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A new method is suggested for the calculation of the microcanonical cumulative reaction 
probability uia flux autocorrelation relations. The Hamiltonian and the flux operators are 
computed in a discrete variable representation (DVR) and a well-behaved representation for 
the Green’s operator, G( E + ), is obtained by imposing absorbing boundary conditions 
(ABC). Applications to a one-dimensional-model problem and to the collinear H + H, 
reaction show that the DVR-ABC scheme provides a very efficient method for the direct 
calculation of the microcanonical probability, circumventing the need to compute the state-to- 
state dynamics. Our results indicate that the cumulative reaction probability can be calculated 
to a high accuracy using a rather small number of DVR points, confined to the vicinity of the 
transition state. Only limited information regarding the potential-energy surface is therefore 
required, suggesting that this method would be applicable also to higher dimensionality 
problems, for which the complete potential surface is often unknown. 

1. INTRODUCTION 

It is well recognized that only a quantum-mechanical 
scattering calculation provides all the attributes of a bimo- 
lecular chemical reaction, i.e., state-to-state differential and 
integral cross sections. However, one is often interested in 
much less detailed quantities, e.g., the thermally averaged 
rate constant for the reaction. There is thus considerable 
interest in theoretical approaches that allow one to calculate 
the rate constant directly, i.e., without having to first solve 
the complete state-to-state reactive scattering problem, but 
nevertheless rigorously. 

Reactive flux correlation functions do, in fact, provide a 
means for such a direct calculation.‘S” Most of the recent 
effort along these lines has focused on the flux-flux autocor- 
relation function”-’ 

c,. ( *I = tr [ Feiff’ F’fiFe - ~fW*] , (l.la) 

the time integral of which gives the rate constant 

k(T) = Q,(T) - 1 
J- 

m dtC+.(t). (l.lb) 
0 

[H in Eq. ( 1. la) is the total Hamiltonian of the molecular 
system, F a flux operator (see Sec. II), i, = t - iW2kT, T 
the temperature, Q, the reactant partition function per unit 
volume, and tr denotes a quantum mechanical trace.] This 
paper, however, deals with a direct calculation of the cumu- 
Eative reaction probability, N(E), the Boltzmann average of 
which gives the thermal rate constant, 

k(T) = [2m?Q,(T)] -‘J”, dEe- E’krN(E), (1.2) 

where E is the total energy of the molecular system. In some 
cases, usually for unimoiecuiar reactions, one is interested in 
the microcanonical rate constant, which is given in terms of 

N(E) by 

HE9 = [274dE9] ‘NW), (1.3) 

wherep, is the density of reactant states per unit energy. 
The primary definition of the cumulative reaction prob- 

ability is as the sum of reaction probabilities (squares of S- 
matrix elements) over all internal (rotational and vibration- 
al) states of reactants and products’ 

NE9 = C lSnnnp(E9)*, 
“r .np 

(1.4) 

where n, and nP denote the collection of asymptotic quan- 
tum numbers of the reactants and products, respectively. 
Although one can calculate N(E) via Eq. ( 1.4) once a reac- 
tive scattering calculation has been carried out to obtain the 
S matrix, it obviously does not provide a direct approach to 
N(E) because one must first obtain all the state-to-state in- 
formation (i.e., the S matrix) which is then averaged to ob- 
tain N(E). There does, however, exist a “direct” expression 
for j’V( E) , derived from the flux correlation function analy- 
sis Z(b) f 

N(E) =&(2d)‘tr[FS(E-H)FS(E-H)], (1.5a) 

the evaluation of which is the subject of this paper. Fin Eq. 
(1.5a) is the same flux operator as in Eq. (l.la), and the 

microcanonical density operator is usually obtained from 
the outgoing wave Green’s function 

6(E-If) = --ImG(E+) 
37 

= --l-Im~~(E+ie--H)-‘. (1.5b) 
9T - 

Equation ( 1.5) is equivalent to Eq. (1.4), but it has the ad- 
vantage of no reference to asymptotic quantum states. 

Thirumalai, Garrett, and Berne*‘@) have previously at- 
tacked the evaluation of Eq. ( 1 .Ja) using a finite Gaussian 
approximation for the S-function operator [i.e., 8(z) 
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X.@/%exp( -P), with z = E-H and ,!I sufficiently 
large], and McCurdy and Garrett’“‘b’ have used a finite 
difference approach to solve the Schrijdinger equation for 

G(E + ) and obtain the microcanonical density operator via 

Eq. (1Sb). We have recently shown how G(E + ) can be 
determined in terms of Siegert eigenvalues associated with 
the Qransition state, i.e., the saddle-point region of the poten- 
tial-energy surface. *I Although these works treated only 
one-dimensioIla1 examples, they nevertheless showed that it 
is indeed possible to evaluate N(E) directly, i.e., via Eq. 

( 1.5). In addition, work by Lefebvre and Moiseyev’ using 
complex scaling/coordinate rotation methods could also be 

modified to compute G( E * ) and thus N(E) via Eq. ( 1.5). 
In this paper we report what we believe to be significant 

progress in the search for an efficient and systematic ap- 
proach for the direct evaluation of N(E) via E@. ( 1.5). The 
two key elements that we bring to bare on the problem are 
the use of a discrete variable representation*’ -16 (DVR) as 
the basis set in which the Hamiltonian and flux operator in 
Eq. ( 1.5) are represented and the trace carried out, and the 
use of absorbing boundary conditions”-” (ABC) to give a 

well-behaved representation of the operator C( E + ). 
DVR methods have been pioneered in recent years by 

the Light et&,‘“-“” primarily for use in vibrational eigenval- 
ue problems, and Colbert and Miller’” have recently shown 

that DVR provides an efficient L ’ basis set for reactive scat- 
tering calculations via the s-matrix Kohn variational meth- 
od. The two major advantages of a DVR over a conventional 
basis set representation are that no integrals are required in 
order to construct t.he Hamiltonian matrix, and that the lat- 
ter is an extremely sparse matrix so that the resulting linear 
algebra calculations (i.e., diagonalization or inversion) is 
considerably simplified. In this work we utilize the DVR of 
Colbert et al.,‘” which is especially simple and easy to use, in 
order to construct a grid point representation of Eq. ( 1.5). 

