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Signal detection theory (SDT)may be applied to any area of psychology in which two different types
of stimuli must be discriminated. Wedescribe several of these areas and the advantages that can be re­
alized through the application of SDT. Three of the most popular tasks used to study discriminability
are then discussed, together with the measures that SDT prescribes for quantifying performance in
these tasks. Mathematical formulae for the measures are presented, as are methods for calculating the
measures with lookup tables, computer software specifically developed for SDTapplications, and gen­
eral purpose computer software (including spreadsheets and statistical analysis software).

Signal detection theory (SOT) is widely accepted by

psychologists; the Social Sciences Citation Index cites

over 2,000 references to an influential book by Green and

Swets (1966) that describes SOT and its application to

psychology. Even so, fewer than half ofthe studies to which

SOT isapplicable actually make use ofthe theory (Stanislaw

& Todorov, 1992). One possible reason for this apparent

underutilization of SOT is that relevant textbooks rarely

describe the methods needed to implement the theory. A

typical example is Goldstein's (1996) popular perception

textbook, which concludes a nine-page description of SOT

with the statement that measures prescribed by SOT "can

be calculated ... by means of a mathematical procedure

we will not discuss here" (p. 594).

The failure of many authors to describe SOT's methods

may have been acceptable when lengthy, specialized tables

were required to implement the theory. Today, however,

readily available computer software makes an SOT analy­

sis no more difficult than a t test. The present paper at­

tempts to demonstrate this and to render SOT available to

a larger audience than currently seems to be the case.

We begin with a brief overview of SOT, including a

description of its performance measures. We then present

the formulae needed to calculate these measures. Next, we

describe different methods for calculating SOT measures.

Finally, we provide sample calculations so that readers

can verify their understanding and implementation of the

techniques.

Weare indebted to James Thomas, Neil Macmillan, John Swets, Doug­

las Creelman, Scott Maxwell, Mark Frank, Helena Kadlec, and an

anonymous reviewer for providing insightful comments on earlier ver­

sions of this manuscript. We also thank Mack Goldsmith for testing

some of our spreadsheet commands. Correspondence concerning this

article should be addressed to H. Stanislaw, Department of Psychology,

California State University, Stanislaus, 801 West Monte Vista Avenue,

Turlock, CA 95382 (e-mail: hstanisl@toto.csustan.edu).

OVERVIEW OF SIGNAL

DETECTION THEORY

Proper application of SOT requires an understanding of

the theory and the measures it prescribes. We present an

overview of SOT here; for more extensive discussions, see

Green and Swets (1966) or Macmillan and Creelman

(1991). Readers who are already familiar with SDT may

wish to skip this section.

SOT can be applied whenever two possible stimulus

types must be discriminated. Psychologists first applied the

theory in studies of perception, where subjects discrimi­

nated between signals (stimuli) and noise (no stimuli). The

signal and noise labels remain, but SOT has since been ap­

plied in many other areas. Examples (and their corre­

sponding signal and noise stimuli) include recognition

memory (old and new items), lie detection (lies and truths),

personnel selection (desirable and undesirable applicants),

jury decision making (guilty and innocent defendants),

medical diagnosis (diseased and well patients), industrial

inspection (unacceptable and acceptable items), and in­

formation retrieval (relevant and irrelevant information;

see also Hutchinson, 1981; Swets, 1973; and the extensive

bibliographies compiled by Swets, 1988b, pp. 685-742).

Performance in each of these areas may be studied with a

variety of tasks. We deal here with three of the most popu­

lar: yes/no tasks, rating tasks, and forced-choice tasks.

YeslNo Tasks

A yes/no task involves signal trials, which present one

or more signals, and noise trials, which present one or
more noise stimuli. For example, yes/no tasks in auditory

perception may present a tone during signal trials and

nothing at all during noise trials, whereas yes/no tasks for

memory may present old (previously studied) words dur­

ing signal trials and new (distractor) words during noise

trials. After each trial, the subjects indicate whether a sig-

137 Copyright 1999 Psychonomic Society, Inc.



138 STANISLAW AND TODOROV

d'

"0
o
o
:£

~
Q)

en
·0
Z

432o
Criterion

-1-2
.O...fll=;...._-""III=~_~...,. ................,;:i:IIIpo......~ .....,.,

-3

.4
Noise

distribution

.3
>-
.~

:.0
m .2.0
0.....

0...

.1

Decision variable

Figure 1. Distribution ofthe decision variable across noise and signal trials, showing

d'; c, and the likelihoods on which f3 is based.

nal was presented (i.e., whether a tone was presented, or

whether the word was previously studied).

According to SDT, the subjects in a yes/no task base

their response on the value that a decision variable achieves

during each trial. If the decision variable is sufficiently

high during a given trial, the subject responds yes (a signal

was presented); otherwise, the subject responds no (no

signal was presented). The value that defines sufficiently

high is called the criterion.

For example, consider a psychologist attempting to de­

termine whether or not a child has attention deficit hyper­

activity disorder (ADHD). The psychologist might ad­

minister the Child Behavior Checklist (CBCL; Achenbach

& Edelbrock, 1983) and diagnose the child as having

ADHD if the resulting score is 10 or higher (Rey, Morris­

Yates, & Stanislaw, 1992). In this case, the decision vari­

able is the CBCL score, and the criterion is set at 10.

In the ADHD example, the decision variable is readily

observed. However, most of the tasks studied by psycholo­

gists involve decision variables that are available only to

the subject performing the task. For example, the decision

variable may be the apparent loudness experienced during

each trial in an auditory perception study, the feeling of

familiarity associated with each stimulus item in a memory

study, or the apparent guilt ofeach defendant in a study of

jury decision making. In each of these cases, the subjects

compare the decision variable (which only they can ob­

serve) to the criterion they have adopted. A yes response

is made only if the auditory stimulus seems sufficiently

loud, the stimulus item seems sufficiently familiar, or the

defendant seems sufficiently guilty.

On signal trials, yes responses are correct and are termed

hits. On noise trials, yes responses are incorrect and are

termedfalse alarms. The hit rate (the probability ofre­

spondingyes on signal trials) and thefalse-alarm rate (the

probability of responding yes on noise trials) fully describe

performance on a yes/no task.

If the subject is using an appropriate decision variable,

and ifthe subject is capable ofdistinguishing between sig­

nals and noise, the decision variable will be affected by the

stimuli that are presented. For example, previously studied

words in a memory study should, on average, seem more fa­

miliar than distractors. However, some previously studied

words will seem more familiar than others. Distractors

will also vary in their familiarity. Furthermore, factors

such as neural noise and fluctuations in attention may af­

fect the decision variable, even if the stimulus is held con­

stant. Thus, the decision variable will have a range of dif­

ferent values across signal trials and a range of different

values across noise trials. (For more examples of this, see

McNicol, 1972, pp. 11-14.)

