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Abstract 

Radiation pattern of a focus-fed paraboloid is calculated by asymptotic 

physical optics (APO) and geometrical theory of diffraction (GTD) for dipole 

and Huygens source feeds. It is shown that the GTD diffraction coefficients 

are approximations to the PO diffraction coefficients and are valid only in 

the proximity of the shadow and reflection boundaries. Some errors in the 

calculation of GTD diffraction coefficients are corrected. Rear radiation 

is calculated by another asymptotic expansion of the physical optics inte­

gral and is compared with the results obtained by other asymptotic techniques. 

This new expansion is finite in the back direction of the antenna where other 

methods diverge. Also front to back ratio of a paraboloid, ratio of front 

radiation to back radiation, is derived by using this new expansion and the 

results are compared with those predicted by equivalent edge currents method. 
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1. Introduction 
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Aimer et penser: c'est la veritable 

vie des esprits. Voltaire. 

The physical optics (PO) approximates the currents on the reflector of ;, 

reflector antenna system by the currents calculated from the theory of Geo­

metrical Optics (GO) and uses this current distribution for determining the 

scattered field. This formulation, involving two dimensional phase integrals 

with rapidly varying kernels, generally requires lengthy and costly numerical 

integration. Moreover, it does not satisfy the reciprocity theorem except at 

a distant axial point in focused condition [1]. In spite of its approximate 

nature and other shortcomings, PO has been proven very successful in the 

analysis of reflector antennas. 

When the radiating reflector is large compared to wavelength, the scattering 

process lends itself to a simple geometrical interpretation in terms of 

reflected and diffracted rays satisfying Keller's extended version of Fermat's 

principle. This method, initated by Keller ([2], [3]) and known as the Geome­

trical Theory of Diffraction (GTD),is based on the asymptotic solution of wave 

equation for a plane wave incident to the edge of a perfectly conducting straight 

half plane ([4] to [6]). Assuming that, at high frequencies, a curved edge 

locally behaves like a straight half plane and the incident field is approxi­

mately a uniform plane wave, the GTD is systematically applied for finding 

scattered fields from curved reflectors as well. GTD, in the last decade, has 

been very popular. and is extensively used in the calculation of antenna radi­

ation patterns ([7] to [10]). 

Asymptotic nature of GTD also raised the question on the possibilities of 

applying asymptotic techniques to evaluate the phase integrals widely encoun­

tered in the antenna theory. In this context, Rusch evaluated the physical optics 

integral asymptotically [8]. His solution which is singular at the reflection 

boundary has been recently improved by Knop [11]. This method of approximating 

the physical optics integral is known as the asymptotic physical optics (APO). 

The first order approximation to the PO field is found to come from two station­

ary points located at the intersection of the ~-plane containing the observation 

point and the reflector edge. These two stationary points satisfy Keller's 

extension of Fermat's principle and consequently coincide with the diffracting 

edge points determined by the GTD. 
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The object of this report is to investigate the differences and similarities 

between the GTD solution, simulating a curved reflector by a straight half 

plane and assuming an incident plane wave, and the APO solution which approx­

imates the surface current distribution by geometrical optics. Of-course 

neither of them is exact for calculating the radiation from reflector antennas 

but they are easy to handle and do not require large computer time as PO does. 

For this reason, these asymptotic techniques constitute powerful tools in the 

analysis of large reflector antennas. 

In Chapter 2, feed radiation which illuminates the reflector surface and provides 

direct radiation in the spillover region is studied. Two main feed polarizations 
n 

considered are those of a Huygens source and of a dipole. Only the cos e feed 

patterns and the one yielding uniform aperture distribution are studied but the 

analysis can easily be extended to the feeds having different patterns and 

polarizations. 

In the present work, only the paraboloid reflector is considered but the methods 

employed are applicable to other reflector configurations as well. 

In Chapter 3, GTD diffraction coefficients and scattered fields are calculated. 

It is observed that GTD radiation field is discontinuous at the reflection 

boundary and yiels erroneous results in the shadow region. Chapter 4 deals with 

the asymptotic solutioris of the physical optics integral and their comparison 

with the GTD scattered field. It is shown that GTD diffraction coefficients 

are nothing but the special case of the PO diffraction coefficients and they 

yield correct results only in the neighborhood of reflection and shadow bounda­

cies. Furthermore, it is confirmed that in the vicinity of the braodside 

direction, the scalar aperture field method avoids complex phase integration and 

yields good results. The radiated field in the rear caustic region is found by 

another asymptotic expansion of the physical optics integral. This formulation 

is .finite at rear caustic unlike the other asymptotic solutions and is con­

ceptually the same as the equivalent edge currents method generally used to 

calculate the rear radiation ([6] and [12] to [14]). The latter. derived from GTD 

yielding' erroneous results in the shadow region, is not reliable other than being 

cumbersome. The front/back ratio of a paraboloid (the ratio of front radiation 

to back radiation),which is important in minimizing the antenna noise and the 

interference between communication systems,is studied as a function of some 

antenna parameters. Furthermore, the effect of edge illumination to the antenna 

gain and to the sidelobe levels is investigated. 
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2. Feed Radiation 

Geometry of a front-fed paraboloidal reflector antenna is shown in Fig. 2. I. 

Let uS assume that the incident field on the paraboloidal surface due to a 

feed located at the focus (F) is given by 

(2. I) 

where A is a normalization constant and Gfe and Gf~ stand for the E-plane and 

H-plane feed power patterns respectively. On the other hand, from the para­

boloid geometry 

2.f 
P = -1-+-cos--::"a 

(2.2) 

Commenly considered feed patterns to not depend upon the variable ~; if we 

take 

Eq. 2.1. can readily be written as 

(2.3) 

which represents a feed having Huygens source polarization characteristics 

with a y-directed electric field vector. 

If E- and H-plane feed patterns satisfy the relation 

then the electric field vector of the feed may be rewritten as 

(2.4) 

which has the polarization vector of a y-directed dipole. 

In the present work which is valid for every E- and H-plane feed patterns, 
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only the ones described by Eqs. 2.3 and 2.4 will be considered. For the sake 

of easiness, these two patterns will be written in a compact form as 

(2.5) 

where 

{ 

c:.o.s6 

US.... i 

for 

for 
(2.6) 

n 
The feed patterns considered in this work are the cosS patterns thoroughly 

studied in the literature [15]; 

G { 
2. (n +1) C.OS"e 

f (el = 
o 

(2.7) 

where n is a positive integer (n = 1,2,3, ...• ) and the feed pattern yielding 

uniform field distribution on the aperture plane, namely 

(2.8) 

At the stationary points Qt' which will come into picture in the following 

chapters, the incident electric field is simply; at ~(po,a,~) 

Eti -E eTkf>o~ ( ,., ") 
::. t (po) cx, <1» = A - ~ G.f(()() UCl sin' e +cos.~ cp (2.9) 

fo 
and at 

where 

Q (p ,a,~ +11) 
- 0 

(2. 10) 

(2. II) 

The feed which is located at F, radiates directly into the free space as well 

as furnishing the paraboloid surface with incident electromagnetic waves. In 

this case, the direct feed radiated electric field may be expressed as 



z 
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(ignoring A 
-jkR 

e ) 
R 

(2. 12) 

where 

(2.13) 

The reader is invited to pay attention to distinguishing the source coordinates 

(p,e,~) from the observation point coordinates (R,e,~). 

y 

D 
a~ 

2 

/ 
/ 

~ ........... - / 

10 z 

I 
I 

x 

X I 
I 
I 

Fig. 2.i Geometry of a focus-fed paraboloid. 
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3. GTD Analysis of radiation from paraboloid 

Let us consider a paraboloidal reflector, of radius a, whose edge lying in 

the XY-plane as shown in Fig. 3.1. Let the focus of the paraboloid be at F, 

the origion of (x,y,z) coordinate system. 2a is the subtended angle by the 

paraboloid. As in Fig. 2.1.\(p,e,~) and (R,8,~) respectively denote the 

source and far-field coordinates. 

According to the extension of Fermat's principle by Keller, at high frequencies 

(2a/A » I), the major contribution to the radiated field at P(R,8,~) comes 

from two stationary edge points Q (p ,a,~) and 
+ 0 

being (p,e,~) coordinate system. These two points 

Q (p ,a,~+n), the reference 
- 0 

(Q~) are located at the 

intersection of the paraboloid edge with the plane passing through FOP (Fig. 

