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CALCULATION OF SURFACE MOTIONS OF A LAYERED HALF-SPACE 

BY N. C. TSAI AND G. W. HOUSNER 

ABSTRACT 

A new method is presented for computing the transient response of a set of 

horizontally stratified, linearly elastic layers overlying a uniform half-space and 

excited by vertically incident, transient plane waves. In addition, a simple approxi- 

mate method of satisfactory accuracy is developed that reduces the computing 

time required. Calculated responses are compared with motions recorded under 

Union Bay in Seattle to evaluate the agreement between recorded and calculated 

motions. 

INTRODUCTION 

The motion near the surface of the ground during an earthquake is of primary 

engineering significance in that it governs the vibratory response of most structures. 

Consequently it has been of much interest to engineers to investigate the influence of 

local geology on the surface motion. Inasmuch as the seismic waves travel through 

the Earth from the causative fault to the surface site they will be influenced by the 

properties of the geological materials through which they pass. The important engi- 

neering questions are: under what conditions will the effects of these geological in- 

fluences be sufficiently prominent to be of practical significance, and can pre-earth- 

quake calculations make satisfactory predictions of these effects? Attention has been 

directed mainly to the influences of surface layers as soft alluvial deposits seem usually 

to have the most pronounced effects on the surface motion. 

The general problem of the passage of seismic waves through materials near the 

surface of the Earth is complicated by the nonuniform nature of the materials and of 

the seismic waves themselves. In some cases the influence of soft surface deposits has 

been observed to be very pronounced, for example, the spectrum of the motion re- 

corded in Mexico City (Zeevaert, 1964) on the very soft ground that was formerly 

the bed of a lake showed a pronounced peak at a relatively long period of 2.5 sec. 

This coincides with the computed period of the fundamental mode of vibration of the 

lake bed as a bowl of jelly. The epicenter of the earthquake was relatively distant so 

that the bowl of jelly was responding primarily to the passage of horizontally traveling 

waves. A period of 2.5 sec corresponds to a half wavelength of about 2.5 miles which is 

sufficiently long for in-phase excitation of an extensive mass of soil. On the other hand, 

had the natural period of the lake bed been very short, the corresponding seismic 

wavelengths would have been too short, presumably, to produce appreciable excitation 

at the natural period of vibration. 

If the site is relatively close to the causative fault, the surface deposits may be 

excited by essentially vertically-traveling waves. In this case the extent of the wave 

front as compared to the lateral extent of the deposits will have a strong influence. 

Usually the properties of surface layers, both elastic and geometric, are only poorly 

defined for a site. Also the nature of the seismic waves, both wave front and direction 

of travel, are not well known. Because of these difficulties analyses have not been made 

of real problems but, instead, a highly simplified problem has been studied. Sezawa 

and Kanai (1930, 1932 and 1935) first considered this problem of a system consisting 

of horizontally stratified layers overlying a homogeneous half-space and excited by 
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vertically-traveling, plane, shear waves; each layer being homogeneous, isotropic and 

linearly elastic. This idealized, layered system has also been used for various subse- 

quent studies. I t  has also been applied to the analysis of a vibrating building on an 

elastic foundation (Luco, 1969). 

The use of the idealized, layered system reduces the problem from one of soil me- 

chanics to one of the mechanics of a linear continuum of simplest geometry excited 

by the simplest waves. This simple layered system accentuates the influence of the 

"geological" properties in that any deviations from it would tend to lessen the in- 

fluences, that is, if the individual layers were not homogeneous and linearly elastic, 

the layer interfaces not parallel, the seismic waves not planar, and not propagating 

vertically, the effect would be to attenuate most of the influences of the layered 

system upon the surface motion that are of engineering significance. 

A procedure for digital computer calculation of the response of a simple layered 

system should include accurate methods of accounting for the energy lost by the pas- 

sage of waves from the layers into the underlying half-space and for the energy lost 

while a wave is propagating within a layer. These requirements have caused some 

difficulty, for example, in some cases calculations have been made treating the under- 

lying half-space as being infinitely rigid, with special damping introduced into the 

layers to make approximate allowance for the energy that should be lost into the 

half-space. In this paper a method of calculation is developed that accounts for the 

energy lost from the system and gives very accurate calculated responses. In addition, 

a simplified method of calculation is developed that reduces significantly the required 

computer time and yet gives results of satisfactory accuracy. 

A proposed freeway in the city of Seattle was planned to pass beneath Union Bay 

in a tube imbedded in the soft clay layer underlying the bay. This posed certain 

problems of earthquake design and one of the authors served as consultant on this 

aspect of the project. To obtain information on the response of the clay layer to earth- 

quake excitation, three geophones were installed at different depths, one in the clay 

layer, one in the underlying firm glacial till, and one in the top layer of peat. The 

records obtained from this system provide an opportunity to check how well the 

analysis of a simple layered system agrees with actual recorded motions. I t  is thought 

that Union Bay is almost ideal for such comparisons in that the layered system is 

very simple and the soil is very soft, both of which properties tend to make the in- 

fluence of the layers stand out clearly. In addition, the distance between geophones 

is relatively small which is favorable to agreement between measurements and calcu- 

lations. 