The distribution ofvalues realized by the decision vari­

able across signal trials is the signal distribution, whereas

the corresponding distribution for noise trials is the noise

distribution. The hit rate equals the proportion ofthe signal

distribution that exceeds the criterion, whereas the false­

alarm rate equals the proportion of the noise distribution

that exceeds the criterion. This is illustrated in Figure I,

where the decision variable (measured in arbitrary units)

has a mean of0 and a standard deviation of 1 on noise tri­

als. On signal trials, the mean is higher (M = 2), but the

standard deviation is unchanged. Ayes response is made for

trials in which the decision variable exceeds 0.5; these tri­

als lie in the shaded region of the two distributions. The

shaded region of the noise distribution constitutes 30.85%

of the entire noise distribution, so the false-alarm rate is

.3085. By contrast, 93.32% of the signal distribution is

shaded, so the hit rate is .9332.

If the criterion is set to an even lower, or more liberal,

value (i.e., moved to the far left in Figure I), it will almost
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always be exceeded on signal trials. This will produce

mostly yes responses and a high hit rate. However, the cri­

terion will also be exceeded on most noise trials, resulting

in a high proportion ofyes responses on noise trials (i.e., a

high false-alarm rate). Thus, a liberal criterion biases the

subject toward responding yes, regardless of the stimulus.

By contrast, a high, or conservative, value for the crite­

rion biases the subject toward responding no, because the

criterion will rarely be exceeded on signal or noise trials.

This will result in a low false-alarm rate, but also a low hit

rate. The only way to increase the hit rate while reducing

the false-alarm rate is to reduce the overlap between the

signal and the noise distributions.

Clearly, the hit and false-alarm rates reflect two factors:

response bias (the general tendency to respond yes or no,

as determined by the location of the criterion) and the de­

gree of overlap between the signal and the noise distribu­

tions. The latter factor is usually called sensitivity, re­

flecting the perceptual origins of SDT: When an auditory

signal is presented, the decision variable will have a greater

value (the stimulus will sound louder) in listeners with

more sensitive hearing. The major contribution of SDT to

psychology is the separation of response bias and sensi­

tivity. This point is so critical that we illustrate it with five

examples from widely disparate areas of study.

Our first example is drawn from perception, where

higher thresholds have been reported for swear words than

for neutral stimuli (Naylor & Lawshe, 1958). A somewhat

Freudian interpretation of this finding is that it reflects

a change in sensitivity that provides perceptual "protec­

tion" against negative stimuli (Erdelyi, 1974). However, a

false alarm is more embarrassing for swear words than for

neutral stimuli. Furthermore, subjects do not expect to en­

counter swear words in a study and are, therefore, cautious

about reporting them. Thus, different apparent thresh­

olds for negative than for neutral stimuli may stem from

different response biases, as well as from different levels

of sensitivity. In order to determine which explanation is

correct, sensitivity and response bias must be measured

separately.

A second example involves memory studies. Hypnosis

sometimes improves recall, but it also increases the num­

ber of intrusions (false alarms). It is important, therefore,

to determine whether hypnosis actually improves mem­

ory, or whether demand characteristics cause hypnotized

subjects to report more memories about which they are un­

certain (Klatzky & Erdelyi, 1985). The former explanation

implies an increase in sensitivity, whereas the latter implies

that hypnosis affects response bias. Again, it is important

to measure sensitivity and response bias separately.

Our third example involves a problem that sometimes

arises when comparing the efficacy of two tests used to

diagnose the same mental disorder. One test may have a

higher hit rate than the other, but a higher false-alarm rate

as well. This problem typically arises because the tests use

different criteria for determining when the disorder is ac­

tually present. SDT can solve this problem by determin-

ing the sensitivity of each test in a metric that is indepen­

dent of the criterion (Rey et aI., 1992).

A fourth example concerns jury decision making. SDT

analyses (Thomas & Hogue, 1976) have shown that jury

instructions regarding the definition of reasonable doubt

affect response bias (the willingness to convict) rather

than sensitivity (the ability to distinguish guilty from in­

nocent defendants). Response bias also varies with the

severity of the case: Civil cases and criminal cases with

relatively lenient sentences require less evidence to draw

a conviction than criminal cases with severe penalties.

Our final example is drawn from industry, where

quality-control inspectors often detect fewer faulty items

as their work shift progresses. This declining hit rate usually

results from a change in response bias (Davies & Parasura­

man, 1982, pp. 60-99), which has led to remedies that

would fail if declining sensitivity were to blame (Craig,

1985). SDT also successfully predicts how repeated in­

spections improve performance (Stanislaw, 1995).

Medical diagnosis illustrates the problems that existed

before SDT was developed. In his presidential address to

the Radiological Society ofNorth America, Garland (1949)

noted that different radiologists sometimes classified the

same X ray differently. This problem was considered both

disturbing and mysterious until it was discovered that dif­

ferent response biases were partly to blame. Subsequently,

radiologists were instructed first to examine all images,

using a liberal criterion, and then to reexamine positive

images, using a conservative criterion.

Sensitivity and response bias are confounded by most

performance measures, including the hit rate, the false­

alarm rate, the hit rate "corrected" by subtracting the false­

alarm rate, and the proportion of correct responses in a

yes/no task. Thus, if (for example) the hit rate varies be­

tween two different conditions, it is not clear whether the

conditions differ in sensitivity, response bias, or both.

One solution to this problem involves noting that sensi­

tivity is related to the distance between the mean of the

signal distribution and the mean of the noise distribution

(i.e., the distance between the peaks of the two distribu­

tions in Figure I). As this distance increases, the overlap

between the two distributions decreases. Overlap also de­

creases ifthe means maintain a constant separation but the

standard deviations decrease. Thus, sensitivity can be

quantified by using the hit and false-alarm rates to deter­

mine the distance between the means, relative to their

standard deviations.

One measure that attempts to do this is d', which mea­

sures the distance between the signal and the noise means

in standard deviation units. The use of standard deviates

often makes it difficult to interpret particular values of d',

However, a value of 0 indicates an inability to distinguish

signals from noise, whereas larger values indicate a cor­

respondingly greater ability to distinguish signals from

noise. The maximum possible value ofd' is +X, which sig­

nifies perfect performance. Negative values ofd' can arise

through sampling error or response confusion (responding
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yes when intending to respond no, and vice versa); the

minimum possible value is -00. d' has a value of 2.00 in

Figure I, as the distance between the means is twice as

large as the standard deviations of the two distributions.

