
Abstract-In this paper, we present a new analytical approach for
computing the ramp response of an RLC interconnect line with a
pure capacitive load. The approach is based on the two-port repre-
sentation of the transmission line and accounts for the output resis-
tance of the driver and the line inductance. The results of our
analysis are compared with the results of HSPICE simulations dem-
onstrating the high accuracy of our solution under various values
of driver, interconnect, and load impedances.

1. INTRODUCTION

With the exponential reduction in the feature size, the delays
due to interconnections have become the dominating factor in
determining the circuit performance. Due to aggressive scaling of
interconnects, even an average length metal line may have signifi-
cant resistance compared to the driver resistance. Thus the distrib-
uted nature of the interconnect must be modeled. Furthermore, the
IC operating frequency nears multi-gigahertz requiring the inter-
connect inductance to be properly modeled.

Approximation techniques for estimating the time domain
response of interconnect structures have been proposed. AWE [1]
provides one approximation of general RLC interconnect model
and has been successfully applied to analyze on-chip signal propa-
gation. AWE begins with the differential state equations of a
lumped linear time-invariant circuit and then obtains the Laplace
transform solution of the homogeneous equation. This solution is
expanded in a McLaurin series, and the time-domain moments are
computed from this series and are matched to an approximating
function consisting of a linear combination of exponential func-
tions. REX [2] is another approach for rapidly estimating the tran-
sient response of lossy transmission line which expands the
reciprocal of transfer function of the system. For critical under-
damped interconnects, this method provides better results com-
pared to AWE. Both of these approaches suffer from inaccuracy
especially in high speed integrated circuits. Liao and Dai [3] pro-
posed using an S-parameter based macromodel as a two-port net-
work for modeling the interconnect structures. Another way of
obtaining the time domain response of an interconnect line is to
solve the Telegrapher’s equations. Kahng and Muddu [4] used this
approach for a distributed RC interconnection under the ramp exci-
tation. They assumed that a finite number of reflections (namely
four) is sufficient for generating a result very close to SPICE simu-
lation. The authors however do not consider the inductive effect of
interconnect line in their model and assume that the exciting volt-
age source has zero valued output resistance.

 In this paper, we begin with a two-port model of the transmis-
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sion line and obtain the time-domain expression of the ramp
response for a finite-length RLC lines. The effects of wire induc-
tance and the resistance of CMOS driver of the interconnect are
considered in our method. Section 2 summarizes the background
knowledge about the Telegrapher’s equations. Section 3 presents

our analytical method for computing the ramp response of a lossy
transmission line. We present our experimental results and conclud-
ing remarks in sections 4 and 5, respectively.

2. BACKGROUND

We give some definitions and terminology first. A linear circuit
belongs to the class of linear time invariant systems. Hence it can be
completely characterized by its impulse response. The transient
behavior of any linear system is contained in its system function
which is the Laplace transform of the impulse response.

A uniform transmission line with capacitive load is depicted in Fig.
(1). The transmission line has the property that a signal propagates
over the interconnection medium as a wave. Fig. (1.b) depicts the
electrical model of the transmission line.

Fig. (1). Uniform transmission line. (a)Distributed transmission
line of lengthd with a load. (b)The electrical model.

Let r, l, c, g be the resistance, inductance, capacitance, and conduc-
tance values per unit length of a uniform transmission line. The
Telegrapher’s equations for such a transmission line is [5]:

                   (1)

Eq. (1) is the fundamental relationship governing wave propaga-
tion along a uniform transmission line. The shunt conductance is
often negligible, hence we setg=0. The boundary and initial condi-
tions for Eq. (1) are:

Boundary Condition:

Initial Conditions: ,

At each pointx on the transmission line, the voltage is the sum
of incident and reflected components of the wave.

In the subsequent analysis, we model the input voltage as a
ramp in the [0,trise] interval and a delayed step function in the
[trise, ) interval. We obtain the output response for each of the
inputs separately. However when obtaining the output response for
second part we use the initial condition imposed by the first part of
the input waveform.
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3. INTERCONNECT TRANSFER FUNCTION

Since we are interested in calculating the waveform at the output of
the interconnect line, we do not go through complicated details of
wave reflections through the endpoints of transmission line. Instead
we resort to the two port representation of transmission lines
whereby chain parameters are used for relating the port variables.
More precisely we have [5], [6]:

                  (3)

where  , , andd denotes

the length of the transmission line.L, R,and C denote the total line
inductance, line resistance, and line capacitance, i.e.L=dl , R=dr,
and C=dc.