ANALYSIS OF THE LAYERED SYSTEM 

By considering an infinite train of harmonic waves as input the steady-state re- 

sponse of a layered system can be computed, from which an amplification spectrum, 

defined as the ratio of the steady-state amplitude of the surface response to that of the 

incident wave, can be constructed. The amplification spectrum indicates precisely the 

frequency-selective property of a layered system. However, steady-state analysis is 

not always sufficient for studying the effect of a layered system on earthquake-like 

excitation because actual earthquake motion is not steady-state and, hence, a transient 

analysis may be required that will exhibit the details of the motion. A well-known 

technique for finding the transient response of a layered system is to compute the 

system transfer function in the frequency domain. The Fourier transform of the input 

motion when multiplied by the transfer function, produces the Fourier transform of 
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the output.  An inverse transformation then gives the time history of the output,  but  

Trorey (1962) has found that  a poor digital inversion is obtained unless a small-size 

frequency interval is used. Baranov and Kunetz (1960) developed a useful ray-tracing 

technique that  considers the successive reflection and transmission of a wave signal 

along each of the layer interfaces and gives the exact system response directly in time 

domain. A drawback of the ray-tracing technique is that  it does not apply to visco- 

elastic layered systems because of the frequency dependence of the reflection and 

transmission coefficients in this case. Whitman (1968) and Idriss and Seed (1967) 

have used a lumped-mass model on an infinitely rigid half-space to calculate the sur- 

face motion. 

The simple, layered system excited by vertically-traveling, plane waves is described 

by the same differential equation of motion as the so-called "shear-beam" which 

t _ _  Z I = -H I 
Hi ( I )  zl=O 

-z2=-  H 2 
H2 (2) Zl 

~, z2 

Hj (j) ~ -  zj.i 

-T 
zj 

IH N IN) -~-- ZN. I 

( N+ I ) ZN 

y(t~'zN/cNH) -- INCIDENT WAVE 

FIG. 1. The layered system. 

undergoes shearing deformations only and, in fact, a vertical, square column ab- 

stracted from the layered system can be thought of as being the analogous shear-beam 

model. As it is somewhat easier to talk about and to visualize the motion of a beam, 

the following discussion will be in terms of a shear-beam model and S-wave motion. 

The results can be converted readily to those of P-wave motion by replacing the cor- 

responding elastic and viscous constants. 

TRANSFER FUNCTION OF A LAYERED SYSTEM 

A layered system consisting of N homogeneous, isotropic, and linearly elastic 

layers overlying a homogeneous half-space will be considered, as shown in Figure 1. 

The layers may be either viscoelastic or nonviscous, but  the half-space foundation is 

taken to be nonviscous with no loss of generality. A set of N coordinates, zl,  • • • , zN, 

is defined as shown. Let  H j  and pj be the thickness and the density, respectively, 

of the j~  layer. A vertically incident, plane S-wave is described by y(t + ZN/CN+I) 
and the particle motion in the half-space is y(t), with cz¢+i being the wave velocity 

in the half-space. Let  uj(zj,  t) be the motion in the jth layer. For  steady-state motion 

the governing equation for a linearly viscoelastic layered system is 
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cs2(~) 02us _ 02us 

Ozs2 Ot 2 j = 1, " .  , N 

in which cs(w) is the complex S-wave velocity. Let 

s s = k s H  s 

where 

(1) 

(2) 

and 

where 

u / z s ,  t) = 2AMP(w)G/w) cos [k /Hs  + zs) -4- q~s]e ~(~t-¢N+t) (6) 

1 

AMP(w) ~¢/ReN+I + Im~+l (7) 

Gs(w) = ~¢/Re7 -4- Ims 2 , 

qb" = tan -1 Im-d (8) 
Res " 

The quantities, Rej and Ims ,  for a viscoelastic system are complex, in which case 

AMP(w), Gs(o~), and Cs are also complex. In equation (7), AMP(w) is the amplitude 

ratio between the surface response u~(--H~, t) and the input function 2 y ( t ) ,  and is 

called the amplification spectrum of the layered system. By definition, the transfer 

function for us with respect to 2y(t) is 

such that  

ks = w / c / w )  

is the wave number. The impedance ratio between the jth and j + 1 *h layers is 

pscs(w) (3) 
as - ps+lcj+l(w) " 

Note that  cs, and hence ks, ss, and a j ,  are reM if the layered system is nonviscous. 

The following recursion formulas (Tsm, 1969) give the steady-state solution for 

us(zj, t). 

Re1 = 1 and Ira1 = 0 (4) 

r e s  = Res_l cos s~-i - Ims_l sin ss-1 

ms as-1 (Ims-1 cos sj_l + Res-~ sin ss-1) (5) 
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H~.(¢o) = AMP(w)Gi(¢o) cos [ki(zi -F H~) -F ~i]e -jaN+' (9) 

Let HN(~) be the transfer function for the base motion, uN(o, t). From equations (5), 

(8), and (9), 

HN(~0) = AMP(~0)ReN+~(~0)e -iaN+~. (10) 

The transfer function for ui with respect to uN(o, t) will then be 

H i ,  N(w) = Hj(co)/HN(¢o) 

Gi(~) 
- ReN+l(w) cos [ki(z~+H~) +~i] .  (11) 

Equation (11) implies that Hi. N(w) is independent of the properties of the half-space 

foundation. 

