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Calculation of the incremental stress-strain relation of a polygonal packing

F. Alonso-Marroquin and H. J. Herrmann
ICA1, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany
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The constitutive relation of the quasistatic deformation on two-dimensional packed samples of polygons is
calculated using molecular dynamics simulations. The stress values at which the system remains stable are
bounded by a failure surface, which shows a power law dependence on the pressure. Below the failure surface,
nonlinear elasticity and plastic deformation are obtained, which are evaluated in the framework of the incre-
mental linear theory. The results show that the stiffness tensor can be directly related to the microcontact
rearrangements. The plasticity obeys a nonassociated flow rule with a plastic limit surface that does not agree
with the failure surface.

DOI: 10.1103/PhysRevE.66.021301 PACS number~s!: 45.70.Cc, 83.10.Gr, 61.43.Bn, 83.80.Nb

I. INTRODUCTION

The nonlinear and irreversible behavior of soils has been
described by different constitutive theories @1,2#. Here the
stress-strain relation is postulated using a certain number of
material parameters which are measured in experimental
tests. These continuous theories have been used for many
geotechnical applications. Excavations, foundations, and
landslides are some few examples of these applications.

Recently, the investigation of soils at the grain scale has
become possible using numerical simulations @3#. They evi-
dence that the stress is transmitted through a heterogeneous
network of interparticle contacts @4#. The geometric change
of this network during deformation reveals a structural an-
isotropy induced by shearing @5#. Although these results pro-
vide valuable insights into the behavior of soils, few issues
are given to derive the continuous relations from the discrete
models.

In this paper the stress-strain relation of a two-
dimensional discrete model is calculated explicitly using nu-
merical simulations. An internal variable is included in this
continuous relation, which is related to the anisotropy of the
contact network. The results show that it is possible to char-
acterize the mechanical behavior of soils at the macroscopic
scale using particle models. In effect, we demonstrate that
simple mechanical laws at the grain level are able to repro-
duce the complex behavior of the deformation of soils.

Usually, disks or spheres are used in the modeling of
granular materials. The simplicity of their geometry allows
one to reduce the computer time of calculations, but they do
not take into account the diversity of the shapes of the grains
in the realistic materials. A more detailed description is pre-
sented here by using randomly generated convex polygons.
As presented by Tillemans and Herrmann @6#, the interaction
between the polygons could be handled by letting the poly-
gons interpenetrate each other and calculating the force as a
function of their overlap. This approach has been success-
fully applied to model different processes, such as fragmen-
tation @7,8#, damage @9#, strain localization, and earthquakes
@6#.

This paper is organized as follows. A suitable contact
force law is introduced in Sec. II A, which attempts to com-
bine the Hertz contact law with the Coulomb friction crite-

rion. The boundary condition is introduced in Sec. II B by a
flexible membrane that surrounds the sample. The modeling
with such a membrane is very advantageous since it allows
one to implement a stress-controlled loading without any re-
striction in the deformation of the boundary. The strain re-
sponse is calculated in Sec. III for different stress increments
applied on identically generated samples. The results are dis-
cussed in Sec. IV in the framework of the theory of elasto-
plasticity.

II. MODEL

The polygons of this model are generated using a simple
version of the Voronoi tessellation: First, we set a random
point in each cell of a regular square lattice, then each poly-
gon is constructed assigning to each point that part of the
plane that is nearer to it than to any other point. Each poly-
gon is subjected to interparticle contact forces and boundary
forces. They are inserted in Newton’s equation of motion as
we explain below.

A. Contact force

Usually, the interaction between two solid bodies in con-
tact is described by a force applied on the flattened contact
surface between them. Given two polygons in contact, such
surface is obtained from the geometrical construction shown
in Fig. 1. The points C1 and C2 result from the intersection
between the edges of the polygons. The contact surface is
taken as the segment that lies between those points. The
vector SW 5C1C2

W defines an intrinsic coordinate system at the
contact ( t̂ , n̂), where t̂5SW /uSW u and n̂ is perpendicular to it.
The deformation length is given by d5a/uSW u, where a is the
overlap area between the polygons. ,W is the branch vector,
which connects the center of mass of the polygon to the point
of application of the contact force, which is supposed to be
the center of mass of the overlap area.

