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Abstract

The near field solution for the scattering of a plane monochromatic electromagnetic
wave by an ensemble of parallel infinite dielectric cylinders at perpendicular incidence
is presented in this paper. The solution is given for the calculation of the electric and
magnetic near fields and the Poynting vector. A MATLAB program has been developed
to solve the near field formulas which is introduced and validated. The near to far field
transition as well as formation and transport of photonic nanojets have been calculated
for multiple cylinder scattering.
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1. Introduction

The theoretical investigation of electromagnetic scattering by small particles is of
severe interest in different research fields, e.g. remote sensing, heat transfer or light
propagation in biological tissue [1]. Though the experimentally measured scattering
samples are usually of complex shape and composition, much knowledge of scattering
processes can be gained by looking at the theoretical scattering solutions for simplified
geometries. For the theoretical examination of many problems, e.g. the scattering of
light by cells in tissue [2] or the study of radiative properties of aerosols in atmosphere
[3], spherical scatterers can be applied as simple models. The solution of the scattering
of electromagnetic waves by a sphere (Mie theory) [4] and their extensions, e.g. the
scattering by a layered sphere [5], the multiple scattering Mie solution (GMM) [6] or the
generalized Lorenz-Mie theory for an incident Gaussian beam (GLMT) [7], are widely
used for this purpose.

Another fundamental scattering structure for which an analytical solution has been
developed is the infinite cylinder [1]. For many scattering problems, e.g. thermal radiation
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in fibrous materials [8] or light propagation in anisotropic biological media like skin,
muscle or tooth [9], cylindrical structures can be identified as primal scattering objects.
If the length of the cylindrical scattering structures is much larger than the diameter,
the infinite cylinder approximation can be applied [10], which is e.g. the case for human
dentin [9]. Analogous to the Mie solution, a various number of extensions exists for the
infinite cylinder scattering theory, which include layered particle [5, 11], multiple particles
[12, 13, 14] and Gaussian beam solutions [15].

In most electromagnetic scattering applications, the scattered field is measured in
a certain distance to the scattering structure, which is in the far field. Therefore, in
theoretical investigations often merely the far field solutions of the scattering problems
are regarded. However, the basis of the Mie and cylinder theories is actually located in the
near fields. The far field solution can be obtained by limiting value considerations of the
near field formulas. Apart from the far field solution also the near field solution can play
an important role in improving the understanding of the scattering of electromagnetic
waves by small particles. Many interesting phenomena, like photonic nanojets [16] or
local field enhancement [17], can only be described by considering the near field solutions.

In this paper the near field solution for the light scattering by multiple parallel infinite
cylinders at perpendicular incidence is presented. In the first section the theoretical
derivation of the solution is sketched and the relevant formulas are summarized. The next
section shows validation results for the numerical calculation of the analytical solution in
comparison to numerical results obtained with the finite difference time domain (FDTD)
method [18]. The implemented formulas have been utilized to examine the near to far
field transition for the scattering by multiple cylindrical particles which is detailed in the
subsequent section. In addition the transport of energy of a photonic nanojet through a
multiparticle system has been investigated. In the last section some concluding remarks
are appended.

2. Theory

In this section the near field solution for the scattering of a monochromatic plane
electromagnetic wave by an ensemble of parallel infinite cylinders at perpendicular inci-
dence is presented. The solution is based on the multiple cylinder scattering formalism of
Lee [13], another solution has been presented by Henin et al. [19]. The cylinders do not
overlap but can have different optical properties and radii. In an ensemble of N particles
the radius of each cylinder i ∈ {1 . . . N} is defined as ai, the complex refractive index
inside the cylinder is given by ni. The cylinders are embedded in a non-absorbing outer
medium with real refractive index nm and illuminated by a plane electromagnetic wave
with vacuum wave number k0. The wave number inside the outer medium is given by
km = k0nm, the wave number inside each particle by ki = k0ni. In figure 1 a scheme of
a two-particle scattering problem is shown. The plane wave is incident at an angle ϕi
relative to the x-axis, the cylinder axes are aligned parallel to the z-axis. The cylinders
are placed at points Pi, the near field is considered at point P = P (ρ, φ). RiP is the
distance between point Pi and point P . The angle between the positive x-axis and the
connection line ~RiP = PiP is defined as γiP . Rjl is the distance between two cylinders

j, l, the angle between the connection line ~Rjl = PjPl and the x-axis is defined by γjl.
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Figure 1: Definition of the distance and angle parameters used for the solution of the
multiple cylinder scattering.