THE SHEAR BEAM MODEL 

The shear-beam model consists of a shear beam connected at its base to the exci- 

tation 2y(t) through a viscous dashpot D, as shown in Figure 2. The dashpot has a 

damping coefficient equal to pN+I cN+l and can be shown to be an exact analog of the 

half-space by demonstrating that both the model and the layered system have the 

same transfer function, Hi(o~). 

According to Figure 2, the equation of motion for the dashpot D is 

pN+lCN+I[itN(O, t) -- 2y(t)] q- 'TN(O, t) = 0 (12) 

where aN(o, t) is the shearing stress along the base interface. For steady-state motion 

the base stress can be expressed in terms of uN(o, t). 

aN(o, t) -= --uN(o, t) o:pN+lc~+llm(o~) (13) 
ReN+l(o:) 

Substituting equation (13) into equation (12) shows that the model has a transfer 

function for uN(o, t) which is the same as the transfer function HN(o~) given in equa- 

tion 10. This result, together with the observation that both the shear beam and the 

original layered system have the same transfer function, Hi,N(~), implies that the 

shear-beam model is an exact analog of a set of linearly viscoelastic layers overlying 

an elastic half-space. To compute the response of the model to an arbitrary input 

function, either the method of lumped masses may be used or, as is done in this paper, 

a method of modal analysis may be developed which considers the modal properties 

of the continuous shear beam and, hence, can achieve better accuracy. Moreover, as 

will be seen later, this method provides simple formulas for parameters such as natural 

frequencies, modal participating factors, etc. For purposes of exposition, the case of a 

nonviscous layered system and the case of a viscoelastic layered system will be dis- 

cussed separately. 

(1) Model for a nonviscous system. Let xi(z i ,  t) be the relative motion of the jth 

layer with respect to the base. 

u~(zj,  t) = x~(zi, t) + UN(O, t). (14)' 
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Thus, letting c~- be the S-wave velocity in the nonviscous layered system, the equation 

of motion of the shear beam is 

cTx/ '  = 2j q- i~(o,  t) j = 1, . . .  , N (15) 

where the double prime stands for 02/0z7 and the double dot for 02/Ot 2. By applying 

the appropriate boundary conditions, the solution of the homogeneous form of equa- 

tion (15) yields the equation for computing the natural frequencies of the shear beam. 

ReN+l(¢o,) = 0 r = 1, 2, "'" (16) 

[_~ y(t ) 

il D 

I_ I A u,(-H a,t) 
V -I 

( )  ( )  

D = PNHCN+ i 

FzG. 2. T h e  s h e a r - b e a m  mode l .  

The mode shape in the j t h  layer is given by 

Zj(~, , zj) = G~.(w,) cos [k~.(w,)(z3 + Hi) + ~)¢(~,)]. (17) 

The modal shape functions are orthogonal to each other with respect to the density 

weighting function. A sufficient number of modes must be included in the analysis to 

give the required accuracy. Let this number be S so that the S-mode solution of equa- 

tion 15 can be written 

S 

~ ,  ~z~)v~(t) (18) xs(zj,  t) ~ S r~ (~)" 

in which D, (~) is the modal participating factor given by (Tsai 1969) 

D ( j )  / ., r ~ , z j )  
2pec+lcN+lIm,e+l (~0~) Z~- ( o~r, zi) 

N ' (19) 
oar ~ Gj2(oa~)pjHj 

j = l  

and v,(t) is the normal coordinate satisfying the following system of coupled modal 

equations. 
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Or(t) + wr2Yr(t) = --UN(O, t) r = 1 ,  . . .  , S 

p~+, c~+,[a~(o,  t) - 2y( t ) ]  + ¢~(o ,  t) = 0 

(20a) 

(20b) 

The S-mode expression for the base stress in Equation (20b) can be shown to be 

8 

crz¢(o, t) ~ - -  ~ (K~q),V,(t) (21) 

with 

2 2 2 
(Koq)r -- 2pN+lCN+IlmN+I(~) 

N 

Gj2(o~)pjH~ 
j ~ l  

(22) 

In equation (21), (Keq)r can be interpreted as the equivalent spring stiffness of a 

single-degree-freedom oscillator that represents the r th mode of the shear beam and 

has an equivalent mass 

( K e q ) r / W r  . (23) 

Equation (20b) suggests that it is more convenient to treat the input motion as a 

velocity function, 2y(t), and to compute the velocity response, z/j, as given by 

i6(zy, t) = ~ DrU)(zj)i~r(t) + izN(o, t). (24) 

After being reduced to a system of 2S + 1 first order differential equations, equation 

(20) can be solved by a technique of step-by-step numerical integration on a digital 

computer. An appropriate S is selected by requiring that the S-mode transfer function 

agree satisfactorily with the exact solution in the frequency range of practical interest. 

