor if the trailing-edge angle.

b) As toe trailing ed.ge is approached the surface pressures (velocity
pa nitude.s) on tte upper and lower surfaces have a camon limit,

which -:,quals stagnation pressure (zero velocity) if the trailing-

edge a,91e Is ,onzero.

%c) The %rvrce deasity at the trailing edge is zero.

T hree-irpne.s ions;

(a) A st,'eam surface of the flow leaves the trailing edge with a

di,'ectior, that is known, or at least can be approximated (see
h&lcw).

(h) A!, the trailing edge is approached, the surface pressures (velocity

magnitudes) on the upper and lower surfaces have a common limit.

(c) The source density at the trailing edge is zero.

The exwa ple properties above can be used to apply the Kutta condition in

cases of finite element number. Property (a) in either dimensionality

cliff+ :rs from the others in that it must be applied off the body surface.
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Points downstream of the trailing edge are selected to be on the stream

surface or streamline and directions normal to the stream surface or stream-

line are prescribed. Then a flow tangency condition of zero normal velocity

is applied at these points just as if they were control points of rface

elements. Selection of distances from the trailing edge at which to apply

the flow tangency condition is part of the problem. Properties (b) and (c)

are applied on the body surface. Since the flow on the body has meaning

only at the control points, these conditions are applied to flow quantities

at the control points of the elements adjacent to the trailing edge on the

upper and lower surfaces. In two dimensions there are just two such elements,

while in three dimensions there are two elements on each lifting stiD. It

might be supposed that property (c) is apolied by requiring source densities

on elements adjacent to the trailing edge to be zero. This amounts to two

conditions per lifting strip and thus overdetermines the problem. The best

that can be done is to require that for each lifting strip the values of

source density on the two elements adjacent to the trailing edge be equal in

magnitude and of opposite sign. Similarly, condition (b) is applied by

requiring that for each lifting strip the magnitudes of the velocity at

the control points of the two elements adjacent to the trailing edge be

cqual. This is done even in two dimensions where the theoretical velocity

of zero is so local that the velocity is an appreciable fraction of freestream

velocity at the control point adjacent to the trailing edge.

In applications, property (c) has not been used. The methods of

references 4, 5, 6 and 7 use property (a). The present method has the option

of using either property (a) or property (b) as "the Kutta condition." If

property (a) is used the points where it is to be applied and the normal

vectors at these points must be funished to the program as input. Flow

velocities are computed at all control points due to the bound vorticity

distribution associated with each lifting strip. Each of these flows is

considered as an onset flow to the body. Let the total number of quadri-

lateral source elements be N and the number of lifting strips be L. Then

there are L vorticity onset flows, each of which consists of velocity com- '

ponents at: the N control points, the L points where property (a) Is to

be applied (if that option is used), and any other off-body point where flow

is to be computed. For each onset flow a set of N values of source density
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on the elements is obtained that gives zero normal velocities at the N

control points. The same is done for the uniform onset flow that represents

the freestream. As described in section 6.1, the values of source density

are obtained as solutions of a set of linear algebraic equations whose

N x N coefficient matrix is the same for all L + 1 onset flows. The onset

flows simply yield L + 1 right sides for the equations. Using a direct

matrix solution all L + 1 sets of source density are obtained simultaneously.

The desired source density distribution is a linear combination of these

individual distributions. The constants in this linear combination are the

L values of bound vorticity associated with the various lifting strips, and

these are determined from the Kutta condition. (The solution corresponding

to the uniform stream enters with unit coefficient.) Flow velocities for

the individual solutions are computed only for the points used to apply the

Kutta condition - either the control points of the elements adjacent to the

trailing edge if property (b) is used, or the additional input points down-

stream of the trailing edge if property (a) 's used. The Kutta condition

results in L simultaneous equations whose solution yields the desired L

values of bound vorticity. In typical cases the number of lifting F rips L

is 10 to 30, as contrasted with the number of surface elements N, which is

300 to 1000. Thus, solution of the equations expressing the Kutta condition

is a negligible computation compared to solution of the equations for the

values of source density. The values of bound vorticity are used to compute

a single set of N values of source density - the "combined" values - that

are used to compute velocities at the control points of the elements.

An alternative numerical procedure for implementing the application of

the Kutta condition is employed in references 6 and 7. As mentioned above,

the bound vorticity associated with each lifting strip induces a velocity at

each control point. These may be treated exactly the same as the velocities

induced by the individual source quadrilaterals (section 6.!), i.e., the )

values of bound vorticity may be treated as additional unknowns in the equa-

tions expressing the normal velocity boundary condition. This yields N

linear equations in N + L unknowns. The Kutta condition supplies the addi-

tional L equations. If the Kutta condition is expressed as property (a),

as is done in references 6 and 7, the additional L equations are linear.
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As discussed in references 1, 2, and 3, the N x N coefficient matrix

due to the source quadrilaterals has a dominant main diagonal and is well

suited to numerical solution either by direct solution or by iterative solu-

tion. The additional L equations from the Kutta condition do not have

dominant diagonal terms so that the (N + L) x (N + L) matrix used in refer-

ences 6 and 7 is not well-conditioned. However, suitable partitioning of

this matrix (the partitioning is different in reference 6 from that of ref-

erence 7) yields rapidly convergent iterative solutions. If the property (b)

is used to express the Kutta condition, the additional L equations are

quadratic because they are applied to a vector magnitude. (In two dimensions Y

the surface velocity has only one component, and the equations derived from

property (b) are linear.) This might not be a serious handicap in an iter-

ative procedure, but it has never been tried.

The relative advantage or disadvantage of an iterative solution, like

that of references 6 and 7, compared to a direct solution, like that of the

present method, is primarily a matter of computing time. The situation is

affected by the particular computer being used and by the accounting

algorithm for multiple-user machines. However, by fi' the most important

considerations are the element number N and the type of body about which

flow is to be computed. A direct solution for a set of linear equations

requires a computing time proportional to M
3 , and this time is independent

of the body. An iterative solution requires a computing time proportional i
to the product IN2 , where I is the number of iterations needed for

convergence. It is clear then that for sufficiently large N, the iterative

solution is quicker (assuming that I is independent of N, which appears

to be the case in the present application). Similarly, for sufficiently small

N the direct solution is quicker. The "crossover" value of N, where the

two methods are equal is directly proportional to I. For simple

bodies, such as wing-fuselages, I is approximately 15 and the crossover -*

value for N is perhaps 800 for an IBM 370-165. In any event, the Iterative f

solution is clearly superior for N = 1000, and the direct solution is

clearly superior for N = 500. For more complicated bodies, and particularly

for situations involving interior flows, I is considerably larger, and thus

so is the crossover value of N. Such situations arise, for example, with

nacelles (reference 1) and with bodies in a wind tunnel (section 9.4). If
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the estimated computing times are not too different, the direct solution is

to be preferred, because the time required is predictable. It appears that

the most efficient procedure is one containing both direct and iterative

solut . of the linear equations as options. Inclusion of an iterative

solution in the present method is a desirable future extension.

In the present method, application of property (b) is straightforward

and requires no additional input. Its effectiveness can be judged simply

by the accuracy of the resulting calculation, as discussed below. Applica-

tion of property (a) (either in the present method or in the methods of

references 6 and 7) requires the answer to two questions: How far from the

trailinn edge should it be applied? In what direction with respect to the

trailing edge should the point of application be situated? The answer to

the second question which will be considered first, appears to be related

to the direction by which the stream surface leaves the trailing edge of

the wing. However, this last turns out to be false in many applications.

The behavior of the vortex wake in the neighborhood of the trailing edge

of a three-dimensional lifting body has been worked out from basic principles

in reference 11 under the assumption of inviscid potential flow. The results

are easy to state. The only two quantities that affect the situation are

the local section lift coefficient and the local value of the average component

of velocity along the trailing edge (averaged between upper and lower surfaces).

Theoretically, the magnitudes of these two quantities are not important -

only their signs. Consider the usual case when the local section lift coef-

ficient Is positive. Then reference 11 states that if the component of

velocity along the trailing edge is outboard, the vortex wake leaves the

trailing edge tangent to the upper surface. If this velocity component is

inboard, the sheet leaves tangent to the lower surface. The situation is

illustrated in figure 13. If the local section lift coefficient is negative,

the situation is reversed.

The above results mean that the way in which the vortex wake leaves the

trailing edge depends on the final flow solution and is thus not known ahead

of time. On the face of it this is a problem. However, in many practical

cases it is obvious which way the flow at the trailing edge goes. In regions
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Figure 13. Theoretical behavior of the vortex wake at the trailing
edge of a wing. (a) Outboard trailing edge velocity.
(b) Inboard trailing edge velocity.

where there is some doubt the flow component along the trailing edge is

probably small compared to freestream. This situation, which occurs rather

often In applications, has an important effect on the application of the Kutta

condition.

Reference 11 proves that for any outboard trailing-edge velocity, no

matter how small, the wake is tangent to the upper surface as shown in

figure 13a. Similarly, for any inboard velocity, no matter how small, the

wake is tangent to the lower surface, as shown in figure 13b. On the other

hand, it is physically evident that a small change in conditions at the

trailing edge gives a small change in the wake position a finite distance

board to small and inboard the wake position a finite distance downstream

does not "flip flop," but changes only slightly. The question is how can

this be resolved with results of reference 11.
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The only explanation appears to be that as the trailing-edge velocity

component becomes small - either inboard or outboard - the wake approaches

the trailing edge bisector at small finite distances from the trailing

edge. That is, the curvature of the wake at the trailing edge becomes large

as the velocity becomes small and in a very small distance the wake "curves

around" and approaches the trailing-edge bisector. The situation is sketched

in figure 14. The wake approaches the trailing-edge bisector more and more

rapidly as the velocity component along the trailing edge approaches zero.

The above argument requires only continuity and symmetry.

Thus, if the Kutta condition in the form of property (a) is applied, a

finite distance from the trailing edge (as it must be in the present method

and those of references 4, 5, 6 and 7) and if the sweep angle of the

trailing edge is such that the component of velocity along the trailing edge

is not large, then the point must lie along the trailing-edge bisector. For

example, the method of reference 6 applies property (a) a distance of 3 percent

of local airfoil chord downstream from the trailing edge and states that the

point should lie along the bisector of the trailing edge rather than the

tangent to the upper surface as required by reference 11. On the other hand,

WAKE FOR SMALL
INBOARD VELOCITY-,

NBCA 11 ____ TRAILING EDGE
B ISEC TR

\NAKE FOR SMALL
"

-

OUTBOARD VELOCITY

Figure 14. Behavior of the vortex wake near the trailing edge for

small values of the trailing edge velocity component.
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it is clear that for large positive sweep angles, the component of velocity

along the trailing edge becomes the same order of magnitude as freestream

velocity. Presumably, the Kutta condition should then be applied along the

tangent to the upper surface. At what value of trailing-edge velocity it

becomes necessary to change from one scheme to the other is not known, but

it certainly must be dependent on the distance of the point of application

from the trailing edge. Numerical experiments presented in reference 6 and

similar experiments performed by the present author show that the calculated

results are rather sensitive to the direction of the point of application of

the Kutta condition. For a typical trailing-edge angle the calculated lift

coefficient obtained from an application point on the trailing-edge bisector

can easily differ by 20 percent from the lift coefficient obtained from an

application point on the upper-surface tangent.

Even when the direction from the trailing edge of the point of application

of the Kutta condition is not a problem, calculations using property (a)

(wake tangency) are affected by the distance of the point of application from

the trailing edge. This is to be expected. What is not expected, however, is

that if property (b) (pressure equality) is used in the manner described above,

the calculated results are not sensitive to distance from the trailing edge.

A study was made in two-dimensional flow, where the streamline is known to

leave the trailing edge along its bisector. The airfoil selected was a sym-

metric 10-percent thick RAE 101 airfoil at 10 degrees angle of attack. Bound

vorticity was provided by a constant-strength sheet of vorticity coincident

with the airfoil surface as described in section 6.3. Cases were run with

27, 53, and 103 surface elements. The results were also extrapolated to

infinite element number. Calculated lift coefficients are shown in figure 15.

Since property (b) (pressure equality) is applied at the control points of

the two elements adjacent to the trailing edge, there is just one lift

coefficient for each element number. These are plotted at the chordwise -

distance of the nearest control point from the trailing edge, which ranges

from 1.75 percent chord for the 27 element case to 0.25 percent chord for

the 103 element case. Remarkably, the calculated lift coefficients are almost

constant at a value of about 0.944, and the extrapolation to the trailing

edge itself (infinite element number) yields a value of 0.943. For each

element number property (a) (wake tangency) was applied along the trailing-

edge bisector at distances from the trailing edge ranging from 0.25 percent
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chord to 4.0 percent chord. The calculated lift varies significantly with

both element number and distance of the application point from the trailing

edge. It appears that results are more sensitive to distance from the

trailing edge than to element number. If results are extrapolated both to *

infinite element number and to zero distance from the trailing edge, the lift

coefficient is given as 0.942. This agrees with the value obtained by
extrapolating property (b) and with the value of 0.9423 obtained by a high-

accuracy conformal mapping solution. However, for the 27 element case

(a reasonable number in three dimensions) the extrapolated lift coefficient

fur zero distance is 0.955, which is reasonably close to the correct value,

hut use of a point of application at 3 percent chord, as called for in

reference 6, gives a lift coefficient of 1.005, which is considerably in error.

Even for the extrapolation to infinite element number, a point of application

at 3-percent chord gives a lift coefficient of 0.989. Thus, it appears that

use of a pressure-equality Kutta condition applied on the body (property (b))

is more accurate and less sensitive than the flow-tangency Kutta condition

applied in the wake (property (a)), which is used in references 4, 5, 6 and 7

even if the direction by which the wake leaves the trailing edge is not a

problem.

6.6 Symmetry Planes

To conserve computing time and reduce the required input, the method is

equipped to take advantage of any planes of symmetry the flow may possess.

Either one or two symmetry planes may be accounted for. The xz-plane is

denoted the first symmetry plane. If thcre is one plane of symmetry,it must

be the xz-plane.and the points Jefining the nonredundant portion of the body

must be input accordingly. The xy-plane is denoted the second symmetry plane.

If there are two symmetry planes, they must be the xz- and xy-planes, and the

input points must reflect this. Each symmetry plane is designated either A

"plus" or "minus.' A plus symmetry plane has zero normal velocity at all

points of the plane, i.e., it behaves as a solid wall. A minus symmetry

plane has zero velocity potential at all points of the plbne. The usual

application in aerodynamics consists solely of plus symmetry planes. An

example of a negative symmetry plane is a free surface for the condition of

infinite Froude number. Thus, a hydrofoil traveling near tte water surface 4

has two symmetry planes - one plus and one minus.
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Symmetry is accounted for in the part of the calculation devoted to

the velocity induced by the quadrilateral surface elements. Recall that an

element may have on it either a source or a dipole distribution or both.

Velocities are computed at all control points due to the source and/or dipole

distribution on a basic element defined by input points. Then this element

is reflected successively in the symmetry planes, induced source and/or dipole

velocities at the control points are computed for the reflected elements,

and the induced velocities for the reflected elements are added to the cor-

responding quantities for the basic element. Reflection in a plus symmetry

plane requires a source distribution of the same sign as the original but

a dipole distribution of opposite sign. (All magnitudes of course are equal

to the original.) A minus symmetry plane yields the opposite situation, i.e.,

source changes sign, dipole does not.

In symmetry cases it is assumed that the y-direction is essentially

"spanwise" on the wing, so that the first symmetry plane is the midplane of

the wing. The second symmetry plane (if any) is then available, for example,

as a ground plane. Figure 16 shows a section of an element and its bordering

N-lines, together with their reflections. The N-lines are labeled "first"
pz

FIRST
N-LINE

LIFTING
ELEMENT

SECOND
F S N-LINE

y

F S

S F

Figure 16. Reflection of an element and its associated N-lines in

syrenetry planes.
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and "second', and in the case shown the "first" N-line is inboard from the

"second" one with respect to the span direction on the basic element. It cat,

be seen that reflection in the y-direction reverses this relationship while

reflection in the z-direction does not. This condition affects the assembly

of the dipole velocities, and thus the input points should be compatible with

the above assumption.

6.7 Multiple Angles of Attack

The method can calculate flow about a lifting configuration for several

angles of attack of the freestream in essentially the same computing time

as that required for a single angle of attack. In the latter case, sets of

source density are obtained for L + 1 onset flows - 1 uniform stream at

angle of attack, and L bound vorticity onset flows. Here L is the number

of lifting strips and is generally in the range 10 to 30. The Kutta condition

then yields L combination constants for these vorticity flows. It is also

possible to input several angles of attack, say F, and obtain F + L basic

source distributions for the F uniform flows and L vorticity flows.

Then the Kutta condition is applied to each of the F uniform stream solu-

tions separately to obtain a complete set of L combination constants for the

vorticity flows. Using these constants, a "combined" source density distri-

bution is obtained for each angle of attack in the manner described in section

6.5. The output consists of a complete set of surface pressures and off-body

velocities for each angle nf attack. For comparison purposes nonlifting

solutions may also be obtained by computing strictly from the source densities

obtained from the uniform onset flows.