2.1. Hertz potentials

In a homogeneous medium with refractive index n the complete field solution of the
scattering problem ( ~E, ~H) can be expressed in terms of two scalar Hertz potentials (u,
v) [11]. These Hertz potentials have to satisfy the wave equation:(

∆ + (nk0)
2
)
·
[
u
v

]
= 0. (1)

With known potentials the field solution inside a homogeneous medium is given as follows
[11]:

~E =
i

nk0
∇×∇× ~u+∇× ~v, (2a)

~H = −n∇× ~u+
i

k0
∇×∇× ~v, (2b)

~u = (0, 0, u)
T
, (3a)

~v = (0, 0, v)
T
. (3b)

For the case of infinite cylinders it is appropriate to formulate the problem in cylindrical
coordinates. Due to symmetry along the axis of infinity (z-axis) the z-derivatives vanish
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and the field solution in cylindrical coordinates can be expressed as

Eρ =
1

ρ

∂v

∂φ
, (4a) Hρ = −n

ρ

∂u

∂φ
, (4b)

Eφ =− ∂v

∂ρ
, (4c) Hφ = n

∂u

∂ρ
, (4d)

Ez =− i

nk0

[
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

(
∂

∂φ

)2
]
u, (4e) Hz = − i

k0

[
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

(
∂

∂φ

)2
]
v.

(4f)

The field solution splits up into two independent solutions, the transverse magnetic mode
(TM, u) and the transverse electric mode (TE, v), respectively.

The incident field for both modes is given by the following equations:

~E0
TM = ikme

−ikm(x cosϕi−y sinϕi)êz, (5a)

~H0
TM = −ikmnme−ikm(x cosϕi−y sinϕi) (sinϕiêx + cosϕiêy) , (5b)

~E0
TE = ikme

−ikm(x cosϕi−y sinϕi) (sinϕiêx + cosϕiêy) , (5c)

~H0
TE = ikmnme

−ikm(x cosϕi−y sinϕi)êz. (5d)

The Poynting vector ~S = c0/(8π) · Re{ ~E × ~H∗} of the incident field for both TM and
TE mode can be calculated as follows:

~S0 =
c0nmk

2
m

8π
(cosϕiêx − sinϕiêy) . (6)

2.2. Solution of the potentials

By solving the wave equation (1) and considering the boundary conditions between
different media the solution of the potentials can be obtained. The derivation of this
solution for the scattering by multiple cylinders has been published elsewhere in detail
[13]. The resulting formulas for the potentials are shortly summarized here and finally
the near field solution will be presented.

The total field potentials outside the cylinders (ut, vt) can be written as[
ut(P )
vt(P )

]
=

[
u0(P )
v0(P )

]
+

[
us(P )
vs(P )

]
, (7)

where (u0, v0) are the potentials of the incident field and (us, vs) are the scattered field
potentials. The incident field potentials can be expressed as[

u0(P )
v0(P )

]
=

[
δTM

1− δTM

] ∞∑
n=−∞

(−i)n einφeinϕiJn (kmρ) , (8)

where Jn is the Bessel function of the first kind and δTM = 1 for a TM mode incident
wave or δTM = 0 for a TE mode incident wave. The solution of the scattered field
potentials is given by[

us(P )
vs(P )

]
= −

N∑
j=1

∞∑
n=−∞

(−i)n einγjP Hn (kmRjP )

[
bjn
ajn

]
, (9)
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where Hn corresponds to the Hankel function of the second kind. The expansion coef-
ficients (ajn, bjn) are related to the single cylinder scattering coefficients (a0jn, b0jn) [1]
and can be obtained by solving the following equation system [20]:

N∑
l=1

∞∑
s=−∞

(
δljδns + (1− δlj)Gjnls

[
b0jn
a0jn

])[
bls
als

]
= εje

inϕi

[
b0jn
a0jn

]
, (10)

Gjnls = (−i)s−nHs−n(kmRlj)e
i(s−n)γlj . (11)

In the above expression δ denotes the Kronecker delta and εj = exp(−ikm(xj cosϕi −
yj sinϕi)) is the phase shift of the incident wave at the center point ~Pj = (xj , yj) of the
jth cylinder relative to the origin O of the reference frame.