3.1). As P approaches to ~ z-axis, the plane defined by FOP degenerates to a 

line and consequently the contribution of the stationary edge points of the 

scattered field begin to loose their dominance and other points begin to 

contribute considerably as well; at the rear caustic direction (8=0), all the 

points on the paraboloid edge diffract with equal intensity, while for axial 

caustic field (0=n) , scattering from the .paraboloidal surface cannot any more 

be reduced to diffraction from the edge and the contribution of each point on 

the surface should be taken into account by integration. 

For these reasons, GTD fails to estimate high frequency scattering from the 

paraboloid in the neighborhood of rear and axial caustics and these fields are 

calculated by equivalent edge cirrents method ([12] to [14]), which consists of 

integrating the diffracted field along the reflector edge, and physical optics 

integration ([IS] to [17]) respectively. 

The rays contributing to far-field radiation, for first order diffraction to 

which we confine the analysis, follow three paths, namely FQ~P, FQ_P and FP 

which stands for the direct feed radiation. Since R » OF and due to the fact 

that. all the contributing rays lie in the same plane, from Fig. 3.1 it can 

easily be observed that 

(3. I) 

for amplitude (3.2) 
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Fig. 3.1. Geometry of diffracted rays. 

x 
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<I> <I>+1T 

edge of the 
paraboloid 

z 

Fig. 3.2. Plane passing through the edge of the paraboloid. 

F 
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5~ z R - po co~ (oe :+ e) for phase 0.3) 

where s+ are the unit vectors along the diffracted rays from Q~. 
~ 

On the other hand, e~ is the unit tangent vector at Q~ and ne~, unit vector 
~ 

in the direction of OQ~ (Fig. 3.2). Radius of curvature of the paraboloid edge 

which describes a circle in XY plane is equal to the radius a at every ~-plane. 

Thus, from Figs. 3.1 and 3.2, it is easy to write 

(3.4) 

" " net. S:!: _ + sine 0.5) 

• Fe. = po (3.6) 

1<.:0. 0.7) 

Inserting Eqs. 3.4 to 3.7 into Eq. A-3 yields the caustic distances 

+ sinC(, pc+ = -fo -.-
- .sin C9 

(3.8) 

From Eqs. A-5, A-6 and 3.8 

(3.9) 

and 

(3.10) 

3.2 Diffracted fields 

From Fig. 3.3, it ~s readily found that 

l: = 
1t-OC 

2. 
(3. 11 a) 

't~ 0{ +l1t -8 - 2. 
(3.11 b) 
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SB. ..... 
.... 

L-~~ ____________ ~_F 
o 

Fig. 3.3. Geometry of incident and diffracted rays at Q+. 

____ ~O~------------~~~F 

.' 
.. ·····yd 

SB·· .... n 
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e-

f" o 

Fig. 3.4 Geometry of incident and diffracted rays at Q_. 
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Substituting Eqs. 3.9 to 3.11 into A-4, We get 

D: ~~ l 
III ) 

c~~ e l F (W~ e. 1t 

+ -
Sift O(-e s 2Jlltk. (3. 12) .:t 2. 

where 

(3.13) 

Note that the transition function at reflection boundary is equal to unity 

because of Eqs. 3.10, A-7 and A-iO. 

Finally, Eq. A-I reduces to (from Eqs. 2.9 and 3.1 to 3.12) 

where, from Eq. A-2, 

E~} ! E; ~ 
E~ = E~ J 

(3.15) 

-jkR 
e 

and A ---R- factor is ignored. 

Proceeding similarly as in the previous section, we easily find 

'6.-
• 

"It' - 0( = 
2. 

(3.16 a) 

e < '1r;'fX. } 

e)¥ 
(3.16 b) 

From Eq. A-4, we find the diffraction coefficient at Q_ 
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D"h + (3.17) 

s 

where w_ is defined by Eq. 3.13 and 

-1 e<~ 
2. 

to= 0 "It-IX <:9 < J!. 
2. "2. 

(3.18) 

1 e) "JCh 
Note that the transition function at the reflection boundary is equal to unity 

by virtue of Eqs. 3.10, A-7 and A-10. E is equal to zero in the region where 
o 

the diffracted field at Q_ is shadowed by the paraboloidal reflector. 

Substitution of Eqs. 2.10, 3.1 to 3.3,3.8 to 3.10, 3.16 and 3.17 into A-l 

yields the singlY diffracted field at Q_ 

E~ 

where, from Eq. A-2, 

Ea E~ 1 
E~ 1 

(3.20) 

Total radiated field (it) at p(R,e,~) (Fig. 3.5) is the sum of two singlY 

diffracted fields with the direct feed radiation wherever observable. 

From Eqs. 2.12,3.14 and 3.19 we get 
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where 

respectively. 

It is a known fact that E- and H-plane radiated fields from a paraboloid tend 

to have equal amplitudes as the observation point approaches forward and rear 

axial directions. Eq. 3.21 can be shown to satisfy this condition approximately 

in the neighborhood of the former but not for the latter. For this reason, 

GTD is expected to fail in predicting the backward radiation accurately enough. 

, 
\ 

1T-a \ 

p 

__ ~~~\~~ __ ~+-~~~F 

Fig. 3.5 Calculation of the total radiated field. 



- 13 -

4. Physical optics analysis of radiation from paraboloid. 

4.1. Problem formulation 

Scattered far-field from a paraboloid, whose geometry is shown in Fig. 2.1, 

is given by [17] . A ""R 

- 'kR ftr- -,," ] Jkpp. 
-jkrt e

l 
11 l Js - ( Is . R) RedS 

4lt R. S 

where n = 120TI is the free space intrinsic wave impedance and k = 2TI/A 

(A = wavelength). From the geometry of a paraboloid, it is known that 

2.f loB 

r = --.."... -= f s.e~ 
t +c.0$9 2. 

(4. I) 

(4.2) 

where f denotes the focal distance (Fig. 2.1) and the surface element dS is 

dS= 2pl. Jed, 
(4.3) 

If the paraboloid is assumed to be at the far-field of the feed located at F 

(Fig. 2.1), the incident electromagnetic fields on the paraboloidal surface 

(E., ii.) sat isfy the relation 
1 1 

Paraboloidal surface current density J is given by geometrical optics 
s 

approximation 

illuminated surface 

shaded surface 

where n, given by 

,.. 
n_ & 

-CO~_ 

.t 
r +sin£ " e I 

is the outward unit normal vector on the surface. Incident electric field 

vector considered is, from Eq. 2.5, 

(4.4) 

(4.5) 

(4.6) 
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where A, Gfce) and ue are defined in Chap. 2. 

Substitution of Eqs. 4.4, 4.6 and 4.7 into 4.5 yields 

'k 
_ [1.. AJGf'9) ~ ~osi [u9~anl r.in+ p +Ue sincjJ e -+ r.cu.41 ~] 
1 ~ illuminated surface 

$": 
() shaded surface 

which, in rectangular coordinates, reduces to 

(4.7) 

(4.8a) 

'k 
~AJG (ei l ~O~~ r(Ue-l)sincjJco~cJI x+{1+(ue-J)sin2cj1H-uef.on!.sincjl z] 

- ~ ~ r l.~ (4.8b) 

Is = . illuminated surface 

o shaded surface 

The above formula shows that if the feed is a Huygens source CUe = 1), the 

current induced on the reflector surface has no cross.polar component (x-com­

ponent). 

Decomposing J into its e-and ~-components using Appendix B, one easily gets 
s . 

J .... ~ r (4.9a) 
~.e '" 

illuminated surface 
C shaded surface 

and -jkp 

[

.60 AJG (9) ~ c.os! [<:o.si - (Ue-L) .sin~ sin (~-4»] 

J
-.$. ~ f r .t illuminated surface 

S-'i' = 
() shaded surface 

(4.9b) 

With the help of Eq. 4.9, the integration over the whole reflector surface 

reduces to that over.the illuminated surface only: Decomposing its e and ¢ 
components,scattered field may be written as 



Ee 

Ecp 

where 

and, utilizing Appendix B, 

Eq. 4.10 may also be written as 

- 15 -

te ~ Jo<' r;:-:::- -jkp (1- cos9c.o.\e) 
E~J =-j kpsi"e-.jGf(9) e I de 

o 
where 

(4.10) 

(4.12) 

(4.13) 

{ c:o.)es\n~} 1 J2j~c.OS(~-I#l) {SinS1 .\- e J2~ jpco.s(i-4» 
1-= 2.1( e d+ + Us a"i: s'n~ e d4> 

c:.osi 0 0 2 n: 0 

{
cose} u 1 J2~ {COs(~-<P)} j"c.o.s(~-4» 

+ . ~ slnlJ> e d¢ 
_ i ~ It sin ( cfH» 

o 

(4.14) 

From Eqs. D-2, D-7 and D-8, I reduces to 

where S is defined by 

(4.16 ) 
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Inserting Eq. 4.15 into 4.13, we get 

E } lc:oseSi1\~}-jJ1Jct. rr-::'I jkr(l-c.os&c.o.se) 
e = e 7. kp.s'n9~G~(9) of!?»~ e de 

Et C:~i 0 . 

