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Summary. The calculation of the two-dimensional elasto-dynamic Green’s 
function for a stratified medium is investigated. The solution is represented 
in the form of an inverse Fourier integral which is to be integrated along a 
properly chosen path in the complex wavenumber plane. The integrand is 
computed using a modified propagator matrix method. 

This method is based on a mixed formulation using the propagator matrix 
and the matrix of minors of the propagator matrix (compound matrix). The 
major advantages of this approach are the elimination of the numerical loss 
of precision problems associated with the Thomson-Haskell formulation, 
without losing the attractive tractability and compactness of the propagator 
matrix method. This modified method is first mathematically derived, and 
theoretical seismograms are then presented for two examples. 

1 Introduction 

The computation of the two-dimensional Green’s function in an isotropic, layered, elastic 
space is investigated. It is assumed that the elastic parameters vary stepwise and only in one 
direction (z-axis). The calculation of the elastic wave propagation in such a structure is a 
classic problem that has been treated by so many authors that it is impossible to give an 
exhaustive list here. During the past, several solution methods for this problem have been 
published. One of the first systematic approaches was introduced by Thomson (1950) and 
corrected by Haskell (1953). They developed transfer matrix methods which relate displace- 
ments and stresses at the top and bottom of the uniform layers. Later on, Haskell (1964) 
and Harkrider (1964) considered the excitation of Love and Rayleigh waves by realistic 
sources. Computational difficulties arise when these transfer matrix methods are applied 
for layer thicknesses which are large compared to the wavelength. In each layer, up- and 
downward propagating waves cause growing and decaying exponentials whereby the former 
must cancel in the final expressions. In finite accuracy calculations, this cancellation is not 
complete since the growing terms swamp the significant parts. To avoid that difficulty, a 
reformulation of the former method has been presented by Knopoff (1964) based on 
Laplace’s development by minors. Other authors (Molotkov 1961 ; Dunkin 1965) involved 
higher order minors of the original matrices. A more systematic formulation of the transfer 
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670 G. R. Franssens 

matrix methods for a general stratification in elastic parameters has been given by Gilbert & 
Backus (1965). They also established the general utility of the compound matrix. 

However, these formulations are still not satisfactory for high frequencies if applied to 
the calculation of the dispersion function, as recently pointed out by Abo-Zena (1979). In 
his paper, the author calculates the dispersion function by separating all frequency factors 
of the propagator matrix, thereby also avoiding the loss of significant digits. A completely 
different approach was introduced by Kennett & Kerry (1979) in which the response to a 
general source was presented in terms of the reflection and transmission properties of the 
regions above and below the source. More recently, a number of efficient and stable methods 
for performing seismic calculations related to the present work can be found in Woodhouse 
(1 98 1). 

In this paper, the time response due to a force line source with arbitrary location in a 
multilayered medium is presented (i.e. the elasto-dynamic Green's function). The displace- 
ment-stress field is written in the form of an inverse Fourier integral which is integrated 
along a properly chosen path in the complex wavenumber plane. A hybrid formulation in 
terms of propagator matrices and the compound matrices of the propagator matrices is used 
to calculate the integrand. This modified propagator matrix method avoids completely the 
numerical problem mentioned before. This means that very thick layers, which could not be 
analysed by the propagator matrix method, are now easily handled by the modified method. 
In the next section the classical propagator matrix formalism is briefly explained and the 
numerical problems associated with this method are emphasized. The modified propagator 
matrix method is presented in the third section. In the fourth section the integration 
method, used for the inverse Fourier integral, is described. 

Finally, theoretical seismograms are presented for two examples, one being a simple 
model for the Borrego mountain earthquake event, 

2 The propagator matrix method 

Consider a multilayered, elastic space consiting of y1 layers sandwiched between two semi- 
infinite spaces as shown in Fig. 1. Each material is assumed to be isotropic, homogeneous, 
loss-free and perfectly elastic and can therefore be characterized by its density p~ and wave 
velocities u,l and upl, I = 0, 1 ,  . . . n + 1 .  Let ui be the components of the displacement vector 

top half space 

. -L C Z  
L .  

' I ,  - I 

Figure 1. The investigated stratification: a stack of n homogeneous layers is terminated on  each end with 
a semi-infinite space or a surface boundary condition. 
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The elastodynamic Green's junction 671 

and Ti, the stress tensor of the two-dimensional Green's function (i, j = 1 ,  2 ,  3).  In each 
material they satisfy the linearized equations of motion given by, using Einstein's summation 
convection (see, for example, Aki & Richards 1980): 

a, T ~ ,  -pa:ui = si(r) 6(~-x,) 6(~-2,). (2.1) 

Herein are (x,, z,) the coordinates of a line source, with a time-dependent displacement 
amplitude si(t) for the i th  component. By a,, j = 1 , 2 , 3  we denote the partial derivative with 
respect to x, y ,  z respectively. The stresses are related to the displacements by the 
constitutive equations: 

Tij=1/2Cijpq(aquP + a p u q ) ,  ( C ~ , P ,  q = 1 , 2 , 3 ) ,  (2.2) 

with Ciipq being the stiffness tensor for isotropic media. All materials are assumed to be in 
perfect elastic contact with each other (welded contact). This means that the displacement 
and the normal tractions are continuous over the layers interfaces: 

lim u i =  lim ui Z=0 ,1 ,  ... n 

lim Ti3 = lim Ti3 i = 1, 2,3.  

z l h l  z > h l  

4 h l  z j h l  . 

(2.3) 

Finally, ui and Ti, satisfy the radiation condition at infinity. For notational simplicity it is 
convenient to define displacement-stress vectors as follows (Gilbert & Backus 1965): 

for P-SV-waves: 

B(x, Z, t )  = [u1u3 Ti3 T331T, 

for SH-waves: 

B(x, Z ,  1) = 1% Tz3IT, 

where T stands for the transpose. 