The total field potentials inside cylinder l (ul, vl), l ∈ {1 . . . N}, can be expressed as[
ul(P )
vl(P )

]
=

∞∑
n=−∞

(−i)n einγlP Jn (klRlP )

[
Bln
Aln

]
. (12)

The expansion coefficients for the internal fields (Aln, Bln) are related to the expansion
coefficients of the scattered field (ajn, bjn) by[

Bln
Aln

]
=

(
Jn(klal)

[
ml

m2
l

])−1
·

(
εle

inϕiJn(kmal)−
[
bln
aln

]
Hn(kmal)

− Jn(kmal)

N∑
j=1
j 6=l

∞∑
s=−∞

(−i)s−nHs−n(kmRlj)e
i(s−n)γlj

[
bjs
ajs

])
.

(13)

The solutions of the potentials can be inserted into equations (4) to get the near field
solutions.

2.3. TM mode field solutions

For the TM mode the solution of the scattered field at any point P outside the
cylinders is:

Hs
ρ = nm

N∑
j=1

∞∑
n=−∞

(−i)neinγjP
(

in

RjP
Hn(kmRjP ) cos(γjP − φ)

+ kmH′n(kmRjP ) sin(γjP − φ)

)
bjn,

(14a)

Hs
φ = nm

N∑
j=1

∞∑
n=−∞

(−i)neinγjP
(

in

RjP
Hn(kmRjP ) sin(γjP − φ)

− kmH′n(kmRjP ) cos(γjP − φ)

)
bjn,

(14b)

Esz = −ikm
N∑
j=1

∞∑
n=−∞

(−i)neinγjP Hn(kmRjP )bjn. (14c)
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In addition the solution for the total internal fields at any point P inside cylinder l can
be obtained:

H l
ρ = nl

∞∑
n=−∞

(−i)neinγlP
(
− in

RlP
Jn(klRlP ) cos(γlP − φ)

− klJ′n(klRlP ) sin(γlP − φ)

)
Bln,

(15a)

H l
φ = nl

∞∑
n=−∞

(−i)neinγlP
(
− in

RlP
Jn(klRlP ) sin(γlP − φ)

+ klJ
′
n(klRlP ) cos(γlP − φ)

)
Bln,

(15b)

Elz = ikl

∞∑
n=−∞

(−i)neinγlP Jn(klRlP )Bln. (15c)

The solution of the time-averaged Poynting vector for the scattered field can be derived
by using equations (14):

Ssρ =
c0kmnm

8π
· Re

{
i

N∑
j=1

∞∑
n=−∞

N∑
l=1

∞∑
s=−∞

(−i)n−seinγjP−isγlP(
− is

RlP
Hn(kmRjP )H∗s(kmRlP ) sin(γlP − φ)

− kmHn(kmRjP )H′∗s (kmRlP ) cos(γlP − φ)

)
bjnb

∗
ls

}
,

(16a)

Ssφ =
c0kmnm

8π
· Re

{
i

N∑
j=1

∞∑
n=−∞

N∑
l=1

∞∑
s=−∞

(−i)n−seinγjP−isγlP(
is

RlP
Hn(kmRjP )H∗s(kmRlP ) cos(γlP − φ)

− kmHn(kmRjP )H′∗s (kmRlP ) sin(γlP − φ)

)
bjnb

∗
ls

}
,

(16b)

Ssz = 0. (16c)
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Also for the internal total fields inside cylinder l an expression for the Poynting vector
can be derived from equations (15):

Slρ =
c0klnl

8π
· Re

{
i

∞∑
n=−∞

∞∑
s=−∞

(−i)n−sei(n−s)γlP(
− is

RlP
Jn(klRlP )J∗s(klRlP ) sin(γlP − φ)

− klJn(klRlP )J′∗s (klRlP ) cos(γlP − φ)

)
BlnB

∗
ls

}
,

(17a)

Slφ =
c0klnl

8π
· Re

{
i

∞∑
n=−∞

∞∑
s=−∞

(−i)n−sei(n−s)γlP(
is

RlP
Jn(klRlP )J∗s(klRlP ) cos(γlP − φ)

− klJn(klRlP )J′∗s (klRlP ) sin(γlP − φ)

