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In this paper, we présent a simple theoretical treatment of dipolar relaxation, essentially based on the 
autocorrélation formalism and derived from the gênerai theory developed by Boon and Rice for the auto­
corrélation function of a dynamical variable. A simple model is introduced to dérive analytical expressions 
for the dipolar autocorrélation function, from which other quantities, like the response function and the 
complex dielectric function, are calculated. Thèse theoretical results are tested against the expérimental 
data obtained from a molecular dynamics study by Bellemans, Kôhler, and Gancberg on a two­dimensional 
System of electric dipoles on a rigid lattice, subject to dipole­dipole interactions. We also append some 
results concerning the raemory function goveming the évolution of the autocorrélation function as described 
by the master équation. 

I. INTRODUCTION 

In a récent article,' detailed results have been pre­
sented concerning the dynamics of a two­dimensional 
System of interacting electric dipoles. Thèse data "were 
obtained from molecular ' dynamics experiments per­
formed on a finite number of dipoles, located at the 
sites of a rigid lattice and interacting through an angle­
dependent potential, defined by^ 

F = ­ E Z (MV/­,/..) cos{<t>j+<l>,-2a,,), (1) 

with n the dipole moment; ryt and ajk the relative polar 
coordinates of sites j and k; and the angular coordi­
nate of the îth dipole (see, e.g., Réf. 1, Fig. 1). Such 
a System, although oversimplified as compared to 
realistic Systems, présents, nevertheless, qualitative 
features characteristic of an actual physical assembly 
of a large number of dipoles, subject to dielectric re­
laxation when interacting through a weak (dipole­
dipole) potential. 
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^ In the présent paper we shall restrict ourselves to the analysis 
of the experiment performed on the largest number of dipoles 
(421), as presented in Réf. 1, and subject to dipole­dipole inter­
action only. 

On the other hand, the theoretical study of dielectric 
relaxation in physical Systems involves in principle the 
solution of the many­body problem, which présents in 
the présent case the further difficulty of long­range 
interactions. There have been several attempts to by­
pass this formai difficulty, in particular by treating 
the case of weakly coupled Systems or by using a 
Brownian­motion­type approximation.' I t remains, 
nevertheless, quite difficult from thèse theoretical re­
sults to dérive useful expressions for the prédiction of 
the physical properties of Systems, even as simple as 
the one considered above, without introducing further 
approximations. 

In this paper, we first présent a simple theoretical 
treatment of dipolar relaxation which is essentially an 
extension of the gênerai theory developed by Boon and 
Rice^ (BR) for the autocorrélation function (a.f.) of 
a dynamical variable. The main purpose of this theo­
retical analysis is the application to a simple System 
of electric dipoles, as described above. 

In Sec. II , we briefly recall the principle of the BR 
method, as applied to the dipole­normalized auto­
corrélation function (d.a.f. ) defined by 

^^(0 = < M ( 0 ) M ( / ) ) / < [ M ( 0 ) J ) , (2) 
" See, e.g., A. Bellemans, J. C. Bernard, M, Kôhler, and E. 

Kestemont, Physica 31, 1291 (1965); E. Kestemont and A. 
Bellemans (unpublished) ; for a gênerai account of the existing 
théories, see E. Kestemont, thesis, Brussels, Belgium, 1968. 

* J. P. Boon and S. A. Rice, J. Chem. Phys. 47, 2480 (1967) 
(hereafter referred to as BR) . 
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with M( / ) , the total electric moment at time t, and 
where the bracket defines an average in the canonical 
ensemble. We show how the master équation govern-
ing the time évolution of the d.a.f., i.e., 

m - ��- f' K{T)f{t-T)dT (3) 

[where the kernel K{T) is often interpreted as the 
memory function of the System^], can advantageously 
be exploited to compute quantities characterizing the 
System considered: e.g., the response function and the 
polarization, or the dielectric function (Sec. I I I ) . 

