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Abstract

Radiation pattern of a focus-fed paraboloid is calculated by asymptotic
physical optics (APO) and geometrical theory of diffraction (GTD) for dipole
and Huygens source feeds. It is shown that the GTD diffraction coefficients
are approximations to the PO diffraction coefficients and are valid only in
the proximity of the shadow and reflection boundaries. Some errors in the
calculation of GTD diffraction coefficients are corrected. Rear radiation

is calculated by another asymptotic expansion of the physical optics inte-
gral and is compared with the results obtained by other asymptotic techniques.
This new expansion is finite in the back direction of the antenna where other
methods diverge. Also front to back ratio of a paraboloid, ratio of front
radiation to back radiation, is derived by using this new expansion and the

results are compared with those predicted by equivalent edge currents method.
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1. Introduction

Aimer et penser: c'est la veritable

vie des esprits, Voltaire,

The physical optics (PO) approximates the currents on the reflector of a
reflector antenna system by the currents calculated from the theory c¢i Geo-
metrical Optics (GO) and uses this current distribution for determining the
scattered field. This formulation, involving two dimensional phase integrals
with rapidly varying kernels, generally requires lengthy and costly numerical
integration. Moreover, it does not satisfy the reciprocity theorem except at

a distant axial point in focused condition [1]. In spite of its approximate
nature and other shortcomings, PO has been proven very successful in the
analysis of reflector antennas.

When the radiating reflector is large compared to wavelength, the scattering
process lends itself to a simple geometrical interpretation in terms of
reflected and diffracted rays satisfying Keller's extended version of Fermat's
principle. This methed, initated by Keller ([2], [3]) and known as the Geome-
trical Theory of Diffraction (GTD),is based on the asymptotic sclution of wave
equation for a plane wave incident to the edge of a perfectly conducting straight
half plane ([4] to [6]). Assuming that, at high frequencies, a curved edge
locally behaves like a straight half plane and the incident field is approxi-
mately a uniform plane wave, the GTD is systematically applied for finding
scattered fields from curved reflectors as well. GTD, in the iast decade, has
been very pbpular.and.is extensively used in the calculation of antenna radi-
ation patterns ({7] to [10]).

Asymptotic nature of GTD also raised the question on the possibilities of
applying asymptotic techniques to evaluate the phase integrals widely encoun-
tered in the antenna theory. In this context, Rusch evaluated the physical optics
integral asymptotically [8]. His solution which is singular at the reflection
boundary has been recently improved by Knop [I1]. This method of approximating
the physical optics integral is known as the asymptotic physical optics (APO).
The first order approximation to the PO field is found to come from two station~
ary points located at the intersection of the ¢-plane containing the observation
point and the reflector edge. These two stationary points satisfy Keller's
extension of Fermat's principle and consequently coincide with the diffracting

edge points determined by the GTD.



The object of this report is to investigate the differences and similarities
between the GID solution, simulating a curved reflector by a straight half
plane and assuming an incident plane wave, and the APO solution which approx-
imates the surface current distribution by geometrical opties. Of-course

neither of them is exact for calculating the radiation from reflector antennas
but they are easy to handle and do not require large computer time as PO does.
For this reason, these asymptotic techniques constitute powerful tools in the
analysis of large reflector antennas.

In Chapter 2, feed radiation which illuminates the reflector surface and provides
direct radiation in the spillover region is studied, Two main feed polarizations
considered are those of a Huygens source and of a dipole. Only the cos™® feed
patterns and the one yielding uniform aperture distribution are studied but the
analysis can easily be extended to the feeds having different patterns and
polarizations.

In the present work, only the paraboloid reflector is considered but the methods
employed are applicable to other reflector configurations as well,

In Chapter 3, GID diffraction coefficients and scattered fields are calculated.
It is observed that GID radiation field is discontinuous at the reflection
boundary and yiels erroneous results in the shadow region. Chapter 4 deals with
the asymptotic solutions of the physical optics integral and their compariscon
with the GID scattered field. It is shown that GTD diffraction coefficients

are nothing but the special case of the PO diffraction coefficients and they
yield correct results only in the neighborhood of reflection and shadow bounda-
ries. Furthermore, it is confirmed that in the vicinity of the braodside
direction, the scalar aperture field method avoids complex phase integration and
yields good results. The radiated field in the rear caustic region is found by
another asymptotic expansion of the physical optics integral. This formulation
is finite at rear caustic unlike the other asymptotic solutions and is con-
ceptually the same as the equivalent edge currents method generally used to
caleulate the rear radiation ({6] and [12} to [14]). The latter, derived from GTD
yielding: erroneous results in the shadow region,is'not reliable other than being
cumbersome. The front/back ratio of a paraboloid (the ratio of front radiation
to back radiation),which is important‘in minimizing the antenna noise and the
interference between communication systems,is studied as a function of some
antenna parameters., Furthermore, the effect of edge illumination to the antenna

gain and to the sidelobe levels is investigated.



2. Feed Radiation

2.1. Incident source field on_the paraboloidal surface
Geometry of a front-fed paraboloidal reflector antenna is shown in Fig. 2.1,
Let us assume that the Incident field on the paraboloidal surface due to a

feed located at the focus (F) is given by

Ef(p;ﬁ,cp): A 1;,_‘S'T_kl’ ( fG,to (6,9) sing B +,G;¢(e,4>) cosd :ﬁ (2.1)

where A is a normalization constant and Ggg and Gf¢ stand for the E-plane and
H-plane feed power patterns respectively. On the other hand, from the para-

boloid geometry

P= 2{ = Oq (‘.051%' (2.2)
1+ cosB cos"%

Commenly considered feed patterns do not depend upon the variable ¢; if we

take

Gfe (6,6) = Gyo(8.6) = Ggt9)
Eq. 2.1, can readily be written as

I'ed o kP A A
E.F( P,B,¢) = A S;T )G{;{a) (Sm¢ 0 +cosd d)) (2.3)

which represents a feed having Huygens source polarization characteristies
with a ¥-directed electric field vector,

If E- and H-plane feed patterns satisfy the relation

J—C“(B,cb) Z‘IGF¢(9J¢) cosH =m cos9

then the electric field vector of the feed may be rewritten as

— _3kp ) )
Ef (P:e:¢) =A .e_;. ‘IG{:(G) (cosﬁsmcp 0 + cos9 d)) (2.4)

which has the polarization vector of a §-directed dipole.

In the present work which is valid for every E- and H-plane feed patterms,
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only the ones described by Egs. 2.3 and 2.4 will be considered. For the sake

of easiness, these two patterns will be written in a compact form as

— ik X .
E-F (p,e,¢) = A %P ’G{lﬂ) (Up snd 6 + cosd qb) (2.5)

where
cosd for dipole feed
ue = :
(2.6)
i for Huygens source feed

The feed patterns considered in this work are the 08 patterns thoroughly

studied in the literature [15] ;

2 (n+1) cos™® 8T/,
Gy - e
O 6>
where n is a positive integer (n =1, 2, 3, ....) and the feed pattern yielding

uniform field distribution on the aperture plane, namely
C-oiz-g‘—_ / cost B 04x
G 2.
£(8) =
0 Pl

At the stationary points Qs which will come into picture in the following

(2.8)

chapters, the incident eleZtric field is simply; at Q+(po,a,¢)
=i T -'kpor—~ A A
. ) . .
and at Q__(po,a,q> +1)
ii (2.10)

=12 = =
E :Ef(Po,O{,tb-r'K)::_E

where

Uy = ue\ (2.11)
=0

The feed which is located at F, radiates directly into the free space as well
as furnishing the paraboloid surface with incident electromagnetic waves, In

this case, the direct feed radiated electric field may be expressed as
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(ignoring A < R )

E-F (R,e)é) = “G{(e) (Ue sm é + cos® $) (2.12)

where

Ue = Ug (2.13)

620
The reader is invited to pay attention to distinguishing the source coordinates

{p,8,9) from the observation point cocordinates (R,3,0).

Y
&
?aﬁ, \
7
fo P
P(R,0,%)
=te. "\~ ST
\ I‘\
\\ // 0 b |i¢\
. . ¢f\/ - sy
lo z ‘\E
|
|
X
X I
|

Fig. 2.1 Geometry of a focus-fed paraboloid.



3. GTD Analysis of radiation from paraboloid

3.1. Introduction

Let us consider a parabeloidal reflector, of radius a, whose edge lying in
the XY-plane as shown in Fig. 3.1. Let the focus of the paraboloid be at F,
the origion of (x,y,z) coordinate system. 20 is the subtended angle by the
paraboloid, As in Fig. 2.1,4(p,6,¢) and (R,@;@) respectively denote the

source and far-field coordinates,

According to the extension of Fermat's principle by Keller, at high frequencies
(2a/x >> 1), the major contribution to the radiated field at P(R,0,¢) comes
from two stationary edge points Q+(po,a,¢) and Q_(po,a,®+ﬂ), the reference
being (p,8,¢) coordinate system. These two points (Q+) are located at the
intersection of the paraboloid edge with the plane passing through FOP (Fig.
3.1). As P approaches to + z-axis, the plane defined by FOP degenerates to a
line and consequently the contribution of the stationary edge points of the
scattered field begin to loose their dominance and other points begin to
contribute considerably as well; at the rear caustic direction (0=0), all the
points on the paraboloid edge diffract with equal intensity, while for axial
caustic field (O=m), scattering from the .paraboloidal surface cannot any more
be reduced to diffraction from the edge and the contribution of each point on
the surface should be taken into account by integration.

