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In this paper, we present a simple theoretical treatment of dipolar relaxation, essentially based on the
sutocorrelation formalism and derived from the general theory developed by Boon and Rice for the auto-
correlation function of & dynamical variable. A simple model is introduced to derive analytical expressions
for the dipolar autocorrelation function, from which other quantities, like the response function and the
complex dielectric function, are calculated. These theoretical results are tested against the experimental
data obtained from a molecular dynamics study by Bellemans, Kthler, and Gancberg on & two-dimensional
system of electric dipoles on u rigid lattice, subject to dipole-dipole interactions. We also append some
results concerning the memory function governing the evolution of the sutocorrelation function as described

by the master equation.

I. INTRODUCTION

In a recent article,' detailed results have been pre-
sented concerning the dynamics of a two-dimensional
system of interacting electric dipoles. These data were
obtained from molecular dynamics experiments per-
formed on a finite number of dipoles, located at the
sites of a rigid lattice and interacting through an angle-
dependent potential, defined by*

Yim— );AZ (/1) cos(dj+du— 2a), (1)
with g the dipole moment; 73 and ay the relative polar
coordinates of sites j and k; and ¢; the angular coordi-
nate of the ith dipole (see, e.g., Ref. 1, Fig. 1). Such
a system, although oversimplified as compared to
realistic systems, presents, nevertheless, qualitative
features characteristic of an actual physical assembly
of a large number of dipoles, subject to dielectric re-
laxation when interacting through a weak (dipole-
dipole) potential.

* Chargé de Recherches au Fonds National de la Recherche
Scientifique (F.N.R.S.), Belgium,

f Aspirant au Fonds National de la Recherche Scientifique
(F.NLR.S.), Belgium,

LA, Bellemans, M, Kohler, and M. Gancherg, J. Chem. Phys.
51, 2578 (1969).

? In the present paper we shall restrict ourselves to the analysis

of the experiment performed on the largest number of d:polcs
(421), as prescnl in Ref. 1, and subject to dipole-dipole inter-
action only.

On the other hand, the theoretical study of dielectric
relaxation in physical systems involves in principle the
solution of the many-body problem, which presents in
the present case the further difficulty of long-range
interactions. There have been several attempts to by-
pass this formal difficulty, in particular by treating
the case of weakly coupled systems or by using a
Brownian-motion-type approximation.* It remains,
nevertheless, quite difficult from these theoretical re-
sults to derive useful expressions for the prediction of
the physical properties of systems, even as simple as
the one considered above, without introducing further
approximations,

In this paper, we first present a simple theoretical
treatment of dipolar relaxation which is essentially an
extension of the general theory developed by Boon and
Rice* (BR) for the autocorrelation function (a.f.) of
a dynamical variable. The main purpose of this theo-
retical analysis is the application to a simple system
of electric dipoles, as described above.

In Sec. I, we briefly recall the principle of the BR
method, as applied to the dipole-normalized auto-
correlation function (d.a.f.) defined by

Y (1) =MO)M())/((M(0)F), (2)
#See, e.g., A. Bellemans, J. C. Bernard, M. Kéhler, and E,
Kestemont, Physica 31, 1291 (1963); E. Kestemont and A,
Bellemans (unpublished); for a general account of the existing
theories, see E, Keslemonl thesis, Brussels, Belgium, 1968,
¢]. P. Boon and S. A. Rlce.] Chem. Phys. 47, 2480 (1967)
(hereafter referred to as BR),
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with M(¢), the total electric moment at time {, and
where the bracket defines an average in the canonical
ensemble. We show how the master equation govern-
ing the time evolution of the d.a.f,, i.e.,

V== [ Kewi—r)ir @)
0

[where the kernel K(r) is often interpreted as the
memory function of the system*], can advantageously
be exploited to compute quantities characterizing the
system considered: e.g., the response function and the
polarization, or the dielectric function (Sec. I11).