The normal elastic force is taken proportional to the de-
formation length as f n

e
5knd; the tangential force is calcu-

lated from the simplified Coulomb friction law with a single
friction coefficient ms5md5m . Here ms is the static and md

the dynamic friction coefficient. This tangential force is
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implemented by an elastic spring f t
e
52k tj , where j grows

linearly with the tangential displacement of the contact,
whenever u f t

eu,m f n
e . We used the straightforward calcula-

tion of j proposed by Brendel @10#,

j~ t !5E
0

t

v t~ t8!Q„u f t
e~ t8!u2m f n

e~ t8!…dt8, ~1!

where Q is the Heaviside function and v
W is the relative ve-

locity at the contact, which depends on the linear velocity v
W

i

and angular velocity vW i of the particles in contact according
to

v
W 5v

W
i2v

W
j2vW i3,W i .1vW j3,W j . ~2!

B. Boundary forces

Let us now discuss how to apply the stress on the sample.
One way to do that would be to apply a perpendicular force
on each edge of the polygons belonging to the external con-
tour of the sample. Actually, this does not work because this
force will act on all the fjords of the boundary. It produces an
uncontrollable growth of cracks that with time ends up de-
stroying the sample. Thus, it is necessary to introduce a flex-
ible membrane in order to restrict the boundary points that
are subjected to the external stress.

The algorithm to identify the boundary is rather simple.
The lowest vertex p from all the polygons of the sample is
chosen as the first point of the boundary list b1. In Fig. 2 P is
the polygon that contains p, and qPPùQ is the first inter-
section point between the polygons P and Q in counterclock-
wise orientation with respect to p. Starting from p, the verti-
ces of P in counterclockwise orientation are included in the
boundary list until q is reached. Next, q is included in the
boundary list. Then, the vertices of Q between q and the next
intersection point rPQùR in the counterclockwise orienta-
tion are included into the list. The same procedure is applied
until one reaches the lowest vertex p again. This is a very
fast algorithm, because it only makes use of the contact
points between the polygons, which are previously calcu-

lated to obtain the contact force.
The set of points that are in contact with the membrane

are selected using a recursive algorithm. It is initialized with
the vertices of the smallest convex polygon that encloses the
boundary ~see Fig. 3!. The lowest point of the boundary is
selected as the first vertex of the polygon m15b1. The sec-
ond one m2 is the boundary point b i that minimizes the angle
/(b1b i
W ) with respect to the horizontal. The third one m3 is

the boundary point b i such that the angle /(m2b i
W ,m1m2
W ) is

minimal. The algorithm is recursively applied until the low-
est vertex m1 is reached again.

The points of the boundary are iteratively included in the
list m i using the bending criterion proposed by Åstro”m et al.

@11#: For each pair of consecutive vertices of the membrane
m i5b i and m i115b j we choose that point from the subset
$bk% i<k< j that maximizes the bending angle ub

5/(bkb i
W ,bkb j

W ). This point is included into the list, when-
ever ub>u th . Here u th is a threshold angle for bending. This
algorithm is repeatedly applied until there are no more points
satisfying the bending condition.

The final result gives a set of segments $m imW i11% lying on
the boundary of the sample. In order to apply the boundary
forces, those segments are divided into two groups: A-type
segments are those that coincide with an edge of a boundary
polygon; B-type segments connect the vertices of two differ-
ent boundary polygons.

On each segment of the membrane m imW i11 a force f i

5s iN i is applied, where s i is the local stress and N i is the
90° counterclockwise rotation of m imW i11. This force is trans-
mitted to the polygons in contact with it: if the segment is of
A type, this force is applied in its midpoint; if the segment is
of B type, half of the force is applied at each one of the
vertices connected by this segment.

C. Molecular dynamics simulation

Before we implement the numerical solution of Newton’s
equations it is convenient to make a dimensional analysis of

FIG. 1. Contact surface as defined from the geometry of over-
lap.

FIG. 2. Algorithm used to find the boundary.
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the parameters. In such way we can keep the scale invariance
of the model and reduce the parameters to a minimum of
dimensionless constants. All the polygons are supposed to
have the same density. The mass m i of each polygon is mea-
sured in units of the mean mass m0 of the Voronoi tessella-
tion. The time is measured in fractions of the total loading
time t0. The evolution of the position xW i and the orientation
w i of the i th polygon is governed by the equations of motion,

l2m i xẄ i1(
c

f i
cW1(

cb

s i
b

kn

fW i
b
50W ,

l2I iẅ i1(
c

,W i
c
3 f i

cW1(
cb

s i
b

kn

,W i
b
3 fW i

b
50W . ~3!

