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ABSTRACT

We derive various expressions for the amplitude of the ray–theory approximation
of elastic waves in heterogeneous anisotropic media, and show their mutual relations.
The amplitude of a wavefield with general initial conditions can be expressed in
terms of two paraxial vectors of geometrical spreading in Cartesian coordinates, and
in terms of the 2×2 matrix of geometrical spreading in ray–centred coordinates.
The amplitude of the Green tensor can be expressed in six different ways: (a) in terms
of the paraxial vectors corresponding to two ray parameters in Cartesian coordinates,
(b) in terms of the 2×2 paraxial matrices corresponding to two ray parameters in
ray–centred coordinates, (c) in terms of the 3×3 upper right submatrix of the 6×6
propagator matrix of geodesic deviation in Cartesian coordinates, (d) in terms of
the 2×2 upper right submatrix of the 4×4 propagator matrix of geodesic deviation
in ray–centred coordinates, (e) in terms of the 3×3 matrix of the mixed second–
order spatial derivatives of the characteristic function with respect to the source and
receiver Cartesian coordinates, and (f) in terms of the 2×2 matrix of the mixed
second–order spatial derivatives of the characteristic function with respect to the
source and receiver ray–centred coordinates. The step–by–step derivation of various
equivalent expressions, both known or novel, elucidates the mutual relations between
these expressions.

Keywords : amplitude, transport equation, elastic Green tensor, geodesic
deviation, paraxial ray approximation, second–order derivatives of the characteristic
function, anisotropy, heterogeneity

1. INTRODUCTION

The most important quantity used in ray methods is the travel time defined by
means of the non–linear first–order partial differential equation called the Hamilton–
Jacobi equation, which is also often referred to as the eikonal equation in wave
propagation problems. The next most important quantity is the zero–order ray–
theory amplitude defined by means of the transport equation.
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The solution of the transport equation for the wavefield amplitude is closely
related to the equations of geodesic deviation. The Hamiltonian equations of geodesic
deviation, also called paraxial ray equations or dynamic ray tracing equations, were
proposed by Červený (1972) in order to calculate the wavefield amplitude. The
Hamiltonian equations of geodesic deviation have a considerably simpler form than
the equivalent Finslerian equations of geodesic deviation (Klimeš, 2013a). The
Hamiltonian equations of geodesic deviation were first expressed in general Cartesian
coordinates (Červený, 1972 ), but are also often expressed and solved in the ray–
centred coordinates connected with a particular ray (Klimeš, 2006b). The solution of
the Hamiltonian equations of geodesic deviation describes the coordinate deviations
of paraxial rays (paraxial vectors of geometrical spreading) and the slowness–vector
deviations of paraxial rays.

The zero–order ray–theory amplitude may be expressed in terms of a solution
of particular Hamiltonian equations of geodesic deviation in many ways. Various
authors have published various expressions for the zero–order ray–theory amplitude
(e.g., Babich, 1961 ; Červený, 1972; 2001 ; Kendall and Thomson, 1989 ; Gajewski
and Pšenč́ık, 1990 ; Kendall et al., 1992 ; Pšenč́ık and Teles, 1996 ; Schleicher et al.,
2001 ; Chapman, 2004 ; Klimeš, 2006a; 2012 ; Farra and Pšenč́ık, 2008 ; Červený and
Pšenč́ık, 2014; 2015 ), and the equivalence of their expressions is not always obvious
at first sight. In this paper, we derive various expressions for the zero–order ray–
theory amplitude. Some of them coincide with the already published expressions,
some of them are generalizations of the already published expressions, and some of
them are novel.

The zero–order ray–theory amplitude satisfies the transport equation. There are
two important kinds of the ray–theory amplitude: the amplitude corresponding to
a wavefield with general initial conditions including finite sources, and the amplitude
of the Green tensor. Two equivalent but different expressions for the amplitude
corresponding to the general initial conditions are presented in Section 4. Twelve
equivalent but different expressions for the amplitude of the Green tensor are
presented in Section 5. The step–by–step derivation of the equivalent expressions
starts with well–known expressions.

For an orthonomic system of rays, corresponding to a wavefield with general
initial conditions, we may calculate two paraxial vectors of geometrical spreading
corresponding to two ray parameters using the Hamiltonian equations of geodesic
deviation. These paraxial vectors may be calculated in Cartesian coordinates or ray–
centred coordinates. The amplitude of a general wavefield may then be expressed in
terms of the paraxial vectors in Cartesian coordinates (Section 4.1), or in terms of
the 2×2 matrix of geometrical spreading in ray–centred coordinates (Section 4.2).

Rays corresponding to the Green tensor are calculated from a point source, and
we may again calculate two paraxial vectors of geometrical spreading corresponding
to two arbitrary ray parameters at the point source. The amplitude of the Green
tensor can then be expressed in terms of the paraxial vectors in Cartesian coordinates
(Section 5.3), or in terms of the 2×2 paraxial matrices in ray–centred coordinates
(Section 5.2).
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We may also calculate the propagator matrix of geodesic deviation. The prop-
agator matrix may be defined and calculated in Cartesian coordinates or in ray–
centred coordinates. If we calculate the propagator matrix of geodesic deviation,
we may obtain the paraxial vectors using the corresponding initial conditions and
the propagator matrix. The paraxial vectors may then be used to determine the
amplitude of a general wavefield or the amplitude of the Green tensor as mentioned
above.