{ c.os.es.',n~}-J!!:f 'fj ~ _jkp(f-to.I6CA19) 
+ e 1. kpsineJ~f(9) l o{~) + J.2(~) 08-1 e de 

~~+ ~ 
o 

{

Si09sin iP } JCX r7'::7 -jkp(I-Uli6CoJS) (4.17a) 

+ 0 0 kr Sit'l8 ~GflaJ ue -han} J. (~) e d& 

From Eqs. 4.8 to 4.15 it is evident that the first (second) integral term of 

Eq. 4.17a represents the radiation from y-polarised (x-polarised) surface 

currents while the last integral accounts for radiation from z-directed currents. 

For Huygens source feeding (ue = I) the second integral term vanishes. Further 

in the vicinity of broadside direction, radiating aperture looks like a y-direc­

ted dipole. 

For future use, the preceeding equation will be written in a more compact form as 

E 

ll
c.~e6in~J,1( jO(. ~ r -jkp(l-uu6cos6) 

E ~ = J10 krr.inS"G.rf8) LJo(~) O~+I +J.2(~) u~-,] e dl} 
'.tI' c.ost 

{

s'11\e sin~} JOl ~ 8 J -jkp( 1- ~&(.O.\ e) 
+ kp ,ina ~ Gila) ua ~n.2 f (~) e cl& 

{) 
o 

(4.17b) 

It is interesting to note that the first part of the Eq. 4.17b represents the far 

field radiation from a circular aperture of radius a over which the electric 

field vector is polarised on the aperture plane. Further, if ue is replaced by 

unity, then it reduces to the radiation from a circular aperture with y-pola­

rised electric field distribution on it. This method of calculating the far 

field of a paraboloid, which is valid only in the close vicinity of forward 

and backward axial directions, is known as the aperture field theory [15]. 

It is difficult to perform the integrations analytically in the above equation. 

Besides, since the Bessel functions vary rapidly with e when the observation 

point is not near to rear or forward axial directions, Eq. 4.17b, having a 

rapidly varying kernel, is not suitable for asymptotic evaluation 

([19] to [22]). 
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4.2. Asymptotic physical optics (APO) 

In the pervious section, we observed that Eq. 4.17b has a large parameter in 

its phase term and a rapidly varY1ng kernel. For this reason, it can not be 

evaluated asymptotically. 

We know that for large values ot S, the Bessel functions in Eq. 4.17b can 

asymptotically be written as [23] 

(4.18) 

Eq. 4.18 can readily be obtained by expanding Eq. D~I asymptotically. From this 

expansion one may easily observe that the first term of the la.st part of Eq. 4.18 

is equal to the contribution of the plus stationary point 

(E-7) 

and the second term 1S the contribution of the minus stationary point defined by 

(E-8) 

It 1S of importance to note that the large values of S corresponds to the values 

of 8 sufficiently far from the forward and rear axial directions. 

Substituting Eq. 4.18 into Eq. 4.17b and rearranging, one may write the 

scattered field as a sum of the two stationary points contributions 

• 

where 

(4.19) 

(4.19a) 
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The new integral kernel is found, from Eqs. F-2 and C-4, as 

\\'(9,4>:1:) = lkp sin2. e ~e 

and 

-J' 'If + -e 't 

G~ 16) kpsin 9 

2.1t sin.9 

-J'1I . -
e It 

(4. I 9b) 

(E-9) 

(E-IO) 

Comparison of Eqs. 4.19 and C-4 shows that Eq. 4.19a corresponds to the stationa­

ry phase evaluation of 4.10 with respect to ~ where the contributions of the 

end-points, ~ = 0, Zn, identically cancel each other. From the above reasoning, 

it is easy to conclude that, away from the axial directions, the most signifi­

cant contributions to the radiated field from a large paraboloid come from the 

points located at the intersection of paraboloid with the stationary planes 

(defined by ~~) lying at the same plane as the observation point. These points 

obviously satisfy Fermat's principle, i.e. they make Eq. 4.12 stationary. 

Since Eq. 4.19b varies slowlY with 8 and Eq. E-9 contains a posit if large 

parameter, the requirements for an asymptotic evaluation are satisfied. For 

this reason, Eq. 4.19a can be evaluated asymptotically. 

4.2.1. An asymptotic evaluation of Eq. 4.19a. 

Eq. E-II shows that the phase term in Eq. 4.19a has stationary points, given by 

(4.20) 

which disappear from the integration interval (0 ~ e ~ a) as the observation 

point swings across the shadow boundary. The most significant contributions to 

the integral equation 4.19a come from the stationary points, defined by Eq. 4.20, 

and from the end-points of the integration interval (8 = O.and a). Evaluation of 
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such an integral, where the stationary points uniformly approach the end­

points, is explained in Appendix C. 

Using Eq. C-6, Eq. 4.19a may be asymptotically written as 

E:} y:: 1 +11:~}W( s± ~:) 
E~ 1 Ie~ I s{? 

(4.21) 

where the only end-point contribution is due to e = CI. since the kernel of Eq. 

4.19a vanishes at the other end-point, e = O. From Eq. C-5, the first order 

end-point contribution is 
-J(1.kPoSi,ilOC;8 ± ~) 

~in IX +9 
:2. 

and, from Eq. C-4, the first order stationary point contribution simplY is 

=1 + 
Kk~ 

-::.1 CO~( e + ~ ) 

C.OS ~ 
2.. 

(4.22) 

(4.23) 

(4.24 ) 

defined by Eq. E-23, results from the phase term (Eq. E-20) while 
• j1T / 4 

is due to the kernel given by Eq. F-4. Bes1des, W(s+ e ) is 

defined by Eq. C-I0 with an argument 

(4.25) 

which is determined by Eq. C.13. 

Note that as the observation point approaches the shadow boundary, second term 

of W function (Eq. C-IO), multiplied by the stationary point contribution, 

identically cancels the end-point contribution thus yielding a far-field equal 
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to minus half the incident field as expected. When the observation point 1S 

considerably far from the shadow boundary, W function reduces to unity or 

zero in the shadow and illuminated regions respectively. 

4.2.2. A second asymptotic evaluation of Eq. 4.19a. 

since the kernel of Eq. 4.19a is a slowly varying function of e, the signifi­

cant contribution vi this integral comes from the neighborhood of the stationary 

points e~ = ~ 8 and from that of the end-point e = a. Expanding the phase 

function around these points and assuming that the kernel, in these neighbor­

hoods, varies slowly, Eq. 4.19a can be easily evaluated by asymptotic 

techniques. 

a) ~~~~~£~~EY_E£~~!_S£~!E~E~!i£~ 

Expanding the phase function around the stationary points (Eq. 4.20), one gets 

from Eqs. E-14 to E-17 by limiting the expansion at first two derivatives 

(4.26) 

In the neighborhood of stationary points, Eq. 4.19a is approximately 

+ h oc. Es= } =1 e(1-9 1 cPt)} f ~i. kp(e) (e ;e)1-

E;i ht(±eA)t) 0 de 
(4.27) 

which, from the definition of Q function (Eq. A-B), reduces to 

(4.28) 

b) ~~~:E£~~!_S£~~EiE~~~£~ 

Expanding the phase function around the end-point e = a and limiting this 

expansion at first two derivatives, one easily gets 

(4.29) 
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Proceeding similarly as in the case of stationary point evaluation, one 

obtains 

E:~ 1 =/ helar, ct>;!:)} ~\lJ(C(,<I)t)J~j[qJa(C('(h) (9-~) +:i tV98 (",~:t) (6-0It] 

Eip J ht(ex,41:t) 0 dB (4.30) 

From Eq. G-5 

where 

d + _ lila (ClI,(h) _ 

F(ldtIJ~) 
-j lI'6 (Ill, c/l t) 

- - J.2.ll/Iee (OI,4>t)1 - Ilcos~ - cos(oc =+ ¥) I 
Insertion of Eq. G-5 into 4.30 yields 

( + +).. 4 where I 0-' I ~- 1S def1ned by Eq. .22. 
e - e,¥ 

The scattered field (Eq. 4.19a) is found by the summation of Eqs. 4.28 and 

4.2.3. Total radiated field 

(G-5) 

(G-4) 

(4.31) 

Total radiated field from the paraboloidal reflector antenna system is equal 

to the addition of direct feed radiation (Eq. 2.12) and the total scattered 

field given by Eq. 4.21 or Eq. 4.32; 



E~ 
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t 
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E;}·IEe}lIs~} 
+ + _ - + u (~ -6) 

Ecp Ei lsi> 

where the direct feed radiation is written in terms of the stationary point 

contribution. 