However, as stated before, such calculation cannot
be performed explicitly, in general, on the basis of the
master Eq. (3) alone. We therefore introduce a model
based on arguments similar to those characterizing the
BR model for the computation of the linear momen-
tum a.f. in a simple dense fluid. The model is primarily
needed here to obtain an explicit analytical form for
the kernel in Eq. (3). Although this is a model calcula-
tion, the memory function K ({) presents the qualita-
tive features required by the formal properties of the
kernel of the master equation.’ A more detailed analysis
of the memory function is presented in the appendix,
where the model kernel is compared to the kernel de-
rived from the computer experiment. We also take
advantage of our numerical analysis program to com-
ment on the BR model kernel as compared to Rahman’s®
for the linear momentum a.f. in liquid argon.

Sec. IV is devoted to the application of the theoret-
ical model to the simple system of electric dipoles on
a rigid two-dimensional lattice, as defined in the first
paragraph of the present section.

Despite the fact that the analysis presented in this
paper does not constitute, by any means, a complete
or rigorous theory of dielectric relaxation in real system,
the advantage of the method is twofold: first, all the
qualitative features of the physical properties consid-
ered are correctly reproduced by the theory; second,
the computation is entirely performed analytically (in
particular, no appeal is made to any parametrization
procedure). Furthermore, an essential feature of the
method is that it describes the evolution of the dipole
system over the whole time scale. This implies that
the inertial stage is accounted for while most theories
are restricted to long-time approximations, which are
certainly quite appropriate to describe complex dipolar
systems. However, for simple molecular systems (in
particular, the simplest ones as considered in molecular
dynamics experiments) the inertial stage plays an essen-
tial role, as seen, for instance, from the high-frequency
behavior of such systems.

., R. Zwanzig, in Lectures in Theoretical Physics (Inter-
F 106-141;
hem. Phys

! See, .
science Pu lishen, Inc., New York, 1961), Vol, 3,
and also, B, J. Berne, J. P. Boon, and S. A. Rice, J.
45, 1086 (1966), Appendix A

A, Rahman, Phys, Rev, 136. A405 (1964).
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Although there would hardly be any a priori rigorous
justification for the model considered herein, the re-
sults are gratifying; as it is found that the d.a.f. and
related functions obtained from the theory are in very
good agreement with the results from the computer
experiment by Bellemans, Kohler, and Gancberg.!

II. THE DIPOLE AUTOCORRELATION FUNCTION

We simply sketch here the derivation of the master
equation describing the time evolution of the d.af., as
the calculation follows exactly the general treatment
of the a.f. of a dynamical variable presented by Boon
and Rice.!

The BR derivation consists essentially in the con-
vergence of two different-but-equivalent approaches to
the theory of irreversible processes, following in this
way Résibois’ analysis’ of the connection between
the kinetic equation formalism (Prigogine and co-
workers®') (PR) and the a.f. formalism (Nakajima®
and Zwanzig®) (NZ) for the representation of the
thermal transport coefficients.

The BR calculation proceeds essentially in five steps:

(1) The a.f. is Laplace transformed with respect to
the time variable, which allows infinite perturbation
expansion of the Liouville resolvent operator;

(2) The result is then Fourier transformed with re-
spect to the position (or angle) coordinates, which
permits us to separate off the contribution arising from
initial correlations;

(3) Differentiation with respect to time of the double-
transformed d.a.f. yields the master equation, which
reads

dy(t)/dt=— -l f ds exp (—izst) ((M (0)F)*
2r

X [ 4701 M) | 0)ts/Cs+% )} MU YN T
+ T _O19E | m))MOYNTml, @)

where J is the angular momentum, and z and m are .
the Laplace and Fourier variables, respectively. Here
S is the canonical distribution function and ¥(3)
and ©(s) are the collision and destruction operators,
respectively, as defined elsewhere.d7* Notice that the
master equation for the d.af., Eq. (4), can straight-
forwardly be obtained from Eq. (12) of Ref. 4 by the
following change of variables:

R—¢,
P/,
U(R,p, )—M(g, J, 1)/ ({LM(0)TF))"

7P, Résibois, J. Chem. Phys. 41, 2079 (1964).
‘l Prigogine and P, Résibois, Phynca 27, 629 (1961),
2 & Pngofmc, Non Equilibrium Statistical Mechanics (Inter-
sdence Publishers, Inc., New York, 1962); and P, Résibois, in
icle Pbymx, E. Meeron, Ed. (Gordon "and Breach Scientific
l’u lishers, Inc., New York, 1968).
08, Nakajima, Progr. Theoret, Phys. (Kyoto) 20, H48 (1 958

)
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(4) Some formal transformations of the operators
in Eq. (4) are accomplished to rewrite the d.a.f. in

Laplace representation as
V() =[14+§ () [s+% ()], (6)

where G(s) and ®(s) are now, respectively, the de-
struction and collision functions of the complex Laplace
variable s =e+iw.