When computed in the above manner, the solutions for all angles of attack

have the same position for the trailing vortex wake. This is, of course, an

approximation, because the true position of the wake changes with angle of

attack. However, as will be discussed in section 8.5, the calculated surface j
pressures are very insensitive to angle of inclination of the wake with the

range of practical interest. Thus, solutions obtained by the multiple angle-

of-attack option are essentially as accurate as can be expected from potential

flow.
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6.8 Some Special Situations

The basic theoretical difficulties with the potential-flow model for

lift (section 5.3) have their effect on the method of solution by necessitating

special handling of certain frequently occurring situations. The special

features that have been built into the t.ethod to handle these situations are

discussed in this and in the following section. Other special situations may

be discovered in the future.

Two special situations exist where elements must be placed inside the

body surface. No normal-velocity boundary condition can be applied at such

elements and no source density should be applied to them. Thus, these elements

do not count as far as the %,atrix of induced velocities is concerned. How-

ever, they do have dipole distributions and these must be accounted for.

The first situation occurs when a nonlifting portion of the body inter-

sects a lifting portion at a finite angle (often nearly normal) without

breaking the continuity of the trailing edge. An example is provided by

the wing-pylon intersection shown in figure 17. A certain portion of the

/~ ~ ~ ~ ~~YO -YO WIN/G,',''t -

INTER SECT ION

WING

STRIPS ISD H

Figure 17. Handling of a wing-pylon intersection.
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lifting body surfice is "inside" the pylon. Howeret, , . iv d st', .... ,on

should be continuous through this reqion t :iM', 'I rcI 1 .f f I1ti e.

Thus, as far as dipole calculations are conc, fl 1 "i,, f' l(-ert- ,_

normal members of the liftinq strips to whir:' tr.ey btkie,q. Uut .',Cy ,

ignored as far as source calculations or bi.rfd-,i -/ (c, i tvnis ort (orccfrrnec.

Such elements are designated "ignored elemep.. Phey ,j.,ia> , I :'I i-, or'y

part of a lifting strip.

The second situation occurs when a lift'n! [vr-tio: f -le t'dy ite--,ct.

a nonlifting portion at a finite angle (ofte -v , . i v':.w

case of this is the wing-fuselage intersec.tion. i'j.°rae.: I fj-..,t,- :-o

As is well-known, the local"section lift coeffiiet." ,.,n t', wirn, dce rv ,t

EXR S!;-?:! &A C~~% . N

N-LINE ALONG .

WING-FUSELAGE INTERSECTION

Figure 18. Handling of a win,-fu-r, ig.
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fall to zerc at the fuselage intersection. Thus the dipole strength on the

N-line lying along the intersection is not zero. However, the lifting section

car;not simply be terminated, because that would result in a concentrated

vortex filament right on the surface. Accordingly, an addiLioral or "extra"

lifting strip is added to the lifting section (see figure 18). It is either

the first or the last strip of the lifting section. The extra strip lies

inside the nonlifting body and is a complete lifting strip including wake.

No source densities or normal-velocity boundary conditions are applied to

the elements of the extra strip. The dipole strength is taken constant in

the "spanwise" direction across the extra strip. The value of the dipole

strength on the extra strip is such that the dipole strength is continuous

across the N-line lying along the wing-fuselage iatersection. The interior

edge of the extra strip has nonzero dipole strength and may lead to a concen-

trated vortex in the streamwise direction. For example, o shown in figure 18,

the vortex may lie along the fuselage centerline and its downstream extension.

If the lifting configuration has a right-and-left symmetry, e.g., a fuselage

with both wings, 1nd i. +he flow is also symmetric, e.g., zero yaw, the

extra strips for the right and left sides have the same strengths on their

interior edges. Tnur, in this case there is no discontinuity of dipole

* strength and no concentrated vortex. If, however, the lift is not symmetric,

there will be a concentrated vortex. This is unavoidable oecause t is

physically real. An example is the hub vortex of a propeller. This also

occurs at a tip tank, which is essentially a -,mall fuselage with only one

wing. However, the case shown in section 10. exhibits no numerical difficulty.

6,9 Sumnary of the Logic of the Calculation

The overall logic of the naothod is rather similar to that of the method

for nonlifting potential flow described in section 6.1. There are, of course,

certain additions, The order of the various parts of the calculation and

their functions are outlineo below.

The geometry of the three-dimensional configuration is input to the

program in the form of coordinates of a set of points. The points are input

along N-lines, which are essentially coordinate curves in the body surface

(figure 6). The configuration is divided into lifting and nonlifting portions
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as discussed in section 6.2. Each of these may be further aivided into

sections - lifting and nonlifting. The nonlifting sections are input first.

The N-lines of the lifting section define both the body and the trailing

vortex wake. Coordinates of points off the body in the flow field where

flow calculations are desired are input after the points defining the body.

If the Kutta condition is applied by a condition of flow tangency downstream

of the trailing edge in the wake, coordinates of these points and the cor-

responding normal vectors are input between the on-body and the off-body

points. The remaining input consists of control flags governing the logic

of the calculation plus a few parameters, such as angle of attack.

Surface elements are formed from input points in the manner described

in section 7.2 for lifting sections and in the manner of reference 3 for

nonlifting sections. The "formation" of an element consists of the calcula-

tion of various geometric quantities associated with that element, including

coordinates of the control point (centrrid), components of unit vectors along

the axes of a coordinate system based cn the element, one of which is the

unit normal vector to the element, and momerts of the area of the element.

Elements of lifting sections are logically associated into lifting strips

of elements, which consist of those elements formed from the same two N-lines.

Every element has on It a constant source density. Lifting elements also

have a dipole distribution. Formulas have been derived that enable velocities

induced by the elements at points in space to be calculated (section 7.0 for

lifting elements and reference 3 for nonlifting elements). For each element

the velocities induced by its constant source density at all control points

and off-body points are computed and saved in low-speed storage (tape or disk).

If there are symmetry planes, velocities induced by the reflections of an

element are added to the velocities due to the element itself. This is the

vector matrix of induced velocities. For each element of a lifting section 4

velocities induced by its dipole distribution at all c~ntrol points and

off-body points are computed. These, however, are not saved individually.

Instead, dipole velocities for all elements of a lifting strip, including

wake elements, are added to outain velocities due to the entire strip. Thus,

if there are N source elements, at whose control points the normal-velocity

boundary condition is to be applied, 0 off.body points, and L lifting

strips, there is a (N + 0) x N matrix of induced source velocities and a
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(N + 0) x L matrix of induced dipole velocities. For the "step function"

bound vorticity option, the dipole (vorticity) velocities induced by a lifting

strip are those due to a spanwise constant dipole distribution and they can

be computed in a straightforward manner. For the "piecewise linear" bound

vorticity option, two sets of Induced dipole velocities are computed for

each lifting strip: one due to a spanwise constant dipole distribution and

one due to a linear distribution with unit rate of change in the spanwise

direction and zero value at the "midspan" of the strip. These are then

combined using the mechanism of the parabolic fit and the conditions at

the ends of the lifting sections to obtain L sets of induced dipole

velocities, each of which is proportional to the midspan value of bound

vorticity on one lifting strip. The calculations outlined in this paragraph

comprise one of the two time-consuming parts of the method.

The first N rows of the induced source velocity matrix are the

velocities at the control points. C(,mponents of these velocities along the

local normal direction are computed to yield an N x N scalar matrix of

induced normal velocities. This is the coefficient matrix of the linear

equations for the source density. The right sides of the linear equations

consist of components along the local normal direction of: F uniform onset

flows at various angles of attack and the first N rows of the induced

dipole velocity m, rix. The linear equations are solved by direct elimination

to yield (F + L) sets of source densities on the N source elements.

The matrix solution is the second time-consuming part of the method.

Flow velocities are computed for all (F + L) sets of source density

at the points used to establish the Kutta condition. These are the 2L

control points adjacent to the trailing edge on all lifting strips if the

condition of equal upper and lower surface pressure is used. If the condition

of flow tangency in the wake downstream of the trailing edge is used, the

points are L particular off-body points input to the program. The Kutta

condition is formulated as L equations for the L values of bound vorticity

on the lifting strips using each of the F uniform-stream flows in turn

with the L vorticity flows. The result is F sets of L values of bound

vorticity. For each uniform onset flow a "combined" set of source densities

is obtained as a linear combination of the basic L sets of source densities

corresponding to the vorticity flows and the set of source densities for
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the uniform flow itself. The combination constants for the vorticity flows

are values of bound vorticity obtained from the Kutta condition. There are

F sets of N values of the combined source densities. Similarly, the same

values of bound vorticity are used as combination constants to obtain a
1=

"combined" onset flow at all N + 0 points where velocities are to be

computed. There are, of course, F such "combined" onset flows.

A complete flow solution is computed using each set of combined source

densities and its corresponding combined onset flow. Such a solution consists

of: flow velocities and pressures at all control points, flow velocities at

all off-body points, the bound vorticity values used to satisfy the Kutta

condition, and integrated forces and moments on each lifting strip, on each

lifting and nonlifting section, and on the entire configuration. An option

also exists for computing a nonlifting solution at each angle of attack by

setting all values of bound vorticity equal to zero.
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7.0 DETAILS OF THE METHOD OF SOLUTION

7.1 Order of the Input Points

As mentioned previously, the points defining the body surface are input

N-line by N-line, and the points on a given N-line are input consecutively.

The order of the input determines the direction of the outer normal vectors

to the elements, i.e., determines whether the case in question is an interior

or an exterior flow. The rule for insuring that normal vectors point into

the field of flow rather than into the interior of the body is the same as in

reference 3: If an observer in the field of flow looking towards the body

surface sees N-lines input from left to right, he should also see individual

points on an N-line input from bottom to top. An example of correct input for

the right wing of an airplane is as follows: The N-lines are input from tip

to root. On each N-line the points are input beginning at the trailing edge,

traversing the lower surface to the leading edge, returning to the trailing

edge along the uppcr surface, and continuing into the wake. The alternate

way of inputting a right wing is to input the N-lines from root to tip and

on each N-line to input upper surface points first followed by the lower

surface points and the wake points. Both of these input schemes produce

identical surface elements. However, they lead to somewhat different

implied surface dipole distributions. This matter is discussed in section 7.3.

The conclusion is that the first of the two input schemes above is to be

preferred. In any case, the logic of the program for determining which

elements are on the surface and which are on the wake requires that the first

point on an N-line of a lifting section be at the trailing edge.

7.2 Formation of the Elements from Input Points

This section outlines the way that the elements are actually formed

from the input points. There are two principal differences between the

formation of lifting elements and that of nonlifting elements. The first

is the manner of adjusting the input points to make a plane quadrilateral.

The second is the calculation of area moments up to fourth order. The

procedure for forming nonlifting elements is given in reference 3 and will

not be repeated in this section, which is concerned solely with lifting

elements.
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ii i
element be denoted xk, y , Z , k = 1, 2, 3, 4. These coordinates are with

respect to the reference coordinate system, the system in which the physical

lifting configuration is defined. It simplifies the equations to use vector

notation, so define

-i I i+v Z 
+ i (7.2.1)

xk x k + Yk Zk (

where T, T, I, are unit vectors along the axes of the reference coordinate
system. Recall thab an element is formed from points on two consecutive

N-lines. The input points k = 1 and 2 are on one N-line, the "first"

N-line, and the input points k = 3 and 4 are on the "second" N-line. In

what follows, subscripts F and S are used to denote quantities associated

with the first and second N-lines, respectively. The numhering k 1 1, 2, 3, 4

is cyclic around the element to be consistent with reference 3. The adjustment

of the input points, which is shown in figure 19, is as follows.

First form the N-line vectors

= 2  xIs : x 3 -x 4  (7.2.2)

3 _ C CORNER POINTS 2

3 INPUT POINTS 2

SECOND FIRST
N-LINE N-LINE

MIDPOINT OF VECTORS -
-

PSP -
SS

4
INPUT INPUT

POINTS 4 CORNER POINTS POINTS

.Figure 19. Adjustment cf the input points to form a plane trapezoidal
element.
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The two parallel sides of the trapezoid are taken as parallel to the weighted

average of these two vectors. In the coordinate system of the element this

is also the direction of the x-axis. The unit vector parallel to the two

parallel sides of the trapezoid is denoted TE  to show it is also the unit
vector along the x or E axis of the element coordinate system. It is

computed from

PF - + "S ..

E = rF I'S, 1(7.2.3)

where I v means absolute magnitude of the vector ;, i.e., the square root

of the sum of the squares of its componerts. The parallel sides have the

direction of 1E. The calculation insures that each parallel side has the

same midpoint and the same length as the segment of N-line from which it is

formed. In fact, once the elements are formed the original N-line

segments are replaced by these parallel sides. The side lengths are

d = rIF ds =[ sl (7.2.4)

The midpoints in vector form are

1F (Z' + -i, (7.2.5)
2FS2' +SZ4

The endpoints of the two parallel sides, which are thus the corner points of

the trapezoidal element are, in vector form,

x, XF -,F ,FTE, 2 -,7 + dFTE

(7.2.6)

x3 = ' Yd S1E X4 =S x d S1E

The normal vector to the plane of the elemt nt is

=-4 - 2) x 1 -1%)7.2.7)

The unit normal vector is

= R (7.2.8)
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This is also the unit vector along the z-axis of the element coordinate system.

The unit vecter along the y or n axis of the element coordinate system is

1E fxT (7.2.9)

In comr'nent form the three unit vectors are

'E -a 11 +a 1 2j +13r.

3E a21' + a22T + a2 3 t (7.2.10)

n = kE 6 3+ a 2 + a33r

The 3 x 3 array of as is the transformation matrix that is used to trans-

form coordinates of ,ooints and components of vectors between the reference

and element coordinate systems in the manner described in reference 3.

Temporarily the origin of the element coc'dinate system is taken as the

point whose coordinates are the averages of those of the input points. (The

same averages are obtained using the corner points.) In vector notation, the

average point is

x (XF + 'ZS (7.2.11)

With this origin, the element coordinates of the corner points are

all(xk - xav) + a2(yk - Yav ) + al 3 (zk - Zav)

2(7.2.12)

nk = a2l(Xk- Xav) + a22(yk - Yav) + a23(zk -Zav)

k = 1,2,3,4

where in accordance with vector notation, Xk' Yk' Zk are the coordinates of

k from (7.2.6). It will turn out that

II n2  and 3 = r4 = -r (7.2.13)
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The width of the element is

W - n~ 2r* (7.2.14)

The slopes of the nonvertical sides of the element (figure 20) are

m 3 2  2 - 3n -1 1 (7.2.15)

with respect to the In axis. The coordinates of the centroid are

w2 in3 2 -in 4 1

3+ E2  &I E

(7.2.16)

324 no

The reference coordinates of the centroid are

X( 0 +v 11 0 + 1n

Yo y av + a 2o+ a 22no (7.2.17)

Z za + a 13%o +.2 c

'C2 -772

-SLOP m 3
T( FIRST

figr 20. A plane trpzia lmnt. 4
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The centroid is now taken as the origin of the element coordinate system and

replaces the iverage point in all subsequent calculations. With respect to

the centroid as origin, the element coordinates of the corner points are

(7.2.18)

nk nk -no

where

and n n3 (7.2.19)

These are the corner point coordinates used in all subsequent calculations.

Several other geometric quantities are needed in future calculations.

These are now computed. The intercepts where the sides intersect the x or

axis (figure 20) are

b 32 - k2n3 b 4nl - Y4 (7.2.20)b32 w b41 : w (..0

The maximum diagonal of the element is

+ 2
M 2(2 - F4) + (n2 - 2(7.2.21)

The lengths of th_- sides are

d 12 d F  d 34 :d s (7.2.22)

63 2 :wWl+m d41  1w + N

Also needed are the total arc lengths along the N-lines from the trailing edge

up to the element in question. These are

LF = Zd,, Ls Zd (7.2.23)

where the sums are over previous elements of the lifting strip.
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Finally the normalized moments of the area of the element are required.

These are defined by

I ff nm d~dn (7.2.24)
Inm t n, 2.,, n

E

where the region of integration is the area of the element. For example,

Io is the area of the element, t4 120' till1 t4 102 are the moments of

inertia or second moments. The first moments 110 and 01 are zero because

the centroid is used as origin of coordinates. The order of a moment is the

sum of its subscripts n + m. There are three second-order moments, four

third-order, and five four'h-order. The present method uses up through fourth

order. The moments are calculated by a straightfc ward but rather lengthy set

of formulas which are given below.

First, normalize the corner point coordinates b,' the maximum diagonal,

Sn = k/t' n k /t, k = 1, 2, 3, 4 (7.2.25)

Novi the normalized moment may be defined in terms Of certain auxiliary

functions

i(32) + I(C ) + 1 1. " + n+l n+l m+l n+l n+l
in rm n, ( l)(n'i l) (M ( - l ) + 1)3 (4 -1 (3 )]

(7.2.26)

The auxiliary function I(32) is as follows-
nm

if IM321 > 1:

(32) + 1 n+l nm+l 2
Inm = )(m +1)(n + [r 13

1 1 *n+2 'm12
-(n+ )'(n + 2) i 3 2  3

+ M + 1 n+3 (m-li.2

32(72.7
m(m - 1) 1 [ n+4 'm-2]2

(n + l(n + 2)n+3)(n + 1 [-n+5 I 3

m(m - Mm - 2)n5'-"7n' l)( n + 2)(n + 3)(n + 4)(n + 5) m [- + nm-3

i3 2

r+,fn - l)(m-2)(m- 3) + [ n+6 *m-412- (n+'7r'n ' 2) (n + 3) (n + 4) (n + 5)(n + 6) Tn J3
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If Im321 <1:

i(32) 1 rl m+22
nm (m + 1)(m + 2) m32 13

_________n _ 2 rn-1 *m+3 2
(m + l)(m + 2)(M + m32 3

+m +1)(m (n - )n 2 m+4 2
__ )(m___+__ 31(m___+_4) m3 n(7.2.28)

n(n - )(n -2) 4 [*n-3 nm+512
-m +l)(m + 2)(m + 3) m + 4)(m + 5) .n32  3

n(n - 1)(n - 2)(n - 3) 5 4 m+6 2
(m-+ 1)(m + 2)(m + 3)(m + 4)(m + 5)(m 5 [l n 

where the bracketed symbols are defintd, ty

[k *P]2 = *k np - k np (7.2.29)
1 "p3 2 ~2 3 *3

(The superscripts in the above equations denote simple powers of the quantities

except for the bracketed double superscript (32), which denotes the side of

the quadrilateral.) It is clear from the above that the calculation of I(32)

requires m + 2 terms of (7.2.27) or n + 1 terms of (7.2.28). The calcu-

lation is simply terminated at this number of terms. The auxiliary function
~(41)
nm is obtained from the above by an obvious substitution of subscripts.