The second key feature in our present approach, is the 
use of absorbing boundary conditions (ABC). Absorbing 
boundaries have been employed by a number of work- 
ers “-” most.ly by those carrying out time-dependent wave 
padket calculations on a coordinate grid. ABC prevent parts 
of the wave packet that reach the edge of the grid from un- 
physical reflection back toward the interaction region. This 
is accomplished by introducing an imaginary part to the po- 
tential-energy function, 

VC.q) + V(q) - iriq1/2, (1.6) 

where q={qi, i = l,...,F) are the coordinates ofthe system. 
T(q) is essentially zero in the physically relevant region of 
space, and is positive at the edge of the coordinate grid in 
order to absorb flux that reaches this region of space. 

ABC can be thought of as a modified version of the 
formal convergence factor used in defining the Green’s func- 
tion in Eq. ( 1.5b)) which can also be represented in terms of 
the time evolution operator,” 

G(E’)=1in~(E+i~--~)-’ 
i 4 

= lim(ifi) “.” ’ 
I- 

&&E-k i-z .-. H)t/fz 
(1.7) 

PA 0 

Finite E in Eq. ( 1.7) provides a factor exp( - Et /fi) in the 
integrand which assures convergence of the time integral. 
Another limiting form would be to introduce a time cutoff, 

f 

7- 
G(E +) = lim(ifi) -’ d&AT- Ef)t/ti 

7 (1.8a) 
7-m 0 

which can be thought of as Es. ( 1.7) with a time-dependent 

5 

t-z(t) = I 0, t<-r 
. _ 

lco, t>7. 

One immediately sees the formal equivalence of adding a 
negative imaginary part to the potential energy [ Eq. ( 1.6 ) 1, 
to adding a positive imaginary part to the energy E [Eq. 
(1.7)], i.e., 

&-X/2, (1.9) 

provided that one allows E to be a function of coordinates. 
The time-dependent E of Eq. (1.8b) also suggests that E 
should be chosen to be essentially zero in the interaction 
region (i.e., short time) and positive at the edge of the physi- 
cally relevant region of space (i.e., long time). 

Section II first summarizes the DVR and ABC metho- 
dologies as we use them to evaluate the cumulative reaction 
probabilities via Eq. ( 1.5). The results of test calculations 
are given in Sec. III, first for a one-dimensional ( 1D) barrier 
problem and then for the collinear H t H, -+H, + H reac- 
tion. It is very encouraging that the number of “basis func- 
tions”, i.e., DVR grid points needed to achieve convergence 
for iV( E) is about a factor of 4 less than the number needed 
to achieve convergence in earlier reactive scattering calcula- 
tions for the s-matrix itself.16 Thus, not only does the pres- 
ent “direct” approach require no reference to asymptotic 
(reactant or product) information, but the region of the po- 
tential-energy surface needed to determine the cumulative 
reaction probability is considerably smaller than that neces- 
sary to determine the state-to-state scattering information 
(i.e., the S matrix). Thus, the hope that a “direct” calcula- 
tion ofN( E) will be considerably simpler than a full state-to- 
state reactive scattering calculation seems to be realizable. 
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II. METHODOLOGY 

A. The discrete variable representation 

We consider an F-dimensional Cartesian Hamiltonian 

H= 5 --@ d2 --+ V(q), 
a=, 2m, dq: 

(2.1) 

and introduce an equally spaced grid for each coordinate qn, 

42 =A&,, 
j, = 0, + 1 + 2,..., 

C.2) 
- 

where Aq, is the grid spacing and Q = l,...,F. The potential- 
energy matrix is diagonal, as in all DVR met.hods,‘” l6 5, ,,,j,jl ,,&;, = Sj,& * * ‘ai,; mL.943 1 > ., 

= WSj) fi s‘i,&> (2.3a) 
Cr=l 

and the kinetic energy is a sum of one-dimensional matrices 
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(2.3b) 

each of which is given by I6 

T;;, = 
e .I 

( - l)'~' 
14/3 j=j 

2m, Agm 
2/v--j)* j~j'. (2.3~) 

The Hamiltonian matrix Hj, ,,,j,ji ,..j; is thus very easy to con- ? 7 
struct and is extremely sparse. 

The infinite grid defined by Eq. (2.2) is next adapted to 
the shape of the potential surface by using an energy cutoff 
criterion,‘3’a’,‘6 i.e., only grid points for which 

V(q) <: K (2.4) 

are retained, where V, is the cutoff value of the potential 
energy. Since the points that are discarded are in a classically 
forbidden regime for states with energies lower than V,, the 
grid generated by Eq. (2.4) will provide an accurate descrip- 
tion of all states with energies sufficiently below V,. The 
energy cutoff provides a very simple way of generating 
points that follow the shape of a given potential-energy sur- 
face, and convergence is easily checked by increasing the 
value of V, . 