(5) Furthermore, Eq. (6) can be substituted into
the Laplace-transformed NZ master equation, Eq. (3),
to yield the following expression for the kernel K (1)

in Laplace space:
R(s)=%(s)—{sG(s)/[1+G ()]}
—(®()G /46T ()

We next introduce a simple model to define explicitly
the functions ®(s) and G(s). As this model has been
discussed at some length elsewhere,! we merely give
here, without any further comments, the analytical
form of the functions defining the BR model:

@ (s) ="/ (s+a), (8)
G(s)=8/ (s+8)%, ©)
where a, 8, v, 6 are constants to be defined subsequently.
Equations (8) and (9) are substituted into Eq. (6)
which is then Laplace inverted to yield the d.a.f.:
V()= (u—r)"(u exp () [ 143/ (B+»)*]
—v exp () [1+8/ (3+u)*]
—3& exp (—B1) | [u/ B+») ][/ (8+v)+ot]

. ~ [/ B+u)]05/ B+u)+a3)),  (10)
wit
u=—fal1-[1—@¥/e)]?, (1)
v=—la(t+[1— (W), (12)

Similarly, the memory function K (f) is obtained from
Eqs. (7)-(9); one finds

K()=[B—a)y+&1"(v*(B—a) exp(—at)
+8 exp (—B1) | [v*— &~ (B—a)*] cos ()
+[67' (B—a) (v*+5—af)+B]sin(3)}). (13)

Now consider the formal expression for the d.a.f., Eq.
(2): this is an even function and its successive mo-
ments are therefore

™ (1=0)=¢', for n even

=0, for n odd. (14)
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Explicitly, we have
%’ (t=0)=0, (16)
Y oy SEMEOD gy

Furthermore, the Laplace-transformed d.af. at the
origin

¥(0)= ["dw) (18)
0

is just the surface defined by the d.af. and represents
the equivalent of a “diffusion coefficient” in the elec-
tric moment space. It is thus a physical constant of
the system and can be obtained from experimental data.

Now, the model defined above is a four-parameter
model: to evaluate these parameters, we have at our
disposal four conditional equations, Eqs. (15)-(18),
which, when they are considered as such, means essen-
tially that we require the knowledge of the coefficient

N j:' (1)

and that we have some knowledge of the initial condi-
tions of the system considered, i.e., that we know

(CaM/dt) (O)F)/ (M (0)F)=4%  (15)
(C@M/ae) (0)F)/ (M (0)F)=C", (17")

and also that Eq. (16) is satisfied. Tt is then simply a
matter of algebra to evaluate, from Egs. (10), (157),
(16), (17"), and (18’) the parameters o, 8, 7, 8 which
appear as the solutions of the following set of equa-
tions:

(18")

y—5=A1, (15")
285 — ay? =0, (16')
7 (a?— 8)+ 8 (F—387) =, (17")
v/ [a(8+8)]=X"=B. (18”)

The justifying feature of this model as applied to the
dipolar system considered in Sec. IV is that the quanti-
ties A, B, and C can be evaluated once the system is
defined. Before we turn to this application, we first
derive some important functions related to the d.a.f.
which will be used for the computation displayed in
Sec. IV.

" The two first moments are immediate to verify: ¢ (f=0) =1,
as the d.af. is normalized, and dy/di(t=0) =0 follows slmghl
forwardly from Eq. (10).
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III. RESPONSE FUNCTION, SUSCEPTIBILITY,

AND PERMITTIVITY
We shall make use of the reduced variables * and

w* defined by
= (RT/1), (19)
w*=w(I/kT)"2, (20)

where 7 is the moment of inertia and 7 is the tempera-
ture of the system. However, as it is understood that
from here on all functions are expressed in terms of
the reduced variables, we shall omit the star super-
script for the sake of simplicity in the notation.