If the asymptotic evaluation given by Eq. 4.21 is used, Eq. 4.33 is simply 

E.a lee lee Ise jll -t.} +} -) \ + 
-l =! + J _ - + } [W6sf-' eif:) + U (e-«ij U ("~ -9) 

E~ lei> 1 Ie~ 1st 

where w(s_e
jn

/
4

) = 0 by virtue of Eqs. 4.25 and C-II. 

If Eq. 4.32 is inserted into Eq. 4.33, one obtains 

(4.33: 

(4.34 

(4.35 

Q( f2kP(8) 1a.!.281 e
j1T

/ 4), . . where V. wh~ch ~s approximately equal to zero except in 

the near vicinity of the shadow boundary, is considered to be zero. 

4.3. Asymptotic physical optics theory of Rusch 

Rusch in his asymptotic physical optics theory [8] applies the method described 

in section 4.2.2 directly to Eq. 4.10 instead of proceeding with Eq. 4.19a; but 

by virtue of the first part of Eq. 4.19b, they yield the same result. In ad­

dition to this, he performes the asymptotic evaluation in aperture plane and in 

cartesian coordinates. 

Stationary point contribution ·of Rusch is equal to minus the geometrical optics 

term and in Eq. G-S, he takes the transition function as unity [8]. These 

respectively yield discontinuous and infinite fields at the shadow boundary. 

His theory has recently been extended by Knop [II] by introducing the transi­

tion functions in Eq. G-S. Knop's solution, with a transformation given by 

Table 4.1 yields a total field ([II] , Eq. 26) 



- 23 -

Table 4.1 
Transformation of Knop's variables 

e 

1 1 
Knop 

k (Pb - Zsr l:os9 + a.r.ine) 

~IW!' =J k~sin911:t fan ~ I 
+Un eb 

:2. 

po 

1t-OC 

Safak 



- 24 -

where 

and 

ke
± 

_ sec:.~ c.os e 
2. :2. 

p + are the caustic distances at ~ stationary points Eqs. 3.8 
c-

± 0... sinO( 
IV sine 

(4. 36) 

(4.37) 

(E-23) 

(4.38) 

The difference between the arguments of the transition functions of Knop and 

those of section 4.2.2 may be attributed to the approximations made by Knop in 

evaluating Eq. G-5 [II]. 

Physical optics diffraction coefficients ([II], Eq. 33)·, with the aid of Table 

4.1 may be written as* 

F(r~ ij~) 

sin ex +8 
l, 

* In [II , Eq. 33)~ term in front of Eq. 4.39 is missing. 

(4.39) 
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4.4. Comparison of GTD and PO diffraction coefficients 

Physical optics diffraction coefficients from Eqs. 4.22 and 4.31 may easily 

be written as 

D~}= F (Id±\ jU) 

Di .sin oc. + e 
2. 

where 

and 

k~}= 
K~ 

~os(e ::; f) 

cos~ 
2. 

d;t = 2kp.,\cos 2:' I 

c.os§ 
2. 

\2co.s ~ - COS(oq:~)\ 

sin C( +6 
2. 

Comparison of Eq. 4.40 with Eq. 4.39 show~that in Knop's PO diffraction co-
. . i j1T/4 . tJ1T 

eff~c~ents id+ e ~s replaced by y e 4 
- t 

in the argument of transition 

functions. 

GTD diffraction coefficients are from Eqs. 3.12 and 3.17 

(4.40) 

(4.24 ) 

(G-4) 

D h = e,i ~ r F (W+ J~) + 1 
s 2J21tk L siYl~ - c~~ (4.41a) 

D'h 
-jn J1f 

~:Sti - -toe If [F(w_eif) + s 
lJ2.ltk sin~ 

2- 2. 

(4.41b) 

where 

w± = J2kpo I sin 0( ;" e I (3. 13) 

and 

-1 e<~ 

Co = 
2. 

0 Trp<e< ~ 
(3.18) 

i e).!!: 
'Z. 
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It is easy to observe that ~n the vicinity of the shadow boundary (0 ~a) 

Eq. 4.40 may approximately be written as 

since 

KJ} { 11 
K~ 58,oJ 1 J 

and 

F(wr ;~) 

S'!n ex. +6 
2 

Further, in the vicinity of the reflection boundary (0 = ~TI), Eq. 4.40 ~s 

approximately 

F (Icit! j ~ ) 111 
cos ~ -1 r 

since 

in the neighborhood of the reflection boundary. 

(4.42) 

(4.42a) 

(4.42b) 

(4.43) 

(4.43a) 

Eqs. 4.42 and 4.43 become equal to half the stationary point contribution at the 

shadow and reflection boundaries respectively (Eq. G-6). This is because of the 

fact that,at these boundaries)~(a,~~) (Eq. E-18) is stationary and d~ goes to 

zero. Eq. 4.43 still predicts infinite fields at the reflection boundary be­

cause of vanishing ~88(a,~~) at 0 = ~TI (Eqs. E-21 and G-6). In fact, the 

actual analysis is not valid at· this boundary, firsly, because the asymptotic 

expansion of Bessel functions (Eq. 4.18) are valid only away from the caustics 

and secondly, as 0 -;- +TI it becomes impossible to identify a large parameter in 
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the phase function (Eq. E-I) to be able to approximate Eq. 4.10 asymptotically. 

Bearing in mind that in the neighborhood of shadow boundary Eq. 4.43 is 

negligibly small compared to Eq. 4.42 and vice versa at the reflection boun­

dary, diffraction coefficients obtained by the summation of Eqs. 4.42 and 4.43 

Dh -- + (4.44a) 

s 

D~ 
s (4.44b) 

are valid only in the vicinity of these boundaries. 

Comparison of Eqs. 4.41 and 4.44 shows that exept for E and the transition 
o 

function associated with the reflection boundary, they are the same. 

Argument of the transition function, in Eq. 4.44. associated with the 

reflection boundary, vanishes as this boundary is approached (Eq. G-4) 

while that of GTD tends to infinity (Eq. 3.10). Although this discrepancy 

does not bring much difference in practice since both methods fail at this 

boundary, it permits us to conclude that the method followed by GTD to cal­

culate the arguments of the transition functions is not precise enough. 

GTD can be improved by calculating the argument of transition functions from 

the first and second derivatives of the phase function (Eq. G-4), which ~s 

easy to find from the system geometry. 

As far as E is concerned, it is due to the calculation of GTD diffraction 
o 

coefficient at Q_; GTD assumes that when the observation point crosses the 

reflector (see Section 3.2.2 and Fig. 3.4) D-
h
· changes sign and in the region 

,s 
where straight line between Q~ and P (the observation point) passes through 

1T-a 1T 
the reflector (--2- < 0 < 2) diffraction from Q_ does not contribute to the 

scattered field. Existence of the stationary point whose contribution (geo­

metrical optics term) is cancelled by the direct feed radiation in the shadow 

region (0 < a) contradicts this assumption of GTD. In order 

correctly, a positif direction should be defined (Fig. 4-1) 

to find D-
h ,s 

and yi (Y~) should 

be calculated by choosing the smallest angle between the reference plane and 
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the incident (diffracted) ray by taking into account its s~gn as well. From 

Fig. 4-1, we easily find 

1I"-OC 
2. 

liJ-(¥-S) 

le-~ 
2. 

which renders E identically equal to unity for all 8 values. 
o 

(4.45 ) 

It is important to note that Eo as defined by Eq. 3.18 makes the GTD solution 

discontinuous and yields erroneous results in the region 8 < ~;a where it is 

equal to -1. The reported differences between GTD solution and experimental 

and physical optics results in the shadow region (8 < a) ([7], [8] and [11]) 

may be attributed to this discrepancy. 