The flux operator F is defined in terms of a surface in 
coordinate space that separates reactants from products. It is 
specified most generally by equating some function of co- 
ordinates to zero, 

fca> = 0. (2Sa) 

A simple example of this is 

f(4) = qr;, (2Sb) 

i.e., the F - 1 dimensional surface on which the reaction 
coordinate qF is constant (here zero). The flux operator is 
then given by 

F=+,h LflqIl~~ (2.6a) 

where H is the total Hamiltonian and h is the Heaviside 
function 

Kc3 = (; ,“=; (2.6b) 

[One recognizes Eq. (2Sa) as the Heisenberg time deriva- 
tive, F= (d/dr)h(f).] Since hLf(q)] is a function of co- 
ordinates, the potential-energy part of H commutes with it, 
so that Eq. (2.6a) becomes 

F=$ [T,h(f)]. (2.6~) 

For the simple choice off(q) in Eq. (2.5b), Eq. (2.6~) re- 
duces to 

) +-&q F ) k- 1 , m 

a form that has been used in most calculations to date for the 
reactive flu~.“~)-” 

However, rather than using Eq. (2.66) for the flux oper- 
ator, in this paper we utilize Eq. (2.6~). Not only is it more 
general, but we have also found it to give more rapid conver- 
gence in terms of grid size. The DVR for the flux operator, 
Eq. (2.6~) is thus 

F,,., = $- TJ,jt Ch [f(qj I] - h [f(qj* ) ] 1, 

showing explicitly that in addition to the grid point represen- 
tation of the kinetic energy-which is already at hand from 
construction of the Hamiltonian-one only needs to evalu- 
ate the functionf(q) at the various grid points to see iff> 0 
or ~0. Equation (2.7) shows that the flux matrix element is 
nonzero only if the grid points qj, and qj are on opposite sides 

of the dividing surface. 
The version of the DVR for the flux operator based on 

Eq. (2.6d) is given in Appendix A. 

B. Absorbing boundary conditions 

As discussed in Sec. I regarding Eqs. (1.6)-(1.9), a 
function e(q) =r(q)/2 is introduced which is essentially 
zero in the physically relevant interaction region and turns 
on at the edge of the DVR grid. Since - ie( q) is a potential- 
energy-like term, its DVR is diagonal and simply added to 
the potential matrix of Eq. (2.3a). 

We first consider the form of the absorbing potential in 
the one-dimensional case 

dq) = E(4), (2.X) 

where q = 0 is the transition state (and location of the divid- 
ing “surface”). Denoting by q,, the grid truncation point, 
we consider (i) a power law turn on 

1 
A 

E(4) = 
[ (4 - 40 )/(4rtlax - 40 ) I’* 4% 

0 o<q<qw 
(2.9a) 

and (ii) a Woods-Saxon potential 

dq) = 
w 

1 -I- exp[ (qmax - 4)/17] ’ 
o<q. (2.9b) 

A similar function is placed to the left of the interaction 
region (q < 0) in both cases. 

The conditions and limitations on e(q) are that one 
wants it to turn on sufficiently rapidly to absorb the flux over 
as short a distance as possible, but not to turn on sharply 
enough to cause reflection back toward the physically rel- 
evant region of space. These aspects were clearly discussed 
by Neuhauser and Bae? iCa) for the case of a linear absorbing 
potential, i.e., n = 1 in Eq. (2.9a). Appendix B presents a 
discussion of these issues based on a semiclassical ( WKB) 
treatment. e(q) is plotted in Fig. 1 for several choices of the 
parameters to be employed in the following calculations. 
Physical intuition leads us to expect the second family of 
curves [ Eq. (2.9b) ] to better serve our purpose. The latter 
allows the low translational energy components, which suf- 
fer more from reflection, to encounter a shallow enough 
slope without forcing the magnitude of the absorbing poten- 
tial to be unduly small. The quadratic curve of Fig. 1 is clear- 
ly an intermediate case between the constant [n = 1 in Eq. 
(2.9a) ] and the exponential one [Eq. (2.9b) 1. These expec- 
tations are borne out in Sec. ITI. 

For a multidimensional system it is convenient to take 
e(q) as some one-dimensional function in Eq. (2.9), 

c(q) = 4QCs) I, (2.10) 
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r- --- .--(-___ _~~_~ 
1 where Q(q) is some finction of all the coordinates q. The 

functional form of E(Q) determines how the absorbing po- 
tential turns on upon entering the absorbing region as for the 
113) case, and the choice of Q(q) determines the location of 
the “absorbing strip” which surrounds (and defines) the 
interaction region. Examples of this are discussed more ex- 
plicitly with regard to the application in Sec. III B. 

C. Summary of methodology 

The DVR grid points are laid down according to Eq. 
(2.2) and then truncated by the energy cutoff criterion, Eq. 
(2.4). An absorbing potent.ial, Eqs. (2.9)-(2.109, sur- 
rounds (and defmes) the interaction region. The DVR ma- 
trices of the kinetic T and potential V energies are given by 
Eq. (2.3) (the matrix E is also a diagonal potential-energy- 
like matrix) and the DVR, or grid point representation for 
the Green’s function, is thus 

G(E”)=(EI-T-V+$e)-‘. (2.11) 

The DVR matrix for the flux operator is given by Eq. (2.79, 
so that Eq. ( 1.5) for the cumulative reaction probability be- 
comes 

-8.0 -4.0 0.0 4.0 8.0 

9 (4 

FIG. 1. (.*.) The Eckart potential [Eq. (Xl)] with V, = 0.425 eV. (--) 
Linear absorbing potential [n = 1 in Eq. (2.9a)] with A = 0.11 eV. 
(-.-o-e) Quadratic absorbing potential [n = 2 in Eq. (2.9a)] with 
R = 0.38 eV. (--) Quartic absorbing potential [n = 4 in Eq. (2.9a) ] with 
A = 0.44 eV. (-- - -) Woods-Saxon absorbing potential [ Eq. (2.9b) ] 
withq=O&zandA.= l.leV. 

N(E) = 2@tr(F*I.m G*F*Im G) 

=#:#[tr(F*G*F*G*) - tr(F-G.F.G)], 

(2.12) 

where G=G(E + ). 

m = 1060 a.u. are chosen to correspond approximately to 
the H + H, collision. For generality we measure distances 
in units of ~2. 