(2.4a) 

(2.4b) 

Let 6 ( k ,  z, f )  denote the two-dimensional Fourier transform ofB(x ,  z ,  t )  so that: 

B(x,  z, t )  = - exp (- j 2nft 1 i ( k ,  z, f) exp[+jk(x-x,)l d ~ ,  (2.5) 1:: 2n /+-  _cc 

wherefstands for the frequency and k for the wavenumber along the x-axis. 

of first-order, ordinary differential equations of the form: 
Substitution of (2.5) in the differential equations (2.1)-(2.2) yields two uncoupled sets 

a,&, 2, f) =m, 2, f) i ( k ,  ~ , f )  + & f ) ~ - z , ) .  (2.6) 

The matrix A can be considered as the system matrix, and s as a source vector. For SH- 
waves, A is a (2  x 2 )  complex matrix and S is: 

(2.7a) 

For P-SV-waves, A is a (4 x 4 )  complex matrix and s is: 

S(f>= [@ 0 si(f) s3(f)I'r- (2.7b) 

The functions S i ( f ) ,  ( i =  1 ,  2 ,  3 )  are the Fourier transforms with respect to time of the 
source time functions si ( t ) .  

22 
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672 G. R .  Franssens 
For the explicit expressions of the A matrices see Appendix A. 
The boundary conditions (2.3) are transformed into : 

Z = O ,  1 ,... , n ,  lim B =  lim B, 
z l h l  z j l i l  

and B should also satisfy the radiation condition for z -+ +m. Let us define the levels (cfi 
Fig. 1): 

The radiation condition implies that, for z < z l ,  only upward travelling waves (waves 
travelling in the negative z-direction) can exist, while for z > z2  only downward travelling 
waves can occur. To relate the displacement-stress vector more directly to the elastic 
wavefield we use the transformation: 

&k 2 9  f )  = D (k z ,  f )  v(k, z,  f ) ,  (2.10) 

following Kennett, Kerry & Woodhouse (1978). The matrix D is the eigenvector matrix of 
the system matrix A and has been introduced by Dunkin (1965). The elements of the vector 
V ,  called the wavevector, can be identified with the amplitudes of upward and downward 
travelling planewaves: 

V =  [VU VDIT, (2.1 1) 

(VU, VD : scalars for SH-waves, (1 x 2) for P-SV-waves). According to the radiation condi- 
tion, the wavevector at the level z1 should have the form: 

w, z 1 , f ) =  [Vu(k z1,f) 0IT, 
and at the level z 2 :  

(2.1 2a) 

V(k, z 2 , f ) =  [o v D ( k  z2,f)lT. (2.1 2b) 

Substituting (2.12a) and (2.12b) in (2.10) we obtain at z = z p  ( p  = 1,2) :  

B(k Z p , f )  = C(Z,) x p  

with: 

(2.13) 

C(z,)= 
D2P 

(2.14) 

and the column vectors X ,  given by: 

X I =  v;, x2=  v;. (2.15) 

Herein are D,, ( p ,  q = 1 ,2 )  subpartitions of the eigenvector matrix D. 

boundary conditions: 

(i) a stress-free surface: 

Instead of having a semi-infinite space at z = z p ,  we can also apply one of the following 

with C(zp)  = [ i] andX, = [:?I o n z = z p ;  (2.16) 
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The elastodynamic Green’s function 

(ii) a rigid surface: 

with C(z,) = [ :] andXp = [?] o n z = z p ;  

(iii) a loaded surface with mass load a(kg m-’): 

673 

(2.17) 

(2.18) 

where Z is the unity matrix. In (2.1 8) holds the plus sign for p = 2 ,  the minus sign for p =1. 
Our aim, stated so far, is to obtain a solution for the differential system (2.6) together 

with the boundary conditions (2.8) and (2.13). In the propagator matrix method this is done 
using a ‘propagator matrix’ P(z ,  z’) (Gilbert & Backus 1965) or ‘matricant’ (Gantmacher 
1959) which is a fundamental matrix solution of the homogeneous differential system, with 
linear independent columns under the constraint P(z ,  z) = I .  If @ ( z )  is any fundamental 
matrix solution of the homogeneous system, the propagator matrix P(z, 2’) can be derived 
from it as follows: 

P(2, 2 ’ )  = @(z) ia-’(z’). (2.19) 

The name ‘propagator matrix’ comes from the fact that once B is known at some level z’, it 
can be propagated toward another level z by a simple matrix multiplication: 

i(z) = P(z, 2 ’ )  &‘). (2.20) 

The general form of the propagator matrix is stated in Appendix B. The explicit expressions 
can be found elsewhere (e.g. Dunkin 1965). 

The propagator matrix can also be used to find the solution of the inhomogeneous system 
by applying the formula: 

i ( 2 )  =P(z, z’) i ( 2 ‘ )  + P(z, {) k ( t - z s )  d f .  s:. (2.21) 

For more details about the propagator matrix we refer, for example, to Gilbert & Backus 
(1965). We limit ourselves here to a brief enumeration of some useful characteristics of the 
propagator matrix: 

det [P(z,  z’)] = exp [Iz:- t r a c e [ 4 k  i-, f)ldi- ] = 1 

P(z, 2 ‘ )  = P(z’, 2)-1 

(2.22a) 

(2.22b) 

(2.22c) P(z, 2’) = P(z, i-1 w, 2 ’ )  i- E [ z ,  2’1. 