All these considerations simply imply that GTD, even with its corrected 

diffraction coefficients (Eq. 4.44), can approximate the diffracted rays only 

in the vicinity of reflection and shadow boundaries. GTD diffraction coeffi­

cients (Eq. 4.41) are nothing but approximations to PO diffraction coefficients 

(Eq. 4.40). 

- direction 

----

• . ' . 
SB 

o 
r-----T-------------------~--__,·F 

.' 

+ dire -

.' .. ' 

reference plane 

Fig. 4.1. Geometry of incident and diffracted rays for calculating 
YI and Yd correctly. 
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4.5. Analysis at forward and rear directions 

In the forward and rear axial directions, because of small values of sinG, 

Bessel functions in Eq. 4.17 vary slowly. For this reason, in these direc­

tions, this integral equation may be eva.uated asymptotically w1thout resort­

ing to the asymptotic expansion of Bessel functions. 

For the sake of clarity, Eq. 4.17 will be rewritten as 

where 

and 

Ea l = fIXI99(9) 1 ~jCf(f) de 
Etl 0 9,(6)[ 

e = krsin6 JG~/6)' _j Jo( Ii) 9 Ie>} lSin~} f lco~el 
94> (&) cost 1 

9(9) = kp( t -tosS cesS) ... :2. kf - kpc.os8 (t + cos e) 

From Eq. 4.48, it is easy to calculate 

,9(6) = kpkn~ (i +c.os9) 

qee(&) :: kr sel! (t -1'0$8) (t + tosS) 

4.5.1. Forward radiation 

Eq. 4.48 clearly shows that in the neighborhood of forward direction 

(G ... .!.1T), it is impossible to identify a large parameter in <1,(6) rendering an 

(1,.46) 

(4.47) 

(4.48) 

(4.16) 

(4.49) 

(4.50 ) 
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asymptotic evaluation of Eq. 4.40 possible. We can again observe that q(e) 

does not considerably change in that region thus somewhat facilitating the 

analysis. From Eq. 4.48, for the values of 0 such that 

max. { kpc:ose (htoa.e)} :: kf (tHOlle) < 4'F 

where ~F approximately satisfies the relations 

the phase term in Eq. 4.46 can be taken out of the integral sign. Eq. 4.51 

is "evidently satisfied over the main beam and a few sidelobes around it. 

With this approximation, Eq. 4.46 reduces to 

Ee};;. ~j>kf f[ ge(S} 1 ds 
Ei 0 9j(9) ] 

(4.51) 

(4.52a) 

(4.52b) 

(4.53) 

For Huygens source feeding (u
e 

= I), Eq. 4.53 may approximately be written as 

E.e}H~{c.ose Sin~} -;i(:lkf+ 1»)CC . . J G (9) 
- e kps,n9 Jo(kp,mS$itle) f kpd8(4.54) 

E i c.ost 0 "r 

which is proportional to the Hankel transform of the aperture distribution 

given by 

~ (9) = JG£i9) 
kr 

(4.55) 

The method of calculating the scattered field by Eq. 4.54 is known as the 

scalar aperture method [IS] and its validity limit is determined by Eqs. 4.51 

and 4.52. 

In the forward direction (0 =in), Eq. 4.46 is equal to 
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U8+1 

.t 
clB (4.56) 

For dipole feeding (u
e 

= cose), amplitude of the electric field vector is from 

Eq. 4.56 

E.;,p III 

= k ka CO~ ~ f .sine J G~le) de (4.57) 

o 

where by virtue of Eq. 4.2 

(4.58) 

Eq. 4.57 reduces to; 

For uniform aperture distribution (Eq. 2.8) 

blP 1 I 
E.I=,U = 2. ka co\.; In c.os i I (4.59) 

and for the feed patterns given by Eq. 2.7 

[ H!l.] kQcot~ f _ (COSO() 2. n=f,2,3 .. · (4.60 ) 

For Huygens source feeding (ue = 1), Eq. 4.56 is equal to 

E. F
WUy J oc. :. ka, c. 00\: ~ hi n ! 

.2. .t 
de (4.61) 

o 

from which we can easily find 

E. \otuv 
j: ,u _ kQ. (4.62) 
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EF ,2n-' =J2(n-tl) 

where 

M~n_1 _ 

with 

For even values of n 

n-.!. 
4 - (co.sOt) 2-

2."-4 
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HUV 

Er,n =2)1(n+l) kQ.('o-\.~ I sin"t + Incos~1 

(4.63) 

(4.63a) 

(4.63b) 

":2 and If. (4.64) 

(4.65 ) 

si';.2w.1 (4.66) 

It is important to note that Eqs. 4.57 and 4.61 are equal to the square root of 

the antenna gaLn for dipole and Huygens source feeds respectively. 

Eq. 4.59 to 4.65 are drawn in Fig. 4.2 versus a after being normalised with 

respect to ka whose square is equal to the gain of a uniformly illuminated 

paraboloid having a Huygens source feed (Eq. 4.62). 

Fig. 4.2 clearly shows that the gain for Huygens source feeding is higher than 

that for dipole feeding having the same feed pattern. This is due to the fact 

that dipole feeding yields more tapered aperture distributions in the E-plane 

because of ue.factor in its polarisation vector (Eqs. 2.5 and 2.6). 
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4.5.2. Rear radiation 

Eq. 4.49 shows that Ln the neighborhood of the rear caustic, q(e) has a 

stationary point at e = O. Since the integral kernel (Eq. 4.47) vanishes at 

this point, the only contribution to the ~symptotic expansion of Eq. 4.46 

comes from the end point. 

From Eq. 4.46 and Eq. C-5, one easily gets 

where 

V -::. ka.s.ine 

-jCf (ot) 

e 

(4.67a) 

As already been mentioned, the above formula is valid only for small values of 

S (defined by Eq. 4.16) which is evidently satisfied in the neighborhood of 

the caustic regions. Because of its simplicity, it is a useful formula for 

calculating the rear radiation. Fig. 4.3 shows the comparison of Eqs. 4.34, 

4.67 and the GTD solution (Eq. 3.21) for Huygens source feeding. The two 

asymptotic physical optics solutions smoothly join each other as the rear 

caustic direction is approached,as expected. For this reason, they are comple­

mentary and enough to describe the rear radiation. Equivalent edge currents 

method ([12] to [14]) currently used for this purpose is cumbersome and in­

correct since it is derived from GTD. GTD prediction for rear radiation does 

not agree with physical optics solutions. As already explained in Ch. 3 and 

section 4.4. this is because of the fact that GTD can predict the scattered field 

correctly only in the near vicinity of reflection and shadow boundaries. 

Amplitude of the back radiated field is found by inserting e = 0 in Eq. 4.67 
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'+tOSC( 

2. 

t +UOI. 

2. 

It is interesting to note that the back racLated electromagnetic field for 

(4.68) 

1 + cosa . 
dipole feeding is 2 t1mes smaller than that for Huygens source feeding 

which is,of course,due to its lower edge illumination in E-plane. 

Inserting Eq. 2.8 into Eq. 4.68, we obtain the back radiation of a uniformly 

illuminated paraboloid as 

- CO-\:~ 
2. 

4.5.3. Front to back ratio 

(4.69 ) 

Back radiation from paraboloid bears particular importance in calculating the 

antenna noise and the interference between different communication systems. In 

this section relative level of the back radiated field with respect to the front 

radiation will be calculated and its relation to other antenna parameters will 

be studied. 

Front to back ratio, which is defined to be 

F I'B - 2.0 h)3{~ \EF\ t 
IEsI j 

= G - 2.0 lo~ \E8\ (dS) I 
(4.70) 

is a measure of the relative level of back radiation with respect to the front 

radiation. n is the antenna efficiency and the antenna gain is defined by 
a 

( d!» (4.71) 

where EF is given by Eqs. 4.59 to 4.66 and EB by Eq. 4.68. 

As studied in the previous chapter the most significant contribution to the back 

radiated field comes from the paraboloid edge illumination. For this reason, 

there is a close relationship between the feed taper at the paraboloid edge and 

the back radiated field. Feed taper is defined to be the ratio of average of E­

and H-plane edge illuminations to peak feed radiation, i.e. 



TJ: = 

and in decibels 

HUe{ 
2. 
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n 
cos 2.0( 

Taper of the aperture distribution is similarly 

~ + COSO( 

l. 

where~(e) is defined by Eq. 4.55. In decibels, 

I +UIIl 
;2.. 