We consider a spherical, homogeneous, isotropic sys-
tem; hence the tensor ¢ (¢), Eq. (2), becomes a scalar,
defined by

w()=M(0)-M())/ (M (0)F),

and the response function ¢(¢) reads
G (1) =—dy(t)/dt=— M (0)- (dM/dt) (t))/ M (0) F).
(22)

The Fourier transform of the response functions de-
fines the complex susceptibility (apart from a constant
factor according to the usual literature)

(21)

$(w)=¢' (w)—id" (w), (23)
with
'(w)= die (1 wl), 24
¢ () [:’ 6 (1) cos(at) (24)
¢ (w)= dig (1) sin (wl). 25
(@) [:" ) sin (w) (25)

Indeed, the polarization P (w) is related to the electric
field E(w) through the permittivity e(w) by (for a
two-dimensional system™)

2r[P(w)/E(w)]=[e(w)—11/[ew)+1] (26)
and®

[e(w)—1)/[e(@)+1]=[(e—1)/(e+1)Jb(w), (27)

with ¢ the static dielectric constant, and e(w) the com-
plex dielectric function

e(w)=¢(w)—1' (w). (28)

From Eqs. (23), (27), and (28) one obtains
¢ (w)=14[2p/(1—$)1(Q/Q), (29)
¢ (w)=[2p/(1—2)1(Q"/Q), (30)

with

Q=14 (1—-p)'{[¢' W)/ |0 [*]-1}, (1)
Q'=(1—p)"[¢" @)/ | ¢ %], (32)
Q= Q')+ (@Q"), (33)

b I;IndFrdhllch Theory of Dielectrics (Clarendon Press, Oxford,
En 58)
S.H. Glarum, J. Chem. Phys. 33, 1371 (1960).
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and where the constant p is given by the zero-frequency
characteristics of the system

p=2x (Po/Eo) = (e—1)/ (&+1). (34)

These functions can be derived from the d.af. as fol-
lows: Consider the normalized Fourier transform of

the d.a.f.
¥(@)/¥(0)=G(w)—iH (w), (35)
where G(w) is simply the normalized power spectrum

Glw)=\" dig (t) cos (et 36
(@ =X [y () cos(at) (36)
and M (w) is defined by
H(w) =\ /“'w(:) sin (wl). (37
0
It is then ecasily shown that
¢ (w)=1—AwH («), (38)
¢" (w) =M (w). (39)

All the quantities introduced in this section can thus
straightforwardly be computed (either analytically or
numerically) from the knowledge of the d.a.f. [we give
in the Appendix a similar procedure for the computa-
tion of the memory function K (¢) from ¢ (¢)].

We conclude this section by displaying the analytical
results obtained from the model described in Sec. 1114
First, we notice that

(C(@M/dt) (0)F)/([M (0)F)=kT/I;  (40)
hence the reduction coefficient, according to Eqgs. (137),

(19), and (20) will be (¥*—&*)"2, Furthermore, for the
physical system considered in the next section, it was

T

S

0 : 2 ’ 4 3
1o TR

Fi1c. 1. The dipalarTautocorrelation function, Eq. (41) (curve)
compared to the experimental data (circles).

“ We have also performed these calculations and computations
for the exponential memory model introduced by Berne,
and Rice (Ref, 5). However, these results will not be d:splnyed
in the present article, because we feel that the exponential memory
function is less satisfactory than the BR kernel, Furthermore,
the Oompuuuon from the Berne, Boon, and Rice model provides
yecmcm with the experimental data, as compared to the
mulls
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found that 49*>c®, whence we now rewrite the d.a.f., Eq. (10), in terms of the reduced time variable, as