However, as stated before, such calculation cannot 
be performed explicitly, in gênerai, on the basis of the 
master Eq. (3) alone. We therefore introduce a model 
based on arguments similar to those characterizing the 
BR model for the computation of the linear momen-
tum a.f. in a simple dense fluid. The model is primarily 
needed here to obtain an explicit analytical form for 
the kernel in Eq. (3). Although this is a model calcula-
tion, the memory function K(t) présents the qualita-
tive features required by the formai properties of the 
kernel of the master équation.* A more detailed analysis 
of the memory function is presented in the appendix, 
where the model kernel is compared to the kernel de-
rived from the computer experiment. We also take 
advantage of our numerical analysis program to com-
ment on the BR model kernel as compared to Rahman's^ 
for the linear momentum a.f. in liquid argon. 

Sec. IV is devoted to the application of the theoret-
ical model to the simple System of electric dipoles on 
a rigid two-dimensional lattice, as defined in the first 
paragraph of the présent section. 

Despite the fact that the analysis presented in this 
paper does not constitute, by any means, a complète 
or rigorous theory of dielectric relaxation in real System, 
the advantage of the method is twofold: iîrst, ail the 
qualitative features of the physical properties consid-
ered are correctly reproduced by the theory; second, 
the computation is entirely performed analytically (in 
particular, no appeal is made to any parametrization 
procédure). Furthermore, an essential feature of the 
method is that it describes the évolution of the dipole 
System over the whole time scale. This implies that 
the inertial stage is accounted for while most théories 
are restricted to long-time approximations, which are 
certainly quite appropriate to describe complex dipolar 
Systems. However, for simple molecular Systems (in 
particular, the simplest ones as considered in molecular 
dynamics experiments) the inertial stage plays an essen-
tial rôle, as seen, for instance, from the high-frequency 
behavior of such Systems. 

' See, e.g., R. Zwanzig, in Lectures in Theorelical Physics (Inter-
science Publishers, Inc., N e w York, 1961), Vol. 3, pp. 106-141; 
and also, B. J. Berne, J. P. Boon, and S. A. Rice, J. Chem. Phys. 
45, 1086 (1966), Appendix A. 

«A. Rahman, Pbj'g, Rev. 136, A405 (1964). 

Although there would hardly be any a priori rigorous 
justification for the model considered herein, the re-
sults are gratifying, as it is found that the d.a.f. and 
related functions obtained from the theory are in very 
good agreement with the results from the computer 
experiment by Bellemans, Kôhler, and Gancberg.' 

II. THE DIPOLE AUTOCORRELATION FUNCTION 

We simply sketch here the dérivation of the master 
équation describing the time évolution of the d.a.f., as 
the calculation foUows exactly the gênerai treatment 
of the a.f. of a dynamical variable presented by Boon 
and Rice.^ 

The BR dérivation consists essentially in the con-
vergence of two different-but-equivalent approaches to 
the theory of irréversible processes, following in this 
way Résibois' analysis' of the connection between 
the kinetic équation formalism (Prigogine and co-
workers**'') (PR) and the a.f. formalism (Nakajima'" 
and Zwanzig^) (NZ) for the représentation of the 
thermal transport coefficients. 

The BR calculation proceeds essentially in five steps: 

(1) The a.f. is Laplace transformed with respect to 
the time variable, which allows infinité perturbation 
expansion of the Liouville résolvent operator; 

(2) The resuit is then Fourier transformed with re-
spect to the position (or angle) coordinates, which 
permits us to separate off the contribution arising from 
initial corrélations; 

(3) Differentiation with respect to time of the double-
transformed d.a.f. yields the master équation, which 
reads 

= - — f rfzexp(-^20(CM(0)J)-
2n� �' 

# ( / ) / ( / / = 

X j dJ{Q i M ( / ) I 0 ) Î2 / [2+ '^ (z ) ] j î[M(y)/('^)],o, 

+ Z < 0 | a j ( s ) | [wl)[M(/)/<'^>],„,j , (4) 
loi) ?^ 

where / is the angular momentum, and z and m are 
the Laplace and Fourier variables, respectively. Here 
/'^^ is the canonical distribution function and '^'(z) 
and SD(z) are the collision and destruction operators, 
respectively, as defined elsewhere.^ ' " ' Notice that the 
master équation for the d.a.f., Eq. (4), can straight-
forwardly be obtained from Eq. (12) of Réf. 4 by the 
following change of variables: 