Furthermore, the propagator matrix over different layers is simply the produc: of the 
propagator matrices of each layer. This is due to the fact that the continuity of B ensures 
the continuity of P(z,  2 ’ ) .  Therefore (2.21) is also valid through a stack of layers. Also from 
this expression it can be seen that &;) and &zl), the displacement-stress vectors just 
before and after the source level z,, make a jump by an amount s: 
i ( 2 b )  - &zg) = i. (2.23) 
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674 G. R. Franssens 
In the case of a displacement source, as defined in (2.1), there is only a jump in the stress 
part of the B vector. Relating k(z6) and k(z6) to the displacement-stress vectors at z =z2  
and z =zl respectively, using (2.20) and combining this with (2.13), we obtain: 

~ ~ ~ , , ~ , ) c ~ ~ ~ ) ~ z - ~ ~ ~ , , ~ ~ )  C(z1)X,=i (2.24) 

Numerical difficulties arise when one attempts to solve the above linear system of equations 
for layers thick compared to the wavelength. In the evanescent regime, that is for 
frequencies for which the sine functions in the propagator matrix become hyperbolic sine 
functions, one obtains exponentially growing terms (Kennett & Kerry 1979). It turns out 
that in numerical calculations those terms, which do not exist in the final result, do not 
cancel out exactly due to the round-off errors. 

One way to avoid this difficulty is to calculate the determinants of (2.24) directly from 
the analytical expressions for the minors of the propagator matrix as suggested by Gilbert & 
Backus (1965) and demonstrated by Dunkin (1 965). 

In the following section we propose an alternative matrix formulation for the solution 
of (2.24), also based on that approach. However, this formulation still has the compactness 
of the propagator matrix method, without having its numerical problems and is therefore 
very well fitted to code on a computer. 

3 The modified propagator matrix method 

We consider again the system of linear equations (2.24): 

P(z,, ZZ) C ( 4  x* - m,, 21) C(Z1) XI = 

and define: 

(3.1) 

(3.2) 

The determinant A of the above matrix can be regarded as the determinant of the product 
of matrices: 

where I stands for the unity matrix of appropriate dimensions (4 x 4 for P-SV-waves, 2 x 2 
for SH-waves). Using the Binet-Cauchy formula we can express the determinant A in terms 
of the minors of the rectangular matrices (Gantmacher 1959, p. 9). 

If we define the following vectors of second-order minors (P-SV-waves): 
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The elastodynamic Green's function 675 

the expression (3.4) can be put in matrix notation: 

= VT (2,') -eb, q z ; )  

with: 

0 0  0 0 0  1 1 0 0  0 0 - 1 0  

0 - 1 0 0 0  0 L 1 0  0 0 0  0 ,  

A similar result holds for SH-waves if we define: 

with: 

% [", A] . 

(3.8a) 

(3.8b) 

Returning to the P-SV-waves, we calculate the second-order compound matrix of the left 
hand side matrices in (3.2). Using the fact that the compound matrix of a product of 
matrices is the product of the compound matrices of those matrices (Gantmacher 1959 
p. 21), we can write: 

in which %(zz) and %(zl) are defined in an analogous way as in (3.5) and (3.6) together 
with (2.14). 9 ( z S ,  z 2 )  is the (6 x 6) second-order compound matrix of the propagator matrix 
P(z,, z2), explicitly given in Appendix C. Since P(z , ,  z2) is continuous across the layer 
boundaries, g ( z , ,  z z )  will also be continuous. Furthermore, just as an overall propagator 
matrix can be decomposed as the product of the propagator matrices of the individual 
layers, an overall compound matrix can be written as the product of the compound matrices 
of each layer. Substitution of (3.9) and (3.10) into (3.7) then yields: 

A =V 

For the SH-waves y(z, z ') is identical with the propagator matrix P(z, 2 ' ) .  

independent of the source level zs, since det [P'(zJ, z,)] = 1.  

(3.1 1) (4 gT (zs, z2) 450 P@s, z1) W 1 )  

By multiplication on the left of (3.3) with P(z;,z,) it can be seen that the determinant A is 
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676 G. R. Frmssens 

matrices C(z,'> and C(z,) symbolic in terms of their elements as follows: 

C ( z f )  = (CG); C(z;) = (C;), 

Let us return to the system of equations (3.3) for P-SV-waves. First, we express the 

(3.12) (i = 1 ,4 ;  j = 1,2),  

(3.13) 

Furthermore, it is useful to define the second-order compound matrices (i = 1 ,4 ) :  

V' (za) = column vector of second-order minors of [ii CT2], 

g" ( zb)  = column vector of second-order minors of [CTl ail 
in a similar way as in (3.6). Analogous definitions hold for @(zg) and %'"(z;). 

The solution of the boundary system (3.1) can then be written in the form: 

(3.14) 

(3.15) 

(3.16) 

The primed compound vectors are a linear combination of the components of the source 
vectors. Thus: 

(3.17) 

The dimensions of the €-matrices are (6 x 4). 

can be computed by propagating g(z,) to z o :  
Now, suppose z1 G zo < zs. The displacement-stress vector g(zo )  at the observer level zo 

I j ( Z 0 )  = P ( Z 0 ,  zs) C(Z,) x1 b C(z0) XI. 

Substitution of (3.16) and (3.17) into (3.18) yields: 

In terms of the elements of the matrix C(z,) this becomes: 

(3.18) 

(3.19) 

(3.20) 

The j t h  column of e l ,  denoted by (~i)*j, can be expressed in terms of the second column of 

= Mi[C(z,)l*2 (3.2 1 a) 

C(z,): 

and also: 

(El l )* .  = Mi [C(zF)] * 1 (3.21 b) 
I 
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The elasto-dynamic Green's function 677 

According to (3.18) the above columns can also be written in terms of the columns of 

(3.22a) 

with Mi ( j  = 1,4), being four (6 x 4) matrices, which are given in Appendix D. 