SDT states that d' is unaffected by response bias (i.e.,

is a pure measure of sensitivity) if two assumptions are

met regarding the decision variable: (1) The signal and

noise distributions are both normal, and (2) the signal and

noise distributions have the same standard deviation. We

call these the d' assumptions. The assumptions cannot ac­

tually be tested in yes/no tasks; rating tasks are required

for this purpose. However, for some yes/no tasks, the d'

assumptions may not be tenable; the assumption regarding

the equality of the signal and the noise standard deviations

is particularly suspect (Swets, 1986).

If either assumption is violated, d' will vary with re­

sponse bias, even ifthe amount of overlap between the sig­

nal and the noise distributions remains constant. Because

ofthis, some researchers prefer to use nonparametric mea­

sures of sensitivity. These measures may also be used

when d' cannot be calculated. (This problem is discussed

in more detail below.) Several nonparametric measures of

sensitivity have been proposed (e.g., Nelson, 1984, 1986;

W D. Smith, 1995), but the most popular is A'. This mea­

sure was devised by Pollack and Norman (1964); a com­

plete history is provided by Macmillan and Creelman

(1996) and W D. Smith. A' typically ranges from .5, which

indicates that signals cannot be distinguished from noise,

to 1, which corresponds to perfect performance. Values

less than .5 may arise from sampling error or response

confusion; the minimum possible value is O. In Figure 1,

A' has a value of .89.

Response bias in a yes/no task is often quantified with

{3. Use of this measure assumes that responses are based

on a likelihoodratio. Suppose the decision variable achieves

a value ofx on a given trial. The numerator for the ratio is

the likelihood of obtaining x on a signal trial (i.e., the

height of the signal distribution at x), whereas the denom­

inator for the ratio is the likelihood of obtaining x on a

noise trial (i.e., the height of the noise distribution at x).
Subjects respond yes ifz the likelihood ratio (or a variable

monotonically related to it) exceeds {3, and no otherwise.

When subjects favor neither the yes response nor the no

response, {3 = 1. Values less than I signify a bias toward

responding yes, whereas values of{3 greater than 1 signify

a bias toward the no response. In Figure 1, the signal like­

lihood is .1295 at the criterion, whereas the noise likeli­

hood is .3521 at the criterion. Thus, {3 equals .1295 -:­

.3521, or .37. This implies that the subjects will respond

yes on any trial in which the height of signal distribution

at x, divided by the height ofthe noise distribution at x, ex­

ceeds 0.37.

Because {3 is based on a ratio, the natural logarithm of

{3 is often analyzed in place of {3 itself (McNicol, 1972,

pp. 62-63). Negative values ofln({3) signify bias in favor

ofyes responses, whereas positive values ofln({3) signify

bias in favor of no responses. A value of 0 signifies that

no response bias exists. In Figure 1, the natural logarithm

of {3 equals -1.00.

Historically, {3 has been the most popular measure ofre­

sponse bias. However, many authors now recommend

measuring response bias with c (Banks, 1970; Macmillan

& Creelman, 1990; Snodgrass & Corwin, 1988). This

measure assumes that subjects respond yes when the de­

cision variable exceeds the criterion and no otherwise; re­

sponses are based directly on the decision variable, which

some researchers regard as more plausible than assuming

that responses are based on a likelihood ratio (Richardson,

1994). Another advantage of c is that it is unaffected by

changes in d', whereas {3 is not (Ingham, 1970; Macmil­

lan, 1993; McNicol, 1972, pp. 63--64).

c is defined as the distance between the criterion and

the neutral point, where neither response is favored. The

neutral point is located where the noise and signal distri­

butions cross over (i.e., where {3 = 1). If the criterion is lo­

cated at this point, c has a value ofO. Deviations from the

neutral point are measured in standard deviation units.

Negative values ofc signify a bias toward responding yes

(the criterion lies to the left of the neutral point), whereas

positive values signify a bias toward the no response (the

criterion lies to the right of the neutral point). In Figure 1,

the neutral point is located 1 standard deviation above the

noise mean. The criterion is located 0.50 standard devia­

tions to the left of this point, so c has a value of -0.50.

A popular nonparametric measure of response bias is

B". This measure was devised by Grier (1971) from a sim­

ilar measure proposed by Hodos (1970). Unfortunately,

some researchers have confused the two measures, using

the formula for Grier's B" to compute what is claimed to

be Hodos's bias measure (e.g., Macmillan & Creelman,

1996). Both nonparametric bias measures can range from

- 1 (extreme bias in favor ofyes responses) to I (extreme

bias in favor ofno responses). A value of0 signifies no re­

sponse bias. In Figure 1, Grier's B" has a value of -0.55.

Rating Tasks

Rating tasks are like yes/no tasks, in that they present

only one stimulus type during each trial. However, rather

than requiring a dichotomous (yes or no) response, rating

tasks require graded responses. For example, subjects in a

study ofjury decision making may rate each defendant on

a scale of 1 (most certainly guilty) to 6 (most certainly in­

nocent). These ratings can be used to determine points on

a receiver operating characteristic (ROC) curve, which

plots the hit rate as a function of the false-alarm rate for

all possible values of the criterion. A typical ROC curve

is illustrated in Figure 2.

A rating task with r ratings determines r - I points on

the ROC curve, each corresponding to a different crite­

rion. For example, one criterion distinguishes ratings of" I"

from ratings of "2." Another criterion distinguishes rat­

ings of"2" from ratings of"3," and so on. The ROC curve

in Figure 2 was generated from a rating task with four pos­

sible ratings, resulting in three points (the open squares).
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the standard deviation for signals equals that for noise. In

fact, rating tasks may be used to determine the validity of

the assumption regarding equal standard deviations .

The ROC area can be calculated from yes/no data, as

well as from rating data. One method involves using d' to

estimate the ROC area; the resulting measure is called Ad"

This measure is valid only when the d' assumptions are

met. A' also estimates the ROC area, and does so without

assuming that the decision variable has a particular (e.g.,

normal) distribution. However, A' is problematic in other

respects (Macmillan & Kaplan, 1985; W D. Smith, 1995).

In general, A z (when it can be calculated) is the preferred

measure of the ROC area and, thus, of sensitivity (Swets,

1988a; Swets & Pickett, 1982, pp. 31-32).

Figure 2. Receiver operating characteristic (ROC) curve for a
rating task with four ratings and At = .90. Three points on the
ROC curve are shown (open squares). The area under the curve,
as estimated by linear extrapolation, is indicated by shading; the
actual area includes the gray regions.

The remainder of the ROC curve is determined by extrap­

olation, as will be described below.

Rating tasks are primarily used to measure sensitivity.