The sums go over all those particles and boundary seg-
ments that are in contact with the i th polygon. The interpar-

ticle contact forces f i
cW and boundary forces f i

bW are given by

f i
cW5~d i

c
1lgmvn

c !n̂ i
c
1z~j i

c
2lgmv t

c! t̂ i
c ,

f i
bW
5N i

bW
2lgm iv i

W . ~4!

Here d i
c and j i

c denote the deformation length and the
tangential displacement of the contact, which were defined in
Sec. II A; s i

b is the stress applied on the boundary segment
T i

b , defined in Sec. II B. Artificial viscous terms must be
included in Eq. ~4! to keep the stability of the numerical
solution and reduce the acoustic waves generated during the
loading process. v

W c denotes the relative velocity at the con-
tact @Eq. ~2!# and m5(1/m i11/m j)

21 the effective mass of
the two polygons in contact.

There are four microscopic parameters in the model: the
viscosity g , the ratio l5ts /to between the characteristic pe-
riod of oscillation ts5Akn /m0 and the loading time t0, the
friction coefficient m , and the ratio z5k t /kn between the
tangential k t and normal kn stiffness of the interparticle con-

FIG. 3. Membrane obtained with threshold bending angle u th5p , 3p/4, p/2, and p/4. The first one corresponds to the minimum convex
polygon that encloses the sample.
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tacts. The viscosity factor g is related to the normal restitu-
tion coefficient @12#. It was taken large enough to have a high
dissipation, but not too large to keep the numerical stability
of the method. The ratio l was chosen small enough in order
to avoid rate dependence in the strain response, correspond-
ing to the quasistatic approximation. Technically, it is done
by looking for the value of l such that a reduction of it by
half makes a change of the strain response less than 5%.

The two parameters z and m determine the constitutive
response of the system. For example, the micromechanical
analysis of the strain response shows that the Young’s modu-
lus and Poisson’s ratio depend on z @13#. On the other hand,
m can be directly related to the friction angle of the material
@14#. Although the study of the dependence of the constitu-
tive response on those parameters is an important point, such
quantities have been kept fixed in this work.

The boundary conditions yield more dimensional param-
eters. The initial height H0 and width W0 of the sample, and
the characteristic length ,0 of the polygons define two geo-
metrical parameters, which are the shape ratio W0 /H0 and
the granularity ,0 /H0 of the sample ~see Table I!.

In order to keep overlaps much smaller than the charac-
teristic area of the polygons, the ratio s i /kn between the
stress applied on the membrane and the stiffness of the con-
tacts is restricted to small values. This was implemented by
fixing the contact stiffness to a value close to the experimen-
tal granular stiffness kn5160 MPa. Then the stress is cho-
sen in such a way that it does not exceed 1% of this value.

III. STRESS-STRAIN CALCULATION

A. Theoretical background

The macroscopic state of the system is characterized by
the stress tensor and the void ratio e. The area fraction of
voids in the sample defines the void ratio. Initially e050 due
to the Voronoi tessellation used. The stress controlled test
was restricted to stress states without off-diagonal compo-
nents. The diagonal components, the axial d1 and lateral d3
stress, define the stress vector,

s̃5F p

q
G5

1

2 Fd11d3

d12d3
G , ~5!

where p and q are the pressure and the shear stress. The
domain of admissible stresses is bounded by the failure sur-
face. When the system reaches this surface it becomes un-
stable and fails.

Before failure, the constitutive behavior can be obtained
performing small changes in the stress and evaluating the
resultant deformation. An infinitesimal change of the stress
vector ds̃ produces an infinitesimal deformation of the
sample, which is given by a change of height dH and width
dW. This defines the axial strain de15dH/H and lateral
strain de35dW/W increments. The volumetric strain de

v

and the shear strain deg increments define the incremental
strain vector,

d ẽ5F de
v

deg
G5Fde11de3

de12de3
G . ~6!

Each state of the sample is related to a single point in the
stress space, and the quasistatic evolution of the system is
represented by the movement of this point in the stress space.
The constitutive relation is formulated taking the incremental
strain as a function of the incremental stress and the stress
state

d ẽ5F~ds̃ ,s̃ !. ~7!