For these reasons, GID fails to estimate high frequency scattering from the
paraboloid in the neighborhood of rear and axial caustics and these fields are
calculated by equivalent edge cirrents method ([12] to [14]), which consists of
integrating the diffracted field along the reflector edge, and physical optics
integration ([15] to [17]) respectively.

The rays contributing to far—-field radiation, for first order diffraction to
which we confine the analysis, follow three paths, namely FQ,P, FQ.P and FP
which stands for the direect feed radiation. Since R >> OF and due to the fact
that all the contributing rays lie in the same plane, from Fig. 3.1 it can

easily be obsgerved that

N
5+ ~R (3.1)
=R

S+ for amplitude (3.2)



P(R,0,®)

Fig. 3.1. Geometry of diffracted rays.

edge of the
paraboloid

Fig. 3.2. Plane passing through the edge of the paraboloid.



3+ '-.‘:R — Po cos (0( ¥ e) for phase (3.3)

where §+ are the unit vectors along the diffracted rays from Qt.

On the other hand, &+ is the unit tangent vector at Q+ and ﬁe:, unit vector

in the direction of 6-(5_-_!-_ (Fig. 3.2). Radius of curvature of the paraboloid edge
which describes a circle in XY plane is equal to the radius a at every 9-plane.

Thus, from Figs. 3.1 and 3.2, it is easy to write

A AL ]
Nes « S = sinx (3.4)
N N
net . S-_I: = ¥ sin© (3.5)
i
Pe =P° (3.86)

K=a {3.7)

Inserting Eqs. 3.4 to 3.7 into Eq. A~3 yields the caustic distances

- +p Sinn | (3.8)
Pct Po sin®

From Eqs. A-5, A-6 and 3.8

Ll. '-.'. = \Pctlsa =PO | (3-9
and

r

.10
L + = PC+ — OO 3 )
T IR8
3.2 Diffracted fields
3.2.1. Diffraction_at Qg4 (See Fig. 3.3)
From Fig. 3.3, it is readily found that
+
i = =X . (3.11 a)
2
N X +3T .
Yd. = n e (3.11 b)
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Fig, 3.4 Geometry of incident and diffracted

rays at Q_.
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Substituting Egs. 3.9 to 3.11 into A-4, we get

-1X X
g% Fw,é¥) L
- =
(3.12)

+
[) h =
s  2ixk sin"%@ cos 2

where _
(3.13)

W+ = Jkao ISin“;e

Note that the transition function at reflection boundary is equal to unity

because of Eqs. 3.10, A-7 and A-10.
Finally, Eq. A-l reduces to (from Egs. 2.9 and 3.1 to 3.12)

Y : 3-8
Uysm _J(kaosm 2 +"_)
= (3.14)

+ . X
Eo Gelx) sin¥ Flwe®

+ i , > %-O iCo.s_...é..- Co.s§
E¢

2 Z'KkPoSi‘n.e sw= 2
where, from Eq. A-2,

+ +
Ee E.
Eg Ey
-jkR
and A E_ff- factor is ignored.
3.2.2. Diffraction at Qu (See Fig. 3.4)
Proceeding similarly as in the previous section, we easily find
‘ 2
o +37 T .
_ (Ot S< = |
¥4 = e (3.16 b)
xX-T -
O+ S5

From Eq. A-4, we find the diffraction coefficient at Q-
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- jX

X
Dh _Eeet Flw- érq) + 1

= + (3.17)
S 2[amk sm?f.‘%_@ cos__?-

where w_ is defined by Eq. 3.13 and

- -

. L S<C=
o=f O X X (3.18)

2 <e<€
i e T,

Note that the tramsition function at the reflection boundary is equal to unity
by virtue of Eqs. 3.10, A-7 and A-10. €, is equal to zerc in the region where
the diffracted field at Q. is shadowed by the parabeloidal reflector.
Substitution of Egs. 2,10, 3.1 to 3.3, 3.8 to 3.10, 3.16 and 3.17 into A-l

yields the singly diffracted field at Q_
_ . T
_ & [Gplx) singt Flw.e®)
+

Ee
2 - A ETE T sl
ET@ Z“kPoSlﬂe Slﬂ-_f Co.s..?:.

Uqsind] _3(2 kposinzﬁ%g - ".a‘.)
e (3.19)

cosd

where, from Eq. A~2,

Ee Ey

Eg Ey

3.3. Total radiated field

(3.20)

Total radiated field (Et) at P(R,0,®) (Fig. 3.5) is the sum of two singly
diffracted fields with the direct feed radiation wherever observable.

From Eqs. 2.12, 3.14 and 3.19 we get
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t

x 2o g A8
Ee -1 Gf(d)s'lnu. F(m-\rg‘*) A ;—](kaos n ._..,.,.T;_I')
F_:i) " 2| Zwkp 0 || %2 o +

2
. - 2o
F(m-é}) ' -j(2kp,sin _;:__6 -}:— Ugsind Ugsing|(3.21)
* 5r¢ +J G;(G) wsd UKG‘“)
sn®t9 cos= Cos
2 2 (E_e}{}
where the Heaviside unit step function U(z) =1 or 0 for z > 0 and z < O 2

respectively.

It is a known fact that E- and H-plane radiated fields from a paraboloid tend
to have equal amplitudes as the observation point approaches forward and rear
axial directions. Eq. 3.21 can be shown to satisfy this condition approximately
in the neighborhood of the former but not for the latter., For this reason,

GTD is expected to fail in predicting the backward radiation accurately enough.

Fig. 3.5 Calculation of the total radiated field.
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4. Physical opties analysis of radiation from paraboloid.

4,1. Problem formulation

Scattered far-field from a paraboloid, whose geometry is shown in Fig. 2.1,

is given by [17]

-k = jkop-R
F.(Red))_'*rl‘"t = [JS -(Js R ) ] d$ (4.1)

where N = 1207 is the free space intrinsic wave impedance and k = 2m/XA

()} = wavelength). From the geometry of a paraboloid, it is known that

2f
F- 1 +cosB

=.F.sec.._. (4.2)
where f denotes the focal distance (Fig. 2.1) and the surface element dS is

dS=2p sind dod¢ - .3

If the paraboloid is assumed to be at the far-field of the feed located at F
(Fig. 2.1), the incident electromagnetic fields on the paraboloidal surface

(ﬁi, ﬁi) satisfy the relation
1] l{ f!X.Ei | (4.4)

Paraboloidal surface current density 33 is given by geometrical optics

approximation
-j 2.( ﬁx Hl.) illuminated surface
§ = (4.5)
O shaded surface
. where fi, given by

~ e N . e N
- v Sin-= .6
n cosZ P +sinz 9, (4.6)

is the outward unit normal vector on the surface. Incident electric field

vector considered is, from Eq. 2.5,
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T

-JkP
i=AJG;(B) T (U98|n¢9+c0.s¢¢)

4.7
where A, Gf(e) and ug are defined in Chap. 2.
Substitution of Eqs. 4.4, 4.6 and 4.7 into 4.5 yields
-J k? ' | A A
e nd B n cos ]
A’quﬁ) 7 cosz. [uﬂun- sing p +Up sind © + ¢¢ (4.82)
]- _ illuminated surface
s @) shaded surface

which, in rectangular coordinates, reduces to
~tkp .
&AJG;(B) % €osz. [(“9‘1)8104’ cos X +{1 +(ug-1)sin ¢h - ug l-an-smda z
1
O

(4.8b)
5'_"

illuminated surface

shaded surface

 The above formula shows that if the feed is a Huygens source (ue = 1), the

current induced on the reflector surface has no cross-polar component (%-com-—
ponent).