The voltage at the output port 2 (cf. Fig. (1)) is related to the
current at that port by the load capacitor equation. Hence the trans-
fer function of the interconnection loaded by a capacitorCL is
obtained as:

               (4)

where . The inverse of the first parenthesis in the

denominator term of Eq. (4) is a limit summation of a power series.
The transfer function can thus be written in the following form:

                                            (5)

As can be seen from Eq. (5),λ(s) and Z0(s) depend on the
square root of the frequency variables. Consequently, the inverse
Laplace transform consists of the error function which does not
result in a simple formula for the time domain representation of the
output waveform. So we extend the McLaurin series ofλ(s) and
Z0(s) abouts= , and then based on practical values of parameters,
truncate the series into the first two terms of the series. A good
approximation forλ(s) andZ0(s) is then obtained as follows:

 and                      (6)

Notice that neglecting the resistive term inZ0(s) expression
yields the well known characteristic impedance for a lossless trans-
mission line and that the propagation delay of wave through the
interconnect media is completely captured in the approximation to
λ(s). Combining Eqs (5) and (6), the transfer function of a lossy
transmission line is obtained as:

                        (7)

The above approximation forλ(s) causes a large change in the
DC value of the transfer function. We alleviate this error by adding
a gain compensation factor to the transfer function. To find an effec-
tive gain, letH1(s) be defined as:

                                               (8)

The output expression is then composed of the delayed versions
of h1(t), the inverse Laplace transform ofH1(s) is calculated as:

           (9)

whereT= is the time of flight of the wave. SinceT is very
small compared to temporal changes ofh1(t), we can assume thatT
is negligible, factorizeh1(t), and put it outside the summation. We
therefore come up with the following equation:

                          (10)

The limit of the power series in Eq. (10) gives us an estimate of
the steady-state value ofvout(t) which is interpreted asVout(0) in the
s-domain (the final-value theorem [8]). Doing this we obtain:

                                                               (11)

The actual steady-state value ofh1(t) is one. The error is due to
the second term in the right hand-side of Eq. (11). Considering the
practical values of interconnect parasitics, we see that

. Consequently the compensating gain is set to

. The modified transfer function after taking this
multiplicative factor into consideration is written as:

           (12.a)

           (12.b)

H1(s) depends upon the Laplace transform of voltage at port (cf.
Fig. (1)). Now we do further manipulation to make the analysis
more efficient. We propose the following piece-wise linear function
as an approximation totanh(.):

                                 (13)

We will obtain the transfer function and the ramp response of
the lossy interconnect for each of these cases in the following sub-
sections.

H(s) in Eq. (12) denotes the relation between the voltages at the
output port (i.e. port 2) and the input port (i.e. port 1) of the inter-
connect line. If we wish to have the relation between the output
voltage of the interconnect and the source voltagee(t), we have to
consider the voltage division between the driver impedance and the
input impedanceZi(s) seen by looking into the interconnect line.
We know from [6] thatZi(s) is:

(14)

where z11, z22, z21, z12 are the two-port open-circuit impedance
parameters andZL is the load impedance. By knowing the chain
parameters, any of the other sets of two-port parameters, such as the
z-parameters, can be computed [6]. Hence the input impedance of
the interconnect can be expressed in terms of the parameters of
interconnect as follows:

                                               (15)

We could use a similar piece-wise linear approximation for
tanh(.) which was used in Eq. (13). Using this approximation would
however result in a fourth-order source to the output transfer func-
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tion. To avoid this complexity, we use a different approximation.

Essentially we ignore the  term in comparison with the
term. In the following we show that this approximation does not
cause a large error.

We can rewrite Eq. (15) in the following form:

                                         (16)

whereH1(s)was given in Eq. (8). Since we are concerned about the
magnitude of error we can write the magnitude of the frequency
response of Eq. (16) as:

                                                 (17)

is very small in today’s high-speed circuits. Furthermore,
as frequency increases  becomes even smaller. Any error
in approximatingH1(s) is multiplied by this small value. In prac-
tice, usually  is about 10 times greater than . For
instance, using the interconnect parameters for a 0.18µm CMOS
technology and assuming a 1mm of Metal1 wire, a typical value for
λd at 500MHz clock frequency is around 1.3 [7]. For global inter-
connect lines, this value is even larger.

 Based on the above approximation, we come up with the follow-
ing expression forZi(s):

                                                          (18)

Consequently, the output voltage of the interconnect line is
related to source voltage,e(t), by a simple voltage division made by
Zi(s) and Rs.

                                  (19)

In the following subsections each of the two cases for approxi-
mating tanh(.) are considered separately. The output waveform is
obtained for each of two cases.