Note added in proo$ We have recently been able to show 
that the basic equation for M(E), E!.q. (2.i2), can be cast in 
the following equivalent but simpler and more useful form: 

N(E) = tr(r;G*r;G*), (2.13a) 

whereGisgivenby Eq. (2.11) (withEEr/2), and r, (r,) 
is the absorbing potential in the reactant (product) region; 
since these regions do not overlap, r = r, + rP. Because 
the absorbing potentials are diagonal in the DVR, this result 
can be also written as 

Figure 2 illustrates the reaction probability, N(E), us- 
ing the Woods-Saxon form [ Eq. (2.9b) ] with various values 
of q for the absorbing potential. The solid curve shows the 
exact probabilityz3 

NeXaCt(E) = {l + [cosh(c)/sinh(b)]‘) ‘, (3.2) 

with 

ma = 1 r,(qj 9 p,,,, IT, cqj, 1, 
55’ 

(2.13b) 

which SLOWS that only matrix elements of the Green’s opera- 
tor between points qj in the reactant absorbing strip and qj, 

in the product absorbing strip are needed. Equation (2.13) 
aho shon~s explicitly that N(E) does not depend on the 
choice of the dividing surface [cf. Eq. (2.5) et seq.], so long 
as it lies between the reactant and product absorbing strips. 
Calculations of N(E) for reactions in 3D space are being 
carried out using these expressions and will be reported in 
our next paper on this subject. 

-- -* >,-/.- g. -:-: ,i ,ri I ,’ /’ ,’ ,+ r: ,I+ 
are 
,I 

0.6 c 

,’ 
/ 

,:’ 
G 
z : i’ 

0.4 

III. RESULTS AND DISCUSSION 

A. One-dimensional results 

It is useful to illustrate the convergence properties of the 
method described in Sec. II by first considering a lD, ana- 
lytically soluble model problem. In this subsection we pres- 
ent our results for the Eckart barrier 

V(q) = F”,se&‘(q/u) (3.1) 

(see Fig. 1). The barrier height Ytl = 0.425 eV and the mass 

0.20 0.30 0.40 0.50 0.60 

E (eVj 

FIG. 2. Reaction probability N(E) for the Eckart barrier using the Woods- 
Saxon form for the absorbing potential, with Q,,, = 4.5a: (-1 Exact result 

[Eq. (3.2)J; (-.-.-.) r] =O.l5a; (0) ~=0.30a; (-----) ~/=0.50a; 
(*) 77 = 0.80a; (---) v= l.lOa. 

J. Chem. Phys., Vol. 96, No. 6,15 March 1992 Downloaded 19 May 2005 to 169.229.129.16. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



4416 T. Seideman and W. H. Miller: Calculation of cumulative reaction probability 

b = an-(2mE /#) I”, 

c = (r/2) [ (8Voma2/+P) - 11”‘. 

As shown in Fig. 2, the results are insensitive to the value of 
q over a wide range, 0.3a<&MGz, throughout the entire 
energy regime. Nevertheless, with too small a choice of 7 
(the dotted-dashed curve in Fig. 2), the absorbing potential 
becomes steep enough to cause reflection, while with a very 
large v (the dashed curve of Fig. 2) e(q) penetrates the 
interaction region and interferes with the dynamics. 

Figure 3 shows the reaction probability obtained using a 
linear absorbing potential [n = 1 in Eq. (2.9a) ] with several 
choices of qO. Again, the exact curve is reproduced (to with- 
in 0.5%) using a range of q. values, la<q, <4a. When q. is 
increased beyond this range, the absorbing region allows 
some transmission (see Appendix B), while with too small a 
value of q,, the imaginary potential is switched on early 
enough to deteriorate the reaction dynamics. It should be 
noted that a much larger grid is needed with the linear form 
(Fig. 3) as compared to that required with the Woods-Sax- 
on potential (Fig. 2), in order to exhibit comparable insensi- 
tivity to the parameters of E( q) . 

Although accurate results can be obtained with widely 
different forms of the absorbing potential, the convergence 
properties of the method with respect to the grid size are 
clearly dependent on the form of E( q) . As pointed out in Sec. 
II, for the present study it is of particular importance to 
minimize the size of the grid, not only for practical reasons, 
but also since the physical information required to compute 
the flux correlation expressions is expected to concentrate in 
a relatively small region, centered about the dividing surface. 

In Fig. 4 we plot the percent error 
am’“’ _ ~“““““Cd(E) 

=-(E) 
x100 

N 

vs the grid dimension ( qmax ) using Eq. (2.9a) for E(q) with 
n = 1, 2, and 4. The (constant) energy is E = 0.32 eV and 
the value of/z is chosen in each case so as to optimize the 

- _-l. --- -- I-- *._> ,- -’ 
r 

, :’ 
,- ;- 

,,I ,i 
: I 

~.~ 

?!’ 
*’ 

St’ 
3 

2 ,. 

/‘.* 

0.0 :...J-l 

3.0 

k 1.0 

CT 

K 

-1.0 

/ 

-3,O 

6.0 12.0 16.0 

4 Inax (4 

24.0 

FIG. 4. Percent error in N(E) vs q”,., at E = 0.32 eV, using Eq. (2.9a) for 

e(q): (-) R = 1; (J--) n = 2; (---) n = 4. The values of /1 and q,, in 

each case are as in the corresponding curve of Fig. 1. 

convergence rate. The corresponding absorbing potentials 
are shown in Fig. 1. As may be expected from Fig. 1, a 
broader absorbing region is needed to totally absorb the flux 
in the case of a linear form, as compared to that required 
using a quadratic function. The quartic form leads to poorer 
convergence, again a result which may be qualitatively an- 
ticipated from Fig. 1. 