C(z0): 

(El)*. =MiP(z,, zo) [C(Z,)] * 2  1 

and: 

( E _ " ) * .  = MI'PCZ,, z O )  [ C ( Z ~ ) ]  * 1 .  
J 

Substitution of (3.22a) and (3.22b) into (3.20) yields: 

(3.22b) 

(3.23) 

with: 

A j j ( Z 0 ,  z,) = V T ( z b )  &I [c:iMiP(z,, ZO> [ C ( Z O ) I * ~ - ~ ? ~ M ~ P ( Z , ,  zo> [C(ZO)] 

Further, from Appendix D it is easily verified that: 

(3.24) 

with q ( z o )  being the compound vector of C(zo).  
Combining (3.25) with (3.24) yields for Ai j ( z0 ,~ ; ) :  

'Aij(Z0, z,) = WT(zb)  &(Mi)P(z,, Z O )  (Mi)T V(ZO)- 

Rewritten in terms of v ( z l )  and V(z2) this becomes: 

(3.25) 

(3.26) 

Aij(zo,z,)= q T ( z 2 )  d o  g(zZ , z s )  ( ~ ' ) ~ ( z , , z o )  ( ~ ' 1 ~  ~ ( z O , z l )  ~ ( z 1 ) .  (3.27, 

Equation (3.27) allows us to calculate the *-matrix and consequently to compute i ( z 0 )  
according to (3.23). In the case that the observer point is located in the upper half-space 
(zo < z l )  we first calculate i ( z l )  from: 

i (z 1) = 9 (z 1 , z,) s 
and then use the propagator matrix Pt (zo,  z , ) ,  containing only upgoing waves (Appendix 
B), to find: 

i ( z 0 ) = P t  ( Z O , Z l ) * ( Z 1 , Z J ~ .  (3.28) 

The above reasoning can be repeated for zs < zo G z2 .  Then we obtain: 

(3.29) 

with: 

A i j ( Z 0 ,  z,') = q T ( z l )  -40 Y ( z 1 ,  zs) (Mi)P(z, ,  Z O )  (Mi)T ~ ( z O ,  ~ 2 )  V(z2).  

For the observer point located in the bottom half-space (zo> z 2 )  we find: 

&ZO) = P, ( Z O ,  z2) 9 ( Z 2 , Z J >  s, 

(3.30) 

(3.31) 

wherein Pi ( zo ,  z 2 )  is the propagator matrix containing only downgoing waves. 
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618 G. R. Franssens 

(3.3 1) remain valid but the determinants Aij now turn out to  be, for z1 G zo < zs: 
For the SH-waves we obtain similar results. The expressions (3.23), (3.28) and (3.29), 

(3.32) 

Aij(zo,Zs+> = cT(zI> - ~ O ~ ( z l , z s )  ( ~ j )  ( ~ ‘ ) ~ ~ ( z O , z 2 )  ~ ( 2 2 ) .  (3.33) 

Herein are ( N j ) ,  ( j  = 1, 2), two (2 x 1)-dimensional matrices, given in Appendix D. 
In order to  find the Green’s function B(xo, zo, f) at an arbitrary point (xo,  zo) due to  a 

line source located in the point ( x s ,  zs), one has to substitute the appropriate expression for 
B(zo)  into the inverse Fourier integral (2.5) and integrate it along a properly chosen path in 
the complex wavenumber plane. Let us now investigate the behaviour of the integrand for 
k + m  [k> max(ksr)]. Then ysl and ypl ( I = O ,  n t l) ,  are all imaginary with positive 
imaginary part. From the explicit expression of the compound matrix Y ( z ,  z ’ )  in Appendix 
C, one can see that like exponentials, such as e x p [ ~ j 2 y s ( z - z r ) ]  or exp [+j2yp(z-z’)] 
do not occur. The dominant exponential factor is exp [ - j (ys  + y p )  ( 2 - z ’ ) ] ,  (z > z’). For 
the propagator matrix this is exp [-jyp(z-z3]. 

First consider the case for which z1  G zo < zs. From (3.27) and (3.1 1)  it follows that the 
dominant exponential factors are (for homogeneous space): 

- exp[-j(ys + Y P )  (22 -zs>l . exp [ - i r p  (z,-zo)l. exp [-i(rs + Y P )  (z0-~1)1 

A - exp[-j(ys + y p )  (z2 -zs)l + ~ X P  [-i(rs + Y P )  (z,-z0)1. exp [-i(rs + Y P )  GO 4 1 1 1 .  
(3.34) 

*(zo,z,) - exP[+j7s(Zs-Z0)1 (3.35) 

Thus @ ( z o , z i )  behaves like: 

which is a decaying exponential. 
The same reasoning can be applied if different layers are present. The exponents are then 

sums of these terms over all the layers involved. 
If the observer point is located in the upper half-space, an additional decaying exponen- 

tial appears, coming from the upward propagator matrix P? (zo,zl). 
In the cases for which zs < zo Q z2 or zo is located in the bottom half-space, a similar 

decaying behaviour is found. So, if we a priori divide out the dominant exponential factors 
in A, and A,  machine overflow can never occur. 

Therefore, and because the Y(z, z ’ )  matrices are calculated directly from the analytic 
expressions, precision problems are largely eliminated. 

For SH-waves dominant factors can also be divided out, yielding similar asymptotic 
expressions as for P-SV-waves. 