R-x^, 

p->-/, 

t / (R, p, t)-^-m.{4>, J, i)/{{[.M{o)j)yi\ (5) 

' p. Résibois, J. Chem. Phys. 41, 2979 (1964). 
« I. Prigogine and P. Résibois, Physica 27, 629 (1961). 
' I. Prigogine, Non Equilibrium Statistical Méchantes (Inter-

science Publishers, Inc., New York, 1962); and P. Résibois, in 
N-particle Physics, E. Meeron, Ed. (Gordon and Breach Scientific 
Publishers, Inc., N e w York, 1968). 

" S. Nakajima, Progr. Theoret. Phys. (Kyoto) 20, 948 (1 958 
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(4) Some formai transformations of the operators 
in Eq. (4) are accomplished to rewrite the d.a.f. in 
Laplace représentation as 

'Â(^) = [ l + 9 ( ^ ) ] / C ^ + * ( ^ ) ] > (6) 

where 9 ( î ) and ^(s) are now, respectively, the de-
struction and collision/MWC î̂OWJ of the complex Laplace 
variable s = «+ia). 

(5) Furthermore, Eq . (6) can be substituted into 
the Laplace-transformed N Z master équation, Eq. (3), 
to yield the foUowing expression for the kernel K{t) 

in Laplace space: 

^ ( 5 ) = * ( 5 ) - { 5 § ( 5 ) / C l + g ( 5 ) ] } 

- Î 4 > ( ^ ) S W / C 1 + 9 ( ^ ) ] 1 - (7) 

We next introduce a simple model to define explicitly 
the functions $ (5 ) and As this model has been 
discussed at some length elsewhere,* we merely give 
here, without any further comments, the analytical 
form of the functions defining the B R model: 

* ( 5 ) = 7 V ( ^ + « ) , 

g ( 5 ) = 5 y ( ^ + / 3 ) ^ 

(8) 

(9) 

where a, 0, y, S are constants to be defined subsequently. 
Equations (8) and (9) are substituted into Eq. (6) 
which is then Laplace inverted to yield the d.a.f. : 

^ ( O = 0 I - O - K M e x p ( . 0 C l + 5 V ( ^ + O ' ] 

- ; / e x p ( M / ) C H - ô V ( ; 8 + M ) ' ] 

- 3 e x p ( - ^ 0 î [ M / + 

- C ' ' / ( 0 + M ) ] C ô / ( / 3 + M ) + « ] 1 ) , (10) 

wilh 
M = - i a [ l - C l - ( 4 T V a ^ ) J ' M , ( H ) 

v = - | a { l + C l - ( 4 7 V a ^ ) ] " ^ l . (12) 

Similarly, the memory function K(t) is obtained from 
Eqs. ( 7 ) - ( 9 ) ; one finds 

^ ( 0 = C 0 8 - a ) ' + 5 ' ] - ' ( 7 ' ( ^ - a ) ' e . x p ( - « 0 

+ 5 2 e x p ( - i 8 / ) { [ 7 2 - ô 2 - 03-a)2] cos(5/) 

+ [ r ' ( / î - a ) (y+/32 -a ;8 )+ /36] s in(50! )� (13) 

Now consider the formai expression for the d.a.f., Eq. 
(2) : this is an even function and its successive mo-
ments are therefore 

^(") (/ = 0) = c', for n even 

=0, for n odd. 

Explicitly, we have" 

dfi ^ ' 

( [ ( ^ M M ) ( 0 ) J ) 

( C M ( O ) J ) � 

<H {i{d^M/dm)j) 

dt^ ^ ' ( C M ( O ) J ) 

(15) 

(16) 

(17) 

Furthermore, the Laplace-transformed d.a.f. a t the 
origin 

^(0)= r<i<^(o (18) 

is just the surface defiiled by the d.a.f. and represents 
the équivalent of a "diffusion coefficient" in the elec-
tric moment space. I t is thus a physical constant of 
the System and can be obtained from expérimental data. 