Figure 5 shows the percent error as a function of the grid 
dimension using the Woods-Saxon form for E(q). The cor- 
responding absorbing potential is shown as a dashed curve in 
Fig. 1. The three curves of Fig. 5 correspond to three differ- 
ent energies: E = 0.32 eV, which is in the deep tunneling 
regime, E = V, _ -0.425 eV, and E = 0.76 eV, well above the 
reaction barrier. As the energy is increased, the system be- 
comes more classical-like and less sensitive to the details of 

2.5 

1.5 

B 

E 
0.5 

M 

-0.6 

-1.5 

0.20 0.30 0.40 0.50 0.60 

E (ev) 

FIG. 3. Reaction pmbabiiity for the Eckart barrier using alinear absorbing 
potential, with qnlas = 8.0~: (--) Exact resuIt [Eq. (X2)]; c-.-,-e) 

q. = 0.1~2; (0) q. = l.On; (---) q. = 4.Oa; (--) q. = 6.5a. 

I .-~-” . 

i I 
I : i I. : . . I/ 1 i !!!, : 

i,I: 

( t ‘ii~ ,: i ii.l\&XL’,- , \; y, 8 y fQW I II 
i ii 

1 :: 
i : 

:; P 
I; 

m___Id--I-l -I I_ 

_-_--.-r __....____ --.. of 

0.0 5.0 10.0 15.0 20.0 

%I,, (4 

FIG. 5. Percent error in N(E) vs qmax using the Woods-Saxon form for 

E(q): (-9 E = 0.76 eV; I-.-.-. 9 E = V, -0.425 eV, c---9 E = 0~ ev. 

The corresponding c(q) is shown as a dashed curve in Fig. 1. 
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the potential away from the saddle point. Consequently, the 
convergence rate improves rapidly. The low-energy curve of 
Fig. 5 compares favorably with the three curves of Fig. 4, in 
accord with our qualitative expectations based on Fig. 1. 

In Fig. 6 we examine the convergence rate of N( E) with 
respect to the density of grid points. Plotted is the percent 
error at several energies vs the number of grid points per 
deBroglie wavelength, N, = 2~/kh,, where k = (2mE / 

ti?) Ii’. The number of grid points per wave required to attain 
+Z 0.1% accuracy is of the order of NB z 2.5-3.5 at all ener- 
gies. At low and intermediate energies the results converge 
at a somewhat higher value (NB z 3.5)) while the more ener- 
getic collisions require roughly 2.5 points per full wave. At 
still higher energies, E> vO, the value of NB with which the 
results converge remains practically constant at 2.5. 

B. The collinear H + H, reaction 

The H + Hz collision serves as a standard test applica- 
tion for new methods, the major reason being the availability 
of an accurate potential surface and benchmark calculations 
for this system. In this section we present and discuss the 
results of calculations using the method described in Sec. II 
for the collinear I-E + H, reaction using the LSTH potential 
surface.‘s 

A natural choice of coordinates for the present method, 
which centers attention in the vicinity of the saddle point, are 
the normal-mode coordinates of the transition state. The 
doubly infinite DVR grid is thus laid in these coordinates 
(ql ,yZ ), where (iz corresponds to the asymmetric stretch (or 
reaction coordinate)) and then truncated by the energy cut- 
off criterion, Eq. (2.4)) and also by the location of the ab- 
sorbing potential (see following). An obvious choice for the 
dividing “surface” for this symmetric system, is the q2 = 0 
line [i.e.,Ap) = qZ in Eq. (2Sa) 1. One thus obtains a DVR 
grid that follows the shape of the potential-energy surface 

2 5 

5 1.0 

2 
p,-‘: i 

-0.5 

-2.0 
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and is localized about the dividing surface. Convergence can 
then be systematically checked by increasing the energy cut- 
off parameter ?‘, of Eq. (2.4) and by extending the region 
bounded by the absorbing potential. 

There are a variety of ways of choosing the location of 
the absorbing potential, i.e., choosing the function 
Q(q)=Q(ql,qZ) in Eq. (2.10). Figure 7 shows contour 
plots of the LSTH potential-energy surface with typical 
DVR grids superimposed on it. Figures 7(a)-7(c) show 
three different possibilities for the location of the absorbing 
potential: in all cases E(q) =E(q, ,q2 ) is essentially zero in 
the interior (interaction) region and turns on at the edge of 
the cross-hatched region, producing essentially complete ab- 
sorption by the outer edge of the cross hatched region. In 
Fig. 7(a) the function Q is 

Q(q, ,a 1 = max [ R, (ql ,q2 ),&, (4, ,q2 > 1, (3.3a) 

where R, and Rb are the reactant and product translational 
(Jacobi) coordinates, respectively. Figure 7 (b) corresponds 
to choosing the absorbing potential to be a function of the 
hyperspherical radius, 

Q(q*,qz) = [(4* -4:‘)2-t= (92 -q;~*y, (3.3b) 

where (qi: ,q: ) is the origin of the hyperspherical coordinate 
system. Finally, Fig. 7(c) corresponds to choosing e(q) to 
be a function only of the Cartesian reaction coordinate q2, 

Q(q, ,qz 1 = la2 I. (3.3c) 

We have found that all three choices give correct results, but 
that the third choice, Eq. (3.3c), is the most efficient, i.e., 
leads to convergence with the smallest region and thus the 
fewest number of DVR grid points. The advantage of the 
configuration of Eq. (3.3~) [Fig. 7(c) ] follows from the fact 
that the present approach allows us to focus attention on a 
relatively narrow strip along the dividing surface, without 
having to extend the grid into the reactant or product val- 
leys. 

.\ 1 
! it , ( 
i 1 

i 

1 ;. 

p. 
I : 5 \ h *. -.“-. -_y+ ~~5--1 ..-.-,: 

,’ 

For all calculations discussed in this subsection we have 
employed the Woods-Saxon form [ Eq. (2.9b) ] for the ab- 
sorbing potential. Accurate results were also obtained using 
various powers in q2 - q2,0 [ Eq. (2.9a) 1. The grid required 
was larger however, particularly in the high-energy regime, 
where more than a single vibrational channel is open, and the 
requirements of complete absorption and no reflection need 
be satisfied at more than a single translational energy. This 
effect may be qualitatively rationalized by inspection of 
Fig. 1. 