If there is no rate dependence in the constitutive equation,
F(ds̃) is an homogeneous function of degree 1. In this case,
the application of the Euler identity @15# shows that Eq. ~7!
can be reduced to

d ẽ5M ~ û ,s̃ !ds̃ . ~8!

Where û is the unitary vector defining a specific direction in
the stress space,

û5

ds̃

uds̃u
[F cos u

sin u
G , uds̃u5Adp2

1dq2. ~9!

The constitutive relation results from the calculation of
d ẽ(u), where each value of u is related to a particular mode
of loading. Some special modes are listed in Table II.

The relation ~8! has been proposed by Darve @15# and it
contains all the possible constitutive equations. In order to
interpret our particular results, it is convenient to make some
approximations: First, if the load increments are taken small
enough, the tensor M (u) can be supposed to be linear in

TABLE I. Dimensionless variables.

Variable Ratio Default value

Viscosity g 0.1
Friction coefficient m 0.25
Time ratio l5ts /to 8.031024

Stiffness ratio z5k t /kn 0.33
Granularity ,0 /H0 0.1
Shape ratio W0 /H0 1.0
Bending angle u th 0.25p

TABLE II. Principal modes of loading according to the orienta-
tion of û .

0° Isotropic compression dp.0 dq50
45° Axial loading ds1.0 ds350
90° Pure shear dp50 dq.0
135° Lateral loading ds150 ds3.0
180° Isotropic expansion dp,0 dq50
225° Axial stretching ds1,0 ds350
270° Pure shear dp50 dq,0
315° Lateral stretching ds150 ds3,0
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each stress direction. Then, we assume that the strain can be
separated in an elastic ~recoverable! and a plastic ~unrecov-
erable! component,

d ẽ5d ẽe
1d ẽp, ~10!

d ẽe
5D~ s̃ !ds̃ , ~11!

d ẽp
5J~u ,s̃ !ds̃ . ~12!

Here, D21 defines the stiffness tensor, and J5M2D the
flow rule of plasticity, which results from the calculation of
d ẽe(u) and d ẽp(u).

B. The method

The numerical method presented here was proposed by
Bardet @16#. It allows one to find the elastic d ẽe and plastic
d ẽp components of the strain as functions of the stress state
s̃ and the stress direction u . Figure 4 shows the three steps
of the procedure.

~1! The sample is driven to the stress state s̃ . First, it is
isotropically compressed until it reaches the stress value d1
5d35p2q . Next, it is subjected to axial loading, in order to
increase the axial stress d1 to p1q ~see Fig. 5!. When the
stress state s̃5@pq#T is reached, (AT being the transpose of
A) the sample is allowed to relax.

~2! Loading the sample from s̃ to s̃1ds̃ the strain incre-
ment d ẽ is obtained. This procedure is implemented choos-
ing different stress directions according to Eq. ~9!. Here the
stress modulus is fixed to uds̃u51024p .

~3! The sample is unloaded until the original stress state s̃

is reached. Then one finds a remaining strain d ẽp that corre-
sponds to the plastic component of the incremental strain.
Since the stress increments are taken small enough, the un-
loaded stress-strain path is practically elastic. Thus, the dif-

ference d ẽe
5d ẽ2d ẽp represents the elastic component of

the strain.
One could be concerned about the dependence of the

strain response on the way how the stress state is reached.
We found that there is not remarkable dependence of the
strain response on the stress path, whenever the stress com-
ponents are quasistatic and monotonically increased. Other-
wise, a strong reduction in the plastic component of the
strain is observed. In fact, when the plastic response is cal-
culated after the sample is unloaded, the plasticity is smaller
than that one calculated after a monotonic load. Furthermore,
there is no plastic component in the strain response when
elastic waves are previously generated in the sample. Those
memory effects suggest that the plastic component of the
strain depends on the history of the deformation, and is kept
unchanged only if the sample is subjected to quasistatic and
monotonic loading.

Figure 6 shows the load-unload paths and the correspond-
ing strain response. They were taken from a stress state with
q50.5p . The end of the load paths in the stress space map
into a strain envelope response d ẽ(u) in the strain space.
Likewise, the end of the unload paths map into a plastic
envelope response d ẽp(u). The yield direction f can be
found from this response, as the direction in the stress space
where the plastic response is maximal. The flow rule can be
obtained taking the direction c of the maximal plastic re-
sponse in the strain space. These angles do not agree, which
reveals the necessity to analyze this behavior in the frame-
work of the nonassociated theory of plasticity ~see Sec.
IV C!.