If we calculate the propagator matrix of geodesic deviation, we may also deter-
mine the amplitude of the Green tensor directly from the upper right submatrix
of the propagator matrix of geodesic deviation, either from the 3×3 submatrix
in Cartesian coordinates (Section 5.4) or from the 2×2 submatrix in ray–centred
coordinates (Section 5.1).

We may also consider the mixed second–order spatial derivatives of the char-
acteristic function with respect to the source and receiver coordinates. In this
case, we may determine the amplitude of the Green tensor using the 3×3 matrix of
these derivatives in Cartesian coordinates (Section 5.6) or the 2×2 matrix of these
derivatives in ray–centred coordinates (Section 5.5).

We do not present the expressions for the amplitude in terms of the surface–to–
surface paraxial vectors of geometrical spreading corresponding to two ray param-
eters, in terms of the 2×2 surface–to–surface paraxial matrices, or in terms of the
upper right 2×2 submatrix of the 4×4 surface–to–surface propagator matrix of
geodesic deviation, refer to Moser and Červený (2007). Nor do we demonstrate that
the expression for the amplitude of the Green tensor in terms of the three different
2×2 matrices of the homogeneous second–order spatial derivatives of travel time
and the characteristic function with respect to the source and receiver ray–centred
coordinates by Červený (2001, Eq. 4.10.43) is applicable to anisotropic media.

The Einstein summation over repetitive lower–case Roman indices, corresponding
to the 3 spatial coordinates, is used throughout the paper. Upper–case Roman
indices correspond to the first two ray–centred coordinates or to two ray parameters.

2. RAYS AND GEODESIC DEVIATION

2 . 1 . H a m i l t o n – J a c o b i e q u a t i o n , t r a v e l t i m e ,
C h a r a c t e r i s t i c f u n c t i o n , s l ow n e s s v e c t o r ,

H a m i l t o n ’ s e q u a t i o n s , r a y c o o r d i n a t e s

The Hamilton–Jacobi equation is a general partial differential equation of the
first order. The Hamilton–Jacobi equation for travel time (action, distance) τ(xm)
reads

H
(

xi, ∂τ
∂xj (xm)

)

= C , (1)

where the function H(xi, pj) of coordinates xi and of covariant vector pj from
the cotangent space at point xi is referred to as the Hamiltonian function. The
multivalued solution τ(xm) of the Hamilton–Jacobi equation is determined by the
initial conditions.
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The characteristic function (two–point travel time, point–to–point distance) from
point x̃n to point xm, denoted by τ(xm, x̃n), is the solution of Hamilton–Jacobi
equation (1) with initial conditions τ(x̃m, x̃n) = 0.

Gradient

pi =
∂τ

∂xi
(2)

of the travel time or of the characteristic function is referred to as the slowness
vector.

When differentiating the Hamilton–Jacobi equation with respect to coordinates
xj , we find that the multivalued solution τ of the Hamilton–Jacobi equation can
be calculated along rays (geodesics). Hamilton’s equations (equations of rays, ray
tracing equations, equations of geodesics) read

dxi

dγ3
=

∂H

∂pi

(xm, pn) , (3)

dpi

dγ3
= −∂H

∂xi
(xm, pn) , (4)

where d in the derivatives denotes differentiation along the ray. The meaning of
independent parameter γ3 along the rays depends on the particular form of the
Hamiltonian function.

In addition to independent parameter γ3, corresponding to the Hamiltonian
function, we may also parametrize the rays by travel time τ , and define the ray
velocity vector

V i =
dxi

dτ
(5)

as the derivative of coordinates xi of the ray with respect to travel time τ along the
ray.

In 3–D space, the orthonomic system of rays corresponding to the given initial
conditions consists of a two–parametric system of rays which are parametrized by
two ray parameters γ1 and γ2. The ray parameters together with the independent
parameter along the rays form ray coordinates γ1, γ2, γ3.

Since the solution of Hamilton–Jacobi equation (1) calculated using Hamilton’s
equations (3) and (4) is multivalued, it is parametrized by ray coordinates γa.
Multivalued solution τ(xm) or τ(xm, x̃n) is thus expressed as xm = xm(γa), τ =
τ(γa).

2 . 2 . R a y – c e n t r e d c o o r d i n a t e s

We may define ray–centred coordinates qa along a particular ray (Klimeš, 2006b).
We parametrize the points along the ray by an arbitrary monotonic variable q3.
At each point xi(q3) of the ray, we choose two contravariant basis vectors hi

1(q
3)

and hi
2(q

3) perpendicular to slowness vector pi,

hi
A(q3) pi = 0 . (6)
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Contravariant basis vectors hi
A should vary smoothly along the ray. The transfor-

mation from the ray–centred coordinates qa to Cartesian coordinates xi is defined
by relation

xi = xi(q3) + hi
A(q3) qA . (7)

Three contravariant basis vectors of the ray–centred coordinate system are

hi
a =

∂xi

∂qa
. (8)

In matrix notation, we shall denote the first two contravariant basis vectors hi
1 and

hi
2 as h1 and h2. The slowness vector in ray–centred coordinates at the central ray

then reads
p(q)

a = pi hi
a . (9)

Three covariant basis vectors of the ray–centred coordinate system are

ĥa
i =

∂qa

∂xi
. (10)

In matrix notation, we shall denote the first two covariant basis vectors ĥ1
i and ĥ2

i

as ĥ1 and ĥ2.