All the above geometric quantities associated with a given element are

saved and used as needed to calculate velocities induced by that element.

At this stage, some of the generated quantities are output, and the calcu-

lation may, if desired, be terminated. The purpose of this option is to 4

provide an opportunity to discover errors in the input points before the

execution of the lengthy calculations of the main part of the program.

7.3 Form of the Surface Dipole Distribution

7.3.1 General Form. Order of the Input Points

The surface of the lif-,ing section is imagined covered with a dipole

distribution that varies in the following manner. The dipole strength is
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fixed as zero at the first point of each N-line on the trailing edge. Along

each N-line the dipole strength is proportional to distance along the section

curve. This curve goes completely around the body and back to the trailing

edge, at which point k has some final nonzero value. Behind the trailing

edge is constant and equal to its final trailing edge value. In the first

input example of secton 7.1, a right wing is input from tip to root, and

points on an N-line traverse the lower surface to the leading edge and return

to the trailing edge along the upper surface. For this example the dipole

variation is as shown in figure 21. The constant of proportionality that

expresses the variation of along each N-line is initially unknown and its

value is ultimately determined from the Kutta condition. Since the N-lines

are roughly "chordwise" or "streamwise" on the lifting surface, this constant

Is the derivative of ± with respect to distance in the chordwise direction.

Thus, acccrding to the result of Appendix A, the proportionality constant

that determines the growth of 4 along each N-line is essentially the

"spanwise" vorticity strength at that N-line, which is the bound vorticity

that gives the lift.

As mentioneu in section 7.1, points along an N-line of a lifting section

are input beginning with the trailing edge, traversing the section curve of

UPPER ON BODY:bL LINEAR
SURFACE WITH ARC LENGTH

LAST ON-BODY POINT
=iL:Jt (FINAL)

ORDER OFOWE WAKE

INPUT POINTS SuF ACt FIRST POINT"' ... -.

SzoWAKE:k =CONSTANT :M(FINAL)

Figure 21. Variation of dipole strength aong an N-line.
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the wing anid continuing intc the wak~e. The orde' , ~

so that either the lower surface is input first, asi1;r~t ~t.'r~ '

or else the upper surface is input first, in whir), l: &c~or

traversed in the opposite sense to that shown i r f i (~', .&,i:f4. 'd. .

instead of clockwise). Thus, the positive direc-ion, rf aoc 'in -Ii i the

section curve is opposite in the two input schei-es. riso :~Lcw

and trailing vorticity are to be identical, as 'f!:.d'~i illrJ'

is innut two ways, then the constants of proporticna-,-,~* t~

streangth to arc length along the N-line for eacl o~f ~ ~. 'i

must turn out to be equal in magnitude and opposirt in' io TCj t

the two cases, let the constant of proportionalit. E ~:la~.

length along the section curve be denoted s. ln F' P'

order is that of figure 21, and L -8s if tt o'd'- 's

d ipol1e s treng ths al1ong the N-1i ne f or the twc c .,-e ,r ','~ - 1

figures 22a and 22b. The dipole strengths in t Via ~; :'; b

reversal of sign of the normal vector cancels oi; 1- .r*<-i ; r o' .

V

J,. [8 i(rOT)-86]3

(b).........

M(TOT)

(c)

Figure 22. Three variations of dipole strec'ittic~* a '.f- ctr-
(N-line). (a) Clockwise order f
input first). (b) Counterclock. -,i- L-'Jk i~. ~f'
(upper surface input first). ) ~ '

on body obtain~ed by subtracting .
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of the dipole strength ,. The two solutions represented by figures 22a and

22b may be subtracted to give the solution illustrated in figure 22c, which

has a constant dipoie strength B - s(tot.) all around the profile curve and

zero strength in the wake. Since both the bound vorticity strength B and

the total arc length around a sect-in curve vary with "spanwise" location,

the dipole strength of figure 22c varies in the "spanwise" direction but not

in the "chordwisp" direction. Thus, according to Appendix A, the related

vorticity distribution consists of closed constant-strength filaments lying

around the section curves. For the usual case of a wing with right and left

symmetry at zero yaw, the symmetry insures a zero total strength for this

vorticity distribution. Moreover, the flow solution of figure 22c has no

uniform onset flow, which was canceled in the subtraction of the solutions

corrpsponding to figures 22a and 22b. The solution corresponding to figure 22c

is continuous, because the wake singularity is zero, and it satisfies the

classical problem defined by equations (5.1.3), (5.1.5), and (5.1.4) with zero

right side. This problem has a unique solution, namely the trivial solution.

Thus, the solution of figure 22c represents zero flow, and the solutions of

figures 22a and 22b are identical as they should be.

The thieoretical considerations of the previous paragraph are strictly

true for closed bodies in the limit of an infinite number of surface elements.

An "open" wing tip of the type illustrated in figure 4c is excluded. For

practical element numbers, numerical experiments must be performned. Results

of such an experiment are presented in section 8.4 and are anticipated here.

When a wing was input in the two ways discussed above, the resulting bound

vorticity distributions were identical. The resulting surface pressure

distributions were arly identical except near the wing tip where the input

scheme illustrated in figures 21 and 22a seemed to give the more reasonable

solution. Accordingly, it was concluded that points on N-lines of lifting

sections should be input with the lower surface first, as shown in figire 21.

However, two wing-fuselages input with the upper surface first have very

reasonable surface pressures. The preceeding applies to positive angle of

attack, for which the lower surface faces the onset flow. For more general

flows the word "lower" in the above is replaced by "windward".
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7.3.2 Variation Across the Span of a Lifting Strip

The variation of L between the two N-lines used to form a lifting strip

is assumed to be one of two forms that correspond to the "step function" and

"piecewise linear" options for the spanwise bound vorticity variation, as

discussed in section 6.3. For the "step function" option the proportionality

constants on the two N-lines bounding the strip are set equal. This common

value is essentially the bound vorticity on the strip and is determined

directly by the Kutta condition. In general, the bound vorticity is different

on adjacent lifting strips. Thus, there are really two values of "the" pro-

portionality constant on an N-line, namely those corresponding to the two

lifting strips on either side of the N-line. The dipole distribution is

discontinuous across the N-line, which implies a discontinuity of bound vor-

ticity and a concentrated trailing vortex filament along the N-line. The

"piecewise linear" option essentially assumes a linear "spanwise" variation

across a lifting strip for the "chordwise" proportionality constant of the

dipole strength. The "spanwise" derivative is determined by the parabolic

fit discussed in section 7.11. The discontinuity at the N-line is reduced

to a higher order effect. As is shown below, this optivi requiret an

additional dipole term in the wake.

7.3.3 Variation Over a Trapezoidal Element

Consider now a typical trapezoidal lifting element, as shown in figure 20.

As defined in seztion 7.2, the lifting strip to which the element belongs is

bounded by two N-lines, which are designated the "first" N-line and the "second"

N-line and which are represented by subscripts F and S, respectively. The

constants of proportionality for th? dipole strength along the N-lines are

BF dnd BS, respectively. Thus, if s denotes arc length along an N-line:

- BFS along the first N-line
(7.3.1)

BsS along the second N-line

On the element itself, the parallel side at n n, is a segment of the

first N-line, and the parallel side at 3 = is a segment of the second

N-line (figure 20). The dipole strength varies linearly along each side,

namely
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= AF + BF on n= I .3.2)

= AS + B S on n n3

On the element the arc length along the N-lines is simply the coordinate

and the direction of increasing arc length is the positive E direction. On

each side the constant A is the value of i for C = 0. Thus,

AF BF (tctal arc length of a-axis from trailing edge)
(7.3.3)

= BFhF

From figure 20 and equation (7.2.23)

hF L - I (7.3.4)

Similarly

AS =BshS  (7.3.5)

where

hS  L S - 4  (7.3.6)

Now the dipole distribution on the element is assumed in the form of

a general two-variable second degree polynomial. When conditions (7.3.2) are

applied, it turns out that ± must have the form

B BS AF-AS Bsn1 - BFn3  As I - AF0 3- w ri +  w n + w E.+ w + C(q n)n- I

(7.3.7)

or, using (7.3.3) and (7.3.5)
1C + h - - h + cw(n - n 3 )(n - nl)]BF

(7.3.8)

_w [K + hsn - n - nh s + cw(n - n3 )(n -

where C and c are arbitrary constants. The absence of a term in t2 is

due to the orientation of the parallel sides along the axis. All other

terms of the general second degree polynomial are present in general. If,

however, BF = BS, as is true in the "step function" option, then the

quadratic terms vanish and j, is a linear function of , and n.
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7.3.4 Variation Between Elements of a Lifting Strip

The variation of dipole strength across the N-lines, i.e., the variation

from one lifting strip to the adjacent one, is discussed above. It remains

to discuss the variation along a lifting strip, i.e., the variation from one

lifting element to the next one of the strip. The dipole strength along the _

"top" side of the element between the points ( 3' n3 ) and (&2' 2) (see

figure 20) is obtained by setting = m32n + b32 in (7.3.7). The result is

(32) = 2(linear) + (Br-BS) cw2 + wiI32) [s (I-- I)] (7.3.9)

In the square bracket s denotes arc length along the side and L the total

length of the side (L = d32  in the notation of seciton 7.2). The function

ii(linear) is a linear function that varies from the value of 1, at the A

point ( 3 n3), which equals Bs , (arc length of the point from the trailing

edge) to the value of i at the point (C2' n2) which equals BF - (arc

length of the point from the trailing edge). On the adjacent element, the

"bottom" side that lies between the points (C4' n4) and ( , n) is the

one that lies along the side discussed above. The dipole strength along this

side is

4(41) = 4linear) + (BF -B) {cw2 + wm41} [ (S- 1)] (7.3.10)

Ignoring the small gaps between elements produced by the projection of the

input points, the quantities i(llnear), s, and L are identical in equa-

ti,,)1 (7.3.9) and (7.3.10), as are BF and BS. The only quantities that

ar, different are those in the curly brackets. Here c and w correspond

to different elements, while the slopes m32 and m 4 1  correspond to dif-

ferent sides of different elements. rt is clear from figure 20 that the

products wm32 and w'4l are just the changes in the r-coordinate between

the endpoints of the side question. These may be put in vector form. Let

the vector between the endpoints of a side be denoted M. Since a common

side of two adjacent elements is being considered (ignoring any higher order

gaps produced by the "adjustment" process of section 7.2), the same vector

m applies to both elements. Then the change in C-coordinate over that side

is 1" TE where as defined in section 7.2, TE is the unit vector along

the &-axis. Now the change in dipole strength across the side common to

two elements is
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(BF -Bs){a(w
2c + -(a)[ (i- 1)] (7.3.11)

where any quantity preceeded by A represents a change in that quantity. If

the N-lines are straight and the elements are coplanar, aTE = 0. If the

angle between two elements is small TE is of the order of the square of the

angle. Moreover, this angle is small if the slope of the surface is continu-

ous and if enough elements are used to insure calculational accuracy. Thus,

in the present method the parameter c is set equal to zero for all elements

on the body surface. The resulting discontinuity in dipole strength between

elements of an N-line is of higher order than the other approximations of the

method if the slope of the body is continuous. At a slope discontinuity

the dipole strength can be made continuous by having the N-lines intersect

the line of discontinuity at right angles, so that m • T E 
= 0. However,

this appears to be generally unnecessary for good accuracy.

One exception to the above rule is the trailing edge. The local slope

discontinuity is quite severe, and requiiing the N-lines to be perpendicular

to the trailing edge is undesirable. Thus, if only the on-body dipole

distribution is considered, there is a discontinuity of dipole strength at

the trailing edge, having the parabolic variation of the square-bracketed

term in (7.3.11) and thus a concentrated vortex filament of this form would

lie along the trailing edge. This difficulty is disposed of by adding a dipole

term of the correct form to the distribution in the wake. In the wake, the

dipole strength Is constant along N-lines and thus has the form of equation

(7.3.7' with BF = BS = 0 (AF and AS are set equal to the actual values

of BF and BS multiplied by the total on-body arc lengths of the respective

N-lines). Thus, a value of C may be chosen which is proportional to

(BF - BS ). That eliminates the discontinuity. By factoring out (BF -BS)

C may be replaced by c, in a manner analogous but not identical to the

redefinition involved in going from equation (7.3.7) to (7.3.8). The resulting

formulas are given in section 7.9, which deals with the wake elements.

The discontinuity discussed abo~,e, together with its remedy, occur only

if the "piecewise linear" option is used for bound vorticity. If the "step

function" option is used, then on an element BF - Bs = 0, and the discontinuity

disappears. This is another simplification connected with this option.
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7.4 Overall Logic of the Calculation of the Velocity Induced

by a Lifting Element at a Point in Space

The basic formulas of the present method are those giving the velocity

induced by an element at points in space. These are applied to obtain the

effects of the elements at each other's control points. For an element of a

lifting section on the body surface there are two kinds of induced velocities,

that due to the constant source density on the element and that due to the

dipole distribution of the form (7.3.8). For different ranges of distance

between the element centroid and the point where velocities are evaluated,

different sets of formulas are used. The three ranges are denoted: (1) the

far-field or point singularity regime, (2) the intermediate field or multipole

regime, and (3) the near field or exact regime. The near-field formulas are

obtained by an exact integration over the elements. Such formulas are necessary

to obtain the desired accuracy dt points near the element, but are quite time-

consuming. At points further from the element approximate integration formulas

are used to reduce computing time. When the distance between the element

centroid and the point where velocities are being evaluated exceeds a certain

multiple of the maximum diagonal of the element, approximate formulas are used.

In the far field, velocities are calculated directly in the reference coordinate

system. In the intermediate and near fields the field point where velocities

are to be evaluated is transformed 'nto the element courdinate system using

the transformation matrix (7.2.10). Then velocities are computed in element

coordinates, and finally the computed velocities are transformed back to ref-

erence coordinates using the transformation matrix. This procedure is well

known and will not be discussed further here. A complete description is

contained in reference 3.

Now notation will be introduced for the velocity calculation. It is

assumed that the velocities that are being computed are due to the j-th

element and are being evaluated at the control point (centroid) of the i-th

element. Clearly, any point could be substituted for the i-th control point.

The velocity due to the constant source density is denoted In element

coordinates it has components Vx (source), V y(source), and V z(source),

i.e.,

V (source) TE + Vy(source) E + Vz(source) rE (7.4.1)
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For a general quadrilateral element of a nonlifting section, this source

velocity is the only induced velocity, and it is computed by the formulas of

reference 3 in all three ranges. For a trapezoidal element of a lifting

section the calculation of source velocities is the same as for a nonlifting

element in the far field anid the Intermediate field (a trivial difference is

the use of normalized area moments). In the near field advantage can be

taken of the fact that the element is a trapezoid to shorten the formulas

and conserve computing time.

To develop formulas for the velocity induced by the dipole distribution

on an element, some additional notation is required. Furthermore, it simpli-

fies the development to consider the velocity potential initially rather

than the velocity components. The potential due to the dipole distribution

on the element at points of space is obtained by integrating over the element.

Namely,

t =ff (dipole) .( ,n) d~dn (7.4.2)

E

where p( ,n) is given by (7.3.8),where the integration is over the area of

the element, and where €(dipole) is the potential of a unit point dipole

with axis normal to the element, i.e.,

O(dipole) 2 z (7.4.3)[(z - &)2 + (y + n) + I2]/

Here (x, y, z) is the point where the potential and velocity aee being

evaluated expressed in the coordinate system of the element. Now define

the auxiliary potentials

Cpq =ff (dipole) Pnq d~d,. (7.4.4)

E

where p and q are integers. Now from (7.3.8), (7.4.2), and (7.4.4), the

potential of the element is

¢ FBF - sB (7.4.5)
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where

1
F w 11 hF001 -n 3 010 -n 3hFo0 + CWc]

1 + 1  -n I  - nhs + CW (7.4.6)Cs w [11 hS00l - I hsoo0 C rc]

c = 02 - "I + Y001 + 
Tln30

As stated in the previous section, the term €c is not currently used for

lifting elements on the body. For completeness, it is included in the formu-

lation, and equations are qiven in the subsequent sections. These last are

needed for wake elements in any event. The velocity due to the dipole distri-

bution is

V i(dipole) - (7.4.7)

where v denotes the gradient operator. In element coordinates this is

V= + + - (7.4.8)

axE ay E 3z E

From (7.4.5) and (7.4.7) it is clear that

Vij(dipole) = BF .) + BS S) (7.4.9)
13 ij

where

) (7.4.10)

The desired velocities are these 7 i (F) and V .In the far field

ij' ii '1

these are calculated directly. In the near and intermediate field the source

velocity is evaluated directly, but the dipole velocities are broken up into

separate terms in the manner of (7.4.6). Thus to evaluate the dipole velocities,

formulas are needed for the derivatives of 00,' 010' 01' ¢ll' and 02"

These formulas are presented in the following sections.