4 The integration of the inverse Fourier integral 

In order to obtain the displacement-stress field B ( x o ,  zo, f), in an observer point (xo ,  zo), 
it is necessary to integrate the inverse Fourier integral (2.5). An investigation of the inte- 
grand B^(k, z ,  f )  reveals a number of singularities in the complex k-plane, for a given 
(real) frequency. Branch points are introduced by each semi-infinite space through the 
complex roots: 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/75/3/669/653386 by guest on 16 August 2022



The elasto-dynamic Green’s &fiction 6 79 

The branch lines piotting convention is taken from Marcuvitz & Felsen (1973, p. 466), and 
run into the first and third quadrants along the paths Lm(y)=O. Furthermore, surface wave 
poles kp  are situated symmetricaliy on the real axis (loss-free materials), so that: 

Ik,I< Ik,l< l k b l  

k,  6 max(ks0, ksn+1) 

with: 

k ,  6 max (ksj )  i = 0 , 1 ,  . . . ,  n t 1  
1 

(4.2) 

provided that the stack of layers is terminated on both ends with a semi-infinite space. The 
complex wavenumber plane situation is shown in Fig. 2 for a one-layer medium sandwiched 
between two semi-infinite spaces, in the SH-case. The path of integration follows the real 
k-axis, obeying the radiation condition by remaining in the even quadrants. The selected 
path for the numerical integration is shown in Fig. 3. This path avoids guided mode poles 
and half-space branch points. These singularities make the main contribution to the integral 
at very large distances from the source. Because the integrand B(k, z o , f )  can be decomposed 
into even and odd parts, the path can start at the origin. The evaluation of a subintegral over 
a straight line is done using a Romberg extrapolation scheme combined with a Filon quadra- 
ture. From k4 onwards an asymptotic estimation for the remainder of the integral is made. 
The choice of the constants k l ,  . . . k4 is done by trial and error to maximize speed. Their 
values are not critical, except for large k I xo -x ,  I due to the factor exp(tjk 1x0 -x, 1). 
Therefore, one has to be careful not to move too far in the fourth quadrant so as to avoid 
a loss of precision in summing the subintegrals. On the other hand coming too close to the 
poles on the real axis causes also a loss of precision in integrating the subintegrals. One is 
forced to a compromise which sets a limit on k I xo -xs 1 for a given computation effort. 

Other authors (e.g. Kennett 1980) make the medium weakly attenuative so as to shift 
the singularities from the real axis in the first quadrant. The integration is then performed 

Im(vs,) 20 , Im(Ys.) 10 
Figure 2. The complex wavenumber plane, showing the upper Riemann sheet. Branch lines and poles are 
showed for the SH case only. 
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680 G. R, Franssens 

trnlk) 

Re(ysl)  ' 0  Im(vsl)  LO 
Re(Ys3) 0 Im (Ys3 I 0 

Figure 3. The integration path r used in the numerical evalilation of the inverse Fourier integral. Para- 
meters k , ,  . . . , k ,  are chosen to maximize speed. 

entirely on the real axis. The effect of this attenuation on the resulting pulse forms also sets 
alimit onkIxo-x,I. 

While performing the k-integrations for each frequency, the S i ( f )  functions (i = 1,3), in 
(2.7) are kept constant. The spectrum so obtained is the frequency response of the medium 
for the given source and observer positions. This response is then multiplicated with the 
spectrum of the source. The frequency to time inversion of this product is then done, using 
a Fast Fourier Transform routine, to yield the source time response. 

5 Numerical results 

Two example cases are considered for which time domain solutions are presented. The first 
one is a theoretical SH seismogram for the simple model of the Borrego mountain earth- 
quake event, also used by Heaton & Helmberger (1977), Swanger & Boore (1978) and 
Kame1 & Felsen (1981). This model, which is shown in Fig. 4, consists of a sediment layer 
of 2.9 km thickness covering a bedrock bulk. The source S is located 9 km below the Earth's 
surface and horizontally spaced over 60km from the geophone G. The elastic parameters 
are indicated in the picture. A triangular source time function is applied: 

S,(t) = 2t O G  t < 0 . 5 s  

=2(1- t )  0 . 5 < t t l s  (5.la) 

= O  t a l s  
In Fig. 5 the synthesized time response u z ( t )  is shown. It is in good agreement with the 

stress free surface 
G(60,O) 

ys =3300m/s 

Figure 4. The simple one-layer model for the Borrego mountain earthquake event. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/75/3/669/653386 by guest on 16 August 2022



The elasto-dynamic Green’s function 68 1 

Figure 5. The theoretical SH seismogram for the  medium of Fig. 4. 

result of Kame1 & Felsen (1981) who calculated the same seismogram using a hybrid formu- 
lation, i.e. a mixed expansion in terms of mode fields and ray integrals. Minor deviations in 
the detail of the pulse form might be due to a difference in sample rate. 

The second medium consists of two layers covering a semi-infinite space as shown in 
Fig. 6. The surface layer has a thickness of l oom,  followed by a coal layer of 27mL The 
source is placed 70 m below the free surface. Three groups of equally spaced geophones are 
arranged as follows: group A ( G ,  - Glo) is located at the surface with the geophones at 10 m 
intervals, group B (Gll - Gz2) is situated in a borehole I IOm apart from the source, and the 
group C geophones (GZ3 - G3z) 2re also placed at 10 m intervals on a horizontal line 165 m 

s, 10.) 0) stress free surface  

G13(30.,110J 

0 .  
LAYER 1 

S2 IO., 70.) 11 
LAYER 2 

0 

0 

BULK 

G21 1150.J110.) 

*G22(165.,110.) 

G23 G24 . . .  G 32 
I165.,10J 065,20.) C165.,100.) 

Ix, z )  coord. in meter 

Figure 6. A test medium consisting of two layers on top of a semiinfinite space. The uppermost layer 
stretches out to  the free surface. 
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below the surface. Time domain displacement functions are calculated for both SH- and 
P-SV-wave types. A source time function, called a RICKER wavelet, is used for each source 
component : 

(5.lb) 

The frequency range is limited to 0-200 Hz. The centre frequency Fo is chosen to be 60 Hz. 
The elastic parameters for each layer are given in Table 1. 