Let the S-mode transfer function for the base motion be/7~(~o). I t  can be shown that 

(Tsai 1969), 

/tN(00) = e-~V~)[1 + Y2(co)]-ln (25) 

where 

1 
s.L 

(Koq)re, 2 
Y(~ )  - 2 5  (26) 

C0pN+lCN+I  r = l  1 - -  ~ r  2 

and 

qz(w) = tan-t[Y(~)]. 

The S-mode transfer function for ui is then given by 

~ ; ( ~ )  = / 7 N ( ~ )  1 + _ 
~ = i  1 - -  12~ 2 _] 

(27) 
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We take 0 to 60 rad/sec as the range of frequencies of greatest practical interest, and 

let ~ ,  . . .  , wj be the natural frequencies within this range. Numerical calculations 

indicate tha t  a number S chosen according to the following formula 

S ~ 2 J  (28) 

will yield satisfactory accuracy. To demonstrate the accuracy, a four-layer system 

(N = 4) is considered, for which the parameters are listed in Table 1, columns 1 to 5. 

The number J was found to be 7, and S was taken to be 13. The 13-mode amplitude 

transfer functions, 1/71(~) I and I/TN(~) I, for the surface response and the base 

response, respectively, are shown by solid curves in Figures 3, (a) and (b);  and the 

corresponding exact solutions are shown in dashed curves. Note that  I H~(w) I is identi- 

cal with the amplification spectrum, AMP(o~), defined by equation (7). With the 

contributions from the first 13 modes taken into account, excellent accuracy is achieved 

in the prescribed range of frequencies. The accuracy of the analysis increases with the 

number S but, for a fixed S, decreases with frequency. 

TABLE 1 

LAYER PARAMETERS FOR THE 4-LAYER SYSTEM 

2. Layer 3. Density 4. S-Wave 
1. Layer No. Thickness Volocity 5. a j  6. ~j* (sec) 7. rj* 

J Hj(ft) oj(fps) cj(fps) 

1 200 100 1000 0.385 0.005 1 
2 150 120 2400 0.658 0.002 5 
3 175 125 3500 0.720 0.0015 10 
4 225 135 4500 0.506 0.001 20 

Half-space 150 8000 0. 100 

* For standard linear solids. 

An earthquake-type motion of 2-sec duration, shown in Figure 4(a) ,  was taken as 

the input function and the exact solution of the surface response, shown in Figure 5 (a),  

was computed by means of the ray-tracing technique. To obtain the S-mode solution, 

equation (20) was solved numerically on an IBM 7094 digital computer. The result, 

shown in Figure 5(b),  is in excellent agreement with the exact solution. This is ex- 

pected because of the good accuracy of the S-mode transfer function. There is observed 

a generM amplification of 2 to 3 in the surface motion. 

By treating both the input and output  as accelerations, the velocity response spectra, 

S~, were computed as shown in Figures 6, (a) and (b),  with the significant periods 

of the system, T1, • ". , T7, marked in the output  spectrum. The large hump around 

T1 in the output  spectrum is obviously due to a strong response of the fundamental 

mode. On the other hand, it is concluded that  the hump around T2 in the output  

spectrum is due to strong frequency components in the input motion because a similar 

hump appears on the input spectrum. 

The S-mode base response is shown in Figure 4(b) .  Unlike the surface response, 

the base motion more nearly resembles the input motion. Theoretically, as the value 

of the base impedance ratio, aN, approaches zero the base transfer function will 

approach unity and the base motion will approach 2y(t) .  In  practical problems 

aN will be different from zero, and the error in taking 2y(t) to be the base motion 

will be proportional to a x .  
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FIG. 3. The 13-mode amplitude transfer functions of the exact model (nonviscous system). 

(2) Model for a viscoelastic layered system. F o r  a l inear ly  viscoelast ic  layered  sys tem 

the effect of viscosity must be included in the analysis and, therefore, a certain fraction 

of critical damping, ~r, is introduced into each of the modal equations of equation 

(20) which now has the following form 
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l 
i~,(t) 4-  2B,~,Or(t) 4- ~,2v~(t)  = 0 r = 1, . . .  , S (29a) 

LpN+I c~+~ [~¢(o, t) - 2y(t)] 4- a~(o, t) = 0. (295) 

The modal dampings are determined by requiring the S-mode amplitude transfer 

function ]/t1.N(W) [, to be matched with the exact transfer function, [ H~.N(w)I, 

at each of the first S natural frequencies. 

- I 0  (o)  I N P U T  

2 y ( t )  

I I I 

T IME (SEC)  

5 
i I 

- I O  

- 5  

-AA 
~OV Nv, v,v, v . . . . .  

5 

I r I I 

TIME (SEC) 

[b)  BASE MOTION 

FIG. 4. The input function and the 13-mode base motion computed from the exact model. 

[H1,N(o~, , )]  = [/~l,~(o~r) [ r = 1, . . . ,  S (30) 

[/11,~¢(o~) I is derived as follows. Assuming a steady-state base motion, UN(O, t)  = e ~ ' ,  

equation (29a) gives the steady-state response 

v, . ( t )  = X S  (~t-8") (31) 

where 

~ r  2 

X¢ = %/(1 -- ftr2) 2 4- (2~rft~ (32) 

and 

tan_1 ( 2B,ftr 
O~ = \ 1  - f ~ 2 ]  
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Hence, from equation (24), 

-4- Dr(1) X~ cos 0r 

(o )  EXACT SOLU. 