)
BlnB

∗
ls

}
,

(17b)

Slz = 0. (17c)

2.4. TE mode field solutions

The solution of the TE mode scattered field at any point P outside the cylinders is
given by

Esρ =

N∑
j=1

∞∑
n=−∞

(−i)neinγjP
(
− in

RjP
Hn(kmRjP ) cos(γjP − φ)

− kmH′n(kmRjP ) sin(γjP − φ)

)
ajn,

(18a)

Esφ =

N∑
j=1

∞∑
n=−∞

(−i)neinγjP
(
− in

RjP
Hn(kmRjP ) sin(γjP − φ)

+ kmH′n(kmRjP cos(γjP − φ)

)
ajn,

(18b)

Hs
z = −ikmnm

N∑
j=1

∞∑
n=−∞

(−i)neinγjP Hn(kmRjP )ajn. (18c)
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The solution for the total internal fields at a point P inside cylinder l is:

Elρ =

∞∑
n=−∞

(−i)neinγlP
(
in

RlP
Jn(klRlP ) cos(γlP − φ)

+ klJ
′
n(klRlP ) sin(γlP − φ)

)
Aln,

(19a)

Elφ =

∞∑
n=−∞

(−i)neinγlP
(
in

RlP
Jn(klRlP ) sin(γlP − φ)

− klJ′n(klRlP ) cos(γlP − φ)

)
Aln,

(19b)

H l
z = iklnl

∞∑
n=−∞

(−i)neinγlP Jn(klRlP )Aln. (19c)

The time-averaged Poynting vector for the scattered field solution can be calculated as
follows:

Ssρ =
c0kmnm

8π
· Re

{
i

N∑
j=1

∞∑
n=−∞

N∑
l=1

∞∑
s=−∞

(−i)n−seinγjP−isγlP(
− in

RjP
Hn(kmRjP )H∗s(kmRlP ) sin(γjP − φ)

+ kmH′n(kmRjP )H∗s(kmRlP ) cos(γjP − φ)

)
ajna

∗
ls

}
,

(20a)

Ssφ =
c0kmnm

8π
· Re

{
i

N∑
j=1

∞∑
n=−∞

N∑
l=1

∞∑
s=−∞

(−i)n−seinγjP−isγlP(
in

RjP
Hn(kmRjP )H∗s(kmRlP ) cos(γjP − φ)

+ kmH′n(kmRjP )H∗s(kmRlP ) sin(γjP − φ)

)
ajna

∗
ls

}
,

(20b)

Ssz = 0. (20c)
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In addition the Poynting vector for the internal total fields inside cylinder l can be derived
as

Slρ =
c0klnl

8π
· Re

{
i

∞∑
n=−∞

∞∑
s=−∞

(−i)n−sei(n−s)γlP(
− in

RlP
Jn(klRlP )J∗s(klRlP ) sin(γlP − φ)

+ klJ
′
n(klRlP )J∗s(klRlP ) cos(γlP − φ)

)
AlnA

∗
ls

}
,

(21a)

Slφ =
c0klnl

8π
· Re

{
i

∞∑
n=−∞

∞∑
s=−∞

(−i)n−sei(n−s)γlP(
in

RlP
Jn(klRlP )J∗s(klRlP ) cos(γlP − φ)

+ klJ
′
n(klRlP )J∗s(klRlP ) sin(γlP − φ)

)
AlnA

∗
ls

}
,

(21b)

Slz = 0. (21c)

2.5. Total, scattered and incident fields

By definition the total field can be expressed as a sum of the scattered field and the
incident field. Equations (14) and (18) are scattered field solutions while equations (15)
and (19) are used to calculate the internal total fields. To get the total field solution
from the scattered field equations or vice versa, the incident field which is given in Eqs.
(5) has to be added or subtracted to the corresponding solution.

2.6. Normalization and scaling

For better comparison the results have been normalized by the incident field. This
means, that each calculated field component (for both ~E and ~H fields) has been divided

by the corresponding component of the incident electric field ~E0. This does not only
provide a normalization of the field magnitudes, but also of the phases. The Poynting
vector has been normalized by the corresponding Poynting vector of the incident field as
well.

Finally, it should be noted that the system of units underlying the presented near field
formulas is the cgs-system. However, the FDTD solution used in this work for validation
purposes is based on the SI-system of units. In order to be able to compare absolute
values the normalized magnetic fields calculated via the analytical solution have been
additionally scaled by a factor of (c0µ0)−1, where c0 is the speed of light in vacuum and
µ0 is the permeability of free space.