Fig. 7 shows the uZ(t )  displacements for the three geophone groups. A number of 
prominent arrivals can be identified using a planewave ray approximation. Pulses are 
numbered in order of arrival. In geophone group A, SH1 marks the direct wavefront from 
the source S to the surface. Subsequent arrivals are due to reflections on the coal-layer 
interfaces. In group B, SH, is the reflection from the free surface. So is the SHz arrival in 

Table 1. Elastic data for the two layer example of Fig. 6, 

Material POCS m - 9  uS(m s - ' 1  up(m s-') 

Mat 1 2400 1113 2377 
Coal 2000 955 2042 
Mat 2 2400 1173 2499 

Thickness (m) 

100 
27 

m 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/75/3/669/653386 by guest on 16 August 2022



The elasto-dynamic Green's function 6 83 

L 

Figure 8. The u l ( t )  displacements for the medium of Fig. 6 .  

group C. In Fig. 8 the u 1 ( t )  displacements are shown. In group A the first arrival is the 
projection on the x-axis of the displacement vector of the compressional wave (P1), 
travelling at the velocity up of the upper layer to the surface. At the same arrival time, its 
projection on the z-axis can be seen in Fig. 9, showing the u3( t )  displacement component. 
The strong response, marked with SV, in both figures, is the direct shear arrival. In the B 
group, from Figs 8 and 9, one can see the direct PI and SV, wavefronts. The response 
marked with SV2 is the shear reflection at the free surface. Those three arrivals are also 
present in the C group. More pulses can be identified by taking the multiple reflections into 
account on the coal-layer interfaces. A complete analysis of these seismograms, however, is 
beyond the topic of this paper. Previous examples show that the proposed method works 
well and is free of any numerical problems. 

The classical propagator matrix method, as noted earlier, cannot be used to calculate 
P-SV solutions for high frequencies due to its sensitivity to round- off errors. This numerical 
problem causes a limit to the thickness of the stack of layers for which acceptable results can 
be achieved, for a given finite accuracy computation. Beyond that limit, no results can be 
obtained unless the number of digits used in the computations is enlarged. This obviously 
increases the CPU time needed to solve the problem. To obtain a reliable estimation for this 
limit, the following test has been made. For a symmetric one-layer waveguide, the boundary 
system determinant is calculated, in the P-SV case, from equation (3.1 l), (z, =z2): 

A,= gT J& 9(z2,Z1) %I* (5.2) 
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L 

Figure 9. The u , ( t )  displacements for the medium of Fig. 6. 

This result is compared with the value which could be obtained by the propagator matrix 
method (equation 3.3): 

AP = det { [ ~ ( z z )  P(ZZ,ZI) C(z1)IJ. (5 -3 1 

Both determinants were computed using single precision (eight digits) yielding A$) and 
A$) and double precision (16 digits) yielding A$?) and A$). The value A$?) was regarded 
as the reference value. The wavenumber was chosen to be k =  1.2 ks (kszshear  wave- 
number in the coal layer). The leading exponential factor: 

exp[-j(^/s + Y P P I  (5.4) 

was omitted to ensure that the determinants remain bounded for D + f m. 

Fig. 10 shows a plot of the logarithm of the relative error in each case, compared with 
A$), as a function of D/hs. The test medium elastic data are given in Table 2. 

With 16 digits precision the propagator matrix method error exceeds the eight digits 
modified propagator matrix method beyond D = 8Xs. At D = 14Xs the relative error in 
AS) rises already to 100 per cent. Even for D < 7hs the obtained accuracy of AF) (better 
than is only one order of magnitude worse than that of AY). This indicates that even 
for thin layers the propagator matrix method is much more sensitive to round-off errors than 
the modified method. Finally, the relative error in A$') exceeds that in A$) already for 
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12 I 
,log10 72) 

( 1 )  
A - A p  (2) 

IA;b,c I 
8- A-Ap 

4- 

, D  
I I I I - -8 

2 6 10 14 18 AS 
Figure 10. A plot of the logarithm of the relative error in the computation of the boundary system 
determinant for a one-layer waveguide as a function of the normalized thickness of the layer. The dots 
represent the error using the traditional propagator matrix method. For the parameters see text. 

(2) 
A-Ap 

n 

8- 

4- 

0- 

)U 
I I I I - -8 

2 6 10 14 18 AS 
Figure 10. A plot of the logarithm of the relative error in the computation of the boundary system 
determinant for a one-layer waveguide as a function of the normalized thickness of the layer. The dots 
represent the error using the traditional propagator matrix method. For the parameters see text. 

Table 2. The elastic data for the test medium which was used to produce Fig. 6 .  

Material p(kg m+) uS(m s-') up(m s- ' )  Thickness (m) 

Stone 2460 2340 4230 m 

Coal 1364 1140 2370 D (variable) 
Stone 2460 2340 4230 ca 

D = As, showing that single precision calculations cannot be used for the classical propagator 
matrix method. We can conclude that is is not necessary to use more than eight digits 
precision for the computation of the Green's function. In all applications handled with the 
modified propagator matrix method, five digit accuracy was easily obtained for the displace- 
ments. Therefore, memory storage space and run time are substantially reduced by this 
method. The program package which is used to calculate synthetic seismograms is written 
in F O R T R A N  '77 and runs on a VAX 11/750 computer, without a floating point processor. 
Up to 10 traces are integrated together if the geophone locations have the same depth levels. 
When this is the case, the integrands differ only in the exponential factor exp[jk(xo-xs)]. 
To produce 10 traces, sampled in the frequency domain in 64 points, it takes an amount of 
CPU time as shown in Table 3, depending on the number of layers. 

Table 3. Consumed CPU time as a function of the 
number of layers. 