I (,’ 

: ’ 
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: ’ 
1 /’ 

~ ..-A.- “ .-.I”  ̂ “ ___lliLL-p _ 

2. 0 3.0 4.0 5.0 

The cumulative H + H, reaction probability, as calcu- 
lated via Eqs. (2.9b)-(2.12) and (3.3c), is plotted vs the 
total energy in Fig. 8, and compared with the R-matrix prop- 
agation results of Bondi et aZ.25 The agreement is exact to 
within the degree of convergence of the results of Ref. 25 
( 5 1% at the low energies and up to 5% at the high-energy 
edge25 ) . 

NB 

FIG. 6. Percent error in AYE) as a function of the number of grid points per 
deBro& wavelength IV,. E(q) is of the Woods-Saxon form with r] = 0.8a 

and h = 1.1 eV: C--) E= 0.76 eV; (-.-.-.) E= t< -0.425 eV; (---) 

E = 9.33, ev. 

Figure 9 examines more closely the behavior of the 
probability curve as the grid size is gradually reduced. Thus, 
with qy = 3 a.u. (corresponding to a total of 90 DVR 
points), the results have converged to better than 1% 
throughout the energy range examined. With qy = 2 a.u. 
[corresponding to the 64 grid points shown in Fig. 7 (c) ] the 
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FIG. 7. The LSTH potential surface as a function of the mass weighted 
Jacobi coordinates {R,r}. Q, and q1 are the normal-mode coordinatesof the 

transition state. The dashed contours show the absorbing potential 

e[Q(qr,q2 )J IEq. (2.9b)I: (a) For QCq,,q2) of Eq. (3.3a); (b) for 
Q(q, ,q2 ) ofEq. (3.3b); (s) for Q(q1,q2 ) of Eq. (3.3~). Thedistribution of 

grid points and the parameters of c in Fig. 7(c) correspond to the calcula- 
tion shown as a dashed curve in Fig, 9. 

0.3 0.9 

E (evt 

FIG. 8. Cumulative reaction probability for the collinear H f H, reaction: 

(000) R matrix propagation results (summed over internal states) (Ref. 
25); (--) present results. 

accuracy varies between 0.1% and 1.5%. Reasonable agree- 
ment with the exact curve at most energies is obtained with 
$j’= = 1.8 a.u. and as few as 45 grid points. 

Finally, in Fig. 10, we illustrate the convergence rate of 
the cumulative probability as a function of the grid dimen- 

sion, qy, and the energy cutoff parameter V,. The percent 
error is computed with respect to the fully converged calcu- 
lations of Zhang.“6 The total energy is E = 0.9678 eV, about 
0.19 eV above the threshold of the second vibrational chan- 
nel. 

The results shown in Fig. 10 converge to 0.02% with 
V, = 5 eV and to about 0.5% when the cutoff parameter is 
halved to 2.5 eV, The former accuracy corresponds to a total 
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FIG. 9. Same as in Fig. 8 with different values of &‘“: (--) c = 3.0 a.u. 

(corresponding to 90 DVR points); (--) c = 2.0 a.u. (corresponding to 

the 64 DVR points shown in Fig. 7); (0) fl= 1.8 a.u. (corresponding to 

45 DVR points). 
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of 202, and the latter to a total of 104 grid points. A larger 
grid is required in the multiopen channels energetic regime 
as compared to the low-energy range considered in Fig. 9. 
This efl’ect is due to the presence of the low translational 

energy (E::““; ~0.19 eV) component. The latter requires 
that the slope of the absorbing potential be kept relatively 
small so as to avoid reflection. In order to completely absorb 
the high translational energy component the width of the 
absorbing region is then required to be larger (see Appendix 
B j . Nevertheless, the total number of grid points required to 

attain ~0.5% convergence in this less favorable energetic 
regime is encouragingly small. 

IV. CONCLUDING REMARKS 

The use of a discrete variable representation and absorb- 
ing boundary conditions provides a very convenient way of 
calculating the outgoing wave Green’s function 

G(E + ) = (EI - II + ie) ~ ‘. The primary advantage of 
this methodology over earlier variational basis set approxi- 

mationP for G(B * ) is that the present approach does not 
require any explicit informat.ion about the asymptotic chan- 
nel states. The variational methods require that one includes 
basis functions that explicitly contain outgoing radial waves 
in each asymptotic open channel, while the ABC avoids this 
by absorbing all outgoing flux en route to the asymptotic 
region. The absorbing potential, E( q j) may be thought of as a 
generalization of the formal convergence parameter intro- 

duced in defining G(B + j [Eq. ( 1.5b) 1. Allowing e to be a 
potential-energy-type operat.or thus provides much more 
flexibility in obtaining an efficient approximation for 
G(E + ); by having E(q) essentially zero in the physically 
relevant region of space, and nonzero only at the edges to 
absorb outgoing flux, one does not need to take the e-+0 limit 
as when c is a constant. [The approximation we obtain for 

G(E + ), however, is only valid for computing matrix ele- 
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ments (QZ ]G(E + j /@, ) for states *I and cPz localized to 
the interaction region.] 