As mentioned above, the integrals (7.4.4) can be evaluated analytically

and the resulting expressions differentiated. This is what is done for the

near field (section 7.7). The resulting expressions are quite involved and
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time-consuming to evaluate. To save computing time, approximate formulas are

used when the field point is some distance from the element. This is accom-

plished by means of a multipole expansion. The basic idea is to expand

@(dipole) from (7.4.3) in a two-dimensional Taylor Series about E = n = 0.

This process is a standard development in the textbooks. The result is

o(dipole) = Foo(x,y,z) + F10(x,y,z)t + F01 (x,y,z) 
+ Foo(xYz)J2

+ Fll(xyz)&n + F02(xSySz)
n2 + ... + F Z Fnm(xy 'z) nnm +

n m

(7.4.11)

where the Fnm are the derivatives of *(dipole) at the origin of element

coordinates and are independent of & and n. When (7.4.11) is inserted into

(7.4.4), the Fn(x,y,z) are taken out of the integral, the remaining

integrals are of the form (7.2.24) and are thus moments of the area of the

element, which can be normalized by division by the appropriate powers of t.

In the intermediate field the expansion (7.4.11) is used through the

second-order terms, F20, Fli, F02. In the far field only the initial, zero

order, term is used. It is clear from the form of (7.4.11) that F0  is the

potential of a unit point dipole at the origin of element coordinates (centroid).

In the far field every auxiliary potential (7.4.4) is a multiple of the point

dipole potential and thus so are the combined potentials (7.4.6). Thus,

induced velocities in the far field may be expressed directly in reference

coordinates using the well-known formulas for a point dipole.

The above discussed only the dipolp velocity, but the same procedure is

followed for the source velocity. In fact, the development for this case is

given in detail in reference 3.

7.5 Far-Field Formulas for the Velocity
Induced by a Lifting Element

First calculate the distance r0 between the centroid of the element

and the field point where velocities are to be calculated. If the reference

coordinates of the centroid are x0 Yo, Zo and the reference coordinates of

the field point are x', y', P, then
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/ Xo2 y) 2 + zO), z 2

r - (x'- + 0) - + (z' - 0 ) (7.5.1)

Now test ro/t, where t is the maximum diagonal of the element. If

r0/t > P1  (7.5.2)

where P1  is a certain criterion, then the far-field formulas are used.

Currently p, is set equal to 4.0. The far-field formulas calculate

velocities directly in reference coordinates. First define the vector

ro = (x' -x o)t + (y - yo)Tj + (z' -z Y)1 (7.5.3)

The source velocity is

V t 2 0 Fo (7.5.4)

r r o

The dipole velocities are

ij, Ft (7.5.5)

- S) Q V
ii S

where

2 1 t21 - h 00 + cw(t 102 +l
wF r 0--3 11 nh~010 30)

(7.5.6)

QS = L2 1[t2111 - nlhRI00 + cw(t 2 1 +

and where

0 0' -

[3(0) - (7.5.7)

It will be recalled that _ is the ur,it normal vector of the element (n is

not connected with the field point) and that I n, denotes normalized moments

as given by (7.2.24). A comparison of (7.5.6) with (7.4.6) shows that the
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01and 1 terms have dropped out because they are multiplied by the zero

value moments 101 and 110.

7.6 Intermedlate-Field or Multipole Formulas for the

Velocity Induced by a Lifting Element

If r0/t < p,, transform the reference coordinates x', y', z' of the

field point by the transformation matrix to obtain element coordinates x, y, z

of the field point. Now perform another test. If

r0/t > P2  (7.6.1)

where P2  is another input criterion, which is currently taken as P2 2.5,

then the multipole formulas are used. The dipole velocities are taken in the

form (7.4.10), which means that derivatives of all quantities in (7.4.6) must

be calculated.

First define direction cosines

r r r (7.6.2)
000

Next define certain "derivative functions" as follows:

First Order

ux =-(,Uy - , uZ = (7.6.3)

Second Order

xx x~r :" (.6.4)u =X Ua u = 300, u K = 37e- -

2
U XZ y U YZ = 30,UIZ=3xz yz zz

Third Order

2 2

U = Y x(I -= 5Cx) U = - U ,?;u 3a(l - 52  (7.6.5)

u 315( '--512) u = 5 (1 -515') u =3 1-52

"2,



Fourth Order

u =9-9oU + lo a

uxxxy I (U

UxxYY = 3 -1( + e2) + 10o ?

u = 15aP(7c - 3)Uxy = 15 7(7c 2 
- 3)Uxyz = 19t (7c -

u 3-1(3 +V 2) + o50y- (7.6.6)

Uyyy 15UP(7e2 - 3)

xyyz 19( 2  1)

Vxs~rc) 7 -- IoU - - [:1- x
+)Ilxy oaxy

uxyzz W7 )

o2

=-M 9- go? + 105

u 35(72 -~)152,

yyr~z 3 ~ 2 0 7

Then the source velocity components are

2(source) =t1 _ I + 2

0

V (source) = -2 L [20Uxxy + 21%YY *,+I io2Uyyy] (7.6.7)

v (source) = t 2 T1 o z £ uoU + - L U yz. .+ g 'y ]
r2 1~ 2Z 1n[2 ~ ~ 1 U 02' yyzJ4

04

These are identical to the miltipole formulas of reference 3 with a slightly

different notation.

Specific formulas for the derivatives cf the various dipole potentials
4pq appearing in (7.4.6) are given on the following page. To illustrate the
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Dipole Derivatives for JHiltipole Expansion

Far-Field lot Order 2nd Order

3000 ti~ 2 '*{I~ ) + 213* 1 IOuXYZ

0

D4 +.00 tle t+2ixy + 1 U,] }(7.6.8)
-y ;iu r t {u.,j] (L[~ + 12Uy~

00

0

40 -2 ~ ['1oou" +lu4 Iu]+(t 2 J 2+ .(7.69

0

D41 (L [u + 1~u ( 2 (yu + 
2 I1xz + , 7 69

DO1 7_ _ L) [I2U +Y 1 0 u] + Or-)
2 [I5uxx- + 2y + 12u~]

0

3ol Jt + 2~ +t~ rI ] (6.

- _,3(- [11 1u *z + Ilyz (L) 2 [1 2 1 u + 2 xy +2yyz

-=tp 1o t + 2)

___ , - ~u (- [ll1uxx + I2u] +- [r 1 ,~ xxx 12Uy~ 7..1

40 3 JXiu (- 1 1 uz u + (L )2 r 1uxy + 21,,ul

-L [ [Iiluxcy + 1 L) +22 5uy+IoUyz

-7y- _r-3 ~I 2  r (r) XIyu + L 12 u +131 .~] (7.6.10)

0 
03

Doll -I1% (,_.) [121xx + I~u + (L) 2 [ 2 u + 21, Iu

_Tx = _3 r 1uxy ro h xxz 2uxzl T3u76z

I0



development,the terms containing the moments Io and 101 are written down.

They are then crosred out to show that such terms need not be calculated

because 110 = 101 = 0. (Inclusion of these terms generalizes the formulas

to the case where the centroid is not used as origin.)

7.7 Near-Field Formulas for the Velocity Induced
by a Lifting Element

If ro /t < P2' the near-field or exact formulas are used to compute

induced velocities. The calculation starts with the element coordinates

x, y, z of the field point and the geometric quantities associated with the

element that are discussed in section 7.2. In partiLular, the corner point

coordinates k' nk' k = 1, 2, 3, 4 are needed, together with the width w

from (7.2.14), the slcpes in32  and in41 from (7.2.15), the intercepts b32

and b41  from (7.2.20), the maximum diagonal t from (7.2.21), and the side

lengths d12 , d32, d34, d41, from (7.2.22). These quantities are illustrated

in figure 20. In addition to the basic near-field equation, there are special

limiting formulas for small values of r0  and z. However, the basic near-

field formulas are used in the large majority of cases.

Preliminary quantities to be calculated are:
./Xk2 2 +

rk -  x - + ( - rk) z k 1, 2, 3, 4

(7.7.1)
X - k , Y - k z4

Pk k

P(32) = [Z2 + (Y - 1)1-(-I)Y-' k-3 or 2

kh) = m41[Z2 + (y - nk)2  - (x - Ik)(y - k - ' or i (7.7.2)

The basic functions are

+r -d
flmm

=log r + r + d ' m, n consecutive, i.e.,
M n n mn = 12, 23, 34, or 41 (7.7.3)
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and

T0(2) tan- 
p k 3 or 2

k zrk
(7.7.4)

(241) tan [  k= 4 or I
Tzrk 1

Also needed are derivatives of 
the T's and L's. The derivatives of T(32)

are

3T(32) 2 + (32\)
k k Et ki

(52) z 2 32 (2

k k_______ -Pk Oh

k k = 3 or 2 (7.7.5)

,T(32) -m2z2 r ( (32)(r + zY-)
kf 2 rk k~~ k ?

(32 32 12)
2

' =zr + [p}

K k k

There Is an analagous set of formulas 
for the derivatives of T

41 )

The derivatives of L(m
n ) are

)L + .n), -)L-- = Dr #nl), ?( D 'nn)

2d
Irin(a M + Ce" 3 n( , 4 d - ), m r1,- n

+ (r + ) 2 (7.7.6)

n "- 12, 25, 34, 41

Now in terms of the above functions the source velocities and 
dipole potential

derivatives needed in (7.4.6) can be written.
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The source velocities are

V ,(source 1 ) + I L(41)

+ m2 +m

V y(source) = L ( 12 ) + L( 3 4 ) + 32 L ( 3 2 )  
mh L ( 4 1 )S2 - 2 (7.7.7)

+m52 + m 4

V (solirce) T (32) +T(32) +T(41) _T(1
2 1

To evaluate the dipole potential derivatives, the derivatives of V x  and

Vy are needed (since Vz - €00' its derivatives are exactly a potential

derivative). The derivatives of Vx  and V are

V (source) 1 )LL41) 1
- 2 + m- 2

32+ i 4 1

V (source) (32 )

2 +2
+ 32 + m41

3V x(source) 1 _
(32 )  1 ( )

+ Z m/ 
2  (7.7.8)

+ 41

)V N (source) )L(]2) U0(4) )L U02)  r1, h(1

=y - -T + -y + m _____ L
(

__

V + " 2 1 2

V .(source) L( 12 ) L34) m3 L(32) m1 L( 4)

32 41

)V (source) ) + (2 ) 241 )L (4)
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Now the potential derivatives are as follows.

-5 - +x- -I- + - - Tx

= - + - 4 (7.7.9)

oo T(32) T(32)  )..(41) 3T(41)
+ +

3 0, 3V (source) C 00
K = - + y -

3 01. (V Y(source) )0
T0- z y 77y + IT (0ource) (7.7.10)

0V. (source) + €00

= - (Source) + V (source)

i3€10V (source) ;3

- + X -(-7
77V--7 rce) ouroe

6 10 3V x ( sour c e) ;3¢00
= - z + x -T- - V (source)

Evaluation of the derivatives of II and 02 requires certain auxiliary

quantities J11  and H02  and their derivatives. Thus define

r - r2  r1 - rh
+l =  2 + 2

3.2 M42i+m 5 2  0+1m)4

+ (X - my - b 2)L(22) (7.7.12)
(I+ ' 2 ) "/ 2 3

2 41

(7+ 37 (x -7n41y - b )L(4 )
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M ll 3 - 2  + 2 (32) + 2 (L(3()
-2 2 3/2 + 2 ,3/2 32y  32-

+ m32 + m 32) + 32)

a 4 - 4m 4l (h) ml41 (x b )L L(41)

+ 2)3/2 (1 (+2) 3/2 -
m~rn1 4 1  

Tftrnh

R2 mL(32)
_Tl P3 _ ,2 L (32) +  32 -2 M b )

2 + (1 + m2)3/2 32 32 a
(+ m32 )32  32

(1- h __ _ml L( )41)
+ 2 4 + 2 ,372 L + 2 ) 3/2 (x - m4ly - b4 1) -- y-

n+m4r1  +m 4 1)'

m32 )L(32)

+ (X - m r22 - )77+ 2 73/2 m32Yb3

I + m32 (i + m32)

i - 4
7 4) L (hi)

+ 2 (x - m 4 y-b 4 1 )~-+ +r 2 ) 3/2 m1 --
i 2~1 (r+ %4

4(7.7.13)

llslnq thP above

-, = z- zv (source)

11= z 1 + x 0 + y 10 0 -zV (source) (7.,14)

-- z-Y F- Ty- - -y- -+J

7T Z 4T- X 77+ y -z y XTz + t

Also define
S.- r4 - '

H02 = 32 1 2 + m 41 1...2

+1m 32  l+41

b32) (32)

+ I3)  (x - m32y -b 2)1(
2  (7.7.15)

(I. + m2)323

2 -12 (x - in4 ,y - b41 )L

(1 4 m48
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.02 mJL2 (5 ) + I L(32) (x - m32 - b 2) L(32)

77 + 2 + m 2 )3/2 + 2 3/2

32(l +m32

41 I L-(41 )  (x - m4ly - b l) )L (41)

~+ 2I 4(+2 ) / + 2 ) F/2
m]. +~ m4.

a"02 M32 (M3- )  2 L(32)  (x -32Y - '32) 3L(32)
2"2 

2 32+ (1 + 2 3/2  
(i m32

(1 + m4, +r2,

)H02 3( 
mY b41)mi 4  (im 41 )L

3  
1 x-

2

(4

'% ~~~ .......... )I -
+ 2 - 3) + 2 3/2 -

32 + 32

m_ 41 (x - 4 Y -- b41) i,( 1)
+ 2 ( 4  - )  2) 1v -
i + m(I + mn )/

(7.7.16)

Using the above

3o2 H 02  401 2 2 ¢00= - + y " -( +z ) --

3 02 3H 02 01 2 2 00
=z--v-- + 2y -T - (y + ) -y-- 2zV ,(source) (7.7.17)

402 = H02 +y01 2 +2 2z 00= z - + 2  - ( + ) - + 0 2
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7.8 Some Alternate Near-Field Formulas for Use in the
Plane of the Element

If the point where the velocity induced by an element is being calculated

lies ir the plane of the element, i.e., if z = 0, there may be numerical

difficulties in the evaluation of the formulas of section 7.7 for

00 = Vz(source) and its z-derivative. To avoid possible difficulty special

formulas have been derived for this case.

If

Iz/tI < 0.001 (7.8.1)

the point (x,y,z) is considered to be in the plane of the element and z is

set equal to zero- Now Vz(source) is 2n for points inside the element and

zero for points outside. Some tests for this condition have encountered

problems of numerical significance. The following tests are currently used.

First define

h3 2  i 3 2 (y- n3) - (x- 3)

(7.8.2)
h4!= mi4 1 (y- nl) - (x -1)

Then a point is inside the element if all three of the following tests are

satisfied and outside if any one is not satisfied.

r0/t < 1/2

h32h41 < 0 (7.8.3)

(y - nl)(y - n3) < 0

The velocity Vz(source) is simply set equal to 2r or to zero as appropriate.

Numerical difficulty can be encountered in the evaluation of the

z.-derivative of r00 when the point (x,y,0) is on an extension of a side of

an element. This condition can be determined by testing the above-defined h's

and the y - n. Specifically, the point is considered to be on a side if any

of the follc..iing tests are satisfied (refer to figure ?0 for element geometry):
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Point on Side 12 if y - rIl /t , 0.001

Point on Side 23 if Ih32 1/t ' 0.001

Point on Side 34 if ly - 3 1/t <.001 (7.8.4)

Point on Side 41 if 1h41 1/t < 0.001

If none of the above tests are satisfied, the formulas of section 7.7 are

used for the z-derivative of o00. Only one of the conditions (7.8.4) can be

true. If this occurs, then the following substitution is made in equation

(7.7.9).

T32) m m

Side 12: - 2 + 1 41 32
Ix - 11 Ix - &21

T(3?)
Side 23: aT2 )+ - 232) m2 1 r  l )

az + m,2
m~~~~32 l -n y nl

T 3 2 )  T m 32  _ 41  (7.8.5)
Side 34: az 2z Ix - ,31 x - c41

aT( 4 1) aT( 4 1 )  1 _ 1

Side 41: az1  4 4 l _

The remaining two T derivatives of equation (7.7.9) are evaluated by the

formulas of section 7.7.

7.9 lhe Velocity Induced by a Wake Element

In the wake the dipole strength is constant along N-lines, as illustrated

in figure 21. The form of the dipole distribution on a wake element is

obtained by setting BF = S = 0 in equation (7.3.7). Specifically,

-1 [ ( A s nl -- Am 3] + C(n - rn3 )(n - nI) (7.9.1)

Denote by L (total) the total arc length along an N-line from the trailing

edge around the section curve of the body and back to the trailing edge. This
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arc length is computed in a manner similar to (7.2.23), namely

LF (total) = ZdF
w (7.9.2!