2 . 3 . P a r a x i a l r a y m a t r i c e s
o f a n o r t h o n o m i c s y s t e m o f r a y s

For an orthonomic system of rays corresponding to the given initial conditions,
we define the 3×3 paraxial matrix

X i
a =

∂xi

∂γa
(11)

of geometrical spreading in Cartesian coordinates. We analogously define the 3×3
paraxial matrix

Yia =
∂pi

∂γa
(12)

describing the paraxial slowness vectors in Cartesian coordinates.
The third columns of the paraxial matrices can be obtained from the solution of

Hamilton’s equations (3) and (4). We shall refer to the first two columns X i
1, X i

2

or Yi1, Yi2 of the paraxial matrices as the paraxial vectors, and denote them as X1,
X2 or Y1, Y2 in matrix notation. The paraxial vectors can be calculated using the
Hamiltonian equations of geodesic deviation (paraxial ray equations, dynamic ray
tracing equations), which can be obtained by differentiating Hamilton’s equations
(3) and (4) with respect to ray coordinates γa (Červený, 1972 ).

We also define the analogous paraxial matrices

Qi
a =

∂qi

∂γa
(13)

and

Pia =
∂p

(q)
i

∂γa
(14)

in ray–centred coordinates.
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For fixed ray parameters γA, we have qI = 0 and p
(q)
I = 0, see definition (7) and

definition (9) with (6). Then

QI
3 = 0 (15)

and

PI3 = 0 . (16)

In ray–centred coordinates, we can thus calculate just the 2×2 paraxial matrices QI
A

and PIA using the Hamiltonian equations of geodesic deviation. In matrix notation,
we shall denote these 2×2 paraxial matrices Q and P.

We compare definitions (5) and (11), and obtain relation

Xk
3 = V k dτ

dγ3
. (17)

Definition (13) yields identity

Qk
3 = δk

3

dq3

dγ3
. (18)

2 . 4 . P r o p a g a t o r m a t r i c e s o f g e o d e s i c d e v i a t i o n

The propagator matrices of geodesic deviation represent the solution of the
Hamiltonian equations of geodesic deviation with identity initial conditions, both in
Cartesian coordinates and in ray–centred coordinates (Kendall et al., 1992 ; Klimeš,
1994 ).

The 6×6 propagator matrix of geodesic deviation in Cartesian coordinates may
also be defined as the matrix of the derivatives of xi and pi with respect to their
initial conditions x̃j and p̃j for fixed γ3. In this paper, we shall use just the 3×3
upper right submatrix

X ij
2 =

∂xi

∂p̃j

(19)

of this propagator matrix. The partial derivatives are calculated for fixed γ3.
The 6×6 propagator matrix of geodesic deviation in ray–centred coordinates may

also be defined as the matrix of the derivatives of qi and p
(q)
i with respect to their

initial conditions q̃j and p̃
(q)
j for fixed γ3.

As the consequence of identities (15) and (16), we may also define the 4×4
propagator matrix of geodesic deviation in ray–centred coordinates as the matrix of

the derivatives of qI and p
(q)
I with respect to their initial conditions q̃J and p̃

(q)
J for

fixed γ3. In this paper, we shall use just the upper right 2×2 submatrix

QIJ
2 =

∂qI

∂p̃
(q)
J

(20)

of this propagator matrix. In matrix notation, we shall denote this 2×2 matrix
as Q2.
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3. AMPLITUDE

3 . 1 . Tr a n s p o r t e q u a t i o n

Multivalued zero–order ray–theory amplitude A = A(xm) of a general elastic
wavefield satisfies transport equation

∂

∂xi

(

A2̺ V i
)

= 0 (21)

(Klimeš, 2006a, Eq. 10 ), where ray velocity vector V i is given by definition (5).
Function ̺ = ̺(xm, fκ) is a function parametrizing the transport equation. If

A is the amplitude of the displacement of an elastic wavefield, ̺ is the density. From
the point of view of differential geometry, amplitude A is a scalar if ̺ is the scalar
density of weight −1 (scalar per volume).

The solution of transport equation (21) can be calculated separately along each
ray (Babich, 1961 ; Klimeš, 2006a).

3 . 2 . P h a s e s h i f t d u e t o c a u s t i c s

Transport equation (21) is a partial differential equation for the square A2 of
the amplitude, not for the amplitude itself. Even if the solution A2 of transport
equation (21) is real–valued, amplitude A becomes complex–valued if its square A2

becomes negative. Amplitude A is thus complex–valued. Since the complex–valued
square root has two branches, it is difficult to determine amplitude A from its square
A2. We must determine which branch of the amplitude calculated along the ray is
correct.