Now, the model defined above is a four-parameter 
model: to evaluate thèse parameters, we have at our 
disposai four conditional équations, Eqs. (15)- (18) , 
which, when they are considered as such, means essen-
tially that we require the knowledge of the coefficient 

rdt^it) (18') 

and tha t we have some knowledge of the initial condi-
tions of the System considered, i.e., tha t we know 

{l{dM/dt)iO)J}/{lMiQm = A\ (15') 

{L{d^M/dfi){0)J)/{lM(0)J) = CS (17') 

and also tha t Eq. (16) is satisfied. I t is then simply a 
matter of algebra to evaluate, from Eqs. (10), (15'), 
(16), (17'), and (18') the parameters a, 0, 7, 5 which 
appear as the solutions of the following set of équa-
tions: 

y _ 5 2 = ^2^ (15") 

2 / 3 5 2 - a 7 2 = 0 , ( 1 6 ' ) 

7 H a 2 - 6 2 ) + ô 2 ( ô 2 - 3 / 3 2 ) = C ^ ( 1 7 " ) 

7 W C « 0 8 ' + 5 ' ) ] = X - ' ' = 5 - (18") 

The justifying feature of this model as applied to the 
dipolar System considered in Sec. IV is that the quanti-
ties A, B, and C can be evaluated once the System is 
defined. Before we turn to this application, we first 
dérive some important functions related to the d.a.f. 
which will be used for the computation displayed in 
Sec. IV. 

(14) 

" The two first moments are immédiate to verify: ^( / = 0) = 1, 
as the d.a.f. is normalized, and dtl//di{t = 0) = 0 follows straight-
forwardly from Eq. (10) . 
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III. RESPONSE FUNCTION, SUSCEPTIBILITY, 
AND PERMITTIVITY 

We shall make use of the reduced variables t* and 
o)* defined by 

t* = t{kT/iy!\ (19) 

w*=w{i/kTyi\ (20) 

where / is the moment of inertia and T is the tempéra-
ture of the System. However, as it is understood that 
from here on ail functions are expressed in terms of 
the reduced variables, we shall omit the star super-
script for the sake of simplicity in the notation. 

We consider a spherical, homogeneous, isotropic Sys-
tem; hence the tensor ^ ( 0 , Eq- (2), becomes a scalar, 
defined by 

^ ( 0 = ( M ( 0 ) - M ( / ) ) / ( [ M ( 0 ) J ) , (21) 

and the response function 4>{t) reads 

.t>{l) = -d^{t)/dt=- (M (0) � {dJA/dt) (0>/ ( [M(0) J ) . 

(22) 

The Fourier transform of the response functions de-
fines the complex susceptibility (apart from a constant 
factor according to the usual literature) 

with 
0(a,)=.^ '(a . )-7>"(o,) , (23) 

4>'{u)= r dt<t>{l) cos{œi), (24) 
�'o 

<t>"{o3)= f dl<t>(t) sin{wt). (25) 

Indeed, the polarization F(u) is related to the electric 
field E{o}) through the permittivity e(co) by (for a 
two-dimensional System'^) 

27rCP (c.) /£ (a,)] = C* (a,) - 1 ] / [ * (co) + 1 ] (26) 

and' ' 

[ * ( " ) - l ] / D ( c o ) + l ] = C ( 6 . - l ) / ( * , + l)]<?(a,), (27) 

with e, the static dielectric constant, and e(a)) the com-
plex dielectric function 

e(co)=e'('o)-îV'(oo). (28) 

From Eqs. (23), (27), and (28) one obtains 

e'(a>) = l + C 2 / . / ( l - / . ) ] ( Q ' / e ) , (29) 

e"M = L2p/il-p)2(Q"/Q), (30) 
vith 

e ' = i + ( i - / > ) - ' ( [ * ' ( c o ) / i ^ n - i j , (31) 

Q"={l-p)-'L<t>"i<c)/\<t>n (32) 

Q=iQ'y+iQ"y, (33) 

and where the constant p is given by the zero-frequency 
characteristics of the System 

p = 2w (Po/iîo) = (« . -1 ) / (€.+1 ). (34) 

Thèse functions can be derived from the d.a.f. as fol-
lows: Consider the normalized Fourier transform of 
the d.a.f. 