Decomposing 3 into its O-~and d-components using Appendix B, one easily gets

A Gf(ﬁ) g-]kgo.se [COseismﬁ +up-1)sind cos(Pb - d))} +sin@ upton 5“"4’)
]5.6 (4.9a)

illuminated surface

o shaded‘surface
A et ok - (et sin incF-41]
' f F illuminated surface
S @= ' (4.9b)
d)

shaded surface

With the help of Eq. 4.9, the integration over the whole reflector surface

reduces to that over the illuminated surface only. Decomposing its © and ¢

components, scattered field may be written as
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o AT

Ee 'Fe(e’q»} "j'w(el¢)
= f { e 4 db
[i‘i!} o o -Fi}(‘):#ﬂ

(4.10)

where

‘Fe (9:45).\, "j kps‘ma m[t:os@{ﬂn@ﬂllo-i)dw‘# 905(5—¢)'}+sin6 g l'an% sing
'F?(B)cb\j ) 2w C.O.Sé-—(l.la-l) sing sin (é_b) (4.11)

and, utilizing Appendix B,

Y(e,¢) = kP(l_p a) = kP[i - cosDcosO —sinBsnO cos(§_¢)]

(4.12)

Eq. 4.10 may also be written as

Ee > -7k 1-cosbeasS |
E§}=-‘]J k?sineJGg(B) eJ p{4-cos )I s (4.13)
b .
where
in ) 2x .
cosOsnd { ijcos(§-¢) sinB uat el - Jpcosfé_cb)

- = {€e gYang |sind € d

I-[ cosd }2“0 d¢ +l o } 2r zo b

cosS a cos($-¢) j’chs(@ ~)
-4 AL J sin (§ -$) (4.14)

From Eqs. D-2, D-7 and D-8, T reduces to

cosO snd Sin© sind c0sOsin
] }Jo(m{ }jueh,.gjl(m{ 5}@-_1{10(#)4'-%’}

4.15
cos § o cosd (4.1%)

where B is defined by

B = szinﬂsine | (4.16)
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Inserting Eq. 4.15 into 4.13, we get

cos© sind) -1X -cog
Ee] _[°= eJz .smeJG,:(e o o 7 M?B)
Ed cosd

c0sO sind] - E
4 n é{z
cos P

S\ sin C‘ - k - SBCOJEE) 17a
\ inG sind fkf)sme 'G;lﬂll ug"‘ﬂﬂ-— AN Thp (1-w0 (4.17a)
0

From Eqs. 4.8 to 4.15 it is evident that the first (second) integral term of

_tkp (i~tsBs©
szmeJGf(a [JO(B) 2(ﬂ)] P( " d9 )

Eq. 4.17a represents the radiation from §-polarised (E-polarised) surface
currents while the last integral accounts for radiation from Z-directed currents.
For Huygens source feeding (ue = }) the second integral term vanishes. Further
in the vicinity of broadside direction, radiating aperture looks like a §-direc-—
ted dipole.

For future use, the preceeding equation will be written in a more compact form as

c.o.semr@ ~Tkp (1-casBeos
Ee - E l:‘)smeJ-G_f(—) [J (p) Lo+ UQH 7d,(8) ue-i] J Pl ﬂdga)
Eé cosd o

NG sind (1= cabeac®)
N S szmeJG;m Uahna J(P) ) P dé (4.17b)

0
it is interesting to note that the first part of the Eq. 4.17b represents the far
field radiation from a circular aperture of radius a over which the electric

field vector is polarised on the aperture plane. Further, if u, is replaced by

unity, then it reduces to the radiation from a circular apertuie with §-pola-
rised electric field distribution on it. This method of calculating the far
field of a paraboloid, which is valid only in the close vicinity of forward
and backward axial directions, is known as the aperture field theory [15].

It is difficult to perform the integrations analytically in the above equation.
Besides, since the Bessel functions vary rapidly with B when the observation
point is not near to rear or forward axial directiocns, Eq. 4.17b, having a

rapidly varying kernel, is not suitable for asymptotic evaluation
({19) to [22])



.—]7_

4.2. Asymptotic physical optics (APQ)

In the pervious section, we observed that Eq. 4.17b has a large parameter in
its phase term and a rapidly varying kernel. For this reason, it can not be
evaluated asymptotically.

We know that for large values of 8, the Bessel functions in Eq. 4.17b can

asymptotically be written as [23]

Ton(8) ~ [F cos(p-mx-x)

éﬂ_p[g(ﬂ-l-'-'%h -j(#- %'-"‘?J]

Eq. 4.18 can readily be obtained by expanding Eq. D-1 asymptotically. From this

(4.18)

expansion one may easily observe that the first term of the last part of Eq. 4.18

is equal to the contribution of the plus stationary point

b+ =@ (E-7)

and the second term is the contribution of the minus stationary point defined by
$. =P+ (E-8)

it is of importance to note that the large values of B corresponds to the values
of © sufficiently far from the forward and rear axial directions.
Substituting Eq. 4.18 into Eq. %4.17b and rearranging, one may write the

scattered field as a sum of the two stationary points contributions

-

+ -
F_e Ee fe
+{  _ (4.19)

Ep) [Ep| [E®

ll

where

Eé y he (e.a ¢:t) e":]' ‘P (91¢.."')

E h@(%‘bi—) ' (4.19a)

O
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The new integral kernel is found, from Eqs. F-2 and C-4, as

he (0,65)]_[fole.00] [TZx__— 31
ha(0:60] | fg(o. on]VIVeg(e0

Ny .
Ugsind —TCOS(&;) JG;le) sinb QJE
:.J- m$§ CO&.i Zﬂsin.e (4.19b)

i

J(0,44) = lkPSt ___4-__6_ (E~9)

and

Vee(0,0s) = & szinesine : " (E-10)

Comparison of Egs. 4.19 and C—~4 shows that Eq. 4.19a2 corresponds to the stationa-
ry phase evaluation of 4.10 with respect to ¢ where the contributions of the
end-points, ¢ = 0, 27, identically cancel each other. From the above reasoning,
it is easy to conclude that, away from the axial directions, the most signifi-
cant contributions to the radiated field from a large paraboloid come from the
points located at the intersection of  paraboloid with the stationary planes
(defined by ¢+) lying at the same plane as the observation point. These points
obviously satisfy Fermat's principle, i.e. they make Eq. 4.12 stationary.

Since Eq. 4.19b varies slowly with 8§ and Eq. E-9 contains a positif large
parameter, the requirements for an asymptotic evaluation are satisfied. For

this reason, Eq. 4.19a can be evaluated asymptotically.

4,2.]1. An asymptotic evaluation of Egq. 4.19a.

Eq. E-11 shows that the phase term in Eq. 4.19a has stationary points, given by

B+ =+ (4.20)

" which disappear from the integration interval (0 £ 8 £ o) as the observation
point swings across the shadow boundary. The most significant contributions to
the integral equation 4.19a come from the stationary points, defined by Eq. 4.20,

and from the end-points of the integration interval (6 = 0.and ¢). Evaluation of
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such an integral, where the stationary points uniformly approach the end-
points, is explained in Appendix C.

Using Eq. €~6, Eq. 4.19a may be asymptotically written as
4

Ee I ete I Ste

X
- +{ . W(S: e'*) |
e + s | (4.21)
Es leg s

where the only end-point contribution is due to 8 = since the kernel of Eq.
4.19a vanishes at the other end-point, 6 = 0. From Eq. C-5, the first order

end-point contribution is

£, -] it X 30
1;:8 a (ot)sinq1 Uy sind Ke él(lkPoSIn ; 1'7’:_-
-i t . -
I‘:@ 2 Iuk‘)osine cosd K3 5"‘“2_6 (4.22)

and, from Eq. C-4, the first order stationary point contribution simply is

= Ug snd
wol g l&e
15:5 CO&@ (4.23)
pd -
Ké Kea] | } cos(8 1 X) {

= +'_‘-'-'- cosS
Ke s & o.sz

F(;; F(;éb (LOEiEE

(4.24)

where Ki, defined by Eq. E-23, results from the phase term (Eq. E-20) while
+ ot . . j .
(KEG’KE¢) is due to the kernel given by Eq. F-4. Besides, W(s_ eJﬂ/4) is
defined by Eq. C-10 with an argument -
N 4.25
S+= ¢ 2kP sinX 39 (4.23)
-— [-] 2‘

which is determined by Eq. Cel3.

Note that as the observation point approaches the shadow boundary, second term
of W function (Eq. C~10), multiplied by the stationary point contribution,

identically cancels the end-point contribution thus yielding a far-field equal
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to minus half the incident field as expected. When the observation point is
considerably far from the shadow boundary, W function reduces to unity or

zero in the shadow and illuminated regions respectively.

4.2.2. A second asymptotic evaluation of Eq. 4.19a.

Since the kernel of Eq. 4.19a is a slowly varying function of 6, the signifi-
cant contribution cf this integral comes from the neighborhood of the stationary
points B+ = =+ 0 and from that of the end-point ©§ = a. Expanding the phase
function-around these points and assuming that the kernel, in these neighbor-
hoods, varies slowly, Eq. 4.19a can be easily evaluated by asymptotic
techniques,

a) Stationary point_contribution

Expanding the phase function around the stationary points (Eq. 4.20), one gets

from Eqs. E-14 to E~17 by limiting the expansion at first two derivatives

\-P(G.c(bt)é q}ag (ie;‘bi‘) (0 .3.‘6)2 =2L kP(S) (6:;9)2 (4.26)

B[

In the neighborhood of stationary points, Eq. 4.19a is approximately
+
- oL
Ese | (he(e,by) -1 kpte) (8 30)*
+ = &e (4.27)
Esg) Lhg(xe.09] o

which, from the definition of Q function (Eq. A-8), reduces to

Esal  (lse o iE

V) o 1Q(: 2 258 &) U(wo)
- - B
E<d L

(4.28)

b) End-point contribution

Expanding the phase function around the end-point € = a and limiting this

expansion at first two derivatives, one easily gets

V[0, 64) 2 Y (o, 4s) + Wplorbs) (9-) +L Wop (e b1) (6-00)"

(4.29)
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Proceeding similarly as in the case of stationary point evaluation, one

obtains
Eete he(“ bs) 'J\p(“"d’*) f "J[ Vs (s (6-a) + Wop (0 d2) ( 9"“)21
E:§ hq:(ot.dh) 4 éb w0

From Egq. G-5
L+ 4 X
Iéj[ Wa (o, 62) (6-) + & Yoo f«:%)(e«f]aa F(lds ¥
> Yy o

where

Yo (et 3) 2 kp°|cos | o

sin?‘_%.@. (G=4)
‘jl' %e (q’ ¢¢.)| l QCOSE- -—COS(« ;Ee-)l ]

Insertion of Eq. G-5 into 4.30 yields

+ 1 .
Beol | 2} Fidue®)
t I- (4.31)
Eed L Led
+ + ., .
where (Ieé_’ I 5—) is defined by Eq. 4.22.