HUoc 

2. 

(dB) 

(dB) 

(4.n,,) 

(4.72b) 

(4.73a) 

(4.73b) 

TF and TAD are shown in Fig. 4.4 versus a for Huygens source polarised feed. 

It is interesting to observe CEqs. 4.68 and 4.73a) that the back radiated field 

is equal to 

where Gf(o) is proportional to the feed gain. Thus 

(dB) (4.74) 

where 

(4.75) 

Back radiated field from Eq. 4.74 is drawn in Fig. 4.5 versus feed taper. From 

Eqs. 4.70 and 4.74, FIB ratio may be rewritten as 

(dS) (4.76) 

Defining 
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K = -20 I09Ico~~1 (dB) (4.77) 

which is identical to ([24], Eq. 21), we ob.;crve that back radiation given by 

Eq. 4.74 is K dB lower than that given by Knop ([24], Eq. 8). More explicitely, 

to find EB and FIB ratio given by Knop (I24], Eqs. 8 and 20), K should be added 

to and subrected from Eqs. 4.74 and 4.76 respectively. It is interesting to 

write FIE ,3tio of a uniformly illuminated paraboloid; from Eqs. 4.62, 4.69 

and 4.70 

t

HU'i 

fiB 
UN 

20 109 I ~ k« +an ~ I (dB) (4.78) 

which differs from the result of Knop ([24], Eq. 12) by the same factor K given 

by Eq. 4. 7,7 . 
I 

The above-'cited discrepancies between our results and those of Knop may be 

attributed to the errors in equivalent edge current method utilised 

by Knop to predict the rear radiated fields. 

Front/Back ratio of a paraboloid is shown versus feed taper, nand 0: respecti­

vely in Figs. 4.6 to 4.8 after being normalised with respect to (ka)2, gain of 

a 100% efficient uniformly illuminated paraboloid. 

From the above figures, it is apparent that with increasing a and n, which in­

crease the edge taper (Eq. 4.72), FIB ratio also increases. On the other hand, 

FIB ratio for dipole feeding is higher than that for Huygens source feeding 

because of its more tapered edge illumination. Although the antenna gain for 

dipole polarisation is lower, this is compensated by its lower edge illumination 

yielding lower sidelobes and back radiation. 

It is interesting to compare our results for FIB ratio with those of Knop ([24], 

Table I) who utilised equivalent edge currents method to calculate the back 

radiation and the measured antenna gain for front radiation. The results are 

shown in Table 4.2. Normalised FIB ratio is readily observable from Fig. 4.6 

for different feed tapers and Fin ratios and ka is given in decibels. The sum 

of these two yield the theoretical FIB ratio, (for a 100% efficient paraboloid). 

Using the measured gain whichKnop gives and the back radiation from Fig. 4.5 a 

more realistic estimate of the FIB ratio is given in the last colomn. 

Comparison of our results with those of Knop shows that FIB ratios given by Knop 



- 41 -

at 1.905 GHz and some others for other frequencies are even higher that those 

of a 100% efficient paraboloid. This implies very large error limits in his 

FIB ratio measurements. Further, because of already observed errors in rear 

radiated field and FIB, theoretical results given by Knop [24] are not reliable 

On the other hand, gain and FIB ratio of antennas having the same FID should 

decrease 2.42 dB, 5.17 dB, 3.88 dB and 6.33 dB when the operating frequency is 

changing from 14.8 GHz to 11.2 GHz, 11.2 GHz to 6.175 GHz, 6.175 GHz i:o 3.95 

GHz and 3.95 GHz to 1.905 GHz respectively. 

This is because of the linear dependence of gain and FIB ratio to ka (Eq. 4.76). 

A direct observation from Table 4.2 shows that Knop's results are far from satis­

fying this condition either. 
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Fig. 4.6 Normalized front to back ratio versus feed taper for a Huygens 
source feed at focus. 
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Knop ([24], Table 1 ) Safak 

n Fin TF G Freq. FIB FIB Normal. ka Theor. IEHI Exper. 
(ft) (dB) (dB) (GHz) (meas) (calcul.) FIB (dB) FIB (d ) FIB 

(dB) (dB) 

4 0.375 18,4 21 21.0 0.85 21.4 22.25 -1.7 20.1 

6 0.382 22.0 
0.925 

24 24.6 0.55 24.97 25.53 -0.5 22.5 

8 0.373 24.4 27 27.0 1 27.5 28.5 -1.8 26.2 

10 0.300 
-5 

26.4 29 29.7 3.7 29.4 33.1 -4.2 30.6 I 
12 0.333 28.0 30 30.9 2.3 30.97 33.27 -3.1 31.1 

15 0.333 29.9 32 32.8 2.3 32.9 35.2 -3.1 33.0 

6 0.382 28.7 
1.905 

36 37.0 3.65 31.24 34.89 -4.6 33.3 

8 0.373 
-10 

31.2 39 39.6 4 33.74 37.74 -4.9 36.1 

10 0.300 33.2 44 42.3 7 35.7 42.7 -8.0 41.2 

12 0.333 34.7 45 43.4 5.6 37.2 42.8 -6.5 41.2 

15 0.333 36.6 47 45.3 5.6 39.2 44.8 -6.5 43.1 

6 0.382 35.0 40 40.0 3.65 37.57 41 .22 -4.6 39.6 

8 0.373 
-10 

37.3 
3.95 

41 42.4 4 40. I 44. I -4.9 42.2 

10 0.300 39.3 47 45.1 7 42.0 49.0 -8 47.3 

12 0.333 41.0 50 46.4 5.6 43.6 . 49.2 -6.5 47.5 

15 0.333 42.7 52 48. I 5.6 45.53 51 • 13 -6.5 49.2 

6 0.382 38.9 46 44.5 3.65 41.46 45.11 -4.6 43.5 
; 

8 0.373 41.5 48 47.0 4 44.96 4B.96 -4.9 46.4 

110 
-10 6.175 

0.300 43.3 51 49.6 7 45.9 52.9 -B.O 51.3 
I 

: 12 0.333 45.0 52 50.9 5.6 47.46 53.06 -6.5 51.5 

115 0.333 46.4 53 52.3 5.6 49.41 55.01 -6.5 52.9 

4 0.375 40.5 46 46.0 3.85 43.1 46.95 -4.B 45.3 

6 0.382 
-10 

44.0 11.2 51 49.5 3.65 46.63 50.28 -4.6 48.6 

8 0.373 46.4 52 51.9 4 50.13 54.13 -4.9 51.3 

10 0.300 48.3 54 54.5 7 51.1 58.1 -8 56.3 

12 0.333 49.8 55 55.6 5.6 52.63 59.23 -6.5 56.3 

4 0.375 
-10 

42.5 
14.8 

48 49.1 3.85 45.5 49.35 -4.8 47.3 

6 0.382 46.1 55 52.7 3.65 49.05 52.7 -4.6 50.7 

Table 4.2 

Comparison of the obtained front to back ratios with thoE.-3 of Knop. 
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4.6. Results 

In this section calculated GTD and APO radiation patterns are compared in E­

and H-planes, effects of feed polarisation and taper on the antenna performance 

are investigated. 

It is important to note that in all the figures to follow, contrary to i:.t,e 

definition used until here, G is measured from the broadside direcLion. 

Besides. the radiation patterns are normalised with respect to their broadside 

gains given by Eqs. 4.59 to 4.66. Normalised back radiation (i.e. -FiB ratio 

given by Eq. 4.76) is denoted in the following figures so as to test the COT'­

vergence of asymptotic patterns in the rear direction. 

In the preceeding sections, we already observed that GTD can predict 1 c" 

diffracted field correctly only in the neighborhood of reflection and shadow 

boundaries and yield erroneous results in the shadow region. For this reason 

a good agreement between two methods in these two regions is expected. The 

extent to which GTD approaches the results of APO outside these regions may 

be considered as a measure of validity of this formulation. 

Since Eqs. 4.34 and 4.35 are both asymptotic solutions of Eq. 4.1, it is assumed 

that they yield practically the same diffracted fields. Because of this reason, 

as APO solution,only Eq. 4.34 is considered. GTD radiation pattern is given by 

Eq.· 3.21 . 