CASE I. :

In this caseH1(s) is represented by a first-order rational function of
s as follows:

                                              (20)

Comparing Eq. (20) with the actual value ofH1(s), again we see
that the actual DC value ofH1(s) differs from the DC value of the
approximated expression ofH1(s). This difference will affect the
steady state value of the output voltage. To overcome this, we can
add a constant multiplicative gain so that the DC value of Eq. (20)
becomes unity value. Therefore we obtain:

                     (21)

where:

As stated before, we break up the input waveform into two
parts: (i) ramp inputer(t) (ii) step inputes(t). Hereafter we use the
convention that any voltage variable with index r is related to the
ramp input, and any voltage variable with indexs is related to the
step section of the input. Output response is computed for each of
these parts.

Let’s consider the first part of the input. From Eq. (19) we are

able to obtain the input voltage to transmission line:

                                      (22)

where:

We apply partial fraction expansion toVr(s) and then, after
obtaining the response to each of the fractional terms, simply utilize
the superposition property to calculate the final value of the output
response as follows. Eq. (23) represents the partial fraction expan-
sion ofVr(s):

(23)

As can be seen from the above equation, three terms are present
in the partial fraction expansion of the voltage at port 1. We name
each of the terms asVr1(s), Vr2(s), and Vr3(s), respectively. The
Laplace transform of the output voltage at port 2 is composed of the
response to each of the three terms. We name each of the output
terms asVr1

o(s), Vr2
o(s),and Vr3

o(s), respectively. It is well known
that the Laplace transform of the system response is a product of
the system transfer function and the Laplace transform of the
input[8]. Consequently, we have:

                            (24)

Applying partial fraction expansion, then taking inverse Laplace
transformation, we come up with the temporal waveform of the out-
put:

                            (25)

Similarly, we repeat the above steps to obtain the timing wave-
forms ofvr2

o(t), vr3
o(t) as follows:

              (26)

                           (27)

The output voltage is composed of the algebraic summation of
the three components, i.e.:

                                                  (28)

For the time interval [trise, ) the input has a step form,es(t).
The output voltage is made up of the step input and the initial con-
dition imposed by the ramp input. As a result of the continuity con-
dition, the interconnect response to the second part of the input at
time trise must be equal to the response of the interconnect to the
first part at that same time. The same relationship exists for voltages
at all other points especially the voltage at the input port of the
interconnect, that is:

(29)

As defined before,vr(t) is the input voltage of port 1 when the
excitation is in the form of a ramp whereasvs(t) is the input voltage
of port 1 when the excitation is a step function.vr(t) is simply deter-
mined by taking the inverse Laplace transform of Eq. (21):

         (30)
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Vs(s) is determined by substitutingE(s) in Eq. (19) with the
Laplace transform of the step function. Furthermore we should
include an extra term which specifies the response under the initial
condition. After taking the inverse Laplace transform, we obtain the
following expression:

                       (31)

In Eq.(31) the unknown variableV0 is determined by satisfying
Eq. (29). We can subsequently write:

             (32)

We take the same steps as was taken for obtaining the response
for interval [0,trise] to derive the response for [trise, ). vs(t) is com-
posed of two terms. One is exponentially rising in time and asymp-
totically goes toward a constant value, while the other is constant in
time. We namevs1

o(t), vs2
o(t) as the system responses to each of the

above portions of thevs(t). We have:

                                                            (33)

       (34)

The final expression of the output voltage is composed of the two
functions of Eq. (33), and Eq. (34):

                                                              (35)

The system response is the algebraic summation ofvs
o(t) and vr

o(t).

CASE II. :

In this case we expect that the equations become more complicated
since the order of the transfer function is increased. As we will
show this complexity also appears in the output voltage waveform
so that the waveform asymptotically goes to its final value with
ringing. Similar to the previous case, we change the DC value of the
transfer function such that it becomes identical to the DC value of
the actual transfer function:

                                                         (36)

where  and .

The denominator has always two complex conjugate poles,
hence the response has underdamped behavior and we should
observe ringing effect on the output waveform. The method for
obtaining the output waveform is the same as that used for case I.
So we do not present the details of computations. For interval
[0,trise], the output is composed of three terms:

  (37)

where , ,

     (38)

where , and

        (39)

where .

The output voltage is again stated as an algebraic summation of
vr1

o(t), vr2
o(t), vr3

o(t). Similar to case I, the output for [trise, ) is

composed of two terms,vs1
o(t), vs2

o(t), due to the two separable
parts of the input:

                                      (40)

                       (41)

where . Again .