The scattered field (Eq. 4.19a) is found by the summation of Eqs. 4.28 and
4.31

Eol [Teolp(an &%)« Ise Qea gy w38 &) Uce),

' E—q:) Iec} 56

4.2.3. Total radiated field

Total radiated field from the paraboloidal reflector antenna system is equal
to the addition of direct feed radiation (Eq. 2.12) and the total scattered
field given by Eq. 4.2]1 or Eg. 4.32;
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Es] (ES1 [Ee] (L&
+ —

- ={ 4 U(I_e) (4.33
Es) [E3) (€3] 1% ° |

where the direct feed radiation is written in terms of the stationary point
contribution.

If the asymptotic evaluation given by Eq. 4.21 is used, Eq. 4.33 is simply
t rT + - +
E.e Iee Iee Ise ‘1
JR

L = - [Wﬁsf.le.‘*)...l](e-oz)]U(!!.-e)

+ - + 2 (4.3¢4
Eg) (Iepl [Ies! lsg
jw/A)

where W(s_e = 0 by virtue of Eqs. 4.25 and C-11.

1f Eq. 4.32 is inserted into Eq. 4.33, one obtains
+ - +
EX) (leo v [leo jr. [Lse |
? ={ . F(|d+|eq')+ F(“Ll e“)-— i U[_(e-u)(;-z-e)] (4.3
Eq, Ieﬁ Iefa Isd: '

+ .
where Q{ Jka(e) 1239[ eJﬁ/4), which is approximately equal to zero except in

the near vicinity of the shadow boundary, is considered to be zero.

4.3. Asymptotic physical optics theory of Rusch

Rusch in his asymptotic physical optics theory {8] applies the method described
in section 4.2.2 directly to Eq. 4.10 instead of proceediﬁg with Eq. 4.19a; but
by virtue of the first part of Eq. 4.19b, they yvield the same result. In ad-
dition to this, he performes the asymptotic evaluation in aperture plane and in
cartesian coordinates.

Stationary point contribution of Rusch is equal to minus the geometrical optics
term and in Eq. G~3, he takes the transition function as unity [8]. These
respectively yield discontinuous and infinite fields at the shadow boundary.
His theory has recently been extended by Knop [11] by introducing the transi-
tion functions in Eq. G-5. Knop's solution, with a transformation given by
Table 4.1 yields a total field ([11] , Eq. 26)



Table 4.1
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Transformation of Knop's variables

Knopll

Safak

Po
B

k (P° - Zsp cosfx asine)

r"'w (= |ka. sind
- [cosa + Smb
tan 80

3

(S0 gJeitstts-3]

JX(w)

-tke A
EOE.T P( ¥l e cosh }
P B(y) e JELY) sin

i3 +an —
tan B0 95

X FO
ZkPOsm =

¥ ]1 k|Pes| Ke |sin°‘§el

Kke =cosO '.‘."l'qn% snO

7 Qe &1E
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. b= F(x*d+ F(K-‘gz')_ *° U[(‘-;--G)(O-“)] (4.36)

8*=J2 kipes) Ks lsin“zel (4.37)

and

+
y = &

pét are the caustic distances at + stationary points Eqs. 3.8

e = ¢ Bo si.noc | (4.38)
snQ

The difference between the arguments of the transition functions of Knop and

those of section 4,2.2 may be attributed to the approximations made by Knop in

evaluating Eq. G-5 [I11].

Physical opties diffraction coefficients ([11], Eq. 33), with the aid of Table

4,1 may be written as*
+ - +
E)'— -JX "< = + TIE
': = e+ F(¥F els)
= 2i27k 3 in X 6
bs Ké sSm 7

(4.39)

* In [11 , Eq. 33]j_term in front of Eq, 4.39 is missing.
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4.4, Comparison of GID and PO diffraction coefficients

Physical optics diffraction coefficients from Eqs. 4.22 and 4.31 may easily

be written as

bt -TT ¥ T

h| o« % [Ke| F(dy %)

* | 2)2wk | k3 T (4.40)
DS Ké sin ;

where

+
Ke cos(© 1 %—

= {

* (4.24
Kg cos X °°5-2_@- )
<
and
S o oo
dt:jzkpolws"il sna“;:e (G-4)
=) -
|2cosi--cos(oc .,.%)\
Comparison of Eq. 4.40 with Eq. 4.39 shoisthat in Knop's PO diffraction co-
: 3T
efficients ]d:]eJﬂ/q is replaced by Y, e lz in the argument of transition
functions,
GID diffraction coefficients are from Eqs. 3.12 and 3,17
+ - -
Dh _ el F(N+eJ'+)+ i b1
S 202wk | sin%:8 T cos®
2 2
- 1% b
Dh = -E‘Le * [ Flw- eq_). + (4.41Db)
S 2wk | sin%t8 T 8
A 2
where
IVE =J2kp° Is’m“;_e' (3.13)
and
-4 ¢ T=X |
£ 2
< 2
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It is easy to observe that in the vicinity of the shadow boundary (@ = +o)

Eq. 4.40 may approximately be written as

* e y
Dy X ejg Flws d¥) .

~ — 4.42
D* 2J2 7wk sin%*0 |4 (4.42)
S JShp 2
sinece ' +
Ke 1
" ~ 1 (4.42a)
Kélsa
and
+
‘&_lss ~ W (4.421)
Further, in the vicinity of the reflection boundary (0 = +m), Eq. 4.40 is
approximately
DE -JX JE)(L
h{  + &% Flldd e#)
p¥l  2d2mk  ecosg ) (42
S /RB
since
Ko Y
e ! 1
(4.433)

~J
+ X TO cos ©
sm---..z -1 =

K§ RB

in the neighborhood of the reflection boundary.

Eqs. 4.42 and 4.43 become equal to half the stationary point contribution at the
shadow and reflection boundaries respectively (Eq. G—6). This is because of the
fact that,at these boundaries,W(a,@:).(Eq. E-18) is stationary and di goes to
zero. Eq. 4.43 still predicts infinite fields at the reflection boundary be-
cause of vanishing ?ee(a,¢:) at O = +m (Egs. E-21 and G-6). In fact, the

actual analysis is not valid at this boundary, firsly, because the asymptotic
expansion of Bessel functions (Eq. 4.18) are valid only away from the caustics

and secondly, as © + +m it becomes impossible to identify a large parameter in
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the phase function (Eq. E-1) to be able to approximate Eq. 4.10 asymptotically.
Bearing in mind that in the neighborhood of shadow boundary Eq. 4.43 is
negligibly small compared to Eq. 4.42 and vice versa at the reflection boun-

dary, diffraction coefficients obtained by the summation of Eqs. 4.42 and 4.43

-r T T :
Dy &n [ Flwsd¥) . Fdgd¥) i)

n

S 2¥{2xk | sinX-© cos 8
2 2
_ -ix yro JX
Nh - - Jv ( Flw-€%)  F(ldie®
- : + il (4. 44b)

are valid only in the vicinity of these boundaries.

Comparison of Eqs. 4.41 and 4,44 shows that exept for €, and the transition
function associated with the reflection boundary, they are the same.
Argument of the transition function, in Eq. 4.44. associated with the
reflection boundary, vanishes as this boundary is approached (Eq. G-4)
while that of GID tends to infinity (Eq. 3.10). Although this discrepancy
does not bring much difference in practice since both methods fail at this
boundary, it permits us to conclude that the method followed by GID to cal-
culate the arguments of the transition functions is not precise enough.

GTD can be improved by calculating the argument of transitiom functions from
the first and second derivatives of the phase function (Eq. G—4), which is
easy to find from the system geometry.

As far as €, is concerned, it is due to the calculation of GTD diffraction
coefficient at Q-; GTD assumes that when the observation point crosses the

h,s
where straight line between Q. and P (the observation point) passes through

reflector (see Section 3,2.2 and Fig. 3.4) DT _ changes sign and in the region
2

the reflector (E%E <0 < g) diffraction from Q_ does not contribute to the
scattered field. Existence of the stationary point whose contribution (geo-
metrical optics term) is cancelled by the direct feed radiation in the shadow
region (@ < o) contradicts this assumption of GTD. In order to find Di,s
correctly, a positif direction should be defined (Fig. 4-1) and Y; (YE) should

be calculated by choosing the smallest angle between. the referemce plane and
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the incident (diffracted) ray by taking into account its sign as well. From

Fig. 4-1, we easily find

KE=T——'.'?_°‘
~( =% _ 5 ¢ X
XI" (2 ) ‘ V= - = (4.45)
= = 5 )
- =
oS- =X ey 5=

which renders €, identically equal to unity for all @ values,.