Having G(E -‘- j available thus provides the microcan- 
onical density operator 6(&B), Eq. ( 1.5b), so that the 
flux-flux expression for the cumulative reaction probability, 
Eq. ( 1 Sa j, can be readily evaluated. The results presented in 
Sec. III B for the benchmark reaction H + H, + H, + Hare 
quite impressive. One achieves convergence for the cumula- 
tive reaction probability with roughly one-quarter of the 
number of grid points needed to determine the state-to-state 
scattering (i.e., the S matrix) .I6 This is the “hoped for” eth- 
ciency of a “direct” calculation of the cumulative reaction 
probability provided by the flux-flux formalism.‘*” 

Finally, as an aside, we note that the DVR-ABC repre- 

sentation of G(E -’ ) also provides the possibi1it.y of com- 

plete state-to-state scattering calculations, i.e., the react.ive 
scattering matrix. Thus, let Q>i and (D, be any distorted in- 
coming waves for states i andi with asymptotic boundary 
conditions 

~i(r,R)--C~j(r)Uj-‘12( -e iktR(s,j + eikRSJt,), 
j 

(4.1) 

and similar for aP Here R denotes the asymptotic (Jacobi j 
translational coordinate and r all the remaining int.ernal co- 
ordinates. For clarity of notation we omitted the arrange- 
ment channel indices (which differ for states Qi and aj- in 
the case of a reactive collision). A formally exact expression 
for the S matrix is 

where 

+ (,QIG(E + > I.ui) ] 2 (4.2) 

xi = (fJ-- El@,, (4.3aj 

,Jf = (II- E)@f (4.3bj 

The distort.ed waves Qi, a,. can be anything, from free (i.e., 
undistort.ed j waves 

6.Q r - m-7-p _ -“ ~-._ -I- 

a’,(@) =#i(r),;-1’2( -es ihiR +eikiR), 

with 

(4.4a) 

.$ 
ifa 1 

2 II, 
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FIG. 10. Percent etrclr in the H + H, cumuiative probability at E = 0.9678 

FV, a5 a function of #F: (-1 t: = 5.0 eV; I---) F”, = 3.0 eV; (-,---.) 

v< = 2.5 ev. 

S& = Sj,$, (4.4b) 

to the exact solution of the Schrodinger equation Y, and ‘I$ 
with the boundary conditions of Eq. (4.4), in which case 

S,l, = Sj,i, the exact S matrix. In all cases the functions xi 
and,yJ- of Eqs. (4.3 j areL ’ functions localized to the interac- 
tion region; they will be smaller, and presumably localized to 
closer in regions, the more accurately *‘i and Q,, approxi- 
mate the exact wave functions Yi and UP It is thus clear how 
one proceedes. The DVR-ABC approximation for G( E ’ ) 
is used in Eq. (4.2). For the two-dimensional example treat- 
ed in Sec. III B, the explicit expression for the last term in 
Eq. (4.2) is 

(jyJG(E + ) 1~~) = M;*G*M,, (4.5) 

where G is the DVR-ABC Green’s function of Eq. (2,ll j, 
and 
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where FFBR is the basis set representation of Eq. (2.6d), 

F FBR- 
n,n’ -&- [~,(09~~,(09 -&,(O)+$,SO>]. CA4) 

Using Eqs. (Al) and (A4) in Eq. (A3) we find 

t” i9j& =@ZZid,d[IH-Ej@i); (4.6) 

i.e., one lets (H - E) operate on Q>[ and then evaluates this 

at the grid point (d: ,di ) . A similar expression holds for Mf 
The reader familiar with the S-matrix Kohn variational 

method will realize that the aforementioned approximation 
has many features in common with it, so it is not at all clear 
that the aforementioned procedure has any advantages over 
it for computing the complete S matrix. It may, however, 
bear further thought and investigation. The primary point of where 
this paper is that the DVR-ABC approximation to G( E -e ) 
provides an efficient “direct” avenue to the cumulative reac- vj=vj(o) 

tion probability, and thus the rate constant, that avoids the = S(d) 
necessity of a complete state-to-state calculation. 
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APPENDIX A: ALTERNATIVE DVR FOR THE FLUX = S’(q59 

OPERATOR 

We derive an alternative DVR for the flux operator, 
based on the special case of Eqs. (2Sb) and (2.6d). While 
the form suggested in the text [Eqs. (2.7) ] has the formal 
advantage that it is manifestly independent of the coordi- 
nates, and the computational advantage that its matrix ele- 
ments decay as (i -j)’ away from the diagonal [compare 
Eqs. (A5 )-( A9) 1, the form derived later is mathematically 
transparent and suggestive of the suitability of the grid rep- 
resentation for flux correlation expressions. 

Following the standard DVR procedure,“-” we first 
choose an appropriate finite-basis representation (FBR) for 
F {$X, n = O,...,N - 11, guided by the existence of a quad- 
rature rule for evaluation of the potential matrix elements. 
Specifically, we choose a particle-m-a-box basis 

,v- 1 
= c $L(dF9?&~09 

=t~~$~,~~~sin(~) 
1 I 

=- ~ ANON ~sin(~). 

The vi(q) form a grid representation for the coordinate oper- 
ator, and the (Wim 9dj (q) form a grid representation for the 
velocity, Equation (A5) is thus a direct DVR transcription 
of Eq. (2.6d). 

Summing Eqs. (A6) and (A7) over k [Ref. (28), Eqs. 
(1.342.1), (1.342.2),and (1.352.1)] we find 

vj = S,, Aq - i (AS) 

and 
fjn (qF9 = msin 

( 
g- (aF + b9) (Ala9 

(b denoting the box size), and place grid points at the nodes 

of&v, 

&, = jhq, Aq = 2b /N. (Alb9 

In Eqs. (A 1) we focused on the symmetric interval case 
( - b<q,<b) appropriate for a reaction-type coordinate. 