Number of SH case P-SV case 
layers (hr) 

1 
4 
8 

20 min 2 
1.5 hr 7 
2 hr 12.5 
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6 Conclusions 

It has been shown that the numerical difficulties, inherent in the classical propagator matrix 
approach of Thomson-Haskell, can be avoided without losing the practical matrix formula- 
tion of that method. Using a mixture of propagator matrices and compound propagator 
matrices, the integrand of the inverse Fourier integral can be calculated for any layer thick- 
ness. It has also been shown that the modified method is much less sensitive to round-off 
errors than the original formulation and therefore can run in single (eight digits) precision. 
The somewhat larger computational effort required in machine storage and computing time 
for the integrand can be neglected, compared with the gain in precision and the resulting 
enhancement of the integration convergence. 

The general idea outlined in this paper could, in theory, also be used to calculate the 
elasto-dynamic Green’s function in anisotropic media. To that end, one has to derive the 
appropriate analytical expressions for the propagator matrix and the compound matrix. 
However, this might not be a trivial task. 

Finally, we mention that the choice of a source should not be restricted to a single force 
excitation, as used in (2.1). Any combined force system, including the source moment 
tensor (Gilbert 1971), can be used. The result will be a more complex jump vector S in 
(2.23) in which the displacements (in the k-domain) will, in general, be discontinuous 
across the z = zs plane. 

Acknowledgments 

The author wishes to thank Professor P. E. Lagasse for his helpful discussions and remarks. 
He also would like to thank IWONL for a grant. 

References 

Abo-Zena, A., 1979. Dispersion function computations for unlimited frequency values, Geophys. J. R. 

Aki, K. & Richards, P. L., 1980. Quantitative Seismology - Theory and Methods, Freeman, San 

Dunkin, J. W., 1965. Computations of modal solutions in layered elastic media at high frequencies,Bull. 

Gantmacher, F. R., 1959. The Theory of Matrices, 1, Chelsea, New York. 
Gilbert, F., 1971. The excitation of the normal modes of the Earth by earthquake sources, Geophys. J. 

Gilbert, F. & Backus, G. E., 1965. Propagator matrices in elastic waves and vibration problems, 

Harkrider, D. G., 1964. Surface waves in multilayered elastic media I. Rayleigh and Love waves from 

Haskell, N. A., 1953. The dispersion of surface waves on multilayered media, Bull. seism. SOC. Am., 43, 

Haskell, N. A,, 1964. Radiation pattern of surface waves from point sources in a multilayered medium, 

Heaton, T. H. & Helmberger, D. V., 1977. A study of strong ground motion of the Borrego Mountain, 

Kamel, A.  & Felsen, L. B., 1981. Hybrid ray-mode formulation of SH motion in a two layer half space, 

Kennett, B. L. N., 1980. Seismic waves in a stratified half-space - 11. Theoretical seismograms, Geophys. 

Kennett, B. L. N. & Kerry, N. J.,  1979. Seismic waves in a stratified half-space, Geophys. J. R. astr. SOC., 

Kennett, B .  L. N., Kerry, N. J. & Woodhouse, J .  H., 1978. Symmetries in the reflection and transmissions 

astr. Soc., 58, 91-105. 

Francisco. 

seism. SOC. Am., 55,335-358. 

R. astr. Soc., 22, 223-226, 

Geophysics, 3 1, 326 -3 3 2. 

buried sources in a multilayered elastic half-space, Bull. seism. SOC. Am., 54, 627-679. 

17-34. 

Bull. seism. SOC. Am., 54, 377-393. 

California, earthquake, Bull. seism. SOC. Am., 67, 315-330. 

Bull. seism. Soc. Am., 71, 1763-1781. 

J. R. astr. Soc., 61, 1-10, 

57,557-583. 

of elastic waves, Geophys. J. R. astr. SOC., 52, 215-230. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/75/3/669/653386 by guest on 16 August 2022



The elasto-dynamic Green 's function 687 
Knopoff, L., 1964. A matrix method for elastic waves problems,Bull. seism. SOC. Am., 54, 431 -438. 
Marcuvitz, N. & Felsen, L. B., 1973. Radiation and Scattering of Waves, Prentice Hall, New York. 
Molotkov, L. A., 1961. On the propagation of elastic waves in media consisting of thin plane parallel 

layers, problems in the theory of seismic wave propagation, Nank. Leningr., 240-281 
(in Russian). 

Swanger, H. J. & Boore, D. M., 1978. Simulation of strong motion displacement using surface wave 
modal superposition, Bull. seism. SOC. Am.. 68. 907-922. .~ 

Thomson, W. T., 1950. Transmission of elastic waves through a stratified medium, J. appl. Phys., 21, 
89-93. 

Woodhouse, J .  H., 1981. Efficient and stable methods for performing seismic calculations in stratified 
media, Physics o f  the Earth's Interior, eds Dziewonski, A. M. & Boschi, E., Elsevier, New York. 

Appendix A 

Let us denote by: 

p, h: the Lam6 constants for an isotropic layer, 
p :  the volume density of a material, 
w = 2nf: the harmonic pulsation, 
f : the imaginary unit, 
us = shear phase velocity, 
up = 4- compressional phase velocity, 
ks = W / Q :  shear wavenumber, 
kp  = a/+: compressional wavenumber, 
ys = (ki-k')"': transverse shear wavenumber, 
y p  = ( k i  -k')l" : transverse compressional wavenumber with the assumption: 

W Y s )  9 0, Im(rs) 0 

W Y P )  0, W Y P )  0. 