It is important to note that €, as defined by Eq. 3.18 makes the GTD solution
discontinuous and yields erroneous results in the region O < E%E where it is
equal to ~1. The reported differences between GID solution and experimental
and physical optics results in the shadow region (© < a) ([7], [8] and [11])
may be attributed to this discrepancy,

All these considerations simply imply that GTD, even with its corrected
diffraction coefficients (Eq. 4.44), can approximate the diffracted rays only
in the vicinity of reflection and shadow boundaries. GTD diffraction coeffi-—
cients (Eq. 4.41) are nothing but approximations to PO diffraction coefficients
(Eq. 4.40).

H]

- direction

SB reference plane

Fig. 4.1, Geometry of incident and diffracted rays for calculating
Y3 and Y3 correctly.
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4.5. Analysis at forward and rear directions

In the forward and rear axial directions, because of small values of sin@,

Bessel functions in Eq. 4.17 vary slowly. For this reason, in these direc-

tions, this integral equation may be eva.uated asymptotically Without resort-

ing to the asymptotic expansion of Bessel functions.

For the sake of clarity, Eq. 4.17 will be rewritten as
Ee mge(O) -79(0)
= [ { €§I dB
Egl & (9%(9)

) S."'la cos8
9o (8) = kpsinﬂJG;lB) i IO(P) u?:i
94 () cosd 1
cos® ot sin©
+J-{ o J.(® == i . ug tan2 L(F)]
q(6) =|<P(l ~cosBeos®) =2kf kpeos8 (14cosB)

B= kP$'|nBsine
From Eq. 4.48, it is easy to calculate
C‘g(e) = kp-lon%(’l+cose)

Qoe(0) = kP sec?'% (1 -Jict)sa) (1+cosO)

4.5.1. Forward radiation

Eq. 4.48 clearly shows that in the neighborhood of forward direction

(@ » *r), it is impossible to identify a large parameter in q(8) rendering an

(4.46)

(4.47)

(4.48)

(4.16)

(&4.49) -

(4.50)
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asymptotic evaluation of Eq. 4.40 possible., We can again observe that q(9)
does not considerably change in that region thus somewhat facilitating the

analysis. From Eq. 4.48, for the values of © such that

max{ kpcosh (H-cose)} = kf (1+c0s©) L V¢ (4.51)

where ?F approximately satisfies the relations

cosWp =1 (4.52a)

smyp =0 (4.52b)

the phase term in Egq., 4.46 can be taken out of the integral sign. Eq. 4.51
is ‘evidently satisfied over the main beam and a few sidelobes around it.

With this approximation, Eq. 4.46 reduces to

E o
e[ -pkf | ]9e(®)
= €& . (4.53)

E & 5 96 (e)

For Huygens source feeding (ue = 1), Eq. 4.53 may approximately be written as

Ee HUY (cos@ sind

L d

o
- + X
- e:(i“f ) kpsind ]o(kpsinﬂsine) __L_JG‘” kpdB, 54
I ) cosd o kf

which is proportional to the Hankel transform of the aperture distribution

given by

{6)

3'{9) = _@L_ (4.55)
kp

The method of calculating the scattered field by Eq. 4.54 is known as the

scalar aperture method [15] and its validity limit is determined by Eqs. 4.51

and 4.52.

In the forward direction (@ =%m), Eq. 4.46 is equal to
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E e -sind .J(.zk-f+ ll)

= k nBJG (6) Yetl g .
Elr (cosd P "’

o

For dipole feeding (ue = cosf), amplitude of the electric field vector is from

Eq. 4.56

L9673

bIP =
- | 0( . ’
EF - E kaco{f [mnﬁ G{(e) JB (4.57)
(o]
where by virtue of Eq. 4.2
f=% cotX D cot X (4.58)
2 2 i <
Eq. 4.57 reduces to;
For uniform aperture distribution (Eq. 2.8)
DIP
Eru = 2ka co{ lln co.s?‘il (4.59)

and for the feed patterns given by Eq. 2.7

™DIP '——— +0
E = ¥2Uns1) kacot“ [i-(r:osoc) 7-] n=1,2,3... (4

n+2

For Huygens source feeding (ue = 1), Eq. 4.56 is equal to

Huy
EF cho’c“ J-l'an._ G[lB db (4

(#]

from which we can easily find

HuUY

F,u = kﬂ. : (.4.

.60)

.61)

62)
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HUY
F,2n-A =JZ(n+1) lchot%‘. M;m_. n=1,2,3...  (4.63)

where

n-J1
M {—(cosx) 2 M
n-{ = -— -
2n-1 an-3 : (4.63a)

with

-
M-{ - 1':. - +tan Jcosx (4.63b)

For even values of n

Huy
Ep,n =2.Jz(n+l) kaco*%: Isinn-;‘.- + |ncos§.| N=2 and § (4.64)
Huy 3
E F,6 =Jll|. ka co‘:gi- lllncosg- + “‘3‘“"‘ ...i_ s'mzo(l (4.65)
HUY y 3 .
EF,S -.:m kﬂ CO‘E&\ 1_-.'_92-5- _1|ncos£ - (i-cosc() - Slﬂzﬂ l (4.66)
2 X 2 3 2

It is important to note that Eqs. 4.57 and 4.6]1 are equal to the square root of
the antenna gain for dipole and Huygens source feeds respectively.

Eq. 4.59 to 4.65 are drawn in Fig. 4.2 versus ¢ after being normalised with
respect to ka whose square is equal to the gain of a uniformly illuminated
paraboloid having a Huygens source feed (Eq. 4.62).

Fig. 4.2 clearly shows that the gain for Huygens source feeding is higher than
that for dipole feeding having the same feed pattern. This is due to the fact
that dipole feeding yields more tapered aperture distributions in the E-plane

because of ue_factor in its polarisation vector (Eqs. 2.5 and 2.6).
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Fig. 4.2. Normalized gain of a paraboloid for dipole and Huygens source feeds.



.-.34_

4.5.2. Rear radiation

Eq. 4.49 shows that in the neighborhood of the rear caustic, q(8) has a
stationary point at 6 = 0. Since the integral kernel (Eq. 4.47) vanishes at
this point, the only contribution to the asymptotic expansion of Eq. 4.46
comes from the end point.

From Eq. 4.46 and Eq. C-5, one easily gets

e sind ~7q (o)
Ee = M ‘GI(UJ CJ .

+ {+cos®
E{a cosd

c0sO -cosE sin8

Jot) L2 L 2v) 4=

+j uyta n% i)

o
i (4.67)

where

V= kasin© (4-672)

As already been mentioned, the above formula is valid only for small values of
8 (defined by Eq. 4.16) which is evidently satisfied in the neighborhood of
the caustic regions. Because of its simplicity, it is a useful formula for
calculating the rear radiation. Fig. 4.3 shows the comparison of Eqs. 4.34,
4,67 and the GTD solution (Eq. 3.21) for Huygens source feeding. The two
asymptotic physical optics solutions smoothly join each other as the rear
caustic direction is approached,as expected. For this reason, they are comple-
mentary and enough to describe the rear radiation. Equivalent edge currents
method ([12] to [14]) currently used for this purpose is cumbersome and in-—
correct since it is derived from GTD. GID prediction for rear radiation does
not agree with physical opties solutions. As already explained in Ch. 3 and
section 4.4. this is because of the fact that GID can predict the scattered field
correctly only in the near vicinity of reflection and shadow boundaries.

Amplitude of the back radiated field is found by inserting © = 0 in Eq. 4.67
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Fig. 4.3. E-plane rear radiated field of a paraboloid with Huygens source feed at focus.
D =25\, o = 60° and n = 2. '
-.- GTD, Eq. 3.2!
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- 6¢ -



.= 36 -

EB =JG\((°{) 1+;o:ﬁ H':“ (4.68)

It is interesting to note that the back rac.ated electromagnetic field for
]l + cosd
2
which is,of course,due to its lower edge illumination in E-plane.

dipole feeding is times smaller than that for Huygens source feeding

Inserting Eq. 2.8 into Eq. 4.68, we obtain the back radiation of a uniformly

1lluminated paraboloid as

Huy
EB,uu = co{:% (4.69)

4,5.,3. Front to back ratio

Back radiation from paraboloid bears  particular importance in calculating the
antenna nolse and the interference between different communication systems, In
this section relative level of the back radiated field with respect to the front
radiation will be calculated and its relation to other antenna parameters will
be studied.

Front to back ratio, which 1s defined to be

Fie = 20 103{_@5[‘_\_
|Esl
=G - 20 log Egl a8) , (4.70)

is a measure of the relative level of back radiation with respect to the fromnt

radiation. n, is the antenna efficiency and the antenna gain is defined by

G = 26\03 ‘J'rT;. IEFI} (JB) 4.71)

where EF is given by Egs. 4.59 to 4.66 and EB by Eq. 4.68.