4'(o>)/ï(0)^Giœ)-iH(œ), (35) 

where G{w) is simply the normalized power spectrum 

dl<p{t) cos(w/) 

and H(œ) is defined by 

H{o})=X-^ r dirait) siniwt). 

(36) 

(37) 

It is then easily shown that 

</>'(a)) = l-Aaji/(co), (38) 

<̂ )"(co) = Xa)G(a)). (39) 

AU the quantifies introduced in this section can thus 
straightforwardly be computed (either analytically or 
numerically) from the knowledge of the d.a.f. \jwe give 
in the Appendix a similar procédure for the computa-
tion of the memory function K(t) from ^(03 . 

We conclude this section by displaying the analytical 
results obtained from the model described in Sec. 11.'̂  
First, we notice that 

(lidM/dt) (0) J ) / ( [ M ( 0 ) J ) = ^ r / / ; (40) 

hence the réduction coefficient, according to Eqs. (15'), 
(19), and (20) will be {y^-S'yiK Furthermore, for the 
physical System considered in the next section, it was 

" H. Frohlich, Theory of Dielectrics (Clarendon Press, Oxford, 
England, 1958). 

" S. H. Glarum, J. Chem. Phys. 33, 1371 (1960). 

t ( K T / I ) ' 

FiG. 1. The dipolar~autocorreIalion function, Eq. (41) (curve) 
compared to the expérimental data (circles). 

" We have also performed thèse calculations and computations 
for the exponential memory model introduced by Berne, Boon, 
and Rice (Réf. .S). However, thèse results will not be displayed 
in the présent article, because we feel that the ex])onential memory 
function is less satisfactory than the BR kernel. Furthermore, 
the computation from the Berne, Boon, and Rice model provides 
poorer agreement with the expérimental data, as compared to the 
results of Sec. IV. 
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found that A^^>oê, whence we now rewrite the d.a.f., Eq. (10), in terms of the reduced time variable, as 

^Pil)=Mt) exp\:-at/2{y'-ô'y''2+Mn exp[-;S</(7^-52)''2], (41) 

Mi) = 2r cos[ î2 i / / (72-52)"2 ]+2/" sin[n,//(72-52)1/2]^ (42) 

Ml)=E+L^t/{y'-ôn (43) 
with 

2 ' ^ 2 ( ! C ( / î / a ) - i ] V - " i ^ P + 4 C ( / 3 / « ) - è ] W ) ' ^ ^ 

a y ( ( « / 4 S 2 i ) i [ ( ^ / « ) - è 3 V - » r l + [ ( / 3 / « ) - W ) . . . . 

40i 2 ( { [ ( ^ / a ) - H V - î 2 i 2 î 2 + 4 [ ( / î / a ) - è ] W ) ' ^ 

2 ( i [ ( / 3 / a ) - i ] W - f i i 2 p + 4 [ ( / 3 / a ) - i ] W ) ' ^ 

fii=(7'-ia2)'^ (47) 

n2 = S ^ { - C ( / 3 / a ) - i > + i a l î ( ^ / a ) - | ] W + i V l - ' . (48) 

The corresponding response function reads 

0 ( 0 =<t>,{t) e x p [ - a / / 2 ( 7 2 - ô 2 ) > / 2 ] + ^ ( 0 exp [ - /3 / / (7- -ô2)"^] , (49) 

<#>i(0= (7'-ô')"""M ( a / ' - 2 f i i 7 " ) cos[f i i / / (72-52)"2]+ ( a / "+2£î i7 ' ) sin[Oi//(7'-52)>/2]j, (50) 

< ^ 2 ( 0 = ( 7 ^ - S ^ ) - ' ' M ^ ^ - « 2 + W / ( y - 5 2 ) ' / ^ ] ) , (51) 

wherefrom one obtains for the complex susceptibility 

</.'(co)=D-'[l-a<o2-6a)<-cco«], (52) 