IV. CONSTITUTIVE RELATION

Figure 7 summarizes the global elastoplastic behavior.
The elastic response, calculated from Eq. ~10!, has a centered
ellipse as envelope response. This can be related to the mi-
crocontact structure using a local linear relation in each point
of the stress space ~see Sec. IV B!. The solid line represents

FIG. 4. Procedure to obtain the constitutive behavior: ~1! The
sample is driven to the stress state s̃ , with pressure p and shear
stress q. ~2! It is loaded from s̃ to s̃1ds̃ . ~3! It is unloaded to the
original stress state s̃ .

FIG. 5. Axial stress s15p1q and lateral stress s35p2q in a
stress controlled test. They are applied on the boundary of the tes-
sellated sample of polygons.
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the failure surface that separates the stable states from the
unstable ones ~see Sec. IV A!. The plastic envelope response
is almost on a straight line. The modulus and the orientation
of this envelope depend on the stress state through a certain
number of material parameters, which are given in Sec.
IV C. All the quantities obtained in this section have been
calculated from the average over five different samples of
10310 particles each one.

A. Failure surface

The failure line was calculated looking for the values of
stress for which the system becomes unstable: for each pres-
sure p, there is a critical shear stress qc(p), below which the
sample reaches a stable state with an exponential decay of its
kinetic energy. For shear stress values above the critical one,
the sample develops an instability and fails. Figure 8 shows
the interface between these two stress states, which can be
accurately fitted by the power law

qc

p0
5m*S p

p0
D b

. ~13!

Here p051.0 MPa is the reference pressure, and m*50.78
60.03 is the Mohr-Coulomb friction coefficient @1#. The
power law dependence on the pressure, with exponent b
50.9260.02, implies a significant deviation from the Mohr-
Coulomb theory. Moreover, the empirical criteria of failure
for most rocks @17# shows a power law dependence of the
form of Eq. ~13!. It seems that additional features beyond the
Mohr-Coulomb analysis are taking place when the sample
fails, which will be discussed in Sec. IV C.

B. Stiffness

Hooke’s law of elasticity states that the stiffness tensor of
isotropic materials can be written in terms of two material

FIG. 7. Elastic response d ẽe and plastic response d ẽp resulting
from the application of different loading modes with uds̃u51024p .
The solid line represents the failure surface.

FIG. 8. Failure surface. The continuous line represents the
power law fit.

FIG. 6. Stress-strain relation resulting from the load-unload test.
Dotted lines represent the paths in the stress and strain spaces. The
dash-dotted line gives the strain envelope response and the solid
line is the plastic envelope response.
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parameters, i.e., Young’s modulus E and Poisson’s ratio n .
However, the isotropy is not fulfilled when the stress state is
far from the hydrostatic axis. Indeed, numerical simulations
@5,18# and photoelastic experiments @19# on granular materi-
als show that the loading induces a significant deviation from
isotropy in the contact network.

The anisotropy of the granular sample can be character-
ized by the distribution of the microcontact normal vectors
n̂ i

c ~see Fig. 1!. Our numerical simulations show that the
structural changes of microcontacts are principally due to the
opening of contacts whose normal vectors are nearly aligned
around the direction perpendicular to the load. Let us call
N(w)Dw the number of contacts per particle oriented be-
tween the angles w and w1Dw , measured with respect to the
direction along which the sample is loaded. The lowest order
of anisotropy can be described by the expression

N~w !5

1

2p
@N1~N02N !cos~2w !# . ~14!

Here N is the average coordination number of the poly-
gons, whose initial value N056.0 reduces as the load is in-
creased. Figure 9 shows this reduction. A critical line is
found around q50.12p , below which there are no structural
changes in the contact network. Above this limit an induced
anisotropy arises due to opened contacts whose amount fol-
lows a power law dependence.

In order to describe the effect of the anisotropy in the
elastic response we proceed as follows: first, an additional
parameter a is included in Hooke’s law

Fde1
e

de3
e G5

1

E
F12a 2n

2n 11a
GFds1

ds3
G . ~15!

Then, these three parameters are supposed to be dependent
on the internal damage parameter d,

d5

N02N

N0
. ~16!