(33) 

5 

15  L -  

o 5 l0 

I I , I i , , , , I 
TIME (SEC) 

I~=-- ] ( b )  13-MODE SOLU. 

=:- 

5 

FIG. 5. Exact  solution and 13-mode solution of the computed surface motion. 

Since equation (39) is a nonlinear function of the unknowns fir, equation (30) will be 

solved by a technique of iteration. A suitable initial value, (~r)o, for starting the 

iteration can be obtained by neglecting the contributions to [B1,N(~r) ] from all 

modes other than the r th mode itself, i.e., 

Dr (1) 
K/~I.N(~,) [ N - ~  r = 1 , . . . , S  

which, when substituted into equation (30), gives 

Dr (1) 
(fir)° = - (34) 

2 / / t l , N ( ~ , )  [ " 
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The iteration process can then be carried out to obtain modal dampings of any de- 

sired accuracy. The process converges very rapidly, and 3 to 5 iterations will usually 

yield results with a maximum iterative error within 1 per cent. 

With the modal dampings determined, aN(o, t) can be derived. First an equivalent 

3 

S, 

0.5 

O. 0 

a) 

INPUT FUNCTION 

n = O~ 0.05, 0.1, 0.2 

2 5 
PERIOD (SEC) 

Sv 

2.5 

(b) 

I A 

5 ~  

T! 

PERIOD (SEC) 

15-MODE APPROX. u,(-Hi,t) 

n = O, 0.05, 0.1, 0.2 

2 3 

FzG. 6. Response spectra of the input motion and the 13-mode surface motion. 

damping coefficient, (Coq)r, is introduced in the same manner that  (moq)~ and (Koq), 

were introduced in equations (22) and (23). 

( Ceq)r = 2j3rwr(meq), (35) 

Hence, 

s 

aN(0, t) ~ -- ~ [(Coq),Or(t) ~- (Keq)rvr(t)]. (36) 

Equation (29) can now be solved for any desired response. To demonstrate the ac- 
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curacy of the analysis the S-mode amplitude transfer function, ] /~1(60) ], is derived 

by first finding the function ]/7~(~) I. By using Equations (29b), (31), and (36), 

1 

1//~(~) I = ~v/BR2(~) + B2(~) (37) 

in which 

BR = 1 + 1 ~ X~[(Koq). sin 0~ -- ~(Coq)~ cos 0~] 
OJpN+ICN+I r = l  

and 

s 

BI - 1 Z X~[(Koq)r cos 0~ + ~(Coq)r sin 0r] (38) 
~opN+lCN+I r~l 

with Xr and 0,. defined in equation (32). Thus, 

(39)  

where I/~l,N(~0) I was given by equation (33). 

As a numerical example, the four-layer system considered before is assumed to be 

composed of standard linear solids, the basic structure of which is a spring, /ta , con- 

nected in series with an element consisting of a spring, gb, and a dashpot, 7, in parallel. 

For the jth layer let 

r j - ~  ([d,a)j//(I, tb)j  

and 

r j  = , ~ / ( . b ) ~ .  

Data for r~. and r~. are given in columns 6 and 7 of Table 1. The half-space is assumed 

nonviscous. The model dampings listed in column 2 of Table 2 have a maximum itera- 

tire error of 1 per cent. 

The 13-mode solutions, ]/~1(~) I and [/~N(~)[, are shown together with their 

exact counterparts (Tsai, 1969) in Figures 7(a) and 7(b) respectively, and these 

indicate that the accuracy is sufficient in the prescribed frequency range. Using the 

input function shown in Figure 4(a), the computed surface response is shown in 

Figure 8(a). Although an exact solution is not available for comparison, the com- 

puted response can be expected to possess the same degree of accuracy as was obtained 

for the nonviscous system. The velocity response spectrum of the surface motion is 

shown in Figure 8(b) which clearly illustrates the effect of layer viscosity in damping 

the spectrum curves at higher frequencies. The large hump around the fundamental 

natural period, however, is little affected. It  may be noted that the more damping 

there is in the layers the fewer the number of modes that need to be included for the 

same accuracy. 



1638 BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA 
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FIG. 7. The 13-mode ampli tude t ransfer  funct ions  of the  exact  model (viscoelastic system).  

APPROXIMATE MODEL 

If the base impedance ratio, a~ ,  is small the base motion will be similar to the in- 

put  function, 2y(t). This suggests tha t  when aN is small an approximate model can 

be used for which the base motion is the same as the input function if appropriate 
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damping is introduced to represent the energy that  should be lost into the half-space. 

Such a model is obtained by replacing the dashpot D in the exact model by a rigid 

connection while the energy that  should be lost into the half-space is accounted for by 

incorporating an appropriate amount of viscous damping in the modes of the shear 

beam. The equations of motion describing this model can be deduced from equation 

(29a) 

~)r(t) + 2~rWj)r(t) -~- Wr2Vr(t) = --2~(t) r = 1, . . .  , S (40) 

which is a system of uncoupled modal equations. Four important  points should be 

noted: 

(1) This model is only an approximate analog of a given layered system unless 

the actual half-space is infinitely rigid, i.e., aN = 0. Hence, unless aN is near zero, 

good results can be expected only at or near the surface of the layered system since 

near the base there is known to be a discrepancy. 