According to SDT, the area under the ROC curve is a mea­

sure of sensitivity unaffected by response bias. The ROC

area typically ranges from .5 (signals cannot be distin­

guished from noise) to 1 (perfect performance). Areas less

than .5 may arise from sampling error or response confu­

sion; the minimum possible value is O. The area under the

ROC curve in Figure 2 equals .90; this includes both the

large shaded region and the smaller gray regions.

The ROC area can be interpreted as the proportion of

times subjects would correctly identify the signal, if sig­

nal and noise stimuli were presented simultaneously (Green

& Moses, 1966; Green &: Swets, 1966, pp. 45-49). Thus,

Figure 2 implies that signals would be correctly identified

on 90% ofthe trials in which signal and noise stimuli were

presented together.

The ROC area can be estimated quite easily iflinear ex­

trapolation is used to connect the points on the ROC curve

(for details, see Centor, 1985, and Snodgrass, Levy-Berger,

& Haydon, 1985, pp. 449-454). However, this approach

generally underestimates sensitivity. For example, linear

extrapolation measures only the shaded region in Figure 2;

the gray regions are excluded. A common remedy is to as­

sume that the decision variable is normally distributed and

to use this information to fit a curvilinear function to the

ROC curve. The ROC area can then be estimated from pa­

rameters of the curvilinear function. When this procedure

is used, the ROC area is called A
z

, where the z (which

refers to z scores) indicates that the noise and signal dis­

tributions are assumed to be normal.

In calculating A
z

, no assumptions are made concerning

the decision variable's standard deviation. This differs

from yes/no tasks, where one of the d' assumptions is that

Forced-Choice Tasks
In a forced-choice task, each trial presents one signal

and one or more noise stimuli. The subjects indicate

which stimulus was the signal. Tasks are labeled accord­

ing to the total number of stimuli presented in each trial;

an m-alternative forced-choice (mAFC) task presents one

signal and m - 1 noise stimuli. For example, a 3AFC task

for the study ofrecognition memory presents one old item

and two distractors in each trial. The subjects indicate

which of the three stimuli is the old item.

Each stimulus in an mAFC trial affects the decision

variable. Thus, each mAFC trial yields m decision variable

scores. Subjects presumably compare these m scores (or

their corresponding likelihood ratios) with each other and

determine which is the largest and, thus, the most likely to

have been generated by a signal. Because this comparison

does not involve a criterion, mAFC tasks are only suitable

for measuring sensitivity.

SDT states that, if subjects donot favor any of the m al­

ternatives a priori, the proportion of correct responses on

an mAFC task is a measure of sensitivity unaffected by re­

sponse bias (Green & Swets, 1966, pp. 45-49). This mea­

sure typically ranges from 11m (chance performance) to a

maximum of 1 (perfect performance). Values less than 11m

may result from sampling error or response confusion; the

minimum possible value is O.

FORMULAE FOR CALCULATING
SIGNAL DETECTION THEORY MEASURES

Few textbooks provide any information about SDT be­

yond that just presented. This section provides the mathe­

matical details that textbooks generally omit. Readers who

would rather not concern themselves with formulae may

skip this section entirely; familiarity with the underlying

mathematical concepts is not required to calculate SDT

measures. However, readers who dislike handwaving, or

who desire a deeper understanding ofSDT, are encouraged

to read on.

In the discussion below, H is used to indicate the hit

rate. This rate is found by dividing the number of hits by
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Thus, d' is found by subtracting the z score that corre­

sponds to the false-alarm rate from the z score that corre­

sponds to the hit rate.

A' can be calculated as follows (Snodgrass & Corwin,

1988):

(6)

(5)

(7)

(8)

(9)

!rO'(FJ]';ro ' (H>Ir
{3 =e ,

which is simpler and less prone to round-off error. The

natural logarithm of {3 is then

[<1>-1 (F)r - [<I>-I(H)r

In({3)= -=------=-------=------
2

Thus, the natural logarithm of {3 is found by squaring the

z score that corresponds to the false-alarm rate, subtracting

the square of the z score that corresponds to the hit rate,

and dividing the result by 2.

The formula for c (Macmillan, 1993) is

<I>-l(H)+ <1>-] (F)
c=-

2

Thus, c is found by averaging the z score that corresponds

to the hit rate and the z score that corresponds to the false­

alarm rate, then multiplying the result by negative one.

Some authors (e.g., Snodgrass & Corwin, 1988) omit the

minus sign, which simply means that negative values ofc
indicate a bias toward responding no, rather than yes.

Grier's B" can be found as follows (Snodgrass & Cor­

win, 1988):

{

H (1 - H ) - F (I - F ) when H? F

" H(1-H)+F(I-F)
B =

F(1-F)-H(1-H) when H < F

F(1-F)+H(1-H)

When Grier (1971) first proposed this measure, he pub­

lished only the formula to be used when H 2:: F. Ifthis for­

mula is applied when H < F, B" has the correct magnitude

but the wrong sign. B" may be found with a single formula,

as follows:

B"= i n(H_F)H(1-H)-F(1-F).
sg H(I-H)+F(I-F)

Rating Tasks

To calculate A z ' the r - 1 pairs of hit and false-alarm

rates must first be found. An iterative procedure is used to

accomplish this. In describing this procedure, it is as­

sumed that numerically higher ratings indicate greater con­

fidence that the stimulus was a signal.

First, ratings greater than 1 are considered to be yes re­

sponses, whereas ratings of 1 are considered to be no re­

sponses. The resulting hit and false-alarm rates are then

determined. Next, ratings greater than 2 are considered to

be yes responses, whereas ratings of 1 or 2 are considered

to be no responses. This yields a second pair of hit and

false-alarm rates. This procedure is repeated until all r ­

1 pairs ofhit and false-alarm rates have been determined.

The <I> ~ 1 function is then used to find the z scores for

each pair ofhit and false-alarm rates. This is analogous to

(I)

(2)

(3)

(4)r';

<j2p

e-.5[4> - 1(H)] 2 e-.5[4>- 1(F)] 2

{3 = c' -r-

~2p

YeslNo Tasks

d' can be calculated as follows (Macmillan, 1993):

d'=<I>-l(H) - <I>-l(F).

the total number of signal trials. Similarly, the false-alarm

rate, F, is found by dividing the number of false alarms by

the total number of noise trials.

Some SDT measures can only be calculated with the

aid of two mathematical functions. One of these, the <I>
("phi") function, converts z scores into probabilities. This

same conversion is used to perform a z test. However, the

<I> function determines the portion of the normal distribu­

tion that lies to the left of the z score; larger z scores yield

higher probabilities. The z test, by contrast, determines the

portion to the right of the z score; larger z scores yield

smaller probabilities. Furthermore, the <I> function is one­

tailed, whereas many z tests are two-tailed. For example,

<I> (-1.64) = .05, which means that a probability of .05 is

associated with a z score of -1.64, not 1.96 (the critical

value for a two-tailed z test).