0"(co)= (Xco/£»)! l - [ (a2 -2^2-7^+5=) / ( / î2+S2 ) ]C (7^-52) /^2>n, (53) 
with 

Z ) = [ l - ( 2 - a V y ) ( l - 5 V 7 2 ) c o 2 + (l-5V7^)^a;^]! l + [ ( 7 - - 5 ^ ) / ^ ^ V ! S (53') 

a = ( 1 - 5 V 7 ' ) { 1 - ( 2 7 2 + 5 O / / 3 2 + (5V7')C(a2+452)//32]}, (54) 

i = ( l - 5 V y ) W - 3 ^ ( 2 - 7 V ^ ' ) + (ôV-S^)Cl- («^-7^) /^^] l , (55) 

, = ( l _ 5 2 / y ) 4 ( y / ^ 4 ) . (56) 

Finally, we mention for the sake of completeness, the low frequency and the asymptotic behavior, of the com-
plex susceptibility: 

lowco; < .̂'(co) = l-( l -5V7^)|[4ê^+(a2-y)(52+i32)]/7^/32}co2_ (57) 

loww; 0"(a))=Xco, (58) 

h ighw; <#)'(co) = -co-2, (59) 

highco; 4>"{<^) = {\cnW-&-)-{<^'-2m/h''—n^')^-'- (60) 

The theoretical model thus reproduces quite well the (for more détails, see Réf. 1), we are in a position to 
expected feature tha t <t>"{oi), at high frequencies, de- evaluate the quantities which are needed for the com-
creases much faster than 4>' (w). putation of the d.a.f. and of the other related functions, 

IV. APPLICATION ^ ' w ^"K? P'^^'^eeding sections. 
We obtam 

We consider a two-dimensional System of electric , , - . , „ , , , ,„s-,„, ,,, , / . „ , ^ ^ „ 
dipoles located a t the sites of a rigid lattice, as dis- ( [ ( ' W ^ ( 0 ) î ) / < C M ( 0 ) J ) = 3 ( ^ r / 7 ) 2 
cussed by Bellemans, Kôhler, and Gancberg . 'The sam- -f 2 [ [ M (0)]]V/2} 2Z'�iA~^+0([Af (0)3^), (61) 
pie is circular and con tains 421 dipolar molécules, which 
rotate in the plane defined by the two-dimensional g ĵ̂ î 
lattice and are subject to dipole-dipole interaction ac- P = 'i^P^M{Q)^)/kT, (62) 
cording to the potential defined by Eq. (1). 

Once the System is defined by the above description with p the number density of the system, and we 
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.1 

0 1 2 3 A 

FiG. 2. T h e response function, Eq. (49) (curve) compared to the 
molecular dynamics results (circles). 

evaluate the coefficient X, Eq. (18'), by graphical inté-
gration of the expérimental d.a.f. Notice that X is the 
only quantity which is determined from experiment 
herein, as there is at présent no way to calculate the-
oretically this coefficient. Whence the quantities A, B, 

C, Eqs. (15')-(18') , are known from Eqs. (40), (61), 
and (62), and the set of conditional équations Eqs. 
(15')-(18') can now be solved for the System consid-
ered. One finds (in reduced units) 

a = 2.34, 

0 = 2.10, 

7^ = 3.66, 

52 = 2.04. (63) 

Thèse values of the parameters are substituted into 

0 1 2 3 A 5 
u » = u ) ( * V i ) - ! 4 

FiG. 3. The real part of the susceptibility, Eq. (52) (curve), 
compared to the Fourier analysis of the expérimental response 
function (circles). 

T 1 r 

0 1 2 3 A 

U/*= W (J,T/i )->̂  

FiG. 4. The imaginary part of the susceptibility, Eq. (53) 
(curve) , Compared to the Fourier analysis of the expérimental 
response function (circles). 

the e.xpressions of the d.a.f. and related functions (Sec. 
I I I ) and the results are represented in Fig. 1-4, along 
with the expérimental results of Bellemans, Kôhler, 
and Gancberg. 