As studied in the previous chapter the most significant contribution to the back
radiated field comes from the paraboloid edge illumination. For this reason,
there is a close relationship between the feed taper at the paraboloid edge and
the back radiated field. Feed taper is defined to be the ratioc of average of E-

and H-plane edge illuminations to peak feed radiation, i.e.
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, {+Ug
TF - G{((:)___ 2 _ Cos!’l-'o( 1+Uy (4.7722)
J {:(0)

and in decibels

Te =10 n |03\co.soc| +20 los("’u“) (clB) © (4.72b)

Taper of the aperture distribution is similarly

Flx) Ty
TAb - - G (O() 1+cosX d+Ug .73a)
Flo) VG0 * 2 o

where F(6) is defined by Eq. 4.55. In decibels,

Tap = TF + 40 Ioalco.s‘l‘il (dB) (4.73b)

TF and TAD are shown in Fig. 4.4 versus o for Huygens source polarised feed.

It is interesting to observe (Eqs. 4.68 and 4.73a) that the back radiated field

Eifs - J Gi{(d) -r;Fb

where Gf(o) is proportional to the feed gain. Thus

is equal to

EB :GIF +-T;.D =GF +TF + 40 IOSI COS%] (C:IB) (4.74)
where
GIF = 10 |03 G_(:(O) | - (4.75)

Back radiated field from Eq. 4.74 is drawn in Fig. 4.5 versus feed taper. From

Eqs. 4.70 and 4.74, F/B ratio may be rewritten as

FIB = G-Ge -Tr - 40 log | cos%-| (dB) «.76)

Defining
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K=-20log| cosZ| (dB) (4.77)

which is identical to ([24], Eq. 21}, we observe that back radiation given by
Eq. 4.74 is X dB lower than that given by Knop ([24], Eq. 8). More explicitely,
to find Eg and F/B ratio given by Knop ([24], Egs. 8 and 20), K should be added
to and subrected from Eqs. 4.74 and 4,76 respectively. It is interesting to
write F/b v2tio of a uniformly illuminated paraboloid; from Eqs. 4.62, 4.69

and 4.70
Huy

Flp = 20log |VNa ka fan & | (dB) 4.78)
uN

which differs from the result of Knop ([24], Eq. 12) by the same factor K given
by Egq. 4.77.

The aboveJcited discrepancies between our results and those of Knop may be
attributed to the errors in equivalent edge current method utilised
by Knop to predict the rear radiated fields.

Front/Back ratio of a paraboloid is shown versus feed taper, n and o respecti-
vely in Figs. 4.6 to 4.8 after being normalised with respect to (ka)z, gain of
a 1007 efficient uniformly illuminated paraboloid.

From the above figures, it is apparent that with increasing o and n, which in-
crease the edge taper (Eq. 4.72), F/B ratio also increases. On the other hand,
F/B ratio for dipole feeding is higher tham that for Huygens source feeding
because of its more tapered edge illumination. Although the antenna gain for
dipole polarisation is lower, this is compensated by its lower edge illumination
yielding lower sidelebes and back radiation.

It is interesting to compare our results for F/B ratio with those of Knop ([24],
Table I} who utilised equivalent edge currents method to calculate the back
radiation and the measured antenna gain for front radiation., The results are
shown in Table 4.2, Normalised F/B ratic is readily observable from Fig. 4.6

for different feed tapers and F/D ratios and ka is given in decibels. The sum
of these two yield the theoretical F/B ratio, {(for a 1007 efficient paraboloid)},
Using the measured gain which Knop gives and the back radiation from Fig. 4.5 a
more realistic estimate of the F/B ratio is given in the last colomn.

Comparison of our results with those of Knop shows that F/B ratios given by Knop

i AA—
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at 1.905 GHz and some others for other frequencies are even higher that those

of a 1007 efficient paraboloid. This implies very large error limits in his

F/B ratio measurements. Further, because of already observed errors in rear
radiated field and F/Bytheoretical results given by Knop [24] are not reliablec

On the other hand, gain and F/B ratio of antennas having the same F/D should
decrease 2.42 dB, 5.17 dB, 3.88 dB and 6.33 dB when the operating frequcncy is
changing from 14.8 GHz to 11.2 GHz, 11.2 GHz to 6.175 GHz, 6.175 GHz to 3.95

GHz and 3.95 GHz to 1.905 GHz respectively.

This is because of the linear dependence of gain and F/B ratio to ka (Eq. 4.76).
A direct observation from Table 4.2 shows that Knop's results are far from satis-—

fying this condition either.

10

F/D = 0.433

Normalized front to back ratio, dB
Lo

-3 -5 =7 -9 -11 =13 =15 -17
Feed Taper, dB

Fig. 4.6 Normalized front to back ratio versus feed taper for a Huygens
source feed at focus.
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NORMALIZED FRONT TO BACK RATIO dB

Fig. 4.7 Normalized front to back ratio of a focus—fed
paraboloid versus n with o as a parameter
-—— dipole feed
Huygens source feed.
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Knop ([24], Table 1) Safak
.

D F/D | Typ G Freq.| F/B | F/B Normal.|ka |Theor.| {E_| | Exper.
(ft) (dB) | (dB) | (GHz)| (meas)|(calcull)| F/B (dB) |F/B k) | ¥/8
' (dB) (dB)
4 | 0.375 18,4 21 21.0 0.85 |21.4 |22.25 | ~1.7]20.1
6 | 0.382 22,0 | o gyl 25 24.6 0.55 124.97(25.53 | -0.5] 22.5
8 | 0.373 24.4 27 27.0 i 27.5 {28.5 | -1.8126.2
10 | 0.300] 26.4 29 29.7 29.4 |33.1 -4.2 {30.6
12 | 0.333 28.0 30 30.9 2, 30.97{33.27 | -3.1|31.1
15 | 0.333 29.9 32 32.8 2.3 32.9 {35.2 | =3.1{33.0
6 | 0.382 28.7 |y gg5l 36 37.0 3.65 |31.24]34.89 | -4.6|33.3
8 | 0.373)_,, | 31.2 39 39.6 4 33.74{37.74 | -4.9 | 36.1
10 | 0.300 33.2 4 42.3 35.7 |42.7 | -8.0]41.2
12 0.333 34.7 45 43.4 5. 37.2 |42.8 | -6.5|41.2
15 0.333 36.6 47 45.3 .6 39.2 [44.8 | —6.5| 43.1
6 | 0.382 35.0 40 40.0 3.65 |37.57\41.22 | -4.6 | 39.6
8 | 0.373 o [ 37.3]; g5 (41 42,4 4 40,1 44,1 -4,9 1 42.2
10 | 0.300 39.3 47 45.1 7 42.0 149.0 | -8 | 47.3
12 | ©.333 41.0 50 46.4 5.6 43.6 {49.2 | -6.5]|47.5
15 | 0.333 42.7 52 48.1 5.6 45.53{51.13 | =6.5 | 49.2
65 | 0.382 38.9 46 44,5 3.65 | 41.46{45.11 | ~4.6 | 43.5
8 1 0.373) 0 | 41.5 ¢ 195]48 47.0 4 44.96(48.96 | —4.9 | 46.4
10 | 0.300 43.3 51 49.6 7 45.9 152.9 | -8.051.3
P12 | 0.333 45.0 52 50.9 5.6 47.46|53.06 | -6.5]|51.5
15 | 0.333 46.4 53 52.3 5.6 49.41(55.01 | -6.5 {52.9
4 | 0.375 40.5 46 46.0 3.85 |43.1 {46.95 | -4.8 | 45.3
6 0.382 -10 44.0 1 11.2 |51 49.5 3.65 46.63150.28 | -4.6 | 48.6
8 | 0.373 46.4 52 51.9 4 50.13|54.13 | -4.9 | 51.3
10 | 0.300 48.3 54 54.5 7 51.1 |58.1 -8 | 56.3
12 | 0.333 49.8 55 55.6 5.6 52.63]59.23 | -6.5 {56.3
0.375{_ 15 | 42.5|,.g 148 49.1 3.85 [ 45.5 [49.35 | ~4.8 |47.3
0.382 46. 1 55 52.7 3.65 149.05|52.7 | -4.6 |50.7

Table 4.2

Comparison of the obtained front to back ratios with thocaz of Knop.
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4.6. Results

In this section calculated GTD and APO radiation patterns are compared in E-
and H-planes, effects of feed polarisation and taper on the antenna performance
are investigated,

It is important to note that in all the figures to follow, contrary to ile
definition used until here, © is measured from the broadside direci.ion.
Besides, the radiation patterns are normalised with respect to their broadsidre
gains given by Eqs. 4.59 to 4.66, Normalised back radiation {(i.e. -F/B ratic
given by Eg. 4.76) is denoted in the following figures so as to test the con-
vergence of asymptotic patterns in the rear directiom.

In the preceeding sections, we already observed that GTID can predict the
diffracted field correctly only in the neighborhood of reflection and shadow
boundaries and yield erroneous results in the shadow region. For this reason

a good agreement between two methods in these two regions is expected. The
extent to which GTD approaches the results of APQO outside these regions may

be considered as a measure of validity of this formulation.

Since Egqs. 4.34 and 4.35 are both asymptetic solutions of Eq. 4.1, it is assumed
that they yield practically the same diffracted fields. Because of this reason,
as APO solution,only Eq. 4.34 is considered. GTD radiation pattern is given by
Eq.” 3.21.