We thus separate square root A =
√

A2 into complex modulus |A| =
√

|A2| and
complex argument exp(iϕ),

A = |A| exp(iϕ) . (22)

Quantity ϕ in expression (22) is the phase shift due to caustics.
If the rays are real–valued, there is a real–valued solution of transport equation

(21) for the square A2 of the amplitude. The phase shift due to caustics is then
constant in the regions of equal sign of A2, and changes by an integer multiple of
π/2 at the boundaries between the regions.

The calculation of amplitude A along the ray is thus composed of the calculation
of its complex modulus |A| along the ray and of the determination of the phase
shift ϕ due to caustics. This paper is devoted to the the calculation of the complex
modulus |A| of the amplitude.

The rules for the determination of the phase shift due to caustics along the ray
were proposed by Lewis (1965), Orlov (1981), Kravtsov and Orlov (1993; 1999),
Bakker (1988), Garmany (2001) and Klimeš (2010; 2014).

For an orthonomic system of rays corresponding to a wavefield with general
initial conditions, the phase shift due to caustics may be determined using the 3×3
paraxial matrices in Cartesian coordinates with their derivatives (Klimeš, 2014, Secs
2.2 and 3.2 ), or using the 2×2 paraxial matrices in ray–centred coordinates with
their derivatives (Klimeš, 2014, Secs 2.1 and 3.1 ).
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The phase shift of the Green tensor due to caustics may be determined using the
3×3 right–hand submatrices of the 6×6 propagator matrix of geodesic deviation in
Cartesian coordinates with their derivatives (Klimeš, 2010, Secs 2.2 and 3.2 ), or
using the 2×2 right–hand submatrices of the 4×4 propagator matrix of geodesic
deviation in ray–centred coordinates with their derivatives (Klimeš, 2010, Secs 2.1
and 3.1 ).

4. AMPLITUDE OF A GENERAL WAVEFIELD

4 . 1 . A m p l i t u d e i n t e r m s o f t h e m a t r i x
o f g e o m e t r i c a l s p r e a d i n g i n C a r t e s i a n c o o r d i n a t e s

The solution of transport equation (21) may be expressed in various forms. The
square of the complex–valued amplitude may be expressed as

A2 = C2 1

̺

dτ

dγ3

1

det(X i
a)

(23)

(Klimeš, 2006a, Eqs 12, 34 ), where the 3×3 paraxial matrix X i
a of geometrical

spreading in Cartesian coordinates is given by definition (11).

This equation represents the generalization of the analogous equation by Babich
(1961, Eq. 3.7) from a homogeneous Hamiltonian function to a general Hamiltonian
function.

The complex–valued amplitude then reads

A = C

√

1

̺

dτ

dγ3

1

| det(X i
a)| exp(iϕ) , (24)

where ϕ is the phase shift due to caustics.

Complex–valued factor C = C(γ1, γ2) is constant along the ray in a smooth
medium and is determined by the initial conditions. It is often referred to as the
reduced amplitude (Červený et al., 1988, Eq. 5.19 ). Reduced amplitude C depends
on the selection of ray parameters γ1 and γ2.

We insert relation (17) into expression (24) and arrive at expression

A =
C

√

̺ |εijkX i
1X

j
2V k|

exp(iϕ) (25)

(Gajewski and Pšenč́ık, 1990, Eq. 7 ; Kendall et al., 1992, Eqs 3–4), where paraxial
vectors X i

1 and X i
2 represent the first two columns of the 3×3 paraxial matrix (11)

of geometrical spreading.

For the special case of a homogeneous Hamiltonian function, paraxial vectors X1

and X2 are tangent to the wavefront, and their cross product is thus normal to the
wavefront,

εijkX i
1X

j
2 = ±|X1×X2| v pk . (26)
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In this case,

A =
C

√

̺ v |X1×X2|
exp(iϕ) (27)

(Červený, 1972, Eq. 29b; Kendall and Thomson, 1989, Eqs 29–30 ). This equation
is not applicable to a general Hamiltonian function.

4 . 2 . A m p l i t u d e i n t e r m s o f t h e m a t r i x
o f g e o m e t r i c a l s p r e a d i n g i n r a y – c e n t r e d c o o r d i n a t e s

Definition (11) yields relation

Xk
a =

∂xk

∂qi

∂qi

∂γa
(28)

for the transformation from ray–centred coordinates to Cartesian coordinates. Con-
sidering definitions (8) and (13), relation (28) reads

Xk
a = hk

i Qi
a , (29)

which implies relation

| det(Xg
a )| = | det(hg

i )| | det(Qi
a)| (30)

for the determinants. The determinant of the transformation matrix (8) from ray–
centred to Cartesian coordinates is

| det(hi
a)| = |εijkhi

1h
j
2h

k
3 | . (31)

Since contravariant basis vectors h1 and h2 of the ray–centred coordinate system
are tangent to the wavefront, their cross product is normal to the wavefront, and

εijkhi
1h

j
2 = ±|h1×h2| v pk . (32)

We insert relation

hk
3 =

∂xk

∂q3
, (33)

following from definitions (7) and (8), into relation (31) with (32) and obtain relation

| det(hg
i )| = |h1×h2| v

dτ

dq3
. (34)