LS (total) = Zds

where the sums are over all on-body lifting elements of the strip lying

between the two N-lines. Now from the form of the dipole distribution shown

in figure 21 it is clear that the constant values AF and AS assumed along

the N-lines in the wake are equal to

AF = BFLF (total)

(7.9.3)
AS = BsLs (total)

Thus, velocity potential due to a wake element has the form

=FBF - SBS (7.9.4)

just as in equation (7.4.5). Here, however,

F = 1 - n30ooLF (total) + c c

S = I [01 - nl;oo]Ls (total) + c c (7.9.5)

Oc = 002 -(nl+ n 03)1 + 'ln3 o0

These replace (7.4.6). The dipole velocity is given as before (see (7.4.7),

(7.4.9), and (7.4.10) by

7F) + BSS) (7.9.6)
ij F - '  Fij S ij

where

I -") = + (7.9.7)

To evaluate (7.9.6) in the near and intermediate field, the derivatives of

102' 01' and 00 are evaluated by the formulas of sections 7.7 and 7.8.
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In the far field the formulas for the dipole velocities due to a wake

element are

-()-S (7.9.8)

where

_ 2  1O _ 2  1o

QF w 0 3LF (tot )  QS w 00I L (tt) (7.9.9)
r r

and where as before (see (7.5.7))

n r r3 - (7.9.10)

There is no source density on wake elements and no source velocities are

computed.

As discussed in section 7.3.4, the values of c on wake elements are

not zero if the "piecewise linear" option for bound vorticity is user..

Instead, the value of c on the first wake element is determined to avoid

a discontinuity in dipole strength at the trailing edge. Values of c on

the remaining wake elements are chosen to eliminate discontinuities between

adjacent wake elements along the lifting strip. Let superscript (1) denote

quantities associated with the first on-body element of a lifting strip and

superscript u denote quantities associated with the last on-body element of

the strip. Similarly, the superscripts wl, w2, etc. denote the first wake

element, second wake element, etc. of the same lifting strip. The important
Ow)

value of c is c ,i.e., the one for the first wake element. It is

computed from

c(wl) uw(u)cu) + -- m41)] ( 4c (W) w 2 41(7.9.11)
[w(Wl )]2

where the quantities w. m3 2 , m4l have their usual meaning. Values of c

for the remaining wake elements are obtained from

c(wl) [w(Wl)2 = c(w2),w(w2)12 c (w3) [w(3) 2 (7.9.12)
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7.10 Option for a Semi-infinite Last Wake Element

In most cases of interest the trailing vortex wi • exterds to infinity.

To facilitate accounting for this condition, provision has been mate for cor-

sidering the la;t element of the wake to be semi-infinite. A finite elepient of

the sort shown in figure 20 is formed at th_ end of the wake, including all

the geometric quaaitities of section 7.2. The induced velocity calculation for

this element is performed using the origin of coordinates appropriate to the

finite element, but the formulas used to calculate induced velocities are

appropriate for the semi-infinite element. Naturally, all points in space are

in the "near field" with respect to a semi-infinite element, so it is the

formulas of section 7.7 that apply. These trormulas are modified by setting

m32=0 (7.10.1)

13

This yields immediately

(l' 61' ' 4' 9 4' Y4  unchanged (7.10.2)

o3 =  
CA2 - , 

"]  =  F, 2 =  Y? =  'Y2 =  0
~3 "2 -1a

The log functions (7.7.3) and their derivatives (7.7.6) are replaced by

L (41) = unchanged, all derivatives unchanged (7.10.3)

L(32 ) - 0, all derivatives equal zero

-L (12) + L = log r4 4 (x - 4 )I l (7.10.4)

L(34) L4 - 1 (12)

x r4  (x , ax r, x

L(34 )  : L(12)

_ _ y r - 5r _ x 7 ( 7 .1 0 .5 )

A L(3 4 )  4 AL(12 )  YI
4 4 (x (x
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small compared to the source-velocity matrices. Each of the velocities

(7.11.1) represents the velocity due to a dipole distribution on the strip

that is unity on one N-line and zero on the other with a linear "spanwise"

variation in between.

The characteristic onset flow velocities due to a strip are

= 7S)+ VF)
ik ik i

(7.11.2)

1 F) S) {F)]
ik 2 1k ik

The first velocity of (7.11.2) is that due a dipole distribution on the strip

that is constant in the "spanwise" direction. The second velocity is that due

to a dipole distribution that varies linearlly in the "spanwise" direction and

has zero value at "midspan ". These velocities are used to form the basic

circulatory onset flows-V

If the "step function" option for bound vorticity is used (section 6.3),

the proper form of the dipole distribution is simply constant 'in the "sparwise"

direction over a lifting strip, and the velocity ) is precisely the onset
Vik i rcsl h ne

flow. Thus, for this option, the vorticity onset flows are

Vik )  k = 1, 2, ... , L (7.11.3)

The above yields L onset flows, each of which corresponds to a unit value

of the "streamwise" dipole derivative B on one lifting strip and zero values

of B on all other lifting strips. (Recall that the "streamwise" derivative

of dipole strength is essentially the value of the bound vorticity.) No

special handling is required at the ends of the lifting section.

The machinery for the "piecewise linear" option for bound vorticity is

somewhat more complicated. The "spanwise" variation of the "streanwise"

dipole derivative B (bound vorticity) is linear in the "spanwise" direction

across a lifting strip. Thus, t'o velocity at the i-th point (control point

or off-body point) due to the k-th strip is

V. (strip k) 1iO) B + w V'() B! (7.11.4)
1 k k k ik k
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where wk is the "spanwise" width of the strip, B' is the "spanwise"

derivative of B, and subscripts k denote quantities associated with the

k-th lifting strip. The derivative B' is evaluated by a parabolic fit

through 8kl' Ek9 and Bk+l' Specifically, define

Wk [Wk + Wk+lD k = -w k + 1/ 2 ( w k l + W k + l ) + w k 1

E w + 11 2(wk +k + Wk+ wk + Wkl(711

Ek - + Wk + Wk+l) rwk + Wk.l wk +WklJ (7 11.5)

k wk1 [Wk+ Wk-l]

F k = Wk + 1/2(Wk l + Wk+l) + Wk+l

Then (7.11.4) is approximated numerically by

V(strip k) = -v<O)B + V-l [ + EB+ F B ] (7.11.6)
1 1k k ik [k k-l Ekk k k+13

The velocity (7.11.6) contains values of the "strearnoise" dipole derivative B

for three consecutive strips. However, a proper circulatory onset flow is

proportional to the value of B on a single strip. Since each Bk enters

i (strip k) for three consecutive strips, its three contributions may be

summed to give the basic vorticity onret flow.

1 + i,k-=F k-l k -k i,k+l k+l

In performing the above parabolic fit (7.1.6), the values of the function

B to be fit are of course the values of bound vorticity on the strips. Each

of these has been associated with an abscissa or "independent variable" that

expresses the spanwise position of each strip. Differences of these abscissas

appear as combinations of the widths wk. Calculation of the wk is not

obvious, because in general the "span" or width of each strip is not constant

but varies in the "chordwise" direction. Accordingly, it was decided to input

the quantities necessary to deduce the spanwise positions of the lifting

strips. The input quantities consist of a set of widths wk for all liftinq

strips. If a strip is truly of constant width, it is natural tc input that

width. If the strip varies in width, some average value must be input as
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where wk  is the "spanwise" width of tl,- strip, B' is the "spanwise"

derivative of B, and subscripts k denote quantities associated with the

k-th lifting strip. The derivative B' is evaluated by a parabolic fit

through Bk-l, Bk, and Bk+ !. Specifically, define

D W k fWk + Wk+ I]

k wK + r/2(wk-I + Wk+l ) L + wk w

w k ["k + W1k +l w k '1] (7 11.5)

Ek wk + I/2 (Wk.l + Wk+l) W k + W k- k + Wk+1(

F wk w, + W 1,l]
k wk + /2(wkl + wk+l) Lwk + Wk+l1

Then (7.11.4) is approximated numerically by

(strip k) VikB + il, [Dk Bk-i + EkBk + FkBk+l (7.11.6)

The velocity (7.11.6) contains values of the "streamwise" dipole derivative B

for three consecutive strips. However, a proper circulatory onset flow is

proportional to the value of B en a ilc strip. Since each Bk enters

Vi (strip k) for three consecutive strips, its three contributions may be

summed to give the basic vorticity onset flow.

k) O0) +-(1)++0V i + V k- _ I F k-l ik E i,k+lDk+l (7.11.7)

In performing the above parabolic fit (7.11.6), the values of the function

B to be fit are of course the valucs of bound vorticity on the strips. Each

of these has been associated with an abscissa or "independent variable" that

expresses the spanwise position of each strip. Differences of thes d'scissas

appear as combinations of the widths wk Calculation of the wk is- not

obvious, because in general the "span" or width of each strip is not constant

but varies in the "chordwise" direction. Accordingly, it was decided to input

the quantities necessary to deduce the spanwise positiois of the lifting

-trips. The input quantities consist of a set of widths wk for all lifting

strips. If a strip is truly of constant width, it is natural to input that

width. If the strip varies in width, some average value must be inout as
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Raw

the wk for that strip, and this average is decided upon by the user.

These wk are used only in performing the parabolic fit. To facilitate

fitting at the first and last strips of a lifting section, it was decided

originally to input widths for ficticious strips adjacent to the first and

last strips of the section. Thus, if the strips of a lifting section were

input from left to right, the table of wk would consist of the following

sequence: a value of wk for a ficticious strip to the left of the first

lifting strip, the values of wk for the lifting strips of the section in

order from left to right, and fin{Ifly a value of wk for a ficticious strip

to the right of the last strip of the section. Thus, if the section has L

lifting strips, L + 2 values of wk are input. This is still the format

of the input. However, for certain frequently-occurrinq situations, the

program overrides the input and puts in a predetermined value of wk. In

fact, it is only for the "e, tra strip" condition described below that input

values of wk corresponding to ficticious strips are actually us~ed in th0

calculations.

Physically, a lifting section may end in various ways, some of whichI' involve logical difficulties in the basic potential-flow model (section 5.3).

The varicus v.ys a If tin section may end require various procedures for

performing the parabolic fit of the piecewise-linear vorticity option. These

procedures are outlined below. In future work perhaps still other procedures

will be required for situations that are unanticipated at present.

Sometimes a single lifting portion of a three-dimensional confiquration

is divided into two or more lifting sections. This may be done to concentrate

elements in a certain region, as shown in figure 23, or it may be done simply

for convenience. In this case the division into sections is purely logical

rather than physical, and the bound vorticity distribution should vary smoothly

from one section to another. As regards the parabolic fit, the last lifting

strip of the first section and first lifting strip of the second should be

regarded as adjacent strips of a single lifting section and the fit performed

accordingly. This situation has been designated "continue" in the method.

!f the lifting section has a physical ending in the fluid, such as a

wing tip, the bound vorticity strength must fall to zero. A ficticious logical
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LAST STRIP OF

/Y

Figure 23. An example of division of a single physical lifting portion

of a body into two lifting sections.

strip, is imagined adjacent to the tip in the fluid (figure 24a). The bound

vorticity slope at the midspan of the strip of elements adjacent to the tip

(figure ?4) is obtained by fitting a parabola through the value on the strip

itself, the value on the next strip inboard, and a zero value at the midspan

of the ficticious logical strip. Various assumptions about the width of the

ficticious logical strip were tried, and it was concluied that taking its

width equal to that of the lifting strip adjacent to the tip is about as good

a choice as any, and this has been built into the program as an override to any

input value. A zero width of the ficticious strip has a certain appeal, because

in the limit of infinite element number the bound vorticity must be zero right

at the tip. However, this choice leads to poor results. This type of end to

a lifting section is denoted "norwal."

If a lifting section ends c oi positive symmetry planc of the flow

(figure 24b), the proper procedure is obvious. Physically, there is a strip

adjdcent to the last strip of the section on the other side of the symmetry

plane, and these two strips have equal widths and equal vblues of bound

vorticity. The parabolic fit is performed accordingly.
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Figure 24. Special procedures at the ends of a lifting section for the
parabolic fit used with the piecewise linear vorticity option.

(a) Wing tip. (b) Positive symmetry plane.

If there is an extra strip of elements adjacent to the end of a lifting

section, as described in section 6.4, the width of the extra strip is input

as the last (or first) wk of that section and used in the parabolic fit.

For purposes of determining the parabola, the value of bound vorticity on

the extra strip is taken as equal to the value at the midspan of the last

ordinary lifting strip of the section, even though this is not strictly true

unless the slope of the bound vorticity on the last ordinary strip is zero.

7.12 The Linear Equations for the Values of Surface Source Density

A dot product is taken of each source velocity Vij at each on-body

control point, i = 1, 2, ..., N, with the unit normal vector of the surface

element containing the control point. Specifically,

A -. . i = 1, 2, ... , N (7.12.1)
13i1 j = 1, 2, ... ,N

The scalar N x N matrix Aij represents the normal velocities at the

control points due to unit values of source density a on the elements.
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The quantities

N

Z Aij j  
i = 1, 2, N (7.12.2)

j=i11

where the source densities cj are as yet unknown, are the normal velocities

at the control points due to the entire surface source distribution. For the

usual condition of zero normal velocity at the control points (7.12.2) must

be set equal to the negative of the normal velocities due to the onset flow.

This is done for each onset flow. Normal components of the basic

circulatory onset flows (7.11.3) or (7.11.7) are obtained by taking dot

products with the unit normal vectors in a manner similar to (7.12.1), ie.,

I - ni (k)i  k =  1, 2, ..., L (7.12.3)

where L is the number of lifting str'.ps. The same is done for the u iiform

onset flow 7-, i.e.,

= • (7.12.4)
1 1

As discussed in section 6.7 more than one uniform onset flow may be considered

simultaneously, in which case there is an NH for each of them.
1

The linear equations that yield the values of source density on the

elements are

N i = 1, 2, ... , N

Ai = N k I, 2, .... L, (7.12.5)

j=l

These are solved by a direct elimination procedure. Therc is a set of N

values of oj for each onset flow, includina all uniform onset flows.

7.13 Application of the Kutta Condition

For each uniform onset flow a single combined set of source densities

is calculated from

L

0 CH +Z B(k) (k) 1, 2, ... , N (7.13.1)

k=l
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where L is the number of lifting strips and where the B(k) are as ypt

unknown. The combination constants B(k) are the values of the streamwise

dipole derivative (bound vorticity) on the lifting strips. Similarly there

is a single combined onset flow

L
-() + Y (k)V.k) 1, 2, .... N + 0 (7.13.2)

k=l

The total velocity at any point is

N

V. ~ ... 0)
1 i j.j 1j=l

i = 1, 2, ... , N + 0 (7.13.3)

L

B(k k)
V + Z

k=l

where the velocities

N
: V-) +

Ii j

j-l (7.13.4)

N
.- =
k )  j(k) + T(k) k 1, 2, L

are the velocities at the control points for the individual onset flows. It

is important to point out that velocities (7.13.4) are calculated only for the

points where the Kutta condition is to be applied. Only the velocity (7.13.3)

is evaluated at all points.

As mentioned in section 6.5, there are two rather different means of

applying the Kutta condition.

7.13.1 Flow Tangency in the Wake

The first method for applying the Kutta condition is based on property

(a) of section 6.5, i.e., the condition that a stream surface of the flow

leave the body at the trailing edge. This is implemented by inpu'tting L
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points and L normal vectors. The pnints are considered to be the first L

off-body points, and both points and nonal vectors are designated by subscripts

i = N + 1, N + 2, ..., N + L. The total velocity at these points is given by

(/.IJ.3) tor these values of i. The dot product of each velocity is taken

with the corresponding input normal vector, which is presumed to be the unit

normal vector to the stream surface. The results are set equal to zero, i.e.,

L

n i. V = n v'+E B'"n. YJ

k=1
i = N + 1, ..., N + L (7.13.5)

(k)

Thus, there are L linear equations for the L unknown values B namely

L

Z DkB(k) : i = N + 1, ... , N 4 L (7.13.6)

k=l

where

Dik i -ik) k = 1, 2, ..., L

D. i - i =N + 1, ..., N + L (7.13.7)

If more than one uniform onset flow is considered, the same matrix Dik applies

to all of them. Only the Di. are different.