Before going into details, it should also be mentioned that the calculations are 

carried out for a paraboloid of 15A diameter and having a subtended angle of 

2a = 120
0 

(fiD = 0.433). It is now a known fact that for paraboloids of diameter 

larger than 3 - 4A, asymptotic approximation yield satisfactory results (see Eq. 

4.18). Increase in the antenna diameter, although it does not alter the side­

lobes' envelopes, increases the number sidelobes of the radiation pattern and 

reduces the errOr involved in the asymptotic approximation. For this reason, a 

D = 15\ paraboloid which already bears the characteristics of large antennas 

gives enough idea about the antenna performance. On the other hand, since the 

change in subtended angle is directly related to feed taper (Eq. 4.72), the 

present analysis, where its effect is studied, gives enough insight about the 

influence of a on radiation patterns. 

Eqs. 4.9 and 4.10 show H-plane patterns for Huygens source and dipole feed 

polarisations respectively. The feed pattern considered is given by Eq. 2.7 

with n = 2. We observe that the whole radiation pattern for Huygens source 

feeding is shifted in 1.08 dB below that for dipole feeding. Since the feed 
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tapers at the paraboloid edge are equal for the above cited feeders in this 

plane, this shift is equal to the difference between the gain for Huygens 

source feeding (32.56 dB) and that for dipole feeding (31.48 dB). 

GTD and APO radiation patterns agree quite closely everywhere except In the 

shadow region. This discrepancy in the shadow region is expected due to the 

errors in GTD formulation. The good agreement in the off-shadow region may 

be attributed to the fact that for the incident electric field vector parallel 

to the edge, the paraboloid as well as any other reflector locally looks like 

a straight half plane, for which the GTD formulation is exact [25]. The same 

argument can not be made for E-plane patterns, on which the reflector surface 

curvature has a large influence; in the off-shadow region away from the 

reflection and shadow boundaries, £-directed currents induced on the paraboloi­

dal surface has a nonnegligible radiation in E-plane but do not radiate in 

H-plane (Eq. 4.17). This is clearly seen from Figs. 4.11 and 4.12. 

E-plane radiation patterns for dipole and Huygens source feeds are compared 

in Fig. 4.13. The pattern of the former has lower sidelobes because of its 

lower feed taper in this plane in spite of the higher gain of the latter; 

in the E-plane, taper of a dipole feed, because of u , is 6 dB lower than 
~ 

that for Huygens source feed. Owing to 1.08 dB difference in gain (Table 4.3), 

the pattern of dipole polarised feed is 4.82 dB shifted downward relative to 

that of Huygens source feed. 

Table 4.3 shows the influence of n on the antenna gain, feed taper and first 

sidelobe level in E- and H-planes for the afore-mentioned feed polarisations. 

From Table 4.3 and Fig. 4.2 and 4.4,it is obvious that the sidelobe levels are 

more sensitive than the antenna gain against n (and the feed taper); for 

example, increasing n from 2 to 6, decreases the gain by 0.65 dB but accompa­

nies as well a decrease in the first sidelobe level by an amount of about 8 dB. 

For the sake of completeness, Fig. 4.14 shows the E-plane pattern of a Huygens 

source fed paraboloid for n = 6. 

It is a known fact that paraboloid reflectors with Huygens source feed yielding 

uniform field distribution on the aperture plane radiate very low cross­

polarised fields [26]. Further, uniform field distribution over the antenna 

aperture results in maximum directivity~ From all these considerations, it can 

easily be concluded that, Huygens source feeds yielding nearly uniform aperture 

distributions except for a highly tapered edge illumination are ideal for 

antennas intended to use for dual polarisation purposes. 
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HUYGENS SOURCE DIPOLE 

first sidelobe level first sidelobe level 

TF Gain FIB 
(dB) 

TF Gain FIB 
(dB) 

n 
E-plane H-plane E-plane H-plane 

(dB) (dB) (dB) (dB) (dB) (dB) 

2 - 6 32.56 33.3 -22.51 -22.44 - 8.44 31.48 34.7 -27.45 -21.36 

4 -12 32.46 37.0 -26.21 -26.15 -14.44 31.51 38.55 -31.29 -25.2 

6 -18 31.91 41.0 -30.22 -30.15 -20.44 31.08 42.67 -35.41 -29.32 
, 

Table 4.3 

Influence of n on antenna performance parameters 

D/A = 15, a = 60°. 
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APPENDIX A 

Diffraction from a curved edge 

Diffracted field at a point Q at the edge of a perfectly conducting half plane 

may be written as [5] 

pc 
s(p +s) 

C 

-jks 
e (A-1 ) 

where s is the distance from the observation point P to the diffracting point Q 

at the edge (See Fig. A-1). 

If e is the unit tangent vector to the edge at Q and 5
t 

and 5 are respectively 

the unit vectors in the direction of incident and diffracted field, then 

i Ei -
Ell = .e (A-2a) 

i 
E,l = Ei. (e x 5

i
) (A-2b) 

Ell 
d Ed -= .e (A-2c) 

d 
El, = Ed. (e x s) (A-2d) 

Pc is the caustic distance defined by 
. 

- C-t. - 5) n . s 
1 e 

= pi Pc K . 2S e S~n 
0 

(A-3) 

where 
~ 

P
e 

radius of curvature of the incident field at the diffracting point at 

the edge in the plane containing the incident ray and the tangent to 

the edge (in the plane formed bye and 5'). (For the incident spherical 

wave, it is equal to the distance from the phase center of the source to 

the edge). 

fi Unit normal vector to the edge at the point of diffraction directed out-
e 

wards from the center of curvature. 

unit vectors along the incident and diffracted rays respectively. 

radius of curvature of the edge at the point of diffraction. 

angle between the edge tangent and the incident ray at the point of 

diffraction. (all incident and diffracted rays in this work have S =n/2). 
o 
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Diffraction coefficients considered 1n this work may be expressed as 

+ (A-4) 

where 

(A-4a) 

and Yi and Y
d 

denote the angles of incidence and diffraction respectively, in 

the plane perpendicular to the edge at the point of diffraction, measured from 

a reference direction. 

For paraboloidal reflectors, the incident source field has always spherical 

wavefront. For this reason, parameters L' and L
r 

are simply given by 

value of the caustic distance p ·at the 
c 

shadow boundary 

LT = pel = value of Pc at the reflection boundary. 

RB 
As for the so-called transition function, it is defined by 

F ( :tJt;:) ±J Z +~ :t=J"t. 1L 
.... "( 2. "1t)fOO U. 

2. e ::. 2. z. e e a.~ . 

where 

z 

+j{Z2. + "1t) Q +j1l" 
=2.JTtZ i 'to (z e. "it) 

+'11: -J­e ... 

~ 

f
<Xl "tl. 
JJ dt 

It can easily been shown that [18] 
\ Z\ 

(A-5) 

(A-6) 

(A-7) 

(A-8) 



and 

Q(o) =..!. 
2. 

tj'lt U 
Q(Z e it) '" (-7.) 
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(A-9) 

(A-IO) 

From Eqs. A-7 and A-IO, it is evident that for positive large z, the transition 

function approaches to unity. 

Plane of 
di.ff rg,d:i 

,.. 
s 

d 
Ell 
l' s 

,... 
ne 

Reference. 

plane 

Plane of 

i..nci.dence. 
-h4L------~--~J 

/ 

I 
I 
I 
I 
I 
I 
I 

) 

Fig. A.I Diffraction at Q. 
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APPENDIX B 

Coordinate transformations 

(x,y,z)~(p,8,¢) (x,y,z)~(R,e,~) 

x = 15 sine cos¢ + -::> 8 t)COS cos¢ - $ sin¢ x = R sine cosq, + e cose cosq, - $ sinq, 

Y = 15 sine sin¢ + 
A 

ecose sin¢ + $ cos¢ y = R sine sinq, + 0 cose sinq, + ~ cosq, 

z pcose 
A • 

Z R cose - 0sinG = eS1ne = 

6 x sine cos¢ + y sine sin¢ + Z cose R x sinG cosq, + y sinG sinq, + Z cosG 

e = x cose cos¢ + y cose sin¢ - Z sine e = z cose cosq, + y cose sinq, - Z sinG 

$ = -x sin¢ + y cos¢ $ = -x sinq, + y cosq, 

" R 

z------.-.:=------JI.-J-(-J-~ 

x 

Fig. B.l Unit vectors in different coordinate systems. 
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APPENDIX C 

Stationary phase evaluation of finite integrals 

We shall consider the integrals of thc type 

I f
b jljJ (x) f.b j-nq()() 

(..n.) = f (x) e dx = f{x} e. dx 
01. 01. 