(2) The values of Br in equation (40) are different from those in the exact model 

because of the extra damping to account for the energy that  would be lost into the 

half-space. Consequently, for a~ not equal to zero there will always be some damping 

in the model even if the layers are nonviscous. 

(3) Equation (40) suggests that  it is better to treat  the input as an acceleration, 
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29(t),  rather than as a velocity as was done in the case of the exact model, and the 

response to be computed is, then, also an acceleration. 

(4) The number S is not necessarily the same as tha t  used in the analysis of the 

exact model. Numerical calculations show that,  if coj is the largest natural frequency 

included in the prescribed frequency range, a rule of thumb for estimating S is 

S = J + 1 (41) 

which is much more efficient than in the case of the exact model. 

Since ] iqN(¢o) [ is assumed equal to 1, we have 

]/t1(~o) ] = ] H1,N(w) [I nN(ao) [ = ] I-I1,N(ao) ] (42) 

with [/4a,N(~) [ given by equation (33). The modal dampings are determined by 

matching t/t1(¢o) t with AMP(co) at each of the first S natural  frequencies, i.e., 

[ / t1(O3r) [ = A~V[1D(50r) r = 1, . . . ,  S. (43) 

The iteration process used before can be used to solve equation (43) and, with 3r 

determined, equation (40) can be solved numerically to give the surface response 

S 

~l(-Hvt) ~ ~, D Y  (-H~)Or(t) + 27)(t) (44) 

Since equation (40) represents an uncoupled system of equations, each modal equation 

can be solved independently and a significant reduction in the computing time required 

is made. 

(1) Example--nonviscous layered system. The accuracy of the approximate model 

will be demonstrated by again considering the nonviscous four-layered system. With 

J equal to 7, S is taken to be 8. With a maximum iterative error of 1 per cent imposed, 

the appropriate values of fir were obtained after only two iterations. The results are 

given in column 3 of Table 2. 

TABLE 2 

MODAL DAMPINGS, Br(PER CENT) 

2. Viscoelastic 3. Nonviscous 4. Viscoelastic 
1. Modal No. System (Extract System (Approxi- System (Approxl- 

r Model) mate Model) mate Model) 

1 0.604 
2 1.109 
3 2.333 
4 2.664 
5 4.273 
6 3.916 
7 6.270 
8 6.088 
9 7.314 

10 7.416 
11 9.926 
12 8.940 
13 10.275 

10.753 11.366 
14.525 15.466 
4.875 6.956 
6.811 9.182 
2.178 5.993 
5.359 9.154 
0.576 5.850 
1.589 14.272 
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The 8-mode amplitude transfer function, I/7~(~) J, is compared with the exact 

solution, AMP(w), in Figure 9(a). There is a maximum deviation of 10 to 15 per cent 

at the valleys of the transfer functions. The value of a~ for the layered system is 0.506, 

and although this is not a small value the accuracy of the analysis is considered ac- 
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FIO. 9. Ampl i tude  t ransfe r  funct ion  and the 8-mode surface response computed from the  
approximate  model (nonviscous system).  

ceptable. For layered systems that have a smaller aN the accuracy will increase. On 

the other hand, the accuracy would not increase appreciably even if a number S larger 

than that given by equation (41) were to be used, because the modal equations are 

uncoupled and, hence, the modal interaction is greatly reduced. 

Using the motion shown in Figure 4(a) as the input, the computed surface response 

is shown in Figure 9(b). 
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(2) Example--viscoelastiz layered system. For the viscous four-layer system, the 

values of modal damping are listed in column 4 of Table 2. The 8-mode transfer func- 

tion, ]/ti(¢o) ], is shown in Figure 10(a). It is seen that the accuracy is better than in 

the case of the nonviscous system. The reason for this is that at higher frequencies the 
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FIG. 10. Amplitude transfer function and the 8-mode surface response computed from the 
approximate model (viscoelastic system). 

base transfer function for the viscoelastic system is closer to unity than for the non- 

viscous system. Using the motion shown in Figure 4 (a) as input, the computed surface 

motion, shown in Figure 10(b), is seen to have good accuracy when compared with 

Figure 8(a). 

ANALYSIS OF THE MOTION UNDER UNION BAY 

The Union Bay project, described in R. H. Thomson Expressway Crossing of Union 
Bay, Seattle, Washington (1965), collected data for the construction of a planned 
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traffic tube beneath the bay. Records were obtained from three downhole seismometers 

of the seismograph system installed in the bottom of Union Bay in Seattle by Teledyne 

Earth Sciences Division. Figure 11 is a reproduction from R. H. Thompson Expressway 
Crossing of Union Bay, Seattle, Washington (1965) of the geological profile in the north- 

south direction. A submerged layer of very soft, brown, fibrous peat 55 ft thick rests 
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Fzo. 11. Geological profile uader  Union  Bsy .  

on a clay layer about 45 ft thick containing gray, very soft to soft silty clay. Under the 

clay layer is glacial till composed of very dense sand and gravel. The three seismometers 

were installed in the middle of the bay at different elevations, one at - 8  ft. beneath 

the surface of the peat, one at - 5 8  ft. in the top of the clay, and one at -103 ft. in 

the top of the till. A summary of the experimental data on the subsoil properties, as 

determined by Shannon and Wilson, Inc., the soil mechanics consultants, is given in 

Table 3. 