2.7. Cartesian coordinates

For the derivation of the multiple cylinder scattering solution the problem has been
regarded in cylindrical coordinates. Also, the resulting near field vector components are
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expressed in cylindrical coordinate basis. In order to get the solution vector in Cartesian
coordinate basis the resulting vector components have to be transformed as follows:FxFy

Fz

 =

cosφ − sinφ 0
sinφ cosφ 0

0 0 1

FρFφ
Fz

 . (22)

3. Implementation and validation

For the calculation of equations (14) – (21) a MATLAB software package has been
implemented which is available for download [21]. In this section implementation details
as well as verification results are presented.

3.1. Truncation criterion

One difficulty in solving the above equations is the treatment of the infinite sums. A
suitable truncation criterion has to be derived. This has been done for the single cylinder
far field solution [1] and the same criterion has also been successfully used for the multiple
cylinder far field solution [22]. Thereby the sum over n for a specific cylinder j has been
evaluated for integer values between n = −Mj . . .Mj , where Mj = d(xj + 4 · 3

√
xj + 2)e

and xj = ajkj is the size parameter of cylinder j in the ensemble. For the near field
solution it was found that the proposed truncation number is also applicable.

3.2. Verification of the near field results

In order to verify the results of the implemented software package different tests have
been performed. At first, the implementation has been tested for the reproduction of the
single cylinder scattering results. The near field solution for the scattering by a single
cylinder has been formulated by Bohren and Huffman [1] and was also implemented into
a MATLAB code [23]. With this program the validity of the multiple cylinder solution
when regarding only a single scatterer could be proved. All field components could be
identically reproduced with both implementations.

To be able to verify the near field results calculated for multiple cylinder scattering
a FDTD simulation tool has been used. A detailed description of the FDTD tool can
be found elsewhere [23]. The results of different comparison tests between both methods
are presented below.

In a first test the near field results of all electric and magnetic field components have
been compared directly. The scattering of a plane monochromatic wave (ϕi = 0◦) with
wavelength λ = 600 nm by four randomly positioned dielectric cylinders with diameter
d = 0.5µm and refractive index ncyl = 1.33 (nm = 1) has been calculated using the
analytical solution and the FDTD method. For the FDTD method a discretization size
of ∆ = λ/20 has been used. The results for the magnitudes of the normalized electric and
magnetic scattered TM and TE field components as well as the corresponding relative
differences between the results of both methods are shown in figure 2. For a better scaling
all relative errors above 50 percent are plotted in the same color. It can be seen that the
relative error in regions with low scattered field magnitude is highest (> 50%). This is due
to the fact that in the FDTD method a steady error noise is present because of different
numerical error sources [23] which distorts the results at low magnitude. Additionally,
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Figure 2: Near field magnitude for the scattering by four cylinders calculated with the
(a) analytical solution and the (b) FDTD method. The relative difference between both
methods is shown in (c). The cylinders are located at positions (0.66, 0.49), (1.7, 0.5),
(1.48, 1.18), (0.89, 1.98) (in microns).
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Figure 3: Convergence test for the scattering by two cylinders. The relative difference
of the magnitude of the Ez component calculated with the FDTD method compared to
the analytical solution is shown for ∆ = λ/20 (left), ∆ = λ/40 (middle) and ∆ = λ/80
(right).

in the FDTD method the field components are arranged in a staggered grid [18]. In
the calculation of the analytical solution this arrangement has not been regarded, which
means that the location where a certain field component has been evaluated is slightly
shifted compared to the location of the corresponding component in the FDTD grid.
Only the Ez component is evaluated at the same location in both methods, which in
the end has been found to give the lowest error. However, for high magnitude fields the
relative difference is less than 10 percent.