Finally the system response is .

From Eq. (12.b), the final value of the output is a summation of
delayed versions of the computed output voltage. Since the attenua-
tion factor is large, we only consider a few terms of Eq. (12.b) to
calculate the final value of the voltage. Experiments have shown
that four terms are sufficient to produce high accuracy. With this
approximation, the final value of the output voltage will be:

   (42)

4. EXPERIMENTAL RESULTS

We examined several examples with different values of intercon-
nect length, technology parameters, and load and source imped-
ances. Among these experiments four representative examples are
reported.

Table 1. compares the rise-time of the waveforms derived by our
analysis with those derived by HSPICE simulation for a number of
different transmission lines. Rows 1 through 4 correspond to the
transmission lines depicted in Fig. (2) through Fig. (5). The remain-
ing rows represent new data points. In table 1,WD represents the
width of each conductor,HT is the height of conductor, andTH is
thickness of the conductor.

Figs (2) and (4) show the ramp response of two lossy interconnects
with  less than two. The analysis of case II is used for these two
figures. Fig. (2.a) depicts the output waveform obtained by our
analysis whereas Fig. (2.b) shows the output waveform of the same
configuration by HSPICE simulation. Similarly Figs (4.a) and (4.b)
show the output response of another interconnect obtained by our
analysis and HSPICE simulation respectively. Figs (3) and (5) show
the ramp responses of lossy interconnects withλ greater than two.
The analysis of case I is used for these two cases.

5. CONCLUSION

In this paper we proposed a new method for obtaining the analytical
expression for the ramp response of a lossy interconnect. The
inductive effects of the wire line, and most importantly the output
resistance of the wire driver were considered in our analysis. We
started with the two-port representation of the transmission line.
Among various two-port parameters the chain matrix was selected.
Notice that this property is very useful when analyzing the ramp
response of a cascade of interconnect segments with different
widths.This kind of two-port matrix allows us to obtain the two port
matrix of any number of cascade connections of different wires
with different wire sizes very easily by simply multiplying their
two-port chian matrices. We then obtained the ramp response of the
system by doing some further simplification. The results show that
this method is able to obtain the ramp response of the lossy inter-
connect with small error.
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Table 1: Comparison between rise-times of our analysis and HSPICE
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kΩ

CL
pF

R
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d
mm

trise(ours)
nsec

trise(HSPICE)

   nsec
error

3 2 0.8 2 0.03 70.8 1 3.05 10 0.49 0.65 24.6%

0.2 2.5 0.25 2 0.01 680 0.0736 1.45 2 0.3 0.39 23%

0.3 2.5 0.25 2 0.01 227 0.043 0.635 1 0.23 0.22 4.35%

0.25 2.5 0.25 2 0.01 540 0.077 1.4 2 0.38 0.4 5%

0.2 3 1 2 0.01 170 0.068 1.29 2 0.45 0.4 11%

0.6 2 0.5 2 0.01 113 0.1053 1.035 2 0.74 0.63 14.9%

0.6 2 0.1 2 0.01 567 0.0965 1.21 2 0.46 0.5 8%

0.25 1.0 0.25 2 0.01 544 0.1 1.07 2 0.5 0.55 9.1%

0.25 1.75 0.25 2 0.05 544 0.086 1.26 2 0.57 0.69 17.4%
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Fig. (2). Ramp response of a lossy interconnect (Length=1cm, R=70.8,C=1pF,L=3.05nH) excited by a ramp input withRs=2K as

 HSPICE simulation.
 (a) The result obtained by our method. (b) The result obtained from

 the
source resistance andCL=0.03pF as the load capacitance.

Fig. (3).Ramp response of a lossy interconnect (Length=2mm, R=680,C=0.0736pF,L=1.45nH) excited by a ramp input withRs=2K as
       resistance andCL=0.01pF as the load capacitance. (a) The result obtained by our method. (b) the result obtained from HSPICEthe source

   simulation.
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Fig. (4). Ramp response of a lossy interconnect (Length=1mm, R=227,C=0.043PF,L=0.635nH) excited by a ramp input withRs=2K
resistance andCL=0.01pF as the load capacitance (a) The result obtained by our method. (b) the result obtained from

Fig. (5). Ramp response of a lossy interconnect (Length=2mm, R=540, C=0.077PF, L=1.4nH) excited by a ramp input with Rs=2K as
andCL=0.01pF as the load capacitance. (a) The results obtained by our method. (b) the result obtained from

     the sourceas
HSPICE simulation.

the source resistance
HSPICE simulation.
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