Relation (30) with relation (34) reads

| det(X i
a)| = |h1×h2| | det(Qi

a)| v dτ

dq3
. (35)

Due to identities (15) and (18), we have relation

det(Qi
a) = det(QI

A)
dq3

dγ3
. (36)

We insert relation (35) with relation (36) into expression (24) and arrive at expression

A(x, x̃) =
C

√

̺ v |h1×h2| | det(QI
A)|

exp(iϕ) (37)

(Klimeš, 2012, Eqs 7, 9 ) for the amplitude of a general wavefield.
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5. AMPLITUDE OF THE GREEN TENSOR

5 . 1 . A m p l i t u d e i n t e r m s o f t h e p r o p a g a t o r m a t r i x
o f g e o d e s i c d e v i a t i o n i n r a y – c e n t r e d c o o r d i n a t e s

Using the representation theorem for elastic waves and relation (37) in ray–
centred coordinates, we can derive expression

AG(x, x̃) =
1

4π

1
√

̺(x) v(x) ̺(x̃) v(x̃) L(x, x̃)
exp[iϕ(x, x̃)] (38)

(Červený, 2001, Eq. 5.4.24 ; Klimeš, 2012, Eq. 55 ) for the amplitude of the Green
tensor from point x̃ to point x in the frequency domain. Here

L(x, x̃) =
√

|h1(x)×h2(x)| | det[Q2(x, x̃)]| |h1(x̃)×h2(x̃)| (39)

(Klimeš, 2012, Eq. 13 ) is the relative geometrical spreading defined by Červený
(2001, Eq. 4.14.45). Amplitude (38) corresponds to the Fourier transform

Gik(x, x̃, ω) =

∫

dt Gik(x, x̃, t) exp(iωt) (40)

of the Green tensor from time t to circular frequency ω. If the right–hand side of the
Fourier transform includes multiplicative factor (2π)−

1

2 or (2π)−1, the right–hand
side of expression (38) should be multiplied by the same factor.

The determinant of the transformation matrix (10) from Cartesian to ray–centred
coordinates is

| det(ĥi
a)| = |εabcĥ1

aĥ2
b ĥ

3
c | . (41)

Since the covariant basis vectors ĥ1 and ĥ2 of the ray–centred coordinate system
are perpendicular to the ray, their cross product is tangent to the ray, and

εabcĥ1
aĥ2

b = ±|ĥ1×ĥ2|V −1V c (42)

analogous to relation (32) for the contravariant basis vectors. Here V is the ray
velocity and V c is the ray–velocity vector. We insert definition (5) and part

ĥ3
i =

∂q3

∂xi
(43)

of definition (10) into relation (41) with (42) and obtain relation

ĥ3
c V c =

dq3

dτ
. (44)

Inserting (42) into (41) and considering (44), we arrive at

| det(ĥi
a)| = |ĥ1×ĥ2|V −1 dq3

dτ
. (45)

Since
| det(ha

i )| | det(ĥj
b)| = 1 , (46)
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relations (34) and (45) yield identity

|h1×h2| = |ĥ1×ĥ2|−1 V v−1 , (47)

which can be inserted into expression (39), both at point x̃ or point x, e.g.,

L(x, x̃) =

√

|h1(x)×h2(x)| | det[Q2(x, x̃)]| |ĥ1(x̃)×ĥ2(x̃)|−1V (x̃) [v(x̃)]−1 , (48)

or

L(x, x̃) =

√

| det[Q2(x, x̃)]|
|ĥ1(x)×ĥ2(x)| |ĥ1(x̃)×ĥ2(x̃)|

V (x)

v(x)

V (x̃)

v(x̃)
. (49)

5 . 2 . A m p l i t u d e i n t e r m s o f t h e p a r a x i a l
m a t r i c e s i n r a y – c e n t r e d c o o r d i n a t e s

Paraxial matrices Q(x) and P(x̃) corresponding to arbitrarily parametrized rays
from a point source at x̃ are related by equation

Q(x) = Q2(x, x̃)P(x̃) . (50)

Inserting relation (50) into expression (39), we obtain expression

L(x, x̃) =
√

|h1(x)×h2(x)| | det[Q(x)]| | det[P(x̃)]|−1 |h1(x̃)×h2(x̃)| (51)

for the relative geometrical spreading.
We may insert identity (47) into expression (51), both at point x̃ or point x, e.g.,

L(x, x̃) =

√

|h1(x)×h2(x)| | det[Q(x)]|
| det[P(x̃)]| |ĥ1(x̃)×ĥ2(x̃)|

V (x̃)

v(x̃)
, (52)

or

L(x, x̃) =

√

| det[Q(x)]|
|ĥ1(x)×ĥ2(x)| | det[P(x̃)]| |ĥ1(x̃)×ĥ2(x̃)|

V (x)

v(x)

V (x̃)

v(x̃)
. (53)

5 . 3 . A m p l i t u d e i n t e r m s o f t h e p a r a x i a l v e c t o r s
i n C a r t e s i a n c o o r d i n a t e s

We supplement paraxial vectors Yi2 and Yi1 with slowness vector pi to create
a 3×3 matrix. The transformation of this matrix from ray–centred coordinates to
Cartesian coordinates reads