The (2 x 2) system matrix A in (2.6) for SH-waves is then given by: 

while for P-SV-waves, A is the (4 x 4) matrix: 

ro -jk p-' 0 1 

Let us further denote by D the matrix of eigenvectors of the system matrix A and by A the 
diagonal matrix of eigenvalues of A .  SO: 

A =DAD- ' .  (A3) 

A = diag { -irs, +irs 1 ('44) 

Then, in the SH case, we obtain for: 
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688 G. R. Franssens 
while the eigenvector matrix can be chosen to be: 

with its inverse: 

In the P-SV case, A is given by: 

A = diag {-h, - j r P ,  +irs, +jrp) . 
The eigenvector matrix can be chosen to be: 

with its inverse: 

- jpy;' (2k2-k i )  j 2yk  -1 -hi1 1 
-j2pk - jpy;' (2k2-ki)  kyj' -1 

jpr;' ( 2k2 -k i )  j2pk  -1 
* (A91 

- j2pk  jpy; '(2k2-ki)  -kyj' -1 i 
Appendix B 

The propagator matrix P(z, z ') satisfies the homogeneous system: 

a,P(z, z ') = A P(Z, z '). ( B 1 )  

Using the transformation (2.10), one finds that the propagator matrix is given by: 

P(z, z ') = D exp [A(z-z ')I D-'. (B2) 

Let d ,  be the ijth element of D and tjij the ijth element of D-'. P(z, z ' )  can then also be 
written as follows: 

For SH-waves: 

P(z, z ') = P-exp [- jrs(z-z')] + P' exp [tjrs(z-z')] 

with: 
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For P-SV-waves: 

P(Z, z ’1 = P- exp [-jys(z-z‘)] t P+ exp [t jyS(z-z’)] 

+ Q -esp [ -jyp(z-z ’)I t Q+ exp [+ jyp(z-z’)I 

with: 

For z > z’, it is clear, noticing the sign convention of the complex roots ys and y p ,  that 
P-exp[-jys(z-z’)] becomes the leading term in the evanescent regime for SH-waves, 
whereas Q- exp[-jyp(z-z’)] becomes it in the case of P-SV-waves. Furthermore, it is 
worth noticing that the rank of the coefficient matrices in (B3b) and (B4b) is 1. 

The upward and downward propagators are respectively given by: 

SH case : 

P+(z,  z ’ )  = ~ - e x p [ - j ~ S ( z - z ’ ) l  

~ ~ ( 2 ,  2’) =~+exp[+jyS(z-z‘ ) l .  

P-SV case: 
P+ ( 2 , ~ ’ )  = ~-exp[- jys(z-z’ ) ]  t e-exp[-jyp(z-z’)l 

P, ( 2 , ~ ‘ )  =P+exp[+ jy~(z -z ’ ) ]  t Q+exp[tjyp(z-z’)]. 

Appendix C 

The compound matrix of the propagator matrix, denoted by p ( z ,  z ‘), is the (6 x 6) matrix 
of second-order minors, arranged in the way: 

Y(2,z‘) = 

. . .  (3 
This matrix can be calculated directly from (B2) by replacing these matrices with their 
compound versions: 

Y(z, z )  = 9 e x p  [ d ( z - z  ‘)I 9 -’. (C2) 

Herein are 9 and 2 - l  the (6 x 6) compound matrices of the eigenmatrix D and its inverse 
D-’ respectively. The diagonal matrix exp [d(z-z’)]  is given by: 
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Written in the form of a linear combination of exponential terms another expression for 
P ( z ,  z ')  is: 

g ( z ,  2 ' )  = 9' exp[-j(ys +yp) (2-z ' ) ]  t 9' + g3 exp[-j(ys-yp) (2-z')]  

t P4 exp [+ j (ys -yp) (Z-Z')] + y5 + -p6 exp [+j(ys + -yP) (2-z')]. (C4) 
The (m, n)th element Ph,, of each coefficient matrix can be computed directly from the 
elements of the compound eigenvector matrix and its inverse, as follows: 

K n n =  9 m r  9;;. (C5) 

w = ic/ks ; gs = Yslks ; gp = YPIkS 

u = 2w2-1; fs =g i ' ;  fp =gp' 

g =gsgp; f =fsfp 

Define: 

p = -jks;q = p k &  

The 9 matrix then consists of the following rows: 

q* = % P 2  [(g +w2>, 2gsw9 -(g-w2), (g-wZ), &PW, (g + w"1 

8. = Y2P4[w(2~+u),2~~u,-w(2~-u),w(2g-u),4~pwz,w(2~+~)1 

=%* = Yz P4 [-gs, 0, -gs, -gs, 0,  +gsl 

q* = Y'P4 [w(2g -t u), 4gsw2, -w(2g-u), w(2g-u), 2gpu, w(2g + u)I 

%* = % P 4  [%p, 0 ,  -gp) -gp, 0,  -&I 

%* = YZ q2 [(4gw2 t u2),  4gswu, -(4gw-u2), (4gw2 - u2),  4gpwu, (4gw2 + u ' ) ] .  (C6a) 

T o l o o  
- 

0 0 1 0  

0 0 0 1  

0 0 0 0  

0 0 0 0  

-0 0 0 0 -  

The 52-l matrix consists of the columns: 

M2 = 

Appendix D 

The four matrices Mi, ( j  = 1,4),  are given by: 
- 

- 1 0 0 0  

0 0 0 0  

0 0 0 0  

0 0 1 0  

0 0 0 1  

0 0 0 0 -  
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0 0 0 0  

- 1 0  0 0  

0 0 0 0  

0 - 1 0 0  

0 0 0 0  

0 0 0 1  

- -9 

0 0 0 0  

0 0 0 0  

- 1 0  0 0 

0 0 0 0  

0 - 1 0  0 

-0 0 -1 0- 

M4 = 

For SH-waves, the N i ,  ( j  = 1,2), are: 

(D 1 c, d) 

"= [A] N2" [ Y ]  . 
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