Two records were used in this analysis. The first one, a small local earthquake 
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TABLE 3 

MEASURED SUBSOIL DATA UNDER UNION BAY 

Average Unit Compressional Dynamic Modulus of 
Medium Weight Wave Velocity Elasticity 

(pcI) Cp (fps) B(psi) 

Peat  63.7 500 300-800 
Soft clay 100. 
Medium clay 110 .  3000-3600  3000-10,000 
Stiff clay 128. 
Till 135 .  4600-7300 Not available 

(magnitude 4.4) on March 6 1967, had a large initial pulse followed by several seconds 

of smaller motion which merged into the background microtremors. There was a 

maximum horizontal acceleration of 0.0072 g in the clay records which corresponds 

approximately to a shear strain of 0.00001 and a shear stress of 0.05 psi. The epicenter 

was located about 20 miles to the northwest of the recording station, with an estimated 

focal depth of the same order of magnitude as the epicentral distance. This situation 

is favorable to having the incident waves arriving with nearly vertical directions of 

travel. The traces of the NS and EW components of the first 10 sec of the ground 

acceleration recorded in the clay and till are shown in Figure 12. The peat acceleration, 

of which the traces are not shown, was extremely weak and had a maximum amplitude 

of about ~ that  of the till motion. 
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FIG. 12. The Union Bay local earthquake (1967). 

The second record, obtained on December 23 1969, was a strong microtremor back- 

ground noise from a local storm. Shown in Figure 13 are 8-sec-long segments of the NS 

and EW components of the clay and till motions. The clay accelerations had an aver- 
3 " 2 

aged maximum amplitude of z m/sec or 0.0019 g. The peat motion, which is not shown, 

was essentially composed of wave components of 0.6-see or longer period which are 

long compared with those of the dominant wave components of the clay motion. 

Calculations showed that  the peat layer was so extremely soft that  it had a negligibly 

small influence on the motion of the clay layer and, therefore, it was neglected and the 

system of clay on till was analyzed. The true values of wave velocities and damping 

were not known for the clay and till but  approximate values and upper and lower 

bounds could be established. Comparison of the recorded clay motion and till motion 
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also gives some information on the properties of the system, and the experimentally 

determined transfer function, defined as the ratio of clay to till Fourier amplitude 

spectra, Mso gives information. Shown in Figure 14, (a) and (b), are, respectively, the 

NS and the EW components of the Fourier amplitude spectra of the recorded clay and 

till motions of the 1967 earthquake. Smoothed, experimentally determined transfer 
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FIG. 13. The Union Bay microtremor (1969). 
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FIG. 14. Fourier amplitude spectra (1967). 

functions, I H(~)  ], are shown in Figure 15(a). The two peaks at 15 and 35 radians/sec 

in each transfer function indicate the first two natural frequencies of the clay-till 

system and these must be matched by the shear-beam model. Also, it can be expected 

that the wave velocities in the lower part of the clay will be greater than in the upper 

part. For example, wave velocity measurements in the clay layer beneath San Francisco 

Bay showed shear-wave velocities ranging from 300 ft/sec near the top to about 700 
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ft/sec near the bottom, the thickness of the layer being approximately twice that at 

Union Bay. From the soil mechanics data given in Table 3 it was concluded that the 

shear-wave velocities in the clay layer are in the range of 200 to 500 ft/sec. The im- 

pedance ratio between the clay and till was estimated to be in the range 0.08 to 0.20. 

Since the stresses in the clay were very small, the damping in the clay could be expected 

to be small also. Exploratory calculations were made with different numbers of layers, 

different wave velocities and damping, and the results were compared with the re- 

corded motions. I t  was found that the best results were given by the five-layer model 

shown in Figure 16 with slightly different wave velocities for the two components of 

the 1967 tremor. 
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FiG. 15. Exper imenta l  and theoret ical  t r ans fe r  funct ion  of the  clay-ti l l  sys t em (1967). 

The motion at the top of the till is the base motion/~(o, t); the input function, 

2~(t), is not known. The problem, then, is, given the recorded base motion, to adjust 

the parameters of the system to give the best agreement between the recorded and 

computed clay motion,/~2(--H2, t). In this case, since the half-space does not enter 

explicitly, the exact and the approximate shear-beam models are the same. Calculations 

were made using the first three modes of the shear-beam model, and the best fit was 

obtained by the parameters shown in Table 4. 

Since the base motion consisted of a large pulse followed by a train of weaker mo- 

tions, the computed clay motion would also consist of a large pulse followed by weaker 

motion for practically any chosen model of the system. The goodness of the model 

must, therefore, be judged by how well the details of the motion agree. Using the 
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parameters of Table 4, the transfer function, I//~.5(co) J, was computed for each com- 

ponent of motion of the 1967 tremor, as shown in Figure 15(b). I t  is seen that there is 

somewhat better agreement with the recorded motion in the NS component. 