7.13.2 Pressure Equality on Upper and Lower Surface at the TrailingE dge

The second method of apolying the Kutta condition is based on property

(b) of section 6.5, i.e., the condition that the pressures be equal at the two

control points of each strip that are adjacent to the trailing edge. The

pressure at any point is uniquely determined by the square of the velocity

magnitude, which is

L
2  )+ 2 () (k)B(k)Vi _vi i' L__ )) 2 )B(v

k=l

I. L L
+ Z (-v,() k -- )B(k)B(r) M + 28 Mik (k)

+ Z MikB(k)B(m) (7.13.8)

k=l m=l
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where the M's are defined by equation (7.13.8). Now let the integer q

denote the lifting strip, I.e., q = 1, 2, ..., L, and define

qkm - Mikm (at control point adjacent to trailing edge of q-th strip

on upper surface) (7.13.9)

-Mikin (at control point adjacent to trailing edge of q-th strip

on lower surface)

Similarly define

Hq-k = Mi-k (upper q-th) -Mi.k (lower q-th) (7.13.10)

11q. = M 2_(upper q-th) -M . (lower q-th)

where tne expressions in parentheses in (7.13.10) are intended to be

abbreviations of the rdrentheses in (7.13.9). With this notation, the equal-

pressure condition is

L L L
Pq L L HqkmB(k)B(M ) + 2 _ H k B(k) + H q- 0 (7.13.11)

k=l m=l k~l

q =1, 2, ... , L

This represents L quadratic equations in the L unknown values of B(k)

The method of solution is a Newton-Raphson iterative procedure. Define the

derivative

L

G = -B- =?2 H.B(M) + 2H q = 1, 2, ... , L (7.13.12)
qk E qkm qcwk

m=l k 1, 2, ... , L

Then (7.13.11) is solved iteratively by solving successive sets of linear
fo hecage D(k% (k)

equations for the changes AB " in the values of B . Namely,

L

E Gqk,'B(k) -Pq a 1, 2, ..., L (7.13.13)

k=l

At any stage G qK and Pq are evaluated using the 8(k) from theAt ay stge Gfromtheprevious

iteration. Then (7.13.13) is solved and new B(k  computed by adding tB(k)

to the previous values. The rate of convergence of this process -)r even the

existence of convergence, cannot be proven on theoretical grounds. However,
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in virtually all cases convergence of this iterative process has been very

rapid. There can be difficulties, however, in extreme cases (see section 8.8).

If difficulties should arise in the future perhaps (7.13.11) should be solved

by a different iterative procedure than that reprcscnted by (7.13.13). In any

event the procedure of section 7.13.1 can be used with confidence since no

iteration is involved.

If several uniform onset flows are considered, the same Hqkln applies

to all of them.

7.14 Final Flow Computation

Once the 8(k) are known, a single set of source densities (for each

uniform onset flow) is computed from (7.13.1) and a single onset flow from

(7.13.2). Then flow velocities at the on-body control points and off-body

points are computed from (7.13.3). Pressure coefficients at control points

ar computed from

pi =  I ,-= vi (7.14.1)

Forces and miuients are cmiputed by assuhinq the pressure to be constant over

each element. If Si denotes the area of the i-th element, the force on

this element ;s

ri = "iCpi SI (7.14.2)

and the moment of the force on the element is

~i x 'i I  (7.14.3)

where r i represents the vector displacement of the control point of the ele-

ment from an input moment reference point. With the above assumption forces

and moments on the body are obtained by simple summation

F r

(7.14.4)

M = M.

99



Various ranges of summation are used in (7.14.4) so that forces and moments

on different parts of the configuration may he calculated. In particular

(7.14.4) is performed for: each nonlifting section; each lifting strip; each

lifting section; and all elements of the entire case.

7.15 Computation Time, Effort, and Cost

In the past when comr~uting machines executed one program at a time,

computation time, effort, and cost had definite and agreed-upon meanings. The

total elapsed time necessary to execute the program was measured, and this was

charged to the user at a rate of a certain amount. of money per hour. Thus,

computation time and cost were simply proportional. Computational effort was

slightly less direct, since elapsed time included all necessary inputs and

outputs and certain other operations in addition to straightforward arithmetic

and logic. Nevertheless, it was customary simply to define computational effort

as the time required to execute. Thus, program descriptions customarily

reported conputing times, bit by implicit assumption they were also defining

computational effort and cost.

The Situdtion was changed considerably by the widespread use of computer

systems that process several unrelated programs simultaneously. Computing

time, effort, and cost are no longer essentialiy identical; and indeed their

precise relationship cannot be specified, except possibly in terms of a

particular computing facility. Generally, the time the so-called central

processing unit spends on a particular program is recorded. This "CPU time"

is that required for the arithmetic and logic of the program. From CPU time

an imaginary "computing time" is calculated by an arbitrary formula that

accounts for the number of inputs and outputs. Finally, cost is determined

by multiplying "computing time" by a rate that depends in a complicated way

upon the fraction of the total capacity of the computer that is engaged on

that particular problem, i.e., how much high-speed core storage is required,

how many low-speed tape or disk units are used, etc. The relationship between

CPH time ard "computing time" varies from facility to facility, as does the

formula for computing cost from "computing time." Thus, no general statements

can be made. A change in the accounting procedure can significantly alter the

cost of a computer run. A program that is optimized for one accounting
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procedure may perform poorly on anntier. Often the us' of less high-speed

storage will result in increases in coputing time and effor. but a decrease

in cost.

While nothing definite can be said, still there is a need for some simple,

comnonly-acceptcd measure of the size of a program. It has hec , e fairly

common to use CPIJ time for this medsure. There are many valid objections to

this, but no other quantity is more acceptable. It should always be i-emeubered

that CPU ime is merely a rough guide to the order of magnitude of the program,

For the present application CPU times are given for the IBM 370-165 computer.

Below are CPU times obtained for typical cases, all of which had on

plane of svflmetry, which was accounted for in the calculations. The eieiveut

number N refers to those describinj one half of the body.

Element CPU Time

Number N in Minutes

250 1.7
500 6

650 12

950 30

The times for the lower element numbers are quite acceptabie. The rapid

increase in CPU time with element number for the larger cases is presumably

due to the use of a direct solution for solving the simultaneous equations.

Clearly an Iterative solution should be used for N > lOgO, and probably for

N ; 800. On the other hand, the direct solution is seen to be very efficient

for N < 500 and probably should he used for N < 700.
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8,O NUMERIJCAL EXPERIMENTS TO ILLUSTRATL VARIOUS

ASPECTS OF THE METHOD

8.1 'L lvment Number on an Isolated Lifting Wing

It is 1,i1portant i, tGhree-dimm siona." problons to be ,ble to ostiplate

element numbers that make the error in the potential flow% calculation cor'sistent

wi-Lh the orrcrs inhereitt in the approximation of a real flow by a potential flo4i,

eqg., errors due to neqilect of cnmp'rpssibility or viscosity. Too small an

element number may qiVe useless rpsults, while too lam'oe 3n element numbher

lee!ds to a needlessly lar'3e -onputing tm.For good accuraicy, complicated

three.-dimensionial gcnnetrieS veqU ire more elements than army program makes

ava- i ,le -ind wioild r2quire very lonki computation times. For, such cases the

dvc~cinn retlarding eleiiment numb~ier -is an easy fc.nc; simply use the inaximum per-

vissi'hle nufrher of elenrits and accept a lesser accuracy. For simpler cdses

a study of the,_ matter May provc worthwhile. In the course of developing the

presert mnethod some studies of this type were conducted. The results are

incloded here in the hope that they wil! be of value to future users. Obviously,

only a few cases could be studied in detail. If a design application involves

manly COS OT similar geomntry, an element-nuimber study for that particillar

genmetry shouldI be conducted by the user before proceedinql.

The -0im-)iest caise is that of ar, isolated wincj. Two questions must be

answered. .- o w miany' lifting strips should be placed across 0ie span of the

w irvi ? iHow' many 1lifting elements should lie on each strip? The second of

the.se ques'tions can be answered by running two-dimensional cases using the

method of refe-.,rce 1. These cases are, Of COur'_ t , very fcst and cheap

compared to th-P three-dimersional cases that must be run to answer the first

question. For this investigation, as well as some others to be discussed

below, the geopiotry chosen was an untwisted wing, which is described fully in

reference 12. The planforn, is shown in figure 25, and the airfoil shape -*

sections parallel to t1he symmetry plane of the wing is sYmnmetric ayid is 7.64

percent ~'~ Two-dimensional considerations lead to the use of 30 iffting

elemtents on each strip - 15 on each of the upper and lower sur faces. This

appears to be aoout a m0inum number for acceptable accuracyv, but on the other

hand it appears sufficient for most applications.
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Calculations were performed for this wing with various numbers of lifting

strips. Four of the cases are shown in figure 25. They range from 6 to 20

lifting strips on the right half of the wing. In comparing solutions the

quantity used is the local section lift coefficient as a function of spanwise

location. This quantity is obtained from a numerical integration of the cal-

culated pressure, which is assumed to be constant over each surface element.

As explained in section 9.1, this quantity is considerably more sensitive than

pressure distribution in the sense that two pressure distributions that appear

nearly identical may have section lift coefficients that are noticeably dif-

ferent, but the reverse is never true. The cases run to investigate the

effect on accuracy of the numLber of lifting strips used the "step function"

bound vorticity option (section 6.3) and applied the Kutta condition by means

of the condition of 6qual-pressure at the first and last control points of

each lifting strip (section 7.13.2). Calculated section lift coefficients at

eight degrees angle of attack are shown in figure 26 for cases of 8, 13, and

20 strips (figure 25). The results for 13 and 20 strips are nearly identical

except for a small region near 90 percent semispan, and the 20-strip results

are thus taken as correct. The values of lift calculated for 8 strips are

somewhat too large but may be close enough for many purposes. However, it

appears that if 13 strips are used, accurate results are obtained, and this

is thus the recommended neighborhood for the number of lifting strips. Thus,

in the present example a total of 30 times 13 or 390 lifting elements are

desirable.

8.2 Two Forms of the Kutta Condition

In secti' :, 5.5 two forms of the Kutta condition are described. They may

:Icnt* 1"O t 'i % e wake-t y corndlt-"n (prope'~rty (.a, of section 6.5) :. the

e .a're--!ure or!ition (property fb) of section 6.5). 1, figure 15 calcu-

1tec' reslts ar! -rtared for L two-dimensional case where the stream surfeace

, the body i" K.low n - along thp trailinq-edge bisector. For a wi'ng

•~' t, e . 1h: |~I ' nfrf riure 25, tv.e tlieoxry of refere:c. 1l (section, 6.5 and

' m tr)telb fnat th? stre.ri surface leaves the ,iit;r along the tangent

.. h ; r .....--,.. -Wiever, zS discussed in section 6.5 and rtference 6,

t tn more aclurte to apply the wake-tangency conditisn alon,,i the

tr',ilr.:-ed bsectt-r. Thv A-strip case of ffgjre 25 was rut, at 8 deqree

1 o3
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angle of attack using the "step function" option for bound vorticity with a

wake-tangency condition applied at a distance of 2 percent of local chord

from the trailing edge. Calculated section lift coefficients are shown in

tigure 26 for points of application of the wake-tangency condition lying on

the trailing-edge bisector and also on the upper-surface tangent. ror the

8-strip case the error 'or the case where the trailing-edge bisector is used

is seen to be about twice as large as that obtained with the equal-pressure

condition out to about 80-percent semispan. Application of the wake-tangency

condition at a point on the tangent to the upper surface giveL results that

are very seriously in error.

Based on the above results the equal pressure condition appears superior

to the wake tangency condition, for ordinary cases. Unless otherwise

indicated, it is used for all cases presented in this report.

8.3 Step Function and Piecewise Linear Bound Vorticity

As discussed in section 6.3, the present method has two options for

treating the variation of the bound vorticity over the small but finite "span"

of a lifting strip. The bound vorticity may be taken either constant or

linearally varying over the "span" of each strip to yield an overall spanwise

variation over the wing that is, respectively, a step function or a piecewise

linear function (figure 10). To investigate the differences between these

two representations of the bound vorticity, the 13-strip wing of figure 25

was run at 8 degrees angle of attack with an equal-pressure :utta condition

using eah of the bound-vorticity options. For e..r! case the bound vorticity

as a function of "spanwise" location on the wing w:g o,' 4ned by fairing a

smooth curve through the computed vdlues of bound vortcity at the "midspans"

of the lifting strips. Thus, in comparing the bound %orticity functions

computed by the two options, the detailed variation over the individual strips

is ignored. The calculated results are shown in figure 27. (Because of the

sign convention adopted, bound vorticity leading to a positive lift has a

negative value of the proportionality constant B, if the N-line is input

with the lower surface first as recommended in sections 7.31 and 8.4.) The

results are seen to be virtually identical. Surprisirgly, agreement is best

in tk- region of rapid variation near the tip and worst in the region of

relatively slnw variation near the plane of symmetry of the wing.
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To further compare the two bound-vorticity options, section lift coef-

ficients were computed by numerical integration of the surface pressures. The

results are shown in figure 28. Agreement of the two calculations is good

except for the region near the tip. A comparison with the presumably more

accurate results from the 20-strip case (figure 26) indicates that the section

lift coefficients calculated by the step function option are more accurate

than those calculated by the piecewise linear option. The values of pressure

near the tip are affected by the spanwise velocity component, which is sensi-

tive to the details of the parabolic fit used at the wing tip to extrapolate

the piecewise linear bound vorticity to a zero value in the fluid (sections

6.3 and 7.11). However, a limited amount of experimentation with the para-

bolic fit failed to improve the calculated distribution of section lift

coefficient near the tip.

Based on the above results it is concluded that there is no apparent

advantage to using the more complicated piecewise linear form of the bound

vorticity, at least for simple cases. Accordingly, the simpler step function

form of the bound vorticity has been used for all cases presented in this

report. However, further experimentation with the piecewise linear form of

the bound vorticity seems to be desirable, particularly for more complicated

geometries. Evidently, an improved wing tip condition would be desirable.

8.4 Order of the Input Points

As discussed in section 7.11 the input can be arranged so that the

points on an N-line are input in one of two orders. In any case the first

point input is at the trailing edge. Then the points may be input along the

lower surface of the wing to the leading edge and back along the upper surface

to the trailing edge. Alternatively, the points may be input along the

upper surface to the leading edge and back to the trailing edge along the

lower surface. (Recall that a different order for the N-lines is required

in each case.) The distinction between these two cases is illustrated in

figure 22. It is concluded in section 7.3.1 that the calculated values of
bound vorticity should be equal (corresponding proportionality constants B

equal in magnitude and of opposite sign) in the two cases and that the differ-

ence between the two calculated results (figure 22c) should vanish in the

limit of infinite element number.
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The situation described above was investigated by calculating flow about

the 8-strip wing of figure 25 at 8 degrees angle of attack using both possible

orders for the input points. Both cases used the step function option for

bound vorticity and applied the Kutta condition by means of the equal-

Dressure condition. Calculations were performed using an "open" wing tip

, finite thickness and repeated using a "closed" wing tip, for which the

section curve at thp tip was arbitrarily given zero thickness. There was no

essential difference between results for the open and closed tips, so only

the former case is presented here. Figure 29 compares calculated spanwise

bound vorticity distributions obtained for the two orders of input points.

The two distributions are seen to be virtually identical, as prcdicted.

Figure 30 compares calculated spanwise distributions of section lift coef-

ficient, which are obtained by integrating surface pressures. Agreement is

good except near the wing ti!r where the solution obtained by inputting the

lower surface first is clearly to be preferred. What has occurred is that

the difference of the two solutions, represented by the solution of figure ?2c,

does not vanish near the tip because of the finite element number.

On the other hand, effects like that of figure 30 do not always occur.

Two of the wing-fuselages of sect', 9.3 were computed using an order of input

points such that the upper surface of each section curve of the wing was input

before the lower surface. Moreover, the wing tips in both cases were of the

"open" type. The calctilated spanwise distributions of section lift coefficient

(figures 40a and 42a) appear reasonable. Of possible importance is the fact

that the strip of elements adjacent to the wing tip is considerably wider in

both wing-fuselage cases than in the 8-strip winy of figure 25. Evidently

this matter deserves further study. However, inputting the lower surface

first has never led to trouble.

It is Loncluded that ordering the input so that the lower surface ,f a

lifting section is input before the upper surface is a desirable rrocedure,

and it is followed in all cases presented in this report unless otherwise

stated. The terms "lower" and "upper" refer to the usual case of a wing at

positive angle of attack. The essential condition is the orientation of the

surface to the direction of the onset flow. Thus, for a general flow the

terni "lower" should be replaced by "windward" and the term "upper" by
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"leeward." If in any application there is difficulty deciding which side of

a lifting body is leeward and which windward, then almost certainly it will

make little difference which is chosen. Finally, the differences in the

calculated results for the two orders of input are small except near a wing

tip.

8.5 Location of the Trailing Vortex Wake

As discussed in section 6.3, the location of the trailing vortex wake

must be furnished as input to the program. In practical applications the

exact location is not known, but an approximation may be estimated from

experience. To determine the sensitivity of the calculated results to

wake location, several geometries were calculated with different wake loca-

tions. Among the geometries considered was the wing described in section 8.1

and another wing of identical planform with camber and twist. Wakes were

assumed that left the trailing edge along the bisector and also along the

tangent to the upper surface. Straight wakes were used and also wakes that

curved and became parallel to the direction of the uniform onset flow. None

of these permutations gave any significant change in the surface pressures

or lift distributions on the wing. it is thus concluded that for ordinary

moderate values of angle of attack, trailing edge angle, and degree of camber

any reasonable wake location gives a satisfactory solution.

It may be recalled that the two solutions of figure 26 obtained for

a wake-tangency type of Kutta condition differed very markedly from each other.

This was due to the locations of the point of application of the wake-tangency

condition not to the assumed wake location.

As part of the present study, a review of the literature on wake location

was carried out. In view of the above, the results of the review do not

appear to be of paramount importance to the present method. This is fortunate

because the amount of published information on this subject is not very large.

The literature review is summarized in Appendix B.

It should be enphasized that what was proved in the above study is that

the flow on a lifting body is insensitive to the position of its own wake.
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Obviously if the wake from one lifting body passes near another body, the

flow on the second body is sensitive to the location of this wake. This

occurs, for example, in problems of wing-tail interference.