¥ ()= (t) exp[—at/2(y*— &) JHu(t) exp[—Bt/ (v*—&)""], (41)
va (1) =21" cos[t/ (v*— &) 421" sin[t/ (v*— )], (42)
V() = E+[0/ (v*—5)"7], (43)
with
paty  PILE/)—4Fa’—00-[(B/a)—4]et] 4)
2 " 2(1[(8/a)— 4 Fa*— 02| *+4[ (8/a) — § Fa'ls?)
pro @y P/ B/a) 1 Fat—02) +[(6/a) ~1Jeld) e
L 2({[(8/a)—§ P27 |*+4[ (8/a)—} Ja®2s?)
Fm _ #lLB/a)—§TFa*— 0 —[(8/a)—} Jo| ' (46)
2(IL(B/a)— 4 Pl — 22| *+4[ (8/a) — § Fa'ils*)
&= (y'—1a®)'", (47)
=8| —[(8/a)—{]Jatial | (8/a)—} Fa'+0:| ", (48)
The corresponding response function reads
¢ (1) =1 (1) exp[—at/2(y*—5)""*]+ ¢ (1) exp[—Bt/ (v*—&)""], (49)
& (1) = (=)' (al'— 201" ) cos[t/ (v*—3*)"* I (al "+ 201") sin[t/ (v*— )"}, (50)
$u (1) = (y*— )\ ES—Qut B0t/ (v*—6)]}, (51)
wherefrom one obtains for the complex susceptibility
¢’ (@) =D [1—aw*— ko'~ ], (52)
= 9" ()= (O\w/D)[1—-[(a*—28*—v*+5)/ (B*+3*) ][ (+*—&)/8 J?}, (53)
i D=[1- (2—a?/v*) (1-7/y" )+ (1—&/7* )1 1+ [ (+*— &) /5 }*]*, (53')
a= (1—8/9"){1— (2y*+8)/8+ (3*/+*)[ (e*+48)/8* ]}, (54)
b= (1—8/v*y[v/8* (2—*/8")+ (&/8*)[1— (a*—~*)/8"]}, (55)
c=(1=3/v")*(+*/8"). (56)

Finally, we mention for the sake of completeness, the low frequency and the asymptotic behavior, of the com-

plex susceptibility:

low w; ¢ (w)=1—(1—5"/9") [[48*+ (o’ —*) (3*+5*) ]/ +¥*| &, (57)
low w;  ¢"(w)=M\u, (58)
highw;  ¢'(w)=—u"?, (39)
highw;  ¢"(w)=({ar[ (=)~ (@—25") ]}/ (v*— &))" (60)

The theoretical model thus reproduces quite well the
expected feature that ¢''(w), at high frequencies, de-
creases much faster than ¢’ (w).

IV. APPLICATION

We consider a two-dimensional system of electric
dipoles located at the sites of a rigid lattice, as dis-
cussed by Bellemans, Kéhler, and Gancberg.! The sam-
ple is circular and contains 421 dipolar molecules, which
rotate in the plane defined by the two-dimensional
lattice and are subject to dipole-dipole interaction ac-
cording to the potential defined by Eq. (1).

Once the system is defined by the above description

(for more details, see Ref. 1), we are in a position to
evaluate the quantities which are needed for the com-
putation of the d.a.f. and of the other related functions,
as defined in the preceeding sections.

We obtain

(C(@*M/de) (0)F)/{[M (0)F)=3(kT/I)?
+2{[M (0)1/F} )‘: ru+0 (M (0)T), (61)

and!

p=mp([M(0)*)/kT, (62)

with p the number density of the system, and we
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Fic. 2. The response function, Eq. (49) (curve) compared to the
molecular dynamics results (circles).

evaluate the coefficient A, Eq. (18”), by graphical inte-
gration of the experimental d.a.f. Notice that X is the
only quantity which is determined from experiment
herein, as there is at present no way to calculate the-
oretically this coefficient. Whence the quantities 4, B,
C, Egs. (15')-(18'), are known from Eqs. (40), (61),
and (62), and the set of conditional equations Eqs.
(15")~(18') can now be solved for the system consid-
ered. One finds (in reduced units)

a=2.34,
8=2.10,
¥ =3.66,
#=2,04. (63)

These values of the parameters are substituted into

ik
w w4 )%

F1a. 3. The real part of the susceptibility, Eq. (52) (curve),

to the Fouricr analysis of the experimental response

functlon (circles).