As seen from Figs. 1 and 2, the agreement between 
theory and experiment is particularly good for the d.a.f 
and for the response function. That the theory leads 
to very good prédiction in the présent case follows 
essentially from the observation that, for a simple 
System of weakly coupled electric dipoles, the inertial 
stage plays an important rôle which is well accounted 
for in our theoretical analysis. Indeed—-except for the 
coefficient X— t̂he parameters, Eqs. (15')-(18') , are 
determined theoretically from the initial conditions of 
the System, namely, from the knowledge of the func-
tions r/'*"'(0), w = 0, 2, 4, Eqs. (21), (40), and (61). 
As pointed out by Bellemans et al.,'^ the accuracy of 
the results from the computer experiment is good for 
short times (<*<2) and decreases for longer times: the 
oscillations which appear almost in every diagram from 
/ * ~ 3 seem to be fairly reliable in sign, although not in 
magnitude. Furthermore, there was no point in dis-
playing the results for times larger than /*'^6 as the 

I 1 ' — � ' — ~ 

(e '{u)- ) - i ) / (e5- i ) 

FiG. 5. Cole and Cole diagram, Eqs. (64) and (65) (curve), 
compared to the molecular dynamics results (circles). T h e dotted 
curve représenta Debye's semicircle. 
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0 1 2 3 ^ 5 

t * = t ( 

FiG. 6. The memory function, Eq. (13) (curve), compared to 
the "expérimental" memory function obtained from the d.a.f. 
(circles). 

uncertainty renders the data unreliable for long times 
( /*>6). This is certainly part of the reason why the 
results for <#)'(a)*) and <^"(w*), Figs. 3 and 4, présent 
some larger discrepancies between theory and experi-
ment, as the frequency-independent analysis appears 
to be much more sensitive. I t should also be pointed 
out that the numerical procédure used for the Fourier 
analysis (Simpson method) is quite obviously partly 
responsible for oscillations at frequencies larger than 
a)*~3.»6 

To represent the dielectric function «(co), we have 
used the well-known Cole and Cole diagram method,'^ 
where e " ( a ) ) [ e s — i s plotted versus [«'(co)—1]]X 
[ e , — F r o m Eqs. (29) and (30), it is easily seen 
that 

[ e ' ( c o ) - l ] / ( e . - l ) = e ' / e . (64) 

e " ( a , ) / ( e . - l ) = Q " / e . (65) 

The results are presented in Fig. S. The agreement 
between theory and experiment is particularly good, 
although it should be mentioned that the Cole and 
Cole représentation is not extremely sensitive and tends 
therefore to smooth out the fluctuations observed in 
the Fourier analysis of the response function. Moreover, 
despite this fact our results are far ofî the Debye semi-
cirde, which is obtained from the Brownian-motion 
approach to dielectric relaxation.^' Our results agrée 

As a test for this feature, we have performed a numerical 
Fourier analysis on the analytical functions and obtained oscilla-
tions which, when smoothed out by an envelope curve, coïncide 
reasonably well with the analytical results. 

'«K. S. Cole and R. M . Cole, J, Chem. Phys. 9, 347 (1941). 
" P. Debye , Polar Molécules (Dover Publications, Inc., New 

York, 1945). 

quite well in this sensé (at least qualitatively") with 
the theoretical analysis of Kestemont,'.'based on the 
theory of irréversible processes developed by Prigogine 
and co-workers.^ 
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APPENDIX 

The memory function, namely, the kernel of the 
master équation, Eq. (3), can be formally derived 
from the knowledge of the a.f. by the foUowing procé-
dure. 

We first introduce a new function 3C(co) defined by 

3C(co)=co-W(co), (Al) 

where H{o>) is given by Eq. (37); and we Fourier 
transform the kernel K{1) as 

K{w)=K'{o>)+iK"{o>), (A2) 

where K'(ui) and K" {w) are easil)' related to G(co) 
and H(w), Eqs. (36) and (37), by Fourier transforma-
tion of the master équation, Eq. (3). One finds 

i : ' (co)/ /?(0)=G(co)/ îCG(co)J+[/7(a,) î} , (A3) 

K" (co)/^(0) = (/7 (co)/ {[G(a,) (co) J ) )-Xco, 

(A4) 
where X is defined by Eq. (18')-

Fio. 7. The linear momentum memory function (curve), foi 
liquid argon compared to the memory function obtained from 
Rahman's computer experiment (circles). 