The tensor D defined in Eq. ~11! is calculated from Eq.
~15! using the definition of the stress and strain vectors given
in Eqs. ~5! and ~6!. One obtains

D5

2

E
F12n 2a

2a 11n
G . ~17!

The diagonal components of this tensor are the inverse of the
bulk modulus and of the shear modulus, respectively. The
nondiagonal component results from the anisotropy of the
sample, and it couples the compression mode with the shear-
ing deformation. These three variables are calculated from
the elastic response d ẽe(u) by the introduction of the follow-
ing function:

R~u !5

ds̃Td ẽe

uds̃u2
. ~18!

Substituting Eqs. ~11! and ~9! into Eq. ~18!, one sees that
R is the quadratic form of D,

R~u !5 ûTD û5

2

E
@12n cos~2u !2a sin~2u !# . ~19!

FIG. 9. Reduction of the mean coordination number of contacts
~dotted line!. The data have been fitted to a truncated power law
~dashed line!. See Eq. ~29!.

FIG. 10. Young’s modulus. The solid line is the linear approxi-
mation of E(d). See Eq. ~24!.
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Using this equation, the components of D can be evaluated
as the Fourier coefficients of R,

1

E
5

1

4p
E

0

2p

R~u !du , ~20!

n52

E

2p
E

0

2p

R~u !cos~2u !du , ~21!

a52

E

2p
E

0

2p

R~u !sin~2u !du . ~22!

Figures 10, 11, and 12 show the results of the calculation
of Young’s modulus E, Poisson’s ratio n , and the anisotropy
factor a , respectively. Below the limit of isotropy, Hooke’s
law can be applied: E'E0 , n'n0 and a'0. On the other
hand, above the limit of isotropy a reduction of Young’s
modulus is found, along with an increase of Poisson’s ratio
and the anisotropy factor. The functional dependence of
those parameters on the internal damage parameter d is
evaluated developing their Taylor’s series around d50,

E~d !5E~0 !1E8~0 !d1O~d2!,

a~d !5a~0 !1a8~0 !d1O~d2!, ~23!

n~d !5n~0 !1n8~0 !d1n9~0 !d2
1O~d3!.

The coefficients of this expansion are calculated from the
best fitting of those expansions. Figures 10 and 12 show that
the linear approximation is good enough to reproduce
Young’s modulus and the anisotropy factor. The fit of Pois-
son’s ratio, however, requires the inclusion of a quadratic

approximation, implying that it has a nonlinear dependence
on the damage parameter ~Fig. 11!.

C. Plastic flow

The formulation of the nonassociated theory of plasticity
requires the evaluation of three material functions, i.e., the
yield direction f , the flow direction c , and the plastic modu-
lus h. These quantities can be calculated from the plastic
response d ẽp(u), as follows.

The yield direction is given by the incremental stress di-
rection f with maximal plastic response

ud ẽp~f !u5max
u

ud ẽp~u !u. ~24!

The flow direction is defined from the orientation of the plas-
tic response at its maximum value

c5arctanS deg
p

de
v

pD U
u5f

. ~25!

The plastic modulus is obtained from the modulus of the
maximal plastic response

1

h
5

ud ẽp~f !u

uds̃u
. ~26!

Reciprocally, the plastic response can be expressed in
terms of these quantities. Let us define the unitary vectors ĉ

and ĉ'. The first one is oriented in the direction of c and the
second one is the 90° rotation of ĉ . The plastic strain is
written in this basis as

FIG. 11. Poisson’s ratio. The dashed line is the quadratic ap-
proximation of n(d). See Eq. ~24!.

FIG. 12. Anisotropy parameter. The dashed line is the linear
approximation of a(d). See Eq. ~24!.
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d ẽp~u !5@~d ẽp!Tĉ#ĉ1@~d ẽp!Tĉ'#ĉ'

[
1

h
@ f ~u !ĉ1g~u !ĉ'# . ~27!

The plastic profiles f (u) and g(u) are shown in Fig. 13.
The first one is approximately the same for all the stress
states, and can be well fitted to a cosine function, centered on
the yield direction f and truncated to zero for the negative
values. The last profile depends on the stress value, and is
difficult to evaluate, because it is of the same order as the
statistical fluctuations. However, the contribution of g to the
total strain response is negligible. In order to simplify the
description of the plastic response, the following approxima-
tion is made:

g~u !! f ~u !'@@cos~u2f !##5@@f̂Tû## , ~28!

where @@•## defines the function

@@x##5H 0, x<0,

x , x.0.
~29!