8.6 A Wing in a Wall. Fuselage Effects

A very common application of the present method is a wing-fuselage. For

an isolated fuselage much larger surface elements can be used to obtain good

accuracy than can be used for a wing. The question then arises as to w-ether

this same rather sparse element distribution can be used for a fuselage on

which a wing is mounted. To investigate this point, calculations were per-

formed for a straight wing protruding from a plane wall. The basic geometry

is shown in figure 31a. The wing has a rectangular planform with span equal

to five times chord. The airfoil section is a symmetric one with a thickness

of 10-percent chord. The plane wall extends a distance of five airfoil chords

from the airfoil in both fore-and-aft and sideways directions.

Two studies were performed. In both of them the uniform onset flow is

parallel to the plane of the wall and is at 10-degrees angle of attack with

respect to the wing. In the first study the width of the "extra strip" of

elements that lies on the opposite side of the wall from the wing was given

a fixed span equal to one airfoil chord as shown In figure 31a. Three ele-

ment distributions on the wall were used, as shown in figures 31b, 3lc, and

31d. The dense element distribution of figure 31b has wall elements of the

same chordwise extent as the elements on the wing, while the sparse distribu-

tion of figure 31d has only two wall elements over the span of the wing.

Section lift coefficients on the wing calculated with the three different wall

element distributions differ by one unit in the fourth decimal place, which

is utterly negligible.

The second study used the wall element distribution shown in figure 31d

and considered three different spanwise extents for the "extra strip:" one

chord, as shown in figure 31a, three chords, and one-third chord. Calculated

values of section lift coefficients on the wing differ by one unit in the

second decimal place. This is of some importance but a very large range of
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spans is being considered. Certainly it can be concluded that the span of

the extra strip is not crucial.

The spanwise variation of section lift coefficient at 10 degrees angle

of attack for the case with a one-chord extra strip is compared in figure 32

with that obtained at the same angle of attack for the isolated wing of aspect

ratio 5, and that for the aspect ratio 10 wing obtained by reflecting the

wing in the plane of the wall. This last case corresponds to use of an

infinite plane wail. It can be seen that the wall of figure 31 has almost

the sme effect a the infinite wall. The difference lies not in the finite

element size but in the finite extent (5 chords) of the wall.

8.7 A Sudden Change in Element Shape

Section 9.3 presents results for a wing of rectangular planforn mounted as

a midwing on a rectangular fuselage. Section 10.1 investigates the effects

of external stores mounted on this wing-fuselage. As part of this latter

study, two different element distributions were used on the wing. These

distributions are shown in figure 33. In both cases the spanwise distribu-

tion of lifting strips is identical. In the first case the distribution of

elements is identical at all spanwise locations (input point distribution

identical on all N-lines) so that the elements are all rectang:jlar and are

distributed "straight" across the wing. In the second case "slanted" elements

are used on four consecutive strips near midsemispan (point distribution

changed on three consecutive N-lines). In both cases all input points are

exactly on the wing surface. The freestream was taken at 6 degrees angle of

attack. Calculated spanwise variations of section lift coefficient are shown

in figure 34a. The sudden change in element shape causes a noticable "wiggle"

in the calculated spanwise lift distribution. In a more complicated applica-

tion, such an eftect mignt be taken as physically real. Accordingly, if

el- ment distributions must change over a body, it is preferable that they

do so gradually.

Figure 34b compares calculated chordwise pressure distributions at the

midspan of one of the two central strips of the slanted-element region. It

appears that differences in lift are due almost entirely to differences in I
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pressure in the neighborhood of the upper-surface pressure peak. Elsewhere

the two calculdted pressure distributions agree very well.

8.8 An Extreme Geometry

The numerical experiments of the previous sections provide guidelines

on the use of the method for ordinary design applications. To delineate

limits cf validity of the method, calculations were performed for a case

having a highly deflected flap (figure 35). As may be inferred from the

figure, the geometry shown is a partial-span flap on a complete wing-fuselage

configuration (reference 13). This portion of the configuration contains the

essential difficulty, and it was selected for study rather than the complete

wing-fuselage to save computina time. This geometry was selecte& as an

extreme example. Real flow about such a body is not even approximately a

potential flow. In the tests of reference 13 the flow over the geometry of

figure 35 was separated even if area suction was used on the body surface.

When calculations were performed at zero angle of attack with the equdl-

pressure Kutta condition, the iterative procedure of section 7.13.2 diverged

strongly. This is the only case to date where this failure occurred* The

wake-tangency Kutta condition of section 7.13.1 was applied and gave a reason-

able spanwise distribution of bound vorticity. However, the pressures at the

two control points of each strip adjacent to the trailing edge were not

approximately equal. In a case such as this the proper location for the trail-

ing vortex wake cannot be approximated well by intuition. Calculations were

prrformed with different assumed wake locations, and significant differences

in the calculated flow were obtained.

Thus, it appears that the present method can calculate flow about "normal"

configurations in a routine fashion but that there are limits beyond which

some care is required.

*However, see section 10.4
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9.0 COMPARISON OF CALCULATED RESULTS WITH EXPERIMENTAL DATA

9.1 General Remarks

In the following sections, flow quantities calculated by the present

method are compared with experimental data. All computations follow the

recommendations of section 8.0. In particular, the step function option for

bound vorticity and the equal-pressure Kutta condition are used.

Two flow quantities are compared: the section lift coefficient as a

function of spanwise location and the chordwise pressure distribution at

fixed spanwise location. The former of these is much more sensitive than

the latter. As will he seen, the usual situation is one in whicn the calcu-

lated and experimental pressure distributions agree fairly well but the sec-

tion lift coefficients are noticeably different because the difference between

the two pressure distributions is of constant sign and its integrated effect is

significant.

It is well known that for unseparated flow the effect of viscosity is

small in nonlifting flow bitt is quite significant in flows with lift. While

the exact magnitude of the effect depends on the Reynolds nuoiber, the general

effect of viscosity is to reduce the lift about 10 percent from its inviscid

value. In two dimensions calculated inviscid and experimental pressure dis-

tributions on an airfoil are quite different if they correspond to equal

angles of attack but agree very well if they correspond to equal lift coef-

ficients. That is, the principal effect of viscosity is on the lift rather

than on the details of the pressure distribution. This last is probably

true in three dimensions also. However, a condition of equal lift is difficult

to arrange if there is a spanwise variation of the lift coefficient and of the

corresponding viscous effect. In any case it is desireable to calculate the

lift, not to accept it as given. Thus, the proper aim is to calculate cor-

rect flow quantities at a given angle of attack. Accordingly, comparisons

of calculated and experimental results are given here at equal angles of

attack. It is believed that most, if not all, of the differences between the

calculated and experimental quantities are due to the effects of viscosity

(and compressibility in some of the tests). Some preliminary work on this

matter has been done and confirms this opinion (See the following section).
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9.2 An Isolated Winq

An untwisted swept wing with a symmetric airfoil section is described

in section 8.1. Low speed wind tunnel data are available for this wing in

referenue 12. At a Reynolds number of 18 million the results indicate that

no separation occurs at an angle of attack of 8 degrees, and calculations

and experiment are compared for this flow condition. Results are shown in

figure 36. It can be seen that calculated and experimental pressures agree

rather well at all chordwise and spanwise locations, except possibly near the

trailing edge near the tip (figure 36d). Calculated and experimental distri-

butions of section lift coefficient are quite similar in shape, but the cal-

culated inviscid values are too high by 10-15 percent.

To test the hypothesis that viscous effects are primarily responsible

for the disagreement between calculation and experiment, a crude estimate

of the distribution of boundary-layer displacement thickness was added to

the wing. Flow about the altered body was calculated by the present method,

and the results are also shown in figure 36. A dramatic improvement in the

spanwise lift distribution is evident in figure 36a. Thus, the hypothesis

concerning viscous effects appears valid. Changes in the pressure distri-

butions are less spectacular, but as mentioned above, these are relatively

insensitive.

9.3 Wing-Fuselages

Reference 14 presents experimental data for a simplified wing-fuselage

that consists of an uncambered wing of rectangular planform mounted as a

midwing on a round fuselage. Low-speed tests were conducted at the very low

Reynolds number of 0.31 million. Thus, viscous effects are rather large for

this experiment. This is not a very suitable case for comparison with a

potential flow method. It was selected because calculated and experimental

results for a very similar geometry are presented in reference 6, and it

seemed interesting to compare the predictions of the present method with that

of reference 6. The situation is complicated by the fact that the data of

reference 6 were taken at a higher Reynolds number of 0.66 million, so that

viscous effects are reduced.
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Figure 37 shows the geometry of the configuration. Figure 38 compares

calculated and experimental results on the wing for an angle of attack of

6 degrees. The two spanwise lift distributions are of similar shape with the

calculated values about 20 percent higher than the experimental. The pressure

distributions are In better agreement, but the differences in lift are so

great that the pressures on the upper surface are affected. No conclusions

can be drawn regarding the rehtive effectiveness of the present method and

that of reference 6. The agreement of calculation and experiment presented

in reference 6 is much the same as that shown in figure 38.

A configuration of current interest is a wing with a so-called "super-

critical" airfoil section mounted as a high wing on a fuselage. The configu-

ration and the surface elements used in the calculation are shown in figure

39. The "supercritical" airfoil section, which is also shown in figure 39

is very thin in the neighborhood of the trailing edge and carries a relatively

large percentage of its lift in this region. As can be seen in figure 39,

the fuselage represents an attempt at realism with low element numbers. The

cockpit canopy and the wing-tunnel sting are both accounted for. Figure 40

compares calculated results on the wing at 7 degrees angle of attack with

experimental data from a low-speed wind-tunnel test conducted by Douglas

personnel. The comparison of the section lift coefficient distributions

exhibits the by-now-familiar behavior of similar-shaped curves with experi-

mental values lower than calculated ones due to viscous effects. The agree-

ment of the pressure distributions is quite good, especially at the leading-

edge peak. Also, the characteristic "supercritical" type pressure distribu-

tion aft of midchord is predicted fairly well by the calculations. The

pressure distributions of figure 40b at 15 percent semispan are at a location

quite near the wing-fuselage junction, which is at 13.3 percent semispan.

Thus, th'ee-dimensional interference effects are relatively large at this

location and are predicted fairly well.

A comparison configuration to the one of the previous paragraph consists

of a wing with conventional airfoil section mounted as a low wing on a

fuselage. The body and the surface elements used to represent it are shown

in figure 41. Once again the cockpit canopy and the wind tunnel sting are

accounted for in the calculations. Wind tunnel tests of this configuration

at 6.9 degrees angle of attack were conducted by Douglas personnel at a
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freestream Mach number of 0.5. These test results are compared with the

incompressible calculations of the present method in figure 42. At first sight

the results appear quite gratifying. The agreement of calculation and experi-

ment is much better for this case than for the supercrltical wing-fuselage,

whose results are shown in figure 40. Agreement Is especially good for the

pressures at 25-percent semispan, figure 42c, but the span ise distribution

of section lift coefficient (figure 42a) is also in fairly good agreement.

Unfortunately, part of the reason for this agreement is that the errors in the

calculation due to neglect of viscosity and the errors due to neglect of

compressibility are of opposite sign and tend to cancel each other. To

illustrate the magnitude of the compressibility effect, the calculated results

have beer divided by the quantity V F-M, where M denotes freestream

Mach number (figure 42). This type of correction has validity in two-dimensions

within the limits of small perturbation theory, but it has no justification in

three-dimensions. The curves with this divisor in figure 42 are not attempts

to quantitatively predict compressibility effects '(:t are supposed to

illustrate their general magnitude. it appears that when compressibility is

accounted for the agreement of calculation and experiment for the configuration

of figure Al is about the same as for the configuration of figure 39.

The discussion of the previous paragraph also points out the need for

a compressibility correction to be added to the present method. Based on

previous two-dimensional experience, this should prove to be much easier than

accounting for viscous effects. The classical procedute is based on the

Gbethert transformation. However, this is not very satisfactory. Its accuracy

is poor in regions such as wing leading edges where the surface slcpe is not

approximately paralle, to freestream velocity. Moreover, a complete calcula-

tion must be performed from the beginning for each Mach number. What is

needed is a procedure that obtains compressible results directly from an

incompressible solution, so that only one lengthy flow calculation need be

performed by the present method. An example of such a method is presented

in reference 6, but the results are not entirely satisfactory. Evidently

further investigation is required.

The wings of the configurations of figures 39 and 41 were input with the

upper surface first. The calculated distributions of section lift coefficient

that are given in figures 40 and 42 do not show unusual behavior near the wing
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tip,as was exhibited in figure 30. These are the cases referred to in

section 8.4.

9.4 A Wing-Fuselage in a Wind Tunnel

A rather extensive study was performed for the somewhat unusual configura-

tion shown in figure 43. Agreement of calculation and experiment was never

obtained, but the results are a good illustration of the versatility of the

method and the uncertainty connected with much wind tunnel data, The basic

confiyiratinn is a W-wing mounted on a round fuselage. In the wind tunnel

the model was mounted on a support strut, as shown in figures 43a and 43b.

Tne data iere supposedly co-rected for all tunnel interference effects (refer-

ence 15). Thus the initial calculation was for the isolated wing-body (no

strut or turinel walls) at a corrected free-air angle of attack of 4.43, which

supposedly corresponds to a tunnel angle of attack of 40. A comparison of

calculated and cxperimental section lift coefficients across the span are

shown In figure 44a. Agreement is good except at the kink and near the tip,

where viscous effects are important. The lack of response of the calculations

to the kink was surprising. However, an approximate potential flow calculation

gives results that agree in general character, but not In precise value, with

the calculations of the present method, This also indicates that viscosity

is responsible for the dip at the kink In the experimental curve of lift coef-

ficient. However, the agreement of calculated and experimental pressure

distributions is not good, as is shown in figures 44b and 44c for two spanwise

locations. A check on the blockage and upwash corrections that were applied

to the data raised some questions. Accordingly, calculations were performed

for the strut-mounted body in the tunnel, which is shown in figure 43. The

actual wind tunnel angle of attack of 4' was used. The results of this

calculation are included in figure 44. Figures 44b and 44c show a rather large

effect of the strut on the lower surface pressures, particularly at the

inboard location. The strut effect is mainly to increase blockage below the

wing but not above, Thus, lower-surface pressures are lowered (higher

velocity) and the result is the loss of lift shown in figure 44a. The effect

shown is much larger than the nominal upwash and blockage corrections, and

thus some doubt exists as to the validity of the data. This is an interesting
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application of the prog-am. No conventional correction could account for the

strut effect, but the program obtains it rather easily. However, the experi-

mental pressures are still more negative than the calculated in a way that

cannot be explained on physical grounds. A difference in reference static

pressure possibly could cause this discrepancy.
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0. IN7EFEEC! STUIF~S

!estnte4 belo"w are t.!ree zx&Tples '5 the use Ir the resent method to
Predict the t~fP1mnlm IntereferencF- effects on !iftirg wings cf other

to 4ies lin c~' r,;sP ~ t - bo~th lifting i nni'ng.The% cases discussed

!Pc7to ~x '19C. Arag.~r~ cuEor-tr$*c t 've a:1 Orh esseritil )roperties

o;f e.:ttial re'Iqq. !4nwevver, icey are n'ot. thwmselvL-. Oesins c.f interest, but

Stv t- 11 lutr ,te the cihip1"Hr: of 'ri nresent r'etned. On tJ~e other hand,

'JaE ces of 10.2.~i 10.2, an~rd 10.5 'vert ge~irite.- bv outsitle users and

t~ re-ults thr zcivez: were of intprest. Thess- cases tiws repriesent the first

; this rexeimle of an, interferowtc study, the bsic geomty'

rectanj1.r *i, rounted as 3 widwinq on a round fi.stelre This geceetry is

shownvt irp firure 37 dr4 is di--.ussed in se~ction 9.3 iim& reference 14. Two

exl~rmal-slcore r.ifigurations a;-e vvistdered. The fir'st c'n;ists ol a tip

t~ik.!~v~geoniptry an( e*eme! t dictribsjtimw f'or this case are shownii n

41tre iiilj. Thi- -ecoW.. conrigurat~on tonsists of t?~e sam~e external store

'sountei1 beneath tNh: vlJq on t !fort pyicr' zsiteredt at 6C.-percent senispan.