(Yi1 Yi2 pi ) = ĥi
k

(

Pk1 Pk2 δk3
dτ
dq3

)

. (54)

It follows that the corresponding determinants are transformed as

|εijkYi1Yj2pk| = | det(ĥi
k)| |εmn3Pm1Pn2|

dτ

dq3
. (55)

We insert relation (45) into relation (55) and obtain

|εijkYi1Yj2pk| = |ĥ1×ĥ2| | det(PIA)|V −1 . (56)
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Relations (17), (35) and (36) yield relation

|εijkX i
1X

j
2V k| = |h1×h2| | det(QI

A)| v . (57)

We insert relations (56) and (57) into expression (52) and obtain expression

L(x, x̃) =

√

|εijkX i
1(x)Xj

2(x)V k(x)|
v(x) |εlmnYl1(x̃)Ym2(x̃)pn(x̃)| v(x̃)

(58)

(Červený and Pšenč́ık, 2015, Eq. 52 ) for the relative geometrical spreading. Since
vectors Yi1 and Yi2 are tangent to the slowness surface at point x̃, their cross product
is normal to the slowness surface, and

εijkYi1(x̃)Yj2(x̃) = ±|Y1(x̃)×Y2(x̃)|V k(x̃)V −1(x̃) . (59)

We multiply relation (59) by the slowness vector and obtain

|εijkYi1(x̃)Yj2(x̃)pk(x̃)| = |Y1(x̃)×Y2(x̃)|V −1(x̃) . (60)

We now insert relation (60) into expression (58) and arrive at expression

L(x, x̃) =

√

|εijkX i
1(x)Xj

2(x)V k(x)|V (x̃)

v(x) |Y1(x̃)×Y2(x̃)| v(x̃)
(61)

(Chapman, 2004, Eq. 5.4.19 ) for the relative geometrical spreading.
For the special case of a homogeneous Hamiltonian function, we may insert

relation (26) into expression (61). In this case,

L(x, x̃) =

√

|X1(x)×X2(x)|
|Y1(x̃)×Y2(x̃)|

V (x̃)

v(x̃)
. (62)

This equation is not applicable to a general Hamiltonian function. Expression (62)
with special initial conditions |Y1(x̃)×Y2(x̃)| = V (x̃)/v(x̃) was used by Pšenč́ık and
Teles (1996, Eqs A.1, A.4), Farra and Pšenč́ık (2008, Eqs 25, 28) and Červený and
Pšenč́ık (2015, Eq. 56).

5 . 4 . A m p l i t u d e i n t e r m s o f t h e p r o p a g a t o r m a t r i x
o f g e o d e s i c d e v i a t i o n i n C a r t e s i a n c o o r d i n a t e s

Paraxial vectors X i
A(x) and YmA(x̃) corresponding to arbitrarily parametrized

rays from a point source at x̃ are related by equation

X i
A(x) = X im

2 (x, x̃)YmA(x̃) , (63)

where X im
2 (x, x̃) is the 3×3 upper right submatrix (19) of the 6×6 propagator matrix

of geodesic deviation in Cartesian coordinates. Then

εijkX i
1(x)Xj

2 (x)V k(x) = εijkX im
2 (x, x̃)Xjn

2 (x, x̃)V k(x)Ym1(x̃)Yn2(x̃) . (64)

We consider the skewness of Levi–Civita symbol εijk, and rewrite relation (64) to
read

εijkX i
1(x)Xj

2 (x)V k(x)

= 1
2εijkX im

2 (x, x̃)Xjn
2 (x, x̃)V k(x)

[

Ym1(x̃)Yn2(x̃) − Yn1(x̃)Ym2(x̃)
]

. (65)
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We now insert identity

εmnlε
lrs = δmrδns − δmsδnr (66)

into relation (65), and arrive at

εijkX i
1(x)Xj

2(x)V k(x) = 1
2εijkX im

2 (x, x̃)Xjn
2 (x, x̃)V k(x)εmnlε

lrsYr1(x̃)Ys2(x̃) .
(67)

We insert relation (59) into relation (67), and obtain relation

εijkX i
1(x)Xj

2(x)V k(x)

= ± 1
2εijkX im

2 (x, x̃)Xjn
2 (x, x̃)V k(x)εmnl|Y1(x̃)×Y2(x̃)|V l(x̃) [V (x̃)]−1 . (68)

We define the matrix

Ckl(x, x̃) = 1
2 εkij εlmn X im

2 (x, x̃)Xjn
2 (x, x̃) (69)

of the cofactors of matrix X im
2 (x, x̃), insert relation (68) with definition (69) into

expression (61), and obtain relation

L(x, x̃) =

√

|V k(x)Ckl(x, x̃)V l(x̃)|
v(x) v(x̃)

(70)

(Kendall et al., 1992, Eq. 17b; Chapman, 2004, Eq. 5.4.23 ) for the relative geomet-
rical spreading.