Before going into details, it should also be mentioned that the calculations are
carried out for a paraboloid of 15\ diameter and having a subtended angle of

200 = 120° (£/D = 0.433). It is now a known fact that for paraboloids of diameter
larger than 3 - 4A, asymptotic approximation yield satisfactory results (see Eq.
4,18). Increase in the antenna diameter, although it does not alter the side-
lobes' envelopes, increases the number sidelobes of the radiation pattern and
reduces the error involved in the asymptotic approximation. For this reason, a
D = 15\ paraboloid which already bears the characteristics of large antennas
gives enough idea about the antenna performance. On the other hand, since the
change in subtended angle is-directly related to feed taper (Eq. 4.72), the
present analysis, where its effect is studied, gives enough insight about the
influence of o on radiation patterns.

Eqs. 4.9 and 4.10 show H-plane patterns for Huygens source and dipole feed
polarisations respectively. The feed pattern considered is given by Eq. 2.7
with n = 2. We observe that the whole radiation pattern for Huygens source

feeding is shifted in 1.08 dB below that for dipole feeding. Since the feed
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tapers at the paraboloid edge are equal for the above cited feeders in this
plane, this shift is equal to the difference between the gain for Huygens
source feeding (32.56 dB) and that for dipecle feeding (31.48 dB).

GTD and APO radiation patterns agree quite closely everywhere except in the
shadow region. This discrepancy in the shadow region is expected due to the
errors in GTD formulation. The good agreement in the off-shadow region may

be attributed to fhe fact that for the incident electric field vector parallel
to the edge,'the paraboloid as well as any other reflector locally looks like
a straight half plane, for which the GTD formulation is exact [25]. The same
argument can not be made for E-plane patterns, on which the reflector surface
curvature has a large influence; in the off-shadow region away from the
refiection and shadow boundaries, Z~directed currents induced on the paraboloi-
dal surface has a nonnegligible radiation in E-plane but do not radiate in
H-plane (Eq. 4.17). This is clearly seen from Figs, 4.11 and 4.12.

E-plane radiation patterns for dipole and Huygens source feeds are compared

in Fig., 4.13. The pattern of the former has lower sidelobes because of its
lower feed taper in this plane in spite of the higher gain of the latter;

in the E-plane, taper of a dipole feed, because of U is 6 dB lower than

that for Huygens source feed. Owing to 1.08 dB difference in gain (Table 4.3),
the pattern of dipole polarised feed is 4.82 dB shifted downward relative to
that of Huygens source feed. '

Téble 4.3 shows the influence of n on the antenna gain, feed taper and first
sidelobe level in E- and H-planes for the afore-mentioned feed polarisations.
From Table 4.3 and Fig. 4.2 and 4.4,it is obvious that the sidelobe levels are
more sensitive than the antenna gain against n (and the feed taper); for
example, increasing n from 2 to 6, décreases the gain by 0.65 dB but accompa-
nies as well a decrease in the first sidelobe level by an amount of about 8 dB.
For the sake of completeness, Fig. 4.14 shows the E-plane pattern of a Huygens
source fed paraboloid for n = 6.

It is a known fact that paraboloid reflectors with Huygens source feed yielding
uniform field distribution on the aperture plane radiate very 1low cross-—
polarised fields [26]. Further, uniform field distribution over the antenna
aperture results in maximum directivity. From all these considerationms, it can
easily be concluded that, Huygens. source feeds yielding nearly uniform aperture
distributions except for a highly tapered edge illumination are ideal for

antennas intended to use for dual polarisation purposes.
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HUYGENS SOURCE

DIPOLE

first sidelobe level first sidelobe level
T Gain F/B (dB) T Gain | F/B (dB)
n F E-plane H-plane F E-plane H-plane
(dB) {dB) (dB) (dB) (dB) {dB)
2 -6 32.56 33.3 ~22.51 -22.44 - 8.44131.48 | 34.7 |-27.45 -21.36
4 -12 32.46 37.0 ~-26.21 ~26.15 -14.44731.51 ) 38.55]-31.29 -25.,2
6 -18 31,91 41.0 -30,22 -30.15 -20,44131.08 ) 42.67]-35.41 -29.32

Influence of n on antenna performance parameters

D/X = 15, o = 60°.

Table 4.3

- €¢ -
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APPENDIX A
Diffraction from a curved edge

Diffracted field at a point Q at the edge of a perfectly conducting half plane

may be written as [5]

d i

11 5 3 —
- _pe o TIks (A-1)

. s{p +s)

d o b (le? ¢ .
AR hil L
where s is the distance from the observation point P to the diffracting point Q
at the edge (See Fig. A-1). )
A1

If & is the unit tangent vector to the edge at Q and § and § are respectively

the unit vectors in the direction of incident and diffracted field, then

E =E .e (A-2a)

11
E' =E.(8 x &Y (A-2b)
1
. d - Ed.g (A-2c¢)
il
ed -8 ex9 | (A-24)
L
Pe is the caustic distance defined by
-~ l\i ~
1 1 n .8 -8
—_— —-.-.i - e_._...._-— (A"'B)
P 0 . 2
c e K sin"R
o
where
1 . . . . . ;

Cq : radius of curvature of the incident field at the diffracting point at
the edge in the plane containing the incident ray and the tangent to
the edge (in the plane formed by € and §i). (For the incident spherical
wave, it is equal to the distance from the phase center of the source to
the edge).

ﬁe : Unit normal vector to the edge at the point of diffraction directed out-

wards from the center of curvature.

§',8 : unit vectors along the incident and diffracted rays respectively.
K radius of curvature of the edge at the point of diffraction.
BO : angle between the edge tangent and the incident ray at the point of

diffraction. (all incident and diffracted rays in this work have Bo=ﬂ/2).
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Diffraction coefficients considered in this work may be expressed as

TT—‘- ; T X JjE
Dh - —€* F(z¢*%) . Flzmew) iy
S 2Jz1rk.sinﬁo COS%E - cosv____d;ﬂ -

= aklF l cos WEL:

and Y; and Yq denote the angles of incidence and diffraction respectively, in

where

{(A~4a)

the plane perpendicular to the edge at the point of diffraction, measured from
a reference direction,
For paraboloidal reflectors, the incident source field has always spherical

. i . .
wavefront. For this reason, parameters L~ and Lr are simply given by

value of the caustic distance pc'at the (A-5)

= fe L: Pe

shadow boundary

[}

value of P. at the reflection boundary. (A-6)

Lr = PC‘R

As for the so-called tramsition function, it is defined by

+1R +71{Z*+ T [ P
F(zJr )=2zeI( z]éﬂd""

=2IN Z e “) Q(z ) (A=)

where

Q2

SN

- T

41#

dt

%)

3

+fE

+ (53n 2) _{____

It can easily been shown that [18]

= U (-2) F 4 a-s)

121
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' i
Q(o) = '-i" C(A-9)
and

Q(z é:j!"s‘) ~U-2) +

FJIEeR)
2w Z

From Eqs. A-7 and A-i10, it is evident that for positivelarge z, the transition

12 — @ (A~10)

function approaches to unity.

Reference
Perfecl\w conduc’cinj plane
e
half plane
Plane of
B tncidence
Plane of S .}
diffracti Lf
o -k fie
d e

\T iy
-
7]
i
'\
O
e
I

Fig. A.! Diffraction at Q.
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APPENDIX B

Coordinate transformations

(X,Ysz)$(0s6s¢) (X,Y,Z):—(R,e,@)

X = P sind cosd + Fcoshd cosdp -~ P sind X = R sind cosd + O cosd® cosd
§ =0 sind sind + Beosh sind + § cosp ¥ = R sin® sind + € cosd sind
Z = pcosd - Bsinod Z = R cos® - @sin®

B = % sinb cos¢ + F sind sind + 3 cos® R = R sin® cosd + § sin® sind
8 = % cosB cosdp + § cosd sind - Z sinb O = 2 cosd cosd + ¥ cos® sind
& = -% sind + § cosd $ = -% sind + § cosd

Fig. B.1 Unit vectors in different coordinate systems.

[}

[ H

sind

cos®

cost

sin®



APPENDIX C

Stationary phase evaluation of finite integrals

We shall consider the integrals of the type

Y (x) b 18Lq(x)
I(—“—) HX)g dx = 1C(><)€'.I ! dx (c-1)

o ol
where © is a positive large quantity and a and b are finite. f£(x) and q(x)

are slowly varying functions of the real variable x and q(x) 15 a real function.

it may be shown that for Q@ + o the above integral can be approximated by

(18], [21])
I(.ﬂ.) ~-[5(.Q.)U[(Xs-a)(b-x5)] + Ie_(.Q.) + O(.D:%) (C-2)

where U(a) is the Heaviside function defined by
L %0
u () = (C-3)
o ®o

L () is the lowest-order contribution from the stationary point X (for
which wx(xs) =0, ac«< xg < b)

j[\P(xs)i-l‘-
S(Q) \ijxx( Xs)| 'F(Ks) < 4] Wi (%) 20 (C-4)

and QE(Q) is the lowest-order contribution from the end-points

L) £ Vg V6
Y (B) T¥x(a)

If the integratiom interval contains several stationary points, Ig(f)) 1is

(C-5)

the sum of the corresponding terms of each X When X coincides with either
of the end-points a or b, the corresponding end-point contribution in Eq. C-5
is omitted and the stationary point contribution in Eg. C-4 is halved, If the
interval contains no stationary point, U wvanishes and the integral is approxi-
mated by the end-point contributions. In the case that an end-point moves to
infinity, the corresponding contribution is omitted.