The second mathematical function sometimes needed

to calculate SDT measures is the <I> -] ("inverse phi")

function. This complements the <I> function and converts

probabilities into z scores. For example, <I> -] (.05) =

-1.64, which means that a one-tailed probability of .05

requires a z score of -1.64.

{

.5 + (H -F)(l+H -F)whenH? F

, 4H(1-F)
A =

.5 - (F - H) (1+ F - H) when H < F

4F(1-H)

Some publications list only the formula to be used when

H 2:: F (e.g., Grier, 1971; note also the typographical error

in Cradit, Tashchian, & Hofacker, 1994). The need for two

different formulae is awkward, but Equation 2 can be

rewritten into a single formula, as follows:

r
(H _F)2+ IH-F 11

A' = .5+ sign(H -F) ,
4max(H,F)-4HF

where sign(H - F) equals +1 ifH - F> 0 (i.e., ifH >

F), 0 ifH = F, and -1 otherwise, and max(H, F) equals

either H or F, whichever is greater.

{3 may be calculated in a variety ofways. Many authors

(e.g., Brophy, 1986) suggest using the formula

However, this can be rewritten as
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Figure 3. Receiver operating characteristic (ROC) curve plot­
ted in z space, for a rating task with six ratings and A z = .82. The
three diagonal lines represent different "best" fits to the five
points on the ROC curve (open squares). The thin line predicts
hit rate z scores from false-alarm rate z scores; the broken line
predicts false-alarm rate z scores from hit rate z scores. The heavy
line is a compromise between the two other lines.

plotting the ROC curve in z space, where the axes are z

scores rather than probabilities (see Figure 3). Continuing

this analogy, the slope and intercept of the line that best

fits the z scores in z space are found. A z can then be found

as follows (Swets & Pickett, 1982, p. 33):

A <I> [ Intercept ] (10)

z = ~1+(Slope)2·

The slope of the best-fitting line in z space equals the

noise distribution standard deviation divided by the signal

distribution standard deviation. Thus, the d' assumption of

equal standard deviations for the signal and noise distrib­

utions can be tested by determining whether the slope

equals 1 (or whether the logarithm of the slope equals 0,

which is the better test from a statistical viewpoint).

Forced-Choice Tasks
Sensitivity in a forced-choice task is determined by sim­

ply dividing the number of correct responses by the total

number oftrials.

Comparing Performance
Across Different Types of Tasks

d' may be used to estimate the ROC area as follows

(Macmillan, 1993):

Ad' =<1>( Ji). (II)

If the d' assumptions are satisfied, Ad' should equal the

proportion of correct responses that would have been ob­

tained had subjects performed a 2AFC task instead of a

yes/no task. In other words, Ad' and the proportion correct

on a 2AFC task quantify performance with the same met­

ric, thereby allowing comparisons to be made between

yes/no and 2AFC tasks (see, e.g., Stanislaw, 1995, 1996).

The proportion of correct responses on a 2AFC task

should equal the area under the ROC curve. Thus, if the

decision variable is normally distributed, Az from a rating

task should equal the proportion correct on a 2AFC task,

which in turn should equal Ad' from a yes/no task, if the

decision variable has the same standard deviation for both

types of stimuli (Macmillan, 1993).

Unfortunately, no such prediction can be made for A'.

In fact, A' may differ from Ad" even though both measures

estimate the area under the ROC curve. For example, in

Figure 1, Ad' = .92 and A' = .89.

Converting Between z Scores and Probabilities
Clearly, calculation of many SDT measures requires

methods for converting z scores into probabilities (the <I>
function) and probabilities into z scores (the <1>-1 function).

Neither conversion is straightforward, because closed­

form solutions to the underlying equations do not exist.

However, several alternatives have been developed.

The most accurate ofthese--at least in theory-involve

iterative calculations that converge on the exact solution.

For example, the <I> function can be represented by a power

series (Zelen & Severo, 1972, Equation 26.2.10). Adding

terms to the series increases accuracy, but, in practice, a

limit is imposed by round-off errors.

Another approach involves the use of closed-form ap­

proximations with known accuracy bounds. For example,

one approximation to the <I> function (Zelen & Severo,

1972, Equation 26.2.17) yields probabilities that are ac­
curate to within ±7.5 X ]0-8.

Hit and False-Alarm Rates of Zero or One
Regardless of the approach used for the <I> and <1>-1

functions, problems may arise when the hit or false-alarm

rate equals 0, because the corresponding z score is -rx.

Similarly, a hit or false-alarm rate of 1 corresponds to a z

score of +00. These extreme values are particularly likely

to arise when signals differ markedly from noise, few tri­

als are presented (so that sampling error is large), or sub­

jects adopt extremely liberal or conservative criteria (as

might occur if, for example, the consequences of a false

alarm are severe).

Ifboth rates have extreme values, d' and Ad' can still be

calculated. When H = 1 and F = 0, d' = +00 and Ad' = I.

When H =°and F = 1, d' = -00 and Ad' = 0. When both

rates are °or both rates are I, most researchers assume

that d' =°and Ad' = .5. However, ifone rate has an extreme

value and the other does not, d' and Ad' are indeterminate.

Several solutions to this problem have been proposed.

One possibility is to quantify sensitivity with nonpara­

metric measures, such as A' (Craig, 1979). These measures

eliminate reliance on the <I> and <1>-1 functions but are con­

troversial. Macmillan and Creelman (1996) have argued

against the use ofA'; however, Donaldson (1993) suggests
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that A' may estimate sensitivity better than d' when the sig­

nal and noise distributions are normal but have different

standard deviations.
Another alternative is to combine the data from several

subjects before calculating the hit and false-alarm rates

(Macmillan & Kaplan, 1985). However, this approach

complicates statistical testing and should only be applied

to subjects who have comparable response biases and lev­

els of sensitivity.
A third approach, dubbed loglinear, involves adding 0.5

to both the number of hits and the number offalse alarms

and adding 1 to both the number of signal trials and the

number ofnoise trials, before calculating the hit and false­

alarm rates. This seems to work reasonably well (Hautus,

1995). Advocates of the loglinear approach recommend

using it regardless ofwhether or not extreme rates are ob­

tained.
A fourth approach involves adjusting only the extreme

rates themselves. Rates of0 are replaced with 0.5 -;- n, and

rates of 1 are replaced with (n - 0.5) -;- n, where n is the

number of signal or noise trials (Macmillan & Kaplan,

1985). This approach yields biased measures of sensitiv­

ity (Miller, 1996) and may be less satisfactory than the

loglinear approach (Hautus, 1995). However, it is the most

common remedy for extreme values and is utilized in sev­

eral computer programs that calculate SDT measures (see,
e.g., Dorfman, 1982). Thus, it is the convention we adopt

in our computational example below.