The differences observed in the previous test should result mainly from numerical
errors inherent in the FDTD simulation while the analytical solution should give correct
results. To verify this statement a convergence test has been performed. Under the
assumption that the analytical solution is correct the FDTD solution should converge
to the analytical solution as the discretization size in the FDTD method decreases. For
this the scattering by two cylinders with diameter d = 0.7µm and refractive index
ncyl = 1.33 has been regarded. The cylinder centers were separated by a full diameter
(touching cylinders) and the connection line between the cylinder was set to form an
angle of 45 degrees with the positive x-axis, which is the direction of the incident wave.
The scattering of a plane TM wave (λ = 600 nm, nm = 1) by this two-particle system has
been calculated with the FDTD method and compared to the analytical solution. For the
convergence test the discretization size in the FDTD method has been altered from λ/20
to λ/80. The relative difference between the FDTD results and the analytical solution
of the Ez component for three different discretization sizes (∆ = λ/20, ∆ = λ/40 and
∆ = λ/80) are shown in figure 3. As expected a convergence behavior can be observed
when the discretization size is scaled down.

In a last test the implementation has been validated for the calculation of the Poynting
vector. There are two possibilities to calculate the Poynting vector. The first is to
evaluate the electric and magnetic fields via equations (14), (15), (18) and (19) and
get the Poynting vector by calculating the cross product of the fields afterward. The
second way is to use equations (16), (17), (20) and (21) directly. It could be successfully
verified that both methods give equal results. In addition, the results of the analytical
solution have been compared to FDTD simulations. In figure 4 the Poynting vector for
the scattering by two cylinders calculated by both methods is shown. The TM mode
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Figure 4: Poynting vector of the scattered fields for a TM incident field scattered by
two cylinders. The shown results have been calculated with the FDTD (left) and the
analytical method (right).

incident wave (ϕi = 0◦) had a wavelength of λ = 600 nm, the cylinders had a diameter
of 0.2µm (ncyl = 1.33, nm = 1) and were separated by 0.4µm. It can be seen that both
methods can be used to reproduce similar results.

3.3. Computational complexity

In this section some remarks about the computational effort needed to solve the
near field equations will be given. At first, to get the near field solution, the far field
expansion coefficients have to be calculated. The difficulty thereby is the solution of the
linear equation system (10). The size of this equation system is defined by the truncation
numbers Mj and the total number of particles in the ensemble. The complexity to solve
the problem increases quadratically with increasing number of particles or cylinder size.
For the calculation of the near fields the effort increases only linearly with increasing size
and number and additionally with the total number of near field locations to evaluate. In
comparison the complexity of the 2D FDTD method is given by the total number of cells
in the simulation grid which is determined by the problem size and the discretization
length.

The FDTD method is advantageous compared to the analytical solution in means
of computational speed for the calculation of the scattering by many densely packed
cylinders confined in a volume small compared to the incident wavelength. Another
advantage over the analytical solution is, that for non-dispersive materials the FDTD
method offers the possibility to evaluate a whole spectral range in a single simulation [24]
while with the analytical approach the problem would have to be solved multiple times.
In the FDTD simulation considerable numerical errors are present and the discretization
size has to be reduced to improve the accuracy. A discretization size of at least ∆ = λ/20
should be used to get acceptable results.
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The analytical solution gives more accurate results than the FDTD solution. It is
advantageous in calculating the scattering by a small number of particles, by widely
separated particles or if just a small number of near field locations has to be evaluated.
In the end the choice of the method has to be balanced between computational effort
and gained accuracy.

4. Results

With the implemented near field solution for the scattering by multiple infinite cylin-
ders some basic investigations have been performed which will be presented in this section.

4.1. Near to far field transition

At first, the near to far field transition has been examined numerically. In the scat-
tered near fields surrounding the scatterer no clear direction of the energy flux can be
specified. However, at distances far away from the scatterer the scattered field radiates as
an outgoing cylindrical wave. This means the radial component of the scattered electric
and magnetic fields vanishes and only the angular component is present. However, the
direction of the energy flux, which is given by the Poynting vector, is radially aligned.
So for the Poynting vector in contrary to the fields the angular component vanishes and
only the radial component remains.

By using the analytical method to solve the near field solution the near to far field
transition could be examined numerically by evaluating the scattered fields at increasing
distances to the scattering center. For a certain scattering structure the Poynting vector
has been calculated along a circle around the center of the structure for different circle
radii. In addition, the far field scattering has been solved for the same scattering structure
as reference. The Poynting vector has been normalized by a factor of ρkmπ/2 in order to
be comparable to the far field solution given in the form of amplitude scattering matrix
elements [1].