T~e cecoetry and elenw'nt distr~bution fnr t'ilr case aro stmoown in figure 45b.

iuk45a alsi Shows the "etrd stripO of elements inside the tip tank.
~~~~t ie'~~ r ~ct'.of -.B, .e will he a "hub va tft' tr~iling downstream

'-row n'e Op, ~: Howeer, tt03 does rict apiear to cause any numerical

prob.-, avw clcejiated sdrface ve':c Oiet; 'ier tbe dowv'stream end of the

tfn rt.Seem; ent~-~ tr; -,ble, Figto!e 41.b smows that the trailing edge

Ithe wtinj Is t:cttmw across thp spen. Accordingly, the "ignored element"

vr.X, Iijo of ;Pctrun '.G is used ftor -he %lrznts t-r, the lower surface of the

viir~q that are cnv',rx or partilly covervi by the pylo*', -as Illustrated by

the dotted planfor of the pylon Irt fiqare 45h.

Caiculations were pKerformed at 6 degrees anqgle of Attar., for the tMee

r nfip..rations.: the clean wini;, tho- wing with tio tark, and the wing with

;r in-rnted external st^-,. The rouni f'uselage wasi w:2ent in all cases.
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Calculated results on the winq are compared in figure 46. Figure 46a compares

spanwise distributions of section lift coefficient. The addition of the tip

tank to the wing prevents the lift from falling to zero at the tip, so there

is a large increase in lift coefficient in this region. Moreover, as pre-

dicted by various theories, the addition of a tip tank increases the effective

aspect ratio of the wing and thus increases the section lift coefficient all

the way to the fuselage. The effect of the pylon-mounted external store falis

to zero at the wing tip, but at the fuselage this effect is about the same

size as that of the tip tank but in the opposite direction. The major effect

of the pylon is to reduce lift in its vicinity by increasing lower-surface

velocities and thus reducing lower-surface pressures (figure 46c). Notice

that lift on the wing cannot be meaningfully computed at the spanwise loca-

tion of the pylon because the lower surface is not exposed to the flow. Of

course, there is a force on the external store, but it cannot be meaningfully

associated with a particular location on the wing. The bound vorticity

distribution is continuous across the span. The general form of this function

Is quite similar to that of the section lift coefficient. Indeed, it looks as

if a human had faired a plausible joining curve between the disjoint portions

of the curve of figure 46a.

Chordwise pressure distributions for the clean wing and for Ghe wing with

the tank are compared in figure 46b for a spanwise location close to the tip

tank. The increase in lift due to the tip tank is seen to be primarily due to

increased velocity on the upper turface of the wing. Figures 46c ano 46d

compare chordwise pressure distributions for the clean wing and for the wing

with pylon-mounted external store. The spanwise location of figure 46c

represents the strip of elements imediately adjacent to the pylon location.

The considerable reduction in lower surface pressures due to the presence of

the pylon and store is evident. Upper surface pressures are scarcely affected.

Figure 46d compares pressure distributions on the upper surface of the wing

corresponding to a strip of elements that lies directly above the location

of the pylon. The pressure distribution computed for the wing with pylon-

mounted external store is quite reasonable except for a "hump" between

6b-percent chord and 90-percent chord. Examination of the side view of

figure 45b shows that in this region the surface elements on the pylon and wing

have dimensions that are considerably larger than the local thickness of the

wing. Thus, the presence of pylon is sensed "through" the ving on the upper
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surface. An increase in element number could renuve this pressure "hump" but

this seems unnecessary. The proper way to fair the upper surface pressure

distribution is quite obvious. It is felt that the computed results of

figure 46 represent a very successful application of the present method.

10.2 Wing with Endplates

A case in which the calculated results were of interest to a user

concerned the effect of endplates on a wing. The wing in question has a

rectangular planform of aspect ratio 1.4 and an NACA 4415 airfoil section.

The endplate has a planform consisting of i semicircular forward section and

a rectangular rear section. The entire configuration is shown in figure 47.

Three-dimensional calculations were performed at 10 degrees angle of attack

with and without the endolates. A two-dimensional calculation was also

obtained for comparison. This last corresponds to a case of endplates of

infinite extent.

Calculated result3 z - oo,; v in figure 48. It can be seen from

figure 48a that the addition of the endplates produces a lift distribution

that is virtually independent of spanwise location. (The slight drop at the

last spanwire location is probably a numerical error and should be faired out.)

However, the level of the lift is much closer to that of the isolated three-

dimensional wing than it is to the two-dimensional value. The chordwise

pressure distributions in the synetry plane (figure 48b) also exhibit this

behavior.

In performing the above calculations the endplates were taken as simple

symmetric airfoils 4-percent thick and, of course, had sharp trailing edges.

If an endplate were present without the wing, it would he nonlifting, In the

presence of the wing the endplate has ar. inward lift above the wing and an

outward lift below it. The level of lift on tf.a endplate above +he wing is

considerably larger than that on the endplate below the wing (about three

times) and is about one-fourth the level of lift on the wing.

This case difters from previous cases in that it represents an inter-

section of two lifting portions of a configuration. The "ignore" option of
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section 6.8 was used on certain strips of the endplate to accommodate the

wing intersection.

10.3 Wing in a Wind Tunnel

The wing of aspect ratio 1.4 described in section 10.2 was considered

to be in a wind tunnel at 10 degrees angle of attack, as shown in figure 49.

If the wing completely spans the tunnel, the theoretical inviscid result is

the two-dimensional flow about the airfoil section in the presence of the

upper and lower walls, i.e., about the sideview of figure 49 considered as

a two-dimensional flow. However, the presence of the gaps between the wing

tips and the tunnel sidewalls allows the bound vorticity on the wing to fall

to zero at the tips and introduces significant three-dimensional effects.

The purpose of the calculation was to evaluate these three-dimensional effects.

Figure 50 compares calculated results for the above-described two-

dimensional case with those for the three-dimensional wing with and without

the wind tunnel sidewalls. All cases include the effects ofthe top and

bottom walls of the wind tunnel. In the three-dimensional case without side-

walls, the top and bottom walls have been extended horizontally a distance of

several wing spans. The importance of the gaps is quite evident in figure 50.

Results for the case of the small but finite gaps are much closer to those

for infinite gaps (sidewalls removed) than to those for zero gaps (two-

dimensional case).

10.4 Wing With Endplates in a Wind Tunnel

As a final example, the wing with endplates (figure 47) was inserted

in the wind tunnel shown in figure 49 to obtain the configuration shown in

figure 51. When calculations were performed for this case with the

equal-pressure Kutta condition, the iterative procedure of section 7.i3.2

appeared to he neutrally convprqent and thp iterations never fully "settled

down". This may have been caused by the close proximity of the elements on

the wind tunnel wail to the trailing edges of the endplates. In all cases

except this one and the strongly divergent case of section 8.8 the iterative

procedure of section 7.13.2 converged very rapidly.
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Because of the above situation, calculations were performed for the

configuration of figure 51 using the wake-tangency Kutta condition. Figure

52 compares the results obtained with those for the isolated wing in free

air. To evaluate the effect on the results of the form of the Kutta condition,

calculations were performed for the wing in free air using both forms of the

Kutta condition. As can be seen in figure 52, the effect of the form of the

Kutta condition is not large, and most of the differences between the calcula-

tions for the wing with endplates in the tunnel and the various other results

shown in figures 48, 50, and 52 are due to differences between the geometries.

It is evident from figure 52a that the effects of endplates and wind tunnel

walls together give a lift distribution independent of spanwise location.

(Again, the drop in lift at the spanwise location adjacent to the endplate

is probably a numerical inaccuracy and should be faired out). Moreover, the

level of the lift is much closer to the two-dimensional value than were those

obtained using endplates or tunnel walls separately (figures 48a and 50a).

The chordwise pressure distributions of figure 52b also show the inter-

ference effects described above. Also shown are the small but noticeable

differences between upper and lower-surface trailing-edge pressures in the

cases that used the wake-tangency Kutta condition. For the wing in free

air the pressure distributions calculated using the two forms of the Kutta

condition differ from each other only in the vicinity of the trailing edge

and are essentially identical over most of the surface.
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APPENDIX A

RELATION BETWEEN DIPOLE AND VORTEX SHEETS OF VARIABLE STRENGTH

(X , Z) n.- -f

b;d

ds = t ds

Figure Al. Notation for a general surface.

Consider a surface S in space bounded by a closed curve c. (If S

is a closed surface, c vanishes.) At any point ( , ,, 4) on S the

unit normal vector is n, and at any point on c the unit tangent vector

is t. The vector between the point (a, n, ) end a general point

(x, y, z) in space Is denoted l, and the length of this vector is

denoted R. Specifically,

R (x - 01 + (Y- O) + (Z- )

(A-I)

R - )2+ (y 2r + (z - )2

The gradient operator gradx  is used to denote that derivatives are taken

with respect to x, y, z. Similarly, grade is the gradient operator that I

differentiates with respect to C; n, 4.

THEOREM: Let the surface S be covered with a variable dipole distri-

bution of intensity w. (The dipole axes are along n) The velocity at

(x,y,z) due to the dipole sheet is equal to the sum of the velocities due to
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a certain vortex sheet of strength w on S and due to a vortex filament

of strength Q along c. The strength of the vortex filament is just the

local (edge) value of the doublet strength, i.e.,

= P (on c) (A-2)

The vorticity in the sheet is a vector everywhere tangent to the curves of

constant iJ and has an intensity equal to the magnitude of gradp . Specifi-

cally, if w is the vector vortex strength on S, then

=-n x grad 1 (A-3)

Since p is defined only on S, only the tangential component of its

gradient is defined. However, it is clear from the form of (A-3) that

the normal component of the gradient does not affect the result.

DISCUSSION: The Biot-Savart law gives the velocityat (x, y, z) due to

a vortex filament of variable strength o lying along any curve c as

v fds (A-4)

c

where s denotes arc length along c. Thus, the velocity due to the vortex

filament whose strength is given by (A-2) and which lies along a closed curve

is

vr  x ' R -- ds (A-5)
C R

The expression for the velocity due to a vortex sheet is obtained from (A-4)

by writing the vector vortex strength W = Qt, so that (A-4) becomes

v f x ds (A-6)

c

Now simply redefine w as a surface density instead of a linear density and

change (A-6) to a surface integral over S. This gives the velocity at

(x, y, z) due to a vortex distribution of strength w on S as
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v W j = - dS (A-7)

S

where dS is an elemental surface area on S. For the particular vortex

strength given by (A-3) this becomes

__ (n x grad) x 

V RJ3 dS (A-8)

S

or

_ f j( • grad P - (I " grad J O l 9

v . .... . - dS (A-9)

To obtain the velocity due to the dipole sheet, start with the point

source potential

s (A-l)

and generate the dipole potential

= n• grad K &s (A-li)

n

R 
3

where n is the unit vector along the axis of the dipole, and in this

application the axis is along the normal vector to S. The velocity due to

the dipole is

,n
vD (point) = -gradx D = -grad x  (A-1l2)

I gradx g I radx( g r )

The first term above may be evaluated with the help of a standard vector

differentiation formula taking advantage of the fact that n is independent

of x, y, z and the fact that curl = 0. The result isx
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(point) = (i. gradx)t - ( grad l

-~ (A-13)

R7 R5

The simple form of the second form of (A-3) is due to the simple form of I.

Thus, the velocity at (x, y, z) due to a normal dipole distribution of

strength w on S is

-D •f _1 +3 R' dS (A-14)

The proof of the theorem consists of showing that VD from (A-14) equals the

sum of v from kA-5) and -v from (A-9). This is done by starting with

(A-5) and: (a) writing out the line integral explicitly in terms of components,

(b) applying Stoke's theorem to each component separately to obtain surface

integrals over S, and (c) manipulating the result to obtain the desired

equality. The details are somewhat lengthy. A more concise proof should be

possible.

DETAILS OF THE PROOF: For a point on the curve c r, n, are func-

tions of the arc length s along the curve. The unit tangent vector to c

is

-~ dc. + d r1-4 + d (A15
-'d _ ds l (A-l5)

Taking the cross product with R from (A-l) and putting the result in (A-5)

gives

v I 0 d + - (z - 4)dn - (y - n) dp

R 7R]C

" z - d d n + (x - ) d c (A -16)(z - 4)dC + 0 dj + R Ij

c

f [ _T (Y - n)d - (x - )dn + 0 dc
c

128

I,%



Differentiation gives

+ 3 (A-17)

and similar formulas for the n and c derivatives. These are used below.

Stokes theorem in component form is

[Pd + Qdr, + Rd ] = ) - ( ) 2 A n

C

where

n = n i + n 1 + n (A-19)

This theorem must be applied to the components of (A-16) separately. The

result is

ff l [Y - n) -(I) n

V + 3

SR

4+ (z -)(J- .+ 3 ~ n3  d

+ I+ (- ) + + - ) 20J" f(x -) I n

2+ 39
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+n (x-~O+ RT (x - + 3 f n A-,'!O)

I (y -n) ' u+ 3 z" -r"(Tar b2

+(x ( " 3 )
R an Ry

Certain terms can be collected at once. The uR 3 terms add to give

2 dS (7-2n)

The coefficient of nIi includes the term

3p [(y _ n)2 + (z _ C)2] +-3 (x+ 5 (A-22)
RT R

Similar terms occur in the coefficients of n2T and n3 . Separating these

terns and collecting gives

Vr = 2 f / dS -3 fUT dS

+ 3 a {f- 02 , + (x - )(y- .,,2 + x - )z - c)n"3I
S + 4 - ) - * -n 2 - n)(z -i )n3J

+ ( - O -- On, + (z )e(ny - n)n
1 + (z 4)"n 3jd

f1. (1 N 0 -n% + (y- n) 2L n 1A (- 4) ?-H I- $.
Ry a ; an Ia r

S I
-((x E Jn -(y -n)"In2 - (z - 41 'n (A-23)at a

13o i a



-211 2,

+ ~ ~ n !(~ Y (z r~ .- n

- ( , - 3- ) 4 n
2 1-(z--)) -n 3 1

r I
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In the fwrh (ast) int',ral the terms in dotted brackets , lnave been added

and sohbt-acd1d. t ti,. tird *tegrpl, if f - r) is factored from the

first line, (.j - 0 f. the seco'd lim, ar4 (z - Ct frows the third line,

the eriai in ters are "dentical in all three cases. naely (i- A). In

the f.urth Integri, the -dtd . bered lines are identical except for the

crp;:nert of , and these three lines add txgether to give (R - grad y)n

1n the ffyirth inti)jral tEv cyen r Lbree lii'es are identical except for the

liff!erertiatlon varia5le, and tnese throe ilines 'dd together to give

S( ) grad.v. Using all these res!iOts ',-23) #t"'ctwes

n dS

SS

Thlis U .im 'A-) and (A-14)

V- - (A-25)
D lw

a. r.-quired.
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APPENDIX B

LITERATURE REVIEW OF SHAPES OF TRAILING VORTEX WAKES

As part of the present work a literature search has been conducted into

the problem of locating the trailing vortex sheet. The idea is that the more

information that can be collected on this matter the more accurate will be the

specification of the wake to the progrcm and thus the more accurate will be

the calculated pressures. In view of the results of section 8.5, it appears

that the location of the wake c- a lifting body is not very importtint as far

as the surface pressures on that body are concerned. Wake position mey be of

greater interest in the case where one body is generally downstream of another

iifting body.

It is fortunate that the position of the wake does not appear to be

critical, because the literature has proved very disappointing in this regard.

First, there are very few articles on this subject. Second, most of those

few deal with the asymptotic wake location many chord lengths behind the wing.

This is the important region for determining the effects of a wake on another

aircraft, but the wake position at such remote locations seems unlikely to

affect the surface pressures. Third, the handful of articles that discuss

the wake in the first few chord lengths behind the wing are to some extent

contradictory. Some of the applicable articles are discussed below.

Reference 17, an experimental study of straight wings of fairly high

aspect ratio on a fuselage, reports that the wake vorticity is essentially

all concentrated into the tip vortices right from the beqinning. The tip

vortices separate from the wing tip at about the quarter-chord (not the

trailing edge) and go straight downstream parallel to the freestream direction,

i.e., they do not follow what are normally thought of as the streamlines of

the flow.

Reference 18 proved very encouraging. The configuration was a swept wing

on a fuselage, and the study was both theoretical and experimental. The wake

behind the wing was examined from the trailing edge downstream to a distance

equal to one span. Various theoretical models were considered. One model

consisted of exactly the model used in many of the cases of this report.
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Specifically, the wake was taken to lie straight back in the wing midplane

an4 the spanwise vorticity distribution was the same as at the wing trailing

edge. Downwash computed by this model gave excellent agreement with experiment -

much better than a model that considered the wake to be rolled up into tip

vortices.

Reference 19 presented the results of numerical computations for wake

locations behind isolated wings, both straight and swept. The rolled up

portions of the wake near the tips lay essentially straight back in the

freestream direction. The wake center line lay much lower, but the vorticity

was quite weak in the whole region near the centerline.

However, reference 20 contradicted this last result. Based on experi-

mental studies of swept wings, the authors showed that the wake centerline

lay essentially straight back. This report contains a large amount of down-

wash data that is difficult to apply to wake-shape estimation. This occurs

in many reports.
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Figure 25. Planform of a swept tapered wing showing lifting strips

used in the calculations. A
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Figure 27. Spanwise distributions of bound vorticity on a swept tapered

wing at 8 degrees angle of attack computed by the two bound

vorticity options.
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Figure 28. Spanwise distributions of section lift coefficient on a swept
tapered wing at 8 degrees angle of attack computed by the two

bound vorti city options.
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Figure 29. Spanwise distributions of bouna vorticity on a swept tapered
wing at 8 degrees angle of attack computed with two orders

for the input points.
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Figure 30. Spanwise distributions of section lift coefficient on a swept

tapered wing at 8 degrees angle of attack computed with two

orders for the input points.
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Figure 33. Two element distributions on a wing of rectangular planform

mounted on a round fuselage.
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Figure 34. Comparison of results calculated for a rectangular wing mounted
on a round fuselage using two different element distributions
at 6 degrees angle of attack. (a) Spanwise distributions of
section lift coefficient. (b) Chordwise pressure distributions
at 61.67 percent semispan.
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(a)

(b)

Figure 39. A supercritical wing mounted as a high wing on a fuselage.
(a) The complete cor'iguration. (b) Airfoil section of
the wing.
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(a)

(b)

Figure 41. A conventional wing mounted as a low wing on a fuselage.

(a) The complete configuration. (b) Airfoil section of
the wing.
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(b)

Figure 43. A W-wing on a fuselage mounted on a strut in a rectangular
wind tunnel. I
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