W w (T )

Fic. 4. The imaginary part of the susceptibility, Eq. (53)
(curve), compared to the Fourier analysis of the experimental
response function (circles).

the expressions of the d.a.f. and related functions (Sec.
I1T) and the results are represented in Fig. 1-4, along
with the experimental results of Bellemans, Kéhler,
and Gancberg.

As seen from Figs. 1 and 2, the agreement between
theory and experiment is particularly good for the d.a.f
and for the response function. That the theory leads
to very good prediction in the present case follows
essentially from the observation that, for a simple
system of weakly coupled electric dipoles, the inertial
stage plays an important role which is well accounted
for in our theoretical analysis. Indeed—except for the
coefficient A—the parameters, Eqs. (15)-(18'), are
determined theoretically from the initial conditions of
the system, namely, from the knowledge of the func-
tions ¥™ (0), n=0, 2, 4, Eqs. (21), (40), and (61).
As pointed out by Bellemans ef al.,! the accuracy of
the results from the computer experiment is good for
short times (#<2) and decreases for longer times: the
oscillations which appear almost in every diagram from
*~3 seem to be fairly reliable in sign, although not in
magnitude. Furthermore, there was no point in dis-
playing the results for times larger than f*~6 as the

€"(w")/(€5-1)

(€(w*)- 1)1 (€4-1)

Fic. 5. Col d Cole diagram, Eqgs. (64) and (65) (curve)
compared to the molecular dyn,miusrquulu Lcicies) The dotted

curve represents Debye's
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K (t")/Klo)

t = 1 (A7, )%

FiG. 6. The memory function, Eq. (13) (curve), com; to
'(':eir c“‘;x)pcrimenml” memory function obtained from the d.af,

uncertainty renders the data unreliable for long times
(f*>6). This is certainly part of the reason why the
results for ¢'(w*) and ¢’ («*), Figs. 3 and 4, present
some larger discrepancies between theory and experi-
ment, as the frequency-independent analysis appears
to be much more sensitive. It should also be pointed
out that the numerical procedure used for the Fourier
analysis (Simpson method) is quite obviously partly
responsible for oscillations at frequencies larger than
w*~3.15

To represent the dielectric function e(w), we have
used the well-known Cole and Cole diagram method,*
where ¢'(w)[e,—17]" is plotted versus [€ (w)—1]X
[e&—11" From Eqgs. (29) and (30), it is easily seen

that
[€¢ (w)—1]/(e—1)=0"/0. (64)
¢’ (w)/(e—1)=0Q"/Q. (65)

The results are presented in Fig. 5. The agreement
between theory and experiment is particularly good,
although it should be mentioned that the Cole and
Cole representation is not extremely sensitive and tends
therefore to smooth out the fluctuations observed in
the Fourier analysis of the response function. Moreover,
despite this fact our results are far off the Debye semi-
circle, which is obtained from the Brownian-motion
approach to dielectric relaxation.” Our results agree

% As a test for this feature, we have performed a numerical
Fourier analysis on the anaeiiyucul functions and obtained oscilla-
tions which, when smoothed out by an envelope curve, coincide
reasonably well with the analytical results.

K. S. Cole and R. M. Cole, { Chem. Phys. 9, 347 (1941).

17 P, Debye, Polar Molecules (Dover Publications, Inc., New
York, 1945).
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quite well in this sense (at least qualitatively™) with
the theoretical analysis of Kestemont,! based on the
theory of irreversible processes developed by Prigogine
and co-workers.?
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APPENDIX

The memory function, namely, the kernel of the
master equation, Eq. (3), can be formally derived
from the knowledge of the a.f. by the following proce-
dure.

We first introduce a new function 3C(w) * defined by

3 (w) =w"'H (), (A1)
where H(w) is given by Eq. (37); and we Fourier
transform the kernel K (f) as

R (w)=K'(w)+iK" (@), (A2)

where K'(w) and K" (w) are easily related to G(w)
and H (w), Eqs. (36) and (37), by Fourier transforma-
tion of the master equation, Eq. (3). One finds

K'(w)/K (0) =G (w)/|[G (w) F+[H ()T}, (A3)

K" (w)/R (0) = (H (w)/ {[G (w) P4 [H (@) F} ) —Aw,
(A4)
where A is defined by Eq. (18').