Thus 

\rFBR = UVDVRUT, CA21 

where I$yR = VC&9SjJt, U,,, = filet, (sj,>, and we ap- 
proximated F n,n, _ /FRR bv a Gauss Chebyshev quadrature of the 

second kind” with evenly spaced quadrature points {#i} 
[Eq. (Alb)] and constant weights w, = w = Aq. Eviden- 
tially, this procedure becomes exact in the limit of large N. p-=6 

The DVR of the flux operator can now be written as 
n,n’ 

F DVR = uTFFBRu 
f h43) 
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d,=(1-8S,,)$-[4sinz($)]-1 

X[sin(yw)/sin($) - (N+ lj( - l)‘] 

N-co 
+ - (1 -c5j,,)Aq-2~. 

Equation (2.3~) in the text may be derived similarly, by 
transforming the basis set representation of the kinetic-ener- 
gy operator, 

using the analogous relation to Eq. (A3 9. 
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APPENDIX B: WKB DESCRIPTION OF THE 
REFLECTION AND TRANSMISSION 
BY AN ABSORBING POTENTIAL 

We consider a one-dimensional system in a region where 
the actusl (real) potential V(q) is zero. The net effective 
potential V(q) - ie(qI is thus the (imaginary) absorbing 
potential alone, i.e., 

Ktp~q) = V(q) - ie(q) = - k(q), (Bl) 

and we assume the power law form of Eq. (2.9a) for E(q) 

Ei4) = b. ( q,“;:q() ): q>qn, 
032) 

The WKB approximation for the probability that a par- 
ticle incident from the left, qi,,itiRl -q, <go, and moving to 
the right ( + q direction) is reflected back to position 
q1 <q. s i.e., the rg%wtion probability R, is given by 

R = Iexp(2i[dqkCP,)/’ 

=exp( -4Im[dqk(q)). (B3) 

where k(y) is the (complex) local momentum (in units of 

fii) 

Ii? 
k!q) = ( -$ [E- F&(q)]) , 

and qt is the (complex) turning point 

k(q,) = 0. 

In light of Eq. (Bl), k(q) is given by 

k(q) = k [ 1 + ic(q)/E ] If’, 

T = exp 
( s 

- 2 W ’ dz Im ( 1 + iSz”) ‘/* 
0 > 

. (Blob) 

The physical considerations are that one wants R and T 
to be small, i.e., one wants no particles to be reflected by the 
absorbing potential (R < 1) and all the tlus to be absorbed 
over the interval (q(,,q,,, ) ( Tg 1). For example, if one 
wishes to have 

iB4a) R = T= lo-‘, (B11) 

where I is a predetermined tolerance, Eq. (B 10) implies that 

4c, w -=z 2.31, 
s l/n 

(B12a) 

2W’G,, (S) -2.31, (B12b) 

where G, (S) is the function 

(E-1 

(B5a) 

where k = (2mE/6”)“‘, and with E(q) given by Eq. (B2) 
one finds the complex turning point to be 

qt = q,, t (q,,, - qcl 1 4 
( > 

1 itr 
eirfLn. 

L 
(B5b) 

With Eq. CBS), Eq. (B3) can be evaluated to give 

R = exp - 4kiqm, 
[ 

- 40 )(~)‘~q9 

where the constant C, is 

Wa) 

(B6b) 

Similarly, the WKB approximation for the probability 
that the same particle (i.e., incident from q, < qO and mov- 
ing to the right) reaches the position qmux, i.e., the transmis- 
sion probability T, is 

r(l+ l/n)l-(3/2) 

T(l/n+3/2) * 

T = ~exp(i%*‘dqk(q))~’ 

=exp( -2iImr’dqk(q)). (B7) 

With e(q) given by Eq. (B2), and k(q) by Eq. (B5a), this 

can be written as 
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T = ew - Wq,,, -q,, 1 

J 

1 
XIm dz( 1 + iz”il /E) *” 

> 
, CB8) 

0 

which can be evaluated analytically only for the linear and 
quadratic cases. In general, one sees that the reflection and 
transmission probabilities of Eqs. (B6a) and ( BS) depend 
only on two dimensionless parameters: S, the strength of the 
absorbing potential in units of E, 

S=$ (B9a) 

and IV, the width of the absorbing region in units of k ~~ ‘, 

W= k(q,,, - qo). (B9b) 

In terms of these dimensionless parameters, Eqs. (B6a) and 
( B8 ) read as 

, (BlOa) 

G,, 0’) = 
s 

1 

dz Im ( 1 $ iSz”) I/*. (1913) 
0 

To solve Eqs. (B 12) one first eliminates W to obtain a single 
equation for S 

S *“=G, (S) = 2C,, , (1314) 

which is seen to be independent of the accuracy required in 
Eq. (B 11) (i.e., how small R and Tare required to be). After 
S is determined by solving Eq. (B14) (numerically), W is 
given by Eq. (B12a) 

l/n 
W= 2.31s 

4C?L 
(B15) 

and seen to be proportional to the “accuracy exponent” 1. 
Figure 11 shows the strength parameter S [ Eq. (B 14) ] 

and the corresponding width parameter [ Eq. (B15) ] for 
I = 3, as a function of n, the power in Eq. (B2). Since one 
wishes the width of the absorbing potential to be as small as 
possible, Fig. 11 shows the optimum power to be n in 1.5 and 
the corresponding (minimum) value of W to be approxi- 
mately 27~. Thus, the width of the absorbing region needs to 

be at least 1 del3roglie wavelength, 
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in order to achieve T, R < 10 - ‘. 
The aforementioned WKB estimates may serve as quali- 

tative guidelines for the choice of the absorbing potential 
parameters in the general multidimensional case. They 
should not, however, be interpreted quantitatively for other 
than a 1 D problem with a power-law choice for e(q), for two 
reasons. First, one wishes to apply the absorbing boundary 
conditions in regions where the physical potential differs 
from zero. Second, in practical systems more than a single 
channel is typically open and, therefore, the conditions of 
complete absorption and no reflection should be satisfied at 
more than a single translational energy. In practice, there- 
fore, one needs to carry out convergence checks to determine 
the optimum form of the absorbing potential. 
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