METHODS FOR
CALCULATING SDT MEASURES

In this section, we describe three general approaches

that can be used to calculate the measures prescribed by
SDT: tabular methods, methods that use software specif­

ically developed for SDT, and methods that rely on general

purpose software.

Tabular Methods

Elliott (1964) published one of the first and most pop­

ular listings of d' values for particular pairs of hit and

false-alarm rates. Similar tables followed. The most exten­

sive of these is Freeman's (1973), which also lists values

of 13. (See Gardner, Dalsing, Reyes, & Brake, 1984, for a

briefer table of 13 values.)
Tables for d' are not restricted just to yes/no tasks. El­

liott (1964) published an early d' table for forced-choice

tasks; more recent versions that correct some errors have

since appeared (Hacker & Ratcliff, 1979; Macmillan &

Creelman, 1991, pp. 319-322). Tables for other tasks have

been published by Craven (1992), Hershman and Small

(1968), Kaplan, Macmillan, and Creelman (1978), and

Macmillan and Creelman (1991, pp. 323-354).

Tabular methods have relatively poor accuracy. Some

tables contain incorrect entries, but even error-free tables
can be used only after the hit and false-alarm rates are

rounded off (usually to two significant digits). Rounding

introduces errors; changing the fourth significant digit of

the hit or the false-alarm rate can often affect the second

significant digit ofd'. Interpolation between tabled values

can minimize the impact ofrounding errors, but the proper

interpolation method is nonlinear. Furthermore, even lin­

ear interpolation requires calculations that the tabular

method is specifically designed to avoid.
When SDT was first developed, most researchers were

forced to rely on the tabular approach. However, this ap­

proach is difficult to justify today.Computers can quantify

SDT performance far more quickly and accurately than

can tables. Computers also provide the only reasonable

means of analyzing rating task data; tables can determine

neither the slope nor the intercept of the best-fitting line

in z space.
Some computer programs (e.g., Ahroon & Pastore,

1977) calculate SDT measures by incorporating look-up

tables, thus gaining a slight speed advantage over closed­

form approximations and iterative techniques. However,

speed is likely to be of concern only in Monte Carlo sim­
ulations involving thousands of replications. Even here,

tables are of questionable utility, because of their limited

accuracy. Thus, the tabular approach should be used only

as a last resort.

Signal Detection Theory Software

Ahroon and Pastore (1977) were the first authors to
publish programs (written in FORTRAN and BASIC) for

determining values ofd' and 13 for yes/no tasks. However,

these programs should be used with caution, as they rely
on look-up tables for the cI> -1 function. Furthermore, 13 is

calculated with Equation 4 rather than Equation 5. This

imposes speed and accuracy penalties, thus offsetting what­
ever advantage might be gained from the tabular ap­

proach.

Better choices for analyzing yes/no data are Brophy's
(1986) BASIC program and the Pascal program published

by Macmillan and Creelman (1991, pp. 358-359). Other

published programs are written in APL (McGowan &

Appel, 1977) and Applesoft (which is similar to BASIC;

Gardner & Boice, 1986). Programmers who wish to write

their own code can refer to algorithms for the cI>-1 function

(see Brophy, 1985, for a review) and then apply the appro­

priate equation. Algorithms for calculating d' for forced­

choice tasks can be found in 1.E. K. Smith (1982).

More extensive programs are required to analyze data

from rating tasks. Centor (1985) has published a spread­

sheet macro for this purpose, but his program uses linear
extrapolation and thus tends to underestimate A z . (See

Centor & Schwartz, 1985, for a discussion of this prob­

lem.) A better choice is RSCORE, written by Donald Dorf­

man. Source code is availablein both FORTRAN (Dorfman,

1982) and BASIC (Alf & Grossberg, 1987). The latest

version, RSCORE4, may be downloaded (from ftp:!/per­
ception.radiology.uiowa.edu/public/rscore). A compara­

ble program, Charles Metz's ROCFIT,may be downloaded

(from ftp://random.bsd.uchicago.edu/roc). Both programs

are available in source code (FORTRAN) and compiled

form (PC-compatible for RSCORE4; PC-compatible,
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Table 1
Commands Needed to Calculate d' in Various Computer Packages

Package Command(s)

Excel DPRIME = NORMSINV(H) - NORMSINV(F)

Mathematica «Statistics'N ormalDistribution'

DPRIME = Quantile[NormalDistribution[O,I],H]

-Quantile[NormalDistribution[O, I],F]

Minitab InvCDF 'H' c3;

InvCDF 'F' c4;
normal °I.

normal °I.
Name c5 = 'DPRIME'

Let 'DPRIME' = c3 - c4

Quattro Pro DPRIME = @NORMINV(H,O,I) - @NORMINV(F,O,I)

SAS DPRIME = PROBIT(H) - PROBIT(F)

SPSS COMPUTE DPRIME = PROBIT(H) - PROBIT(F)

SYSTAT LET DPRIME = ZIF(H) - ZIF(F)

Note-The hit and false-alarm rates are called Hand F, respectively, and d' is

returned in DPRIME,

Macintosh, and Unix for ROCFIT). Both ftp sites also

contain programs that can be used for other types of SDT

analyses.

ROCFIT and RSCORE4 are both based on Dorfman's
(1982) program. Thus, they usually provide similar results.

However, RSCORE4 may perform better when hit or

false-alarm rates equal 0 or 1, as it uses a sophisticated it­

erative method for dealing with these cases (Dorfman &

Berbaum, 1995).

General Purpose Software
A' and B" can be computed with virtually any spread­

sheet or statistics package. For example, A' can be calcu­

lated in SPSS with the following COMPUTE statement:

APRIME = 0.5 + (ABS(H - F) 1(H - F»

* ((H"", F)**2 + ABS(H - F»

1(4 * MAX(H,F) - 4 * H * F), (12)

where H is the variable containing the hit rate and F is the

variable containing the false-alarm rate. SPSS lacks the
sign function, so the statement ABS(H - F)/(H - F) is

used instead.

Extensions of Equation 12 to other software packages

are straightforward but may require slight changes. For

example, some packages square a value with the 1\2 oper­

ator, rather than the **2 operator. Packages that lack a

function for determining the maximum must use the two

formulae found in Equation 2, rather than the single for­

mula used in Equation 3.

Spreadsheets (and some statistical packages, such as

Minitab) require cell identifiers, rather than variablenames.