^ A more detailed analysis and quantitative comparison will he 
given in a forthcoming paper by E. Kestemont and A. Bellemans. 

" We use the reduced variables defined by Eqs. (19) and (20) 
and normalize ail the functions in what foUows. 
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Then, by applying a theorem of complex variable 
analysis,^ it is easily found that 

K{t)/K{0)=I+II, (A5) 

(A7) 

[The reason for introducing the function 3C(co), Eq. 
(Al) , is the tinie derivative appearing in Eq. (A7), 
which permits us to eliminate the Fourier sine trans-
form, a difficult function to handie in numerical anal-
ysis.3 

As a test of internai consistency, we have derived 
from the molecular dynamics d.a.f. the expérimental 
memory function by numerical analysis, according to 
the scheme presented above, and have compared this 
resuit with the model memory function of Sec. I I . 

The comparison is illustrated in Fig. 6. Although 
the agreement between the theoretical and the expéri-
mental kernels appears to be fairly poor, (especially 
because the expérimental function seems to présent 
oscillations, while the theoretical curve decays mono-
tonically), it may be considered as satisfactory, when 
account is taken of the large uncertainty affecting this 
complicated numerical analysis. In particular, it is 
quite difficult to certify whether the oscillations really 
do exist or whether they should be ascribed to the 
numerical analysis. 

The only positive conclusion that could be drawn 
from the preceding comparison is that the theoretical 
kernel overestimates somewhat the memory effects. 
However, this is probably a small effect, as very good 
agreement is obtained for the d.a.f. and related func-
tions( Figs. 1-5). 

The same feature was observed for the linear mo-
mentum memory function as computed for liquid argon 

See, e.g., R. V. Churchill, Operaiional Malhematics (McGraw-
Hill Book Co., N e w York, 1958), Chap. 6. 

at 94.4°K. We performed a similar numerical analysis 
to dérive the kernel from Rahman 's expérimental a.f.* 
The resuit is shown in Fig. 7 along with the BR model 
kernel.* Some fluctuations do appear in the expérimental 

memory function around the "p la teau" in the range 
4 < / * < 1 0 (corresponding to values of / comprised be-
tween /~0.3X10~'^ sec—for which the a.f. reaches the 
value zéro for the first time—and tc^lÇr^^ sec) but the 
function never becomes négative in this case. Here also 
the "theoretical kernel" is somewhat larger than the 
expérimental, apart from the longer tail (plateau) ob-
tained from molecular dynamics. 

Our numerical analysis of Rahman's memory func-
tion is in agreement with the comments made in a 
récent article by Damle, Sjôlander, and Singwi^': K{t) 

drops to about 2% of its initial value after a duration 
of about 3X10~"" sec, after which a plateau value of 
about l % - 2 % is maintained for about 10~'^ sec and 
then gradually drops to zéro. 

Finally, a few comments should be made concerning 
the relative contributions of the destruction and colli-
sion terms appearing in the memory function, Eq. (7). 

Rewriting Eq. (7) as 

K{l)=Kc{t)+Ku{t)+Kcu{t), (A8) 

where the subscripts C and D refer to the collision and 
destruction functions, respectively, we find for the di-
polar System considered in Sec. IV 

I Kd^^^/Kd^'^^ I ^ 5 0 % , (A9) 

while for the case of liquid argon, this ratio is about 
25%. Furthermore, it was found for liquid argon* that 
the destruction term contributes nothing ( < 1 % ) after 
the a.f. bas reached the value zéro for the first time, 
while we conclude, for the System of electric dipoles 
studied in the présent article, that at the corresponding 
value of the time variable (i.e., for which the d.a.f. = 0 
for the first t ime), the collision and destruction func-
tions contributions are équivalent ( ' ^ 7 % ) . Both func-
tions then decay together gradually to zéro. 

" P . S. Damle, A. Sjôlander, and K. S. Singwi, Phys. Rev. 
165, 277 (1968). 