The above appreoach fails when X approaches one of the end-points; when x

moves continuously toward and accross one of the endpoints, the term Ig(Q) is
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discontinucus since the saddle point disappears from the integration interval
and Lo(Q) diverges since Yy(x ) - wx{i} ~ 0 as x_ = {s}. For this case a more
careful approach is necessary. To simplify the discussion, let us consider the
case where x_ moves towards and across a.

The integral in Eq. C-1 can then be appvoximated by [18]

[[Yixs) T
I(.D.)~€J[ “]{hmh Q(saé"T")+

+7(Sa 1)
e [{mha f(xs)h]}

I‘P(b ) 21X
F(b\ ) = Ie(-n-)-*IS(Q-) W (sq eJ‘*)
J'pr(‘n)
Yxx(xs) 20 (C-6)
where
Sq = % JlW(xs)—\U(a)I (a- %) %0 (c-7)
he = [—28— = )
> 7 {Wxx9)] ha\x o (c-8)
hO« = :‘:ZJ:E Sa Wxx(xs)><0 (C-9)

Wx(q)

2% Sq
e"-r-jﬁ co-rjt" 17(sa+X)
-.:.-—ﬁ-\-__- [J e” dt -~ T ] (C-10)
St

Q function is defined by Eq. A-8. For [Sa[ large, from Eq. A-10,

W (S., ) U (-sa) \Sa] —> o0 (c-11)
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When x - a (sa > 0), Q(0) = 5 (Eq. A-9) and Eq. C-6 reduces to the coincident

endpoint and stationary point contributions

J["p(*s] LS L AL
Lo - gy fo0 &0 2y

It is thus interesting to note that, in the case of the existance of a
statiocnary point moving towards and across an endpoint, the stationary point
contribution is multiplied by a function, W, removing the singularity at the

considered endpoint (Eq, C-6).

In the case where X, appreoaches b, S, should be replaced by Sy defined as

* fl\ll(xs)—\l/(b)\ (s -b) % 0 (C-13)
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APPENDIX D

From the integral definition of Bessel functions [23]

2T r8cost
J (B) = ] cosmt E;:F? Jdt (D-1)
2.11'3'

one can easily find that

2w
cosm cOos™ >Pcog “‘4’
J.WJ"‘].-“(?){ smd }:]i 4,}3 @ )d¢ (D-2)
0

sn m@ snm

Similarly, using the trigonometric identity

and ut11151ng Egqs., D-1 and D-2,

{ icasuﬁ} jReos($- 'ﬂd‘f’ --"n‘[Jo(]s) s C°52§J2(B)] S

N sin b

On the other hand, owing to the trigonometric identities

sin (AXB) =sinA cosB * cosA sinB (D-5)

cos(A +B) = cosA cosB TsinA sinB (0-6)

and the Egqs. D~1 and D-2, it is readily found that

b cos B cos(P-9) cosP
{ 'é} cos(p-9) e d¢= H[Jo(p) Jz(p)]{ } (D-7)
sind sind
l'i

|
f{m‘,}sin(@-w 7B cos(B- <b) [Iofﬂ)*I s)}{“mi} o8
]

c.os\b J'FC-OSU§ -$) cos
}co&(@ﬁ#) e dé = H[Jo(p) +\T (B (1 +2.cosZ§)J[ (D-9)}

St -$Wn

e .30—05(@ b sind
H b}sm(@ﬂb)e d$ = R[Jc(ﬁ)-leﬁ)(itzcoszq,ﬂ{ é} (D-10)

Cos
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APPENDIX E

Derivatives of the phase function

From Eq. 4.12
w (B;ﬂ = ki) [i— cosDecosO ~sinbBsind cos(@—d))]

W{J(OJ@ = -kP-sine sin & sin (@ ..¢)
w¢¢ (9;05) = k?.{me S\'ne cos(@_q,)

Yoo (6.6) = Yop(8:) = - kp sin© sin($-¢)

%(9.1:) = kp (1+cos@)[+¢m§. - an _@_ cos(@-cb)]

(E-1)

(E-2)

(E-3)

(E-4)

(E-3)

\Pea (8,9) = kf’ (Hcos@)[ .sec.?'_B.. ++an-— - nB 1an© COS(@-@) (E-6)

At ¢ = ¢+ making Eq, E-2 stationary, i.e.

¢ =P
(b-:@""ﬂ'
the above equations reduce to

- e 81O
P (0.0s) = 2kpeid 028

Vog(0,0:) = = szinG sin©

Vo (8,62) = 2kpcos w_g LS

cos(0 ¥ 2)
o (8.0 = 2kp (co"’_ secz) [i‘ Zcos+6

_lkpcole[ secd +‘l‘ﬂﬁ-++ﬂng—_-l-on_?.}

2

LPOP(B $1) = Wpp (8,9%) = Yy (0, $2) =

(E-7)

(E-8)

(E-9)

(E-10)

(E-11)

(E-12)

(E-13)
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At 6 = +0 rendering ¢8(8,¢:) stationary, Eqs. E-9 to 13 may be written as

Wep (£©,d2) =kp(o) sito (6-14)
Yoo (£8.01) =kp(®) -15)
where
2f )

P(e) =P‘9=9 - 1+c0s O e
Finally, at the end points (po,u,Qi), Egs. E-9 to 13 become

\P(“:q&) = kao sin"“;e ' (E-18)

LPMS (x,4%) = * kpo Sind stn© (E-19)

Wala, 1) = 2"?0 KE Sm‘x-‘;_e (E-20)

-I-2 :
\pee (o, $1) = 2kp° Ke \:1 ~ cos (o ;e/z_)/.z. cos _2_] (E-21)

Vo (a.84) = Wep (wds) = Yog (a és) =0 (E-22)

+
where K; is defined by

Ke- = sec.gf- cos_e_ (E-23)
2, 2,
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APPENDIX F

Integral kernels

From Eq. 4.11

{6 (6,9) i kpsinB &0 cos© [sin?‘é +{ug-1) sinp cos(d -¢)]+sine-hn% Ug sind
= (F-1)
'f@(ﬁ;d)) 2n Cos@ — (ua-i) sind sin(P-9)

At ¢ = ¢ + , defined by Egs. E~7 and E-8, the above equation reduces to

fe(0:¢t) - 'kpainB o uasmﬁ}{cos(e;g.)/cos%} -
{‘(ﬁ (8, ds) 2 ¢ cosd i

At (p, *+ O, ¢*+), Eq. F-2 may simply be written as

{G(ie;‘bt) . L cin - Ugsind
=31 P(? ° G o) .
fo(x0,04) ®

where p(0@) is defined by Eg. E-17.

Finally at the edge points (po,a,Qi), Eq. F-2 becomes

fomdn | 4 o axsind)  Kie
=- = / Gp(w) { H ¢ (F-4)
$

fo(x, d1) cosd

where

Kb) ([cos(@38)/cosk

- | (F-5)

+
Kké 1
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APPENDIX G

The expression from Eq. 4.30

4 x
M7(8) = I exp‘.-ji W (9 2) (8-u) + + Upg (0 92) (8-2) }] do (G-1)
o

by a change of variables may be written as

ot
M “(e) = ] € "F["j {- Yol )t + ¥ we,(m't) t‘}] dt (G-2)

where the major contribution to the integral comes from the neigborhood of
t = 0. For this reason, the upper integral limit is extended to infinity
without much error.

Bearing in mind that wee(a,¢i) > 0 (Eq. E-21) and using the identity

FA v ’ 2
2 Yoy ot 62) £~ Y (u,ﬂbt)*::( [Wosteée a:) ~ds (e-3)
2
where
d = Wo(d, 1) =j2“P°\°°-‘_§l . s'm“—-—-;e (G-4)
J2| Wgp (b )| |2c0s S —cos(x3 )]

Substitution of Eq. G-3 into Eq. G-2, and another change of variables yield

+ | > _pd¥ (Dupe JEE-F) 5E
M (e)z 2 eI /eﬁd{. =j oLl e * (—d: et
j | Yoo lx, d1)] | Yoo, $2)) A )

~d¢

where the Q function is defined by Eq. A-8.
Argument of the Q@ function becomes negative in the shadow region accounting
for the stationary point contribution which is spearately studied in section

4.2.2.a, For this reason, endpoint contribution may simply be written as

2

J(&++H

o § [y ¢ QWE)-

(6-5)
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It can easily be shown thatasd+ + 0 (i.e. in the shadow and reflection

+
boundaries), M~ (8) reduces to

<14

M*e) = L [2Z ?
2 J1Wep (x,$4))

which is equal to coincident end- and stationary points contributions

expected.

as

(G-6)
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