5 . 5 . A m p l i t u d e i n t e r m s o f t h e s e c o n d – o r d e r d e r i v a t i v e s
o f t h e c h a r a c t e r i s t i c f u n c t i o n i n r a y – c e n t r e d c o o r d i n a t e s

Klimeš (2013a, Eq. 28) derived relation
(

∂2τ

∂x̃i∂xj
+

1

Γ

∂γ

∂x̃i

∂γ

∂xj

)

(x, x̃)Xjk
2 (x, x̃) = −δk

i (71)

between the mixed second–order spatial derivatives of characteristic function τ(x,x′)
and the 3×3 upper right submatrix of the 6×6 propagator matrix of geodesic
deviation in general coordinates including Cartesian coordinates. The meaning of
functions γ(x, x̃) and Γ(x, x̃) is not significant here. Interested readers may refer to
Klimeš (2013a,b).

If we define matrix [X−1
2 ]ji(x, x̃) inverse to matrix X ij

2 (x, x̃), we may express
relation (71) as

(

∂2τ

∂x̃i∂xj
+

1

Γ

∂γ

∂x̃i

∂γ

∂xj

)

(x, x̃) = −[X−1
2 ]ij(x, x̃) . (72)

We now transform relation (72) into ray–centred coordinates.
We transform the submatrix X ij

2 (x, x̃) of the propagator matrix of geodesic
deviation from Cartesian to ray–centred coordinates,

Qab
2 (x, x̃) = ĥa

i (x)X ij
2 (x, x̃) ĥb

j(x̃) . (73)
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The transformation of the inverse matrix then reads

[Q−1
2 ]ba(x, x̃) = hj

b(x̃) [X−1
2 ]ji(x, x̃)hi

a(x) . (74)

We transform the mixed second–order derivatives of the characteristic function from
Cartesian to ray–centred coordinates,

∂2τ

∂qa∂q̃b
(x, x̃) =

∂xk

∂qa
(x)

∂2τ

∂xk∂x̃l
(x, x̃)

∂x̃l

∂q̃b
(x̃) , (75)

which can be expressed in terms of the contravariant basis vectors (8) of the ray–
centred coordinate system as

∂2τ

∂qa∂q̃b
(x, x̃) = hk

a(x)
∂2τ

∂xk∂x̃l
(x, x̃)hl

b(x̃) . (76)

Since
∂H

∂pk

(x)
∂2τ

∂xk∂x̃l
(x, x̃) = 0 (77)

(Hamilton, 1837, Eqs U, I ), and

∂2τ

∂xk∂x̃l
(x, x̃)

∂H

∂pl

(x̃) = 0 (78)

(Hamilton, 1837, Eqs Y, I ), we have identities

∂2τ

∂qA∂q̃3
(x, x̃) = 0 ,

∂2τ

∂q3∂q̃B
(x, x̃) = 0 . (79)

Relation (72) in ray–centred coordinates then reads

[Q−1
2 ]ba(x, x̃) = −

(

∂2τ
∂q̃B∂qA + ∂γ

∂q̃B
1
Γ

∂γ
∂qA

∂γ
∂q̃B

1
Γ

∂γ
∂q3

∂γ
∂q̃3

1
Γ

∂γ
∂qA

∂γ
∂q̃3

1
Γ

∂γ
∂q3

)

(x, x̃) . (80)

We define 2×2 matrix

QBA
2 (x, x̃) = −

(

∂2τ

∂q̃A∂qB

)

−1

(x, x̃) , (81)

invert the 3×3 matrices in relation (80), and arrive at

Qab
2 (x, x̃) =

(

QAB
2 −QAD

2
∂γ

∂q̃D

(

∂γ
∂q̃3

)

−1

− ∂γ
∂qC QCB

2

(

∂γ
∂q3

)

−1 (

Γ + ∂γ
∂qC QCD

2
∂γ

∂q̃D

)(

∂γ
∂q3

∂γ
∂q̃3

)

−1

)

(x, x̃) . (82)

We see that the 2×2 matrix QBA
2 (x, x̃) is a submatrix of the 3×3 matrix (73).

Definition (81) may then be understood as the relation between the 2×2 submatrix
QBA

2 (x, x̃) of the 3×3 matrix (73) and the mixed second–order spatial derivatives of
characteristic function τ(x,x′) in ray–centred coordinates. This relation represents
a generalization of the relation for the mixed second–order spatial derivatives of
characteristic function τ(x,x′) by Červený et al. (1984, Eq. 22) to anisotropic media.
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Relation (81) yields relation

det

(

∂2τ

∂qA∂q̃B
(x, x̃)

)

= −1/ det[Q2(x, x̃)] . (83)

We insert relation (83) into expression (39) and obtain expression

L(x, x̃) =

√

|h1(x)×h2(x)|
∣

∣

∣

∣

det

(

∂2τ

∂qA∂q̃B
(x, x̃)

)
∣

∣

∣

∣

−1

|h1(x̃)×h2(x̃)| (84)

for the relative geometrical spreading in terms of the mixed second–order spatial
derivatives of the characteristic function in ray–centred coordinates. The special
case of expression (84), corresponding to orthonormal contravariant basis vectors h1

and h2, was presented by Schleicher et al. (2001, Eqs 5–6).
Expression (84) for the relative geometrical spreading may also be modified by

inserting identity (47), both at point x̃ or point x, e.g.,

L(x, x̃) =

√

V (x)

v(x)

V (x̃)

v(x̃)

/
√

|ĥ1(x)×ĥ2(x)|
∣

∣

∣

∣

det

(

∂2τ

∂qA∂q̃B
(x, x̃)

)∣

∣

∣

∣

|ĥ1(x̃)×ĥ2(x̃)| .