In figure 5 the angular resolved Poynting vector components for the scattering of a
TM mode wave (λ = 600 nm, ϕi = 0◦, nm = 1) by a single cylinder with diameter
d = 6µm (radius R = 3µm) and refractive index ncyl = 1.33 are shown. The Poynting
vector has been calculated at different distances ρ around the cylinder center (ρ/R ∈
{2, 10, 100, 1000}). On the upper left-hand side the ρ component of the Poynting vector
of the near field solution is plotted together with the far field solution. On the upper right
the φ component is shown which vanishes in the far field. In the bottom left figure the
relative difference between the near field results for ρ/R ∈ {100, 1000} and the far field
solution is presented. On the right-hand side the value of the φ component normalized by
the ρ component of the far field solution is plotted. It can be seen that as the distance
to the center increases the near field solution converges to the far field solution. A
deviation of less than 30 percent for ρ/R = 100 and less than 3 percent for ρ/R = 1000 is
observed for the ρ components. As expected, the φ component of the near field solution
approaches zero as the distance to the center increases. The same investigation has been
performed for a structure consisting of many cylinders. Five cylinders with diameter
d = 2µm have been placed in a 6µm circle as is shown in the inlay of figure 6. The
same parameters for the refractive indices and the incident wavelength have been used
as before. The scattering has been calculated for the same distances as above, the results
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Figure 5: Comparison of the angular resolved far field solution with near field results for
a single cylinder at various distances to the scatterer center.

of the components of the Poynting vector are shown in the figure. It can be seen that
the near field results converge to the far field solution. However, the relative differences
are larger than for the single cylinder case. This is interesting to see, because the radius
of the circle where the scatterers are confined stays the same as before. Obviously, due
to the near field interaction of the cylinders in the ensemble the fields converge slower to
the far field solution.

In principle the approach shown here could be used to systematically investigate the
near to far field transition for scatterers of various sizes and compositions. However, the
task of doing such a thorough analysis has not been part of this paper’s work.

4.2. Photonic nanojets

In a further investigation the analytical approach has been used to examine photonic
nanojets and the focussing of light through multiple cylindrical particles. A photonic
nanojet is a local enhancement of the total field intensity which can be observed behind
a spherical or cylindrical scatterer [25, 16]. The formation of a nanojet can be seen as
a small dimension equivalent to the focussing of a spherical or cylindrical lens which is
known from geometrical optics [23].

It was shown that the energy of a photonic nanojet can be transported through a chain
of spherical particles [26]. In this article the transport of the nanojet energy through a
multiparticle cylindrical system is investigated. The formation of the nanojet behind a
single cylindrical particle can be seen in the upper left graph in figure 7. The cylinder
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Figure 6: Comparison of the angular resolved far field solution with near field results
for the scattering by five cylinders at various distances to the center of the scattering
system.

was 6µm in diameter with refractive index ncyl = 1.33 (nm = 1). The total field solution
has been calculated for an incident TM mode wave with a wavelength of λ = 600 nm
(ϕi = 0◦). At the right-hand side the intensity along the x-axis for y = 0 is shown. The
nanojet peak can clearly be observed behind the particle. By placing a second particle
at a distance of 12µm behind the first particle the intensity of the first peak stays the
same and a little amount of light is focussed along the forward direction, which can
be seen in the center graphs of figure 7. By placing a third particle 12µm behind the
second one another peak occurs in the intensity image as can be seen in the graphs at
the bottom. The light which is slightly focussed by the second cylinder is focussed again
by the third cylinder which produces a second peak about half the intensity of the first
one. In principle such a multiparticle system can be seen as a small dimension equivalent
of a lens system.

The calculations shown in this section give a short overview of the possibilities for the
usage of the presented near field solution. Some interesting phenomena like local field
enhancements can only be investigated by looking at the near field results.

5. Conclusion

In this paper the near field solution for the scattering of a plane electromagnetic wave
by multiple infinite parallel cylinders at perpendicular incidence has been presented. An
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Figure 7: Formation and energy transport of a photonic nanojet by multiple cylindrical
scatterers.

implementation of the solution of these formulas was developed and has been made avail-
able for download [21]. This implementation was successfully validated by comparing the
results to FDTD simulations. To provide some examples of applicability the implemented
tool has been used to examine the near to far field transition for the scattering by multi-
ple cylinders and to visualize the transport of the energy of a photonic nanojet through
a multiparticle system.
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