(C-I) 

where Q is a positive large quantity and a and bare finite. f(x) and q(x) 

are slowly varying functions of the real variable x and q(x) is a real function. 

It may be shown that for n + 00 the above integral can be approximated by 

([18], [21]) 

where U(a) is the Heaviside function defined by 

«)01 

()(.~OJ 

(C-2) 

(C-3) 

~ (n) is the lowest-order contribution from the stationary point Xs (for 

0, a < 

and Ie (n) is the lowest-order contribution from the end-points 

j\lllb) 
e. 

j IjI (a) 
e 

If the integration interval contains several stationary points, Iscn) is 

(C-4) 

(C-S) 

the sum of the corresponding terms of each x . When x coincides with either 
s s 

of the end-points a or b, the corresponding end-point contribution in Eq. c-s 

is omitted and the stationary point contribution in Eq. C-4 is halved. If the 

interval contains no stationary point, U vanishes and the integral is approxi­

mated by the end-point contributions. In the case that an end-point moves to 

infinity, the corresponding contribution 1S omitted. 

The above approach fails when x approaches one of the end-points; when x 
s s 

moves continuously toward and accross one of the endpoints, the term Is(Q) is 
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discontinuous since the saddle point disappears from the integration interval 

and le(n) diverges since ~x(xs) + ~x{:} + ° as Xs + I:}. For this case a more 

careful approach is necessary. To simplify the discussion, let us consider the 

Case where x moves towards and across a. 
s 

The integral in Eq. C-l can then be app;: )ximated by [IS] 

j['P(l(~)±~l{ _jll tj(s:-+~) . } 
1 (Jl) "" e .f (x~) hs Q (So. ~ if) + e [.f(Q) h~ - f (X$) hsl 

1m So. ~ 

where 

ho. 

2.1t 

J lj1(b) 
e 

±2Jir Sa 

4' x (a.) 

W (Sa ;j~ ) = Q(SIl :j~) 

Q function is defined by Eq. A-S. For I s I a 

(C-6) 

(C-7) 

(C-S) 

(C-9) 

(C-I0) 

large, from Eq. A-lO, 

(C-ll) 
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When x + a (s + 0), Q(O) = l (Eq. A-9) and Eq. C-6 reduces to the coincident 
s a 

endpoint and stationary point contributions 

\jIlC)( (Xs)~O(C-12) 

It is thus interesting to note that, in the case of the existance of a 

stationary point moving towards and across an endpoint, the stationary point 

contribution is multiplied by a function, W, removing the singularity at the 

considered endpoint (Eq. C-6). 

In the case where Xs approaches b, sa should be replaced by sb' defined as 

(Xs -6) ~ 0 (C-13) 
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APPENDIX D 

From the integral definition of Bessel functions [23J 

j
2.1t" j~co~t 

Jm(J=!I) = i'm cosmt e dt 
21fJ 

o 

(D- I) 

one can easily find that 21t 

27\ jm J
m 

(~) {c.os
mqi 1 = J It.o!.m,} j~")4(~-"') d1> 

si>'l rntP 0 '!.in m+ 

(D-2) 

Similarly, using the trigonometric identity 

t 
c.o?-cp } 
,"4 :::.!. (i ± C.O~2..p) 

1>\ >'l <t> .2. 

(D-3) 

and utilising Eqs. D-I and D-2, 

I
Ll(' co~<P} j~c.o!>t~-~) 

~ , 1. e. d<jl ::.it[ Jo(f» + cos2pJ,2(f,)] 
o L 6\V\ II> 

(D-4) 

On the other hand, owing to the trigonometric identities 

&in(A::B) =s.inA c.os.'B :: c.o~A s.in'S (D-S) 

c.os.(A ±B)::: c.o!.A CO$'B +sinA sInB (D-6) 

(D-?) 

(D-S) 

o 
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Derivatives of the phase function 

From Eq. 4.12 
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4J (6,~) :: kd 1- eos.9 c.~e -sin a .si" e c'0$( ~ -4»] 

\l'i>(6,IP) = -kpoSil\8 .sin e .srn (fJ-CP) 

ljJ¢><f/ (e/~) = k~sine .sin e cos. (~-cp) 

1/14'B (6,<1» = lJiet(l(6,\f» = - kp sinS sin (q>-<I» 

(E-l ) 

(E-2) 

(E-3) 

(E-4) 

4'9(6,~) = kp (i + co!>e)[ +an! - +an ~ cO!.( q;-<I»] (E-5) 

lPee (6,4» = kp (I +cos.e)[~ set! +ian
2

: -~n£ fQn~ cos(~-4»J (E-6) 

At ¢ ~ ¢~ making Eq. E-2 stationary, i.e. 

the above equations reduce to 

4' {S,ePt) =2kpsin~&le 

1.JJ.p¢{6,Ct) = :!:: kpsintJ 6in6 

\lJ1l tiL ¢>:!:) = 2 kp co:;,~ :&ec. ~ 

(E-7) 

(E-8) 

(E-9) 

(E-l0) 

(E-ll ) 
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At e = ~0 rendering ~e(e,~~) stationary, Eqso E-9 to 13 may be written as 

where 

ljJ41¢ (±e, <D±) = kp(e) sin1. e 

\.Vee(:!:e,<pt) :kpCe) 

P(6 )=p\ 
9=9 

(E-14 ) 

(E-15 ) 

(E-17) 

Finally, at the end points (p ,a,~+), Eqso E-9 to 13 become 
o -

\jJ (OC, <Pt) = 2kpo sin2. OC ~ e (E-18) 

~~CP (OI,<pt) = ± kpo SO,nOl. ~ine (E-19) 

K t OC+6 
\.IJe(c~A)±) ::. 2.kpo e sm 2 (E-20) 

i
O

[. ] I.JIse (01, <h) = 2. kpo Ki 1- cos (01. :;. 612.)/2. Cos. ~ (E-21) 

lI'cf> ((X,CPt) = 4'';9 (ot,tP:f:) = lJl9tP (rI.,rh) =0 (E-22) 

+ 
where K - is defined by 

e 

(E-23) 
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Integral kernels 

From Eq. 4. II 
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fe(e,<I» 'k' e 
_ J p~ln ~) 

- - J "'f le, 

co&6 [sinQ +( Ue-I) $inljl 'O&(~-4»]+Sine~Bn~ U6 s.m4> 
(F-I) 

f~(6,4» 2'1( c.o~~ _ (uS-i) sine!> .sio(qi-<P} 

At ~ ~ ¢ ~ , defined by Eqs. E-7 and E-8, the above equation reduces to 

(F-2) 

At (p, + e, ¢+), Eq. F-2 may simply be written as 
- -

(F-3) 

where pee) is defined by Eq. E-17. 

Finally at the edge points (p ,a,¢+), Eq. F-2 becomes 
o -

(F-4) 

where 

(F-5) 
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APPENDIX G 

The expression from Eq. 4.30 

M±(9) = f:Xfl-j\ 4'e(0I,+±)(6-ct)+~ 4'ee(CC)cf>.t)(S-ctt·l] de (G-l) 

o 
by a change of variables may be written as 

0( 

M:! (9) = J exr[-j{- \j}e (ClI/-P t} l + ~ \jJe&(OI/cf>±)t."'}] elf: 
o 

(G-2) 

where the major contribution to the integral comes from the neigborhood of 

t = O. For this reason, the upper integral limit is extended to infinity 

lvithout much error. 

Bearing in mind that ~ee(a,¢~) > 0 (Eq. E-21) and using the identity 

where 

elt _ \}'e(Q,4>:t) _ 

J1.1 \jIB9 (Q,4>t)1 

(G-3) 

(G-4) 

Substitution of Eq. G-3 into Eq. G-2, and another change of variables yield 

2. -reS:!: _j"ll. • \"Z. f Q) 

e e d~ _ 

-el± 

where the Q function is defined by Eq. A-8. 

Argument of the Q function becomes negative in the shadow reg10n accounting 

for the stationary point contribution which is spear at ely studied in section 

4.2.2.a. For this reason, endpoint contribution may simply be written as 

2:!t 

(G-5) 
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It can easily be shown that.asd:':. + 0 (i.e. in the shadow and reflection 

boundaries), Mi(e) reduces to 

l - -
:l. 

• 'If 
-J­
e. ... 

which is equal to coincident end- and stationary points contributions as 

expected. 

(G-6) 
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