(85)

5 . 6 . A m p l i t u d e i n t e r m s o f t h e s e c o n d – o r d e r d e r i v a t i v e s
o f t h e c h a r a c t e r i s t i c f u n c t i o n i n C a r t e s i a n c o o r d i n a t e s

The transformation of the mixed second–order derivatives of the characteristic
function from ray–centred to Cartesian coordinates reads

∂2τ

∂xk∂x̃l
(x, x̃) =

∂qa

∂xk
(x)

∂2τ

∂qa∂q̃b
(x, x̃)

∂q̃b

∂x̃l
(x̃) . (86)

Considering identities (79), we express relation (86) in terms of the covariant basis
vectors (10) of the ray–centred coordinate system as

∂2τ

∂xj∂x̃m
(x, x̃) = ĥA

j (x)
∂2τ

∂qA∂q̃B
(x, x̃)ĥB

m(x̃) . (87)

We define the matrix

W il(x, x̃) = 1
2εijkεlmn ∂2τ

∂xj∂x̃m
(x, x̃)

∂2τ

∂xk∂x̃n
(x, x̃) (88)

of the cofactors of matrix (86). We insert relation (87) into definition (88) and arrive
at relation

W il(x, x̃) = εijk ĥ1
j(x) ĥ2

k(x) εlmn ĥ1
m(x̃) ĥ2

n(x̃)

×
[

∂2τ

∂q1∂q̃1
(x, x̃)

∂2τ

∂q2∂q̃2
(x, x̃) − ∂2τ

∂q1∂q̃2
(x, x̃)

∂2τ

∂q2∂q̃1
(x, x̃)

]

. (89)

We insert relation (42) into relation (89) and obtain relation

W il(x, x̃) = ±|ĥ1(x)×ĥ2(x)| V i(x)

V (x)
|ĥ1(x̃)×ĥ2(x̃)| V l(x̃)

V (x̃)
det

(

∂2τ

∂qA∂q̃B
(x, x̃)

)

. (90)
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We multiply relation (90) by pi(x) and pl(x̃), insert the product into expression (85),
and obtain expression

L(x, x̃) = 1
/
√

|pi(x)W il(x, x̃) pl(x̃)| v(x) v(x̃) . (91)

for the relative geometrical spreading in terms of the mixed second–order derivatives
of the characteristic function in Cartesian coordinates.

We insert expression (91) for the relative geometrical spreading into expression
(38) and obtain new expression

AG(x, x̃) =
1

4π

√

|pi(x)W il(x, x̃) pl(x̃)|
̺(x) ̺(x̃)

exp[iϕ(x, x̃)] (92)

for the amplitude of the Green tensor.

6. CONCLUSIONS

The zero–order ray–theory amplitude satisfies the transport equation. There are
two important kinds of the ray–theory amplitude: the amplitude corresponding to
a wavefield with general initial conditions including finite sources, and the amplitude
of the Green tensor. Thre already known equivalent expressions (24), (25) and (37)
for the amplitude corresponding to the general initial conditions are presented in Sec-
tion 4. Relation (38) for the amplitude of the Green tensor is presented in Section 5
together with twelve equivalent expressions for the relative geometrical spreading.
Expressions (39), (58), (61) and (70) for the relative geometrical spreading have
already been published. Expressions (48), (49), (51), (52), (53), (84), (85) and (91)
for the relative geometrical spreading may be novel, although some special cases
of some of these expressions have been published. The step–by–step derivation of
various equivalent expressions starts with expressions (24) and (25), or expressions
(38) and (39), respectively. The derivation thus elucidates the mutual relations
between the equivalent expressions.

The Hamiltonian equations of geodesic deviation (paraxial ray equations, dy-
namic ray tracing equations) are sometimes expressed and solved in general Carte-
sian coordinates and sometimes in ray–centred coordinates connected with a par-
ticular ray. The expressions for the zero–order ray–theory amplitude in terms of
the results of the Hamiltonian equations of geodesic deviation in general Cartesian
coordinates are presented in Sections 4.1, 5.3, 5.4 and 5.6. The expressions for the
zero–order ray–theory amplitude in terms of the results of the Hamiltonian equations
of geodesic deviation in ray–centred coordinates are presented in Sections 4.2, 5.1,
5.2 and 5.5.

The zero–order ray–theory amplitude of the Green tensor can be expressed in
terms of the propagator matrix of the Hamiltonian equations of geodesic deviation
(Sections 5.1 and 5.4), in terms of the paraxial vectors corresponding to arbitrarily
parametrized rays from a point source (Sections 5.2 and 5.3), or in terms of the
second–order derivatives of the characteristic function (Sections 5.5 and 5.6).
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Červený V. and Pšenč́ık I., 2014. Summation integrals for a Green function in a 3–D
inhomogeneous anisotropic medium. Seismic Waves in Complex 3–D Structures, 24,
131–158 (http://sw3d.cz).
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