This is illustrated by the following Excel statement, which

can be used to calculate B" from the hit rate (stored in cell

al) and the false-alarm rate (stored in cell a2):

= SIGN(al - a2) * (al - al * al - a2 + a2 * a2)

I(al - al * al + a2 - a2 * a2). (13)

Table 2
Commands Needed to Calculate f3in Various Computer Packages

Package Command(s)

Excel BETA = EXP ( ( NORMSINV(F)"2

- NORMSINV(H)"2 ) / 2 )

Mathematica «Statistics'Normallristribution'

BETA = Exp [ ( Quantile[NormalDistribution[O, I],F]"2

-Quantile[NormalDistribution[O,l],H]"2) / 2]

Minitab InvCDF 'H' c3;

normal °I.

InvCDF 'F' c4;

normal °I.

Name c5 = 'BETA'

Let 'BETA' = EXP ( ( c4**2 - c3**2 ) /2)

Quattro Pro BETA = @EXP ( ( @NORMINV(F,O,I)"2

-@NORMINV(H,O,I)"2)/2 )

SAS BETA = EXP ( ( PROBIT(F)**2 - PROBIT(H)**2 ) / 2 )

SPSS COMPUTE BETA = EXP ( ( PROBIT(F)**2

- PROBIT(H)**2 ) / 2 )

SYSTAT LET BETA = EXP ( ( ZIF(F)"2 ~ ZIF(H)"2 ) / 2 )

Note-The hit and false-alarm rates are called Hand F, respectively, and f3 is returned

in BETA.
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Table 3

Commands Needed to Calculate c in Various Computer Packages

Package

Excel

Mathematica

Minitab

Quattro Pro

SAS

SPSS

SYSTAT

Command(s)

C = -( NORMSINV(H) + NORMSINV(F) ) / 2

«Statistics' NormalDistribution

C = -( Quantile[NormalDistribution[O,I],H]

+Quantile[NormalDistribution[O, I],F] ) / 2

InvCDF 'H' c3;

normal 0 I.
InvCDF 'F' c4;

normal 0 I.
Name c5 = 'C'

Let 'C' = -( c3 +c4 )/2

C = -( @NORMINV(H,O,I) + @NORMINV(F,O,I)) / 2

C = -( PROBIT(H) + PROBIT(F) ) / 2

COMPUTE C = -( PROBIT(H) + PROBIT(F) ) / 2

LET C = -( ZIF(H) + ZIF(F) ) / 2

Note-The hit and false-alarm rates are called Hand F, respectively, and c is returned

in C.

Other sensitivity and response bias measures can only

be calculated with software that provides direct access to
the cD and cD-I functions. All the statistical packages uti­

lize these functions to perform significance tests, but only

some allow the functions to be used while creating new

variables. Even fewer spreadsheets provide such access;

notable exceptions are Excel and Quattro Pro (but not

Lotus 1-2-3). However, any spreadsheet that permits
macro programming can use the cD -I algorithms reviewed

by Brophy (1985).

The cD-I function is needed to calculate d', {3, and c.

This function is called NORMSINV or NORMINV in

Excel and Quattro Pro, ANORIN in IMSL, normQuant in
JMp, Quantile[NormalDistribution[O,1]] in Mathematica,

InvCDF in Minitab, PROBIT in SAS and SPSS, and ZIF

in SYSTAT. Users must sometimes specify M = 0 and

SD = 1 (e.g., when using NORMINY, but not when using

NORMSINV). Calculation of {3 requires exponentiation

(called EXP in most packages) and squaring (using the **2
or 1\2 operator).

The cD function is needed to calculate Ad" This func­

tion is called NORMSDIST or NORMDIST in Excel and

Quattro Pro, ANORDF in IMSL, normDist in JMP,

CDF[NormalDistribution[O, I]] in Mathematica, CDF in

Minitab, PROBNORM in SAS, CDFNORM in SPSS, and

ZCF in SYSTAT. Users must sometimes specify M = 0 and

SD = I (e.g., when using NORMDIST, but not when using

NORMSDIST). Calculation ofAd' also requires taking a
square root. Most packages accomplish this with the SQR

or SQRT function.

Sample commands for determining d', {3, c, and Ad' in
a variety of packages are listed in Tables l~. Commands

for other packages should be readily derived from these ex­

amples (referring to the appropriate equation, as needed).

Note that some packages (e.g., spreadsheets and Minitab)

use column or cell identifiers in place ofthe variable names

listed in Tables l~.

Researchers with rating task data may be tempted to use

standard regression techniques (ordinary least-squares, or

OLS) to fit a line to the z scores for the hit and false-alarm

rates (e.g., Richards & Thornton, 1970). Once the slope

and intercept of this line are known, Equation 10 can be

used to determine A z : However, this approach is problem­
atic. OLS assumes that only one variable is measured with

error; the best-fitting line minimizes the errors in predict­

ing this variable. In rating tasks, the empirically determined

hit and false-alarm rates both contain sampling error, so

OLS provides biased estimates of the slope and intercept.

This problem is best solved by relying on a program de­

signed specifically for the analysis of rating task data,

such as ROCFIT or RSCORE4. However, another possi­

bility is to perform two OLS regressions. In describing this

Table 4

Commands Needed to Calculate Ad' in Various Computer Packages

Package Command(s)

Excel AD = NORMSDIST ( DPRIME / SQRT(2) )

Mathematica «Statistics'Normallristribution'

AD = CDF [ NorrnalDistribution[O,I],DPRIME / Sqrt[2] ]

Minitab LET c2 = 'DPRIME' / SQRT(2)

Name c3 = 'AD'

CDFc2 'AD'

Quattro Pro AD = @NORMDlST ( DPRIME / SQRT(2), 0, I, I )

SAS AD = PROBNORM ( DPRIME / SQRT(2) )

SPSS COMPUTE AD = CDFNORM ( DPRIME / SQRT(2) )

SYSTAT LET AD = ZCF ( DPRIME / SQR(2) )

Note-d' is stored in a variable called DPRIME, and Ad' is returned in a variable called

AD.
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TableS

Hypothetical Number of Responses in Signal and Noise Trials for

a Study Using a 6-Point Rating Scale, and Hit and False-Alarm Rates

if Numerically Higher Responses Are Considered to Be Yes Responses

Response Signal Trials Hit Rate Noise Trials False-Alarm Rate

I 0 .99* 8 .68

2 4 .92 6 .44

3 8 .76 I .40
4 8 .60 3 .28

5 12 .36 7 .02t
6 18 0

*The actual hit rate is 1.00; the entry shown assumes a rate of 49.5 -7 50. "The actual
false-alarm rate is 0.00; the entry shown assumes a rate of 0.5 -725.

procedure, we call the Z score corresponding to a given hit

rate zH' so that <1>-] (hit rate) = ZH' Similarly, we call the Z

score corresponding to a given false-alarm rate ZF' The

double regression procedure assumes that the best-fitting
"unbiased" line (the solid black line in Figure 3) is mid­

way between the regression line that minimizes the errors

in predicting ZH from ZF (the thin black line in Figure 3)

and the regression line that minimizes the errors in pre­

dicting ZF from ZH (the broken line in Figure 3).