K'Y/ Ko

0

F16. 7. The linear momentum memory function (curve), for
liquid argon compared to the memory function obtained from
Rahman’s computer experiment (circles).

¥ A more detailed analysis and quantitative comparison will be
given in a forthcoming Saper by E. Kestemont and A. Bellemans,

% \We use the reduced variables defined by Eqs. (19) and (20)
and normalize all the functions in what follows.
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Then, by applying a theorem of complex variable
analysis,® it is easily found that

K(0)/K©)=I+11, (A5)
1 G(w)
I=x"! e ~ . A6
| f AC@IHE@T e (8
LT 5 (w) !
Thecy dtf,, o (A T T 1) cos (wf).
(A7)

[The reason for introducing the function 3C(w), Eq.
(A1), is the time derivative appearing in Eq. (A7),
which permits us to eliminate the Fourier sine trans-
form, a difficult function to handle in numerical anal-
ysis. ]

As a test of internal consistency, we have derived
from the molecular dynamics d.a.f. the experimental
memory function by numerical analysis, according to
the scheme presented above, and have compared this
result with the model memory function of Sec. II.

The comparison is illustrated in Fig. 6. Although
the agreement between the theoretical and the experi-
mental kernels appears to be fairly poor, (especially
because the experimental function seems to present
oscillations, while the theoretical curve decays mono-
tonically), it may be considered as satisfactory, when
account is taken of the large uncertainty affecting this
complicated numerical analysis. In particular, it is
quite difficult to certify whether the oscillations really
do exist or whether they should be ascribed to the
numerical analysis.

The only positive conclusion that could be drawn
from the preceding comparison is that the theoretical
kernel overestimates somewhat the memory effects.
However, this is probably a small effect, as very good
agreement is obtained for the d.a.f. and related func-
tions ( Figs. 1-5).

The same feature was observed for the linear mo-
mentum memory function as computed for liquid argon

* See, c.%.. R. V. Churchill, Operational Mathematics (McGraw-
Hill Book Co., New York, 1958), Chap, 6.
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at 94.4°K. We performed a similar numerical analysis
to derive the kernel from Rahman’s experimental a.f.f
The result is shown in Fig. 7 along with the BR model
kernel.* Some fluctuations do appear in the experimental
memory function around the “plateau” in the range
4 <* £10 (corresponding to values of ¢ comprised be-
tween 1240.3X 10~ sec—for which the a.f. reaches the
value zero for the first time—and (~10-" sec) but the
function never becomes negative in this case. Here also
the “theoretical kernel” is somewhat larger than the
experimental, apart from the longer tail (plateau) ob-
tained from molecular dynamics.

Our numerical analysis of Rahman’s memory func-
tion is in agreement with the comments made in a
recent article by Damle, Sjilander, and Singwi®: K (1)
drops to about 2% of its initial value after a duration
of about 3X 107" sec, after which a plateau value of
about 1%-2%, is maintained for about 107* sec and
then gradually drops to zero.

Finally, a few comments should be made concerning
the relative contributions of the destruction and colli-
sion terms appearing in the memory function, Eq. (7).

Rewriting Eq. (7) as

K(t)=Kc(t)+Ko(t)+Ken(?), (A8)

where the subscripts C and D refer to the collision and
destruction functions, respectively, we find for the di-
polar system considered in Sec. IV

| Kp™ax/Kc™** | =50%, (A9)

while for the case of liquid argon, this ratio is about
25%. Furthermore, it was found for liquid argon* that
the destruction term contributes nothing ( £1%) after
the a.f. has reached the value zero for the first time,
while we conclude, for the system of electric dipoles
studied in the present article, that at the corresponding
value of the time variable (i.e., for which the d.a.f.=0
for the first time), the collision and destruction func-
tions contributions are equivalent (~7%). Both func-
tions then decay together gradually to zero.

# P, S. Damle, A. Sjblander, and K. S. Singwi, Phys. Rev,
165, 277 (1968).