Now, the flow rule results from the substitution of Eqs.
~27! and ~28! into Eq. ~12!,

J~u !ds̃5

@@f̂Tds̃##

h
ĉ . ~30!

The yield direction and the flow direction have been cal-
culated for different stress states. The results are shown in
Fig. 14. Both angles are quite different, which is a clear
deviation from Drucker’s normality postulate @20#. Indeed,

many experimental results on soil deformation @21# have
confirmed that these angles are completely different. Thus
Drucker’s postulate is not fulfilled in the deformation of
granular materials, and the main reason for that is the rear-
rangement of contacts on small deformations, which are not
taken into account in this theory. On the other hand, all the
sliding, opening, and other micromechanical rearrangements
can be well handled in the discrete element formulation,
which is more adequate to describe the soil deformation.

The material constants are evaluated from the dependence
of the plastic quantities on the stress: the yield direction and
the flow direction can be roughly approximated by straight
lines,

f5f01f08
q

p
,

c5c01c08
q

p
. ~31!

The four material parameters f0546°60.75°, f08

588.3°60.6°, c0578.9°60.2°, and c08559.1°60.4° are
obtained from the linear fit of the data. On the other hand,
Fig. 15 shows that the plastic modulus depends on the stress
through a power law relation,

h5h0F12

q

q0
S p0

p
D qGh

. ~32!

There are four additional material parameters: The plastic
modulus h0514.560.05 at q50, the constant q050.85
60.05, and the exponents h52.760.04 and q50.99
60.02.

The plastic limit surface is given by the stress states
where the plastic deformation becomes infinite. According to
the flow rule @Eq. ~30!#, it is found, looking for the stress
values, where Eq. ~32! vanishes,

FIG. 13. Plastic profiles f (u) ~solid line! and g(u) ~dashed line!.
The results for different stress values have been superposed.

FIG. 14. The flow direction and the yield direction of the plastic
response. Solid lines represent a linear fit.
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qp

q0
5S p

p0
D q

. ~33!

It is important to point out that the failure surface—given
in Eq. ~13!—does not correspond to the plastic limit surface.
Actually, this matter has already been discussed in the frame-
work of Hill’s condition of instability @22# the bifurcation
analysis @23#, which predicts that the instability should be
reached strictly inside the plastic limit surface.

V. CONCLUDING REMARKS

The elastoplastic response of a Voronoi tessellated sample
of polygons has been calculated in the case of monotonic and
quasistatic loading. It can be written in a simple form as

d ẽ5D~d !ds̃1

@@f̂Tds̃##

h
ĉ . ~34!

The plastic response reflects the nonassociated features of
realistic soils. Here the yield direction and flow direction are
linearly related to the ratio q/p , and the plastic modulus
obeys a power law relation with a weak pressure depen-
dence. The classical parameters of elasticity—Young’s
modulus and Poisson’s ratio—are not material constants, be-
cause they depend on the internal damage parameter. There-
fore, Eq. ~34! is not complete, and it is necessary to include
the relation between the internal damage and the external
load. By focusing on the details of the dynamics of the mi-
crocontacts, a significant progress may be made in the inves-
tigation of the continuous models.

The elastoplastic response leads to the identification of
three different regimes which are shown in Fig. 16. Zone I
corresponds to the isotropic regime, characterized by small
plastic deformations and a linear elastic regime. In zone II
open contacts are detected, which must be taken into account
in the calculation of the nonlinear elasticity. Zone III corre-
sponds to unstable states so that the stress-strain relation can-
not be calculated here. The extrapolation of the strain re-
sponse in this region shows that the plastic strain must have
a finite value just before the instability is reached.

The above observation leads to the open question of the
nature of the failure @22#. Numerical simulations on strain
controlled tests show that strain localization is the most typi-
cal mode of failure. The fact that it appears before the sample
reaches the plastic limit surface suggests that the appearance
of the instability is not completely determined by the macro-
scopic state.

The role of the microstructure on the strain localization
has been intensely studied in the last years @23,24#. Future
work is the creation of samples with different granular
textures—for example, changing the void ratio distributions
and the polydispersity of the grains. Then we can deal with
the question that how does a change in the microstructure
affect the elastoplastic response and the strain localization.
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