The two components of computed clay motion are shown in Figure 17 where they 

are compared with the recorded motions, shown dotted. There is reasonably good 

agreement in wave shape and amplitude between the computed and recorded motions, 

with better agreement in the NS component. I t  may be noted that Seed and Idriss 
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Fio. 16. The 5-layer model for the clay-till system under Union Bay. 

TABLE 4 

MODAL I)~4.RAMETEI~S OF THE 5-LAYER MODEL 

Model NS (1967) EW (1967) NS & EW (1969) 
No. ~r 

(%) Wr D~ 2) (--H2) wr Dr (2) (--H,) wr D~ 2) (--H,) 
r (tad/see) (rad/sec) (rad/sec) 

1 10.0  15.3 1.47 14.5 1.44 16.0 1.44 
2 3.0 3 4 . 8  --0.62 35.3 --0.62 37.2 --0.61 
3 1.5 59.3 0.20 58.0 0.21 62.6 0.20 

(1970) have carried out similar calculations on the 1967 Union Bay motion using a 

lumped mass model and a different way of determining parameters. 

For the 1969 mierotremor similar calculations were made. The Fourier amplitude 

spectra are shown in Figure 18, (a) and (b), while the transfer functions, after being 

strongly smoothed, are shown in Figure 18(e). The experimentally determined transfer 

functions are not as well-defined as the ones for the 1967 earthquake and, hence, the 

same layer parameters have been used in the analysis for both components of motion 

because calculations showed that, in this ease, using different parameters for each 

component does not produce significant improvement. Using the parameters shown in 

Figure 16, the 3-mode transfer function is shown in Figure 18(d) with the modal 

parameters given in Table 4. It  may be noted that, to obtain a better fit, wave velocities 
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about 5 to 10 per cent higher than those used for the 1967 motion were used in the 

analysis. The computed clay motion is shown in Figure 19. Reasonably good agreement 

with recorded motion is observed with somewhat better agreement for the NS corn- 
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FzG. 17. Computed clay motions (1967). 
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Fze. 18. Fourier amplitude spectra and transfer fuaetions of the clay-till system (1969). 

portent than for the EW component. The large discrepancy observed for the first 

quarter-second results from the fact that in the calculations the system started from 

rest at t -- 0 but this transient error was rapidly attenuated by the damping. As a 

further comparison, the 2 and 10 per cent damped velocity response spectra, S , ,  were 
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calculated for the NS component of the computed and recorded clay motions, shown in 

Figure 20 for both tremors. 

Although the general agreement between computed and recorded clay motions is 

reasonably good, which it should be as all the parameters were adjusted to give the best 
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fit, there are still appreciable errors in the details of the motion. We feel that the 

agreement cannot be significantly improved by further adjustment of wave velocities 

or damping. The discrepancies, we think, result from the fact that the waves are not 

ideal vertically-traveling, planar, shear waves, and that clay and till are not exactly 

planar. This conclusion is reinforced by the fact that 10 per cent of critical damping in 

the first mode was required to obtain the best agreement. At the very small levels of 

stresses and strains involved the effective viscous and hysteretic damping in the clay 

should be very small and, it is thought, could not account for the 10 per cent damping 

required in the first mode. If the actual motions are not caused by perfect vertically- 

traveling, planar, shear waves, extra modal damping will be required to account for 

energy lost from observation because of horizontal components of wave velocities. 

Allam (1969), on the basis of microtremor readings with arrays of instruments, con- 

cluded that waves of Love and Rayleigh types are prominent. In fact, the agreement 

between computed and recorded Union Bay motions is better than would be anticipated 

from Allam's work. There are surprisingly large differences between the amplification 

spectra of the earthquake and the microtremor, and the differences may be even larger 

for strong earthquake motions. I t  is not known how accurately the surface motion 

could be calculated from recorded earthquake base motion for a more complicated 

layered system in which the total depth of layering is greater than under Union Bay 

and the free surface motion is not available for adjusting parameters. 

CONCLUSIONS 

An exact and an approximate computational model have been presented for digital 

transient analysis of a set of linearly viscoelastic layers on an elastic half-space with 

vertically-traveling waves. Numerical examples exhibit the accuracy of calculated 

surface motion from the half-space motion. The exact model can achieve any desired 

degree of accuracy but considerable computing time is required. The analysis of the 

approximate model is much simpler and quicker but it is usable only when the im- 

pedance ratio between the bottom layer and the half-space is not large. It was observed 

that prominent peaks in the spectrum of the surface motion can be produced either by 

strong frequency components in the input motion or by a resonant amplification of a 

mode of the system, as indicated by the transfer function. Both models can be extended 

to studying the analogous problem of structure-foundation interaction. 

A microtremor and a local earthquake record obtained under Union Bay in Seattle 

were analyzed, and the calculated motions were compared with the recorded motions. 

Reasonable agreement was obtained, and the discrepancies were attributed chiefly 

to deviation from planar, vertically-traveling waves. 
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