The procedure begins by using OLS to regress zH on Z F

(i.e., predict the hit rate Z scores from the false-alarm rate

Z scores). Call the slope of the resulting regression line

Slope]. Next, regress ZF on ZH (i.e., predict the false-alarm

rate Z scores from the hit rate Z scores). Call the slope of

this regression line Slope.. Average the two slopes to find

the slope of the "unbiased" line, as follows:

Slope*= 0.5 (SlOpe]+_1_), (14)
Slope,

where Slope2 is inverted, so that both slopes indicate how

a given change in zF affects zH' Next, find the mean ofall

r - 1 values ofZ F (call this Z F) and the mean of all r - 1

values of ZH (zH ). Then, find the intercept of the best fit­
ting "unbiased" line with the formula

Intercept- =ZH - (Slope- X zF)' (15)

Equation 15 ensures that the best-fitting "unbiased" line

predicts a value of ZH for ZH when ZF = Z F' Finally, deter­
mine Az by using the "unbiased" slope and intercept in

Equation 10.

COMPUTATIONAL EXAMPLES

Readers may find it useful to work through a computa­

tional example that illustrates the application of the pro­

cedures described above. Our example presents data from

a study in which a subject observes 50 signal trials and 25

noise trials. After each trial, the subject uses a 6-point

scale to indicate whether or not a signal was presented. A

response of 1 indicates that the subject is very certain a

signal was not presented, whereas a response of 6 indicates

the subject is very certain that a signal was presented. In­

termediate values represent intermediate levels of cer­

tainty. Hypothetical data from a single subject are pre­

sented in Table 5.

The data must first be converted into hit and false­

alarm rates. To do this, first consider 1 responses to be

equivalent to no responses in a yes/no task, and consider
the remaining responses to be equivalent to yes responses.

This yields 17 false alarms, so (dividing by the total num­

ber of noise trials) the false-alarm rate is 17 -:- 25 = .68.

Similarly, there are 50 hits, so the hit rate is 50 -:- 50 =

1.00. This hit rate is replaced by 49.5 -i- 50 = .99 (see the

section entitled "Hit and False-Alarm Rates of Zero or

One"). Now consider responses of 1 or 2 to be no re­

sponses, and consider responses of 3, 4, 5, or 6 to be yes

responses. This yields 11 false alarms (for a false-alarm
rate of .44) and 46 hits (for a hit rate of .92). This proce­

dure is continued until only responses of 6 are considered
yes responses, which yields a false-alarm rate of a(which

is replaced by 0.5 -:- 25 = .02) and a hit rate of .36. The

five pairs of hit and false-alarm rates that result from this

procedure are listed in Table 5.

Table 6 lists Z scores and the values of d', Ad" A', [3, c,
and B" for each of the five pairs of hit and false-alarm

rates. To illustrate how these values are obtained, consider

the second row in Table 5, which has a hit rate of .92. Ap­
plication of the <I> -] function reveals that the correspond­

ing Z score is 104051. Similarly, the false-alarm rate of 044

corresponds to a Z score of -0.1510. Subtracting the

false-alarm rate Z score from the hit rate Z score yields d' =

1.56 (Equation 1). Dividing this by v2 and applying the

<I> function to the result reveals that Ad' = .86 (Equa-

Table 6

Signal Detection Parameters for the Data Shown in Table S

Yes Response CP-I(H) CP-I(F) d' Ad' A' {3 c B
U

2-6 2.3263 0.4677 1.86 .91 .82 0.07 -1.40 -0.91
3-6 1.4051 -0.1510 1.56 .86 .84 0.38 -0.63 -0.54

4-6 0.7063 -0.2533 0.96 .75 .75 0.80 -0.23 -0.14

5-6 0.2533 -0.5828 0.84 .72 .72 1.15 0.16 0.09
6 -0.3585 -2.0537 1.70 .88 .88 7.73 1.21 0.84
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tion 11). Application of Equation 3 yields A' = .84. Sub­

tracting the squared hit rate z score from the squared false­

alarm rate z score and dividing the result by 2 yields

-0.98, which is the natural logarithm of f3 (Equation 6).

Raising e to this power reveals that f3 = 0.38 (Equation 5).

The mean of the hit rate and the false-alarm rate z scores

is 0.6271, so c = -0.63 (Equation 7). Finally, application

of Equation 9 yields B" = -0.54.

ROCFIT estimates that the ROC curve in z space has a

slope of 1.28 and an intercept of 1.52. Application ofEqua­

tion 10 yields a value of .82 for Az . When OLS is used to

estimate the slope and intercept, Slope) = 0.99, Slope, =

0.81, and Slope» = 1.11. The mean false-alarm rate z score

is -0.51, whereas the mean hit rate z score is 0.87. Thus,

Intercept- = 1.44, yielding a value of .83 for A z .

This example illustrates the danger in using standard

OLS to analyze rating data. The correlation between the

hit rate and the false-alarm rate z scores is very high (r =

.90). Even so, the slope obtained by minimizing errors in

predicting zH (0.99) differs markedly from the slope ob­

tained by minimizing errors in predicting zF (1.23, after

inverting Slope-), Furthermore, OLS gives the misleading

impression that the signal and noise distributions have

equal standard deviations (Slope) "" 1); in fact, the noise

distribution varies far more than the signal distribution.

Thus, a program specifically designed to analyze rating

data (such as ROCFIT or RSCORE4) should be used

whenever possible.

The data in this example violate one of the d' assump­

tions, because the noise distribution has a far larger stan­

dard deviation than does the signal distribution.

This violation explains why the d' values in Table 6­
each of which results from a different criterion-vary so

widely. Clearly, researchers should not use d' without first

obtaining evidence (preferably from a rating task) that its

underlying assumptions are valid. Nonparametric mea­

sures are no panacea; theA' values are somewhat less vari­

able than the Ad' values but also lack stability. Thus, re­

searchers who are primarily interested in sensitivity may

wish to avoid yes/no tasks altogether and rely, instead, on

forced-choice or rating tasks.

CONCLUSION

The primary contribution of SDT to psychology is the

recognition that performance on discrimination tasks in­

volves two separate factors: response bias and sensitivity.

Several different measures have been developed to quantify

both ofthese factors. Many ofthese measures can be deter­

mined in a computation-free manner through the use ofta­

bles, but a better approach involves using specialized or gen­

eral purpose computer software. It is to be hoped that the

ready availability of this software will encourage more re­

searchers to apply SDT than currently seems to be the case.
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