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Two unequal rigid spheres are immersed in unbounded fluid and are acted on by 
externally applied forces and couples. The Reynolds number of the flow around them 
is assumed to be small, with the consequence that the hydrodynamic interactions 
between the spheres can be described by a set of linear relations between, on the one 
hand, the forces and couples exerted by the spheres on the fluid and, on the other, 
the translational and rotational velocities of the spheres. These relations may be 
represented completely by either a set of 10 resistance functions or a set of 10 mobility 
functions. When non-dimensionalized, each function depends on two variables, the 
non-dimensionalized centre-to-centre separatim s and the ratio of the spheres’ radii 
A. Two expressions are given for each function, one a power series in sP1 and the other 
an asymptotic expression valid when the spheres are close to touching. 

1. Introduction 
Comprehensive information about the interaction between two unequal spheres in 

low-Reynolds-number flow is needed in many studies of the properties of suspensions 
of small particles in fluid (Batchelor 1974; Jeffrey & Acrivos 1976). The term 
‘interaction’ refers in this context to the relations that exist between the force, the 
couple and the stresslet that each sphere exerts on the fluid, the ambient flow and 
the velocity and angular velocity of each sphere. Although a large amount of data 
on these functions is available in the literature, i t  is not comprehensive enough to 
meet the demands of recent applications, nor is i t  in the most convenient form 
(Batchelor 1976, 1982). The insufficiency of the data is partly due simply to the fact 
that  a large number of functions must be studied, but more significantly it is due 
to the amount of detail that  is required in the study of each function. For example, 
the functions have singularities which are awkward to resolve from numerical 
tabulation, but which require special attention because of the critical roles they play 
in calculations of the properties of suspensions. Among the functions defined in the 
literature to describe the hydrodynamic interactions between particles, we study here 
the resistance functions defined by Brenner & O’Neill (1972) and the mobility 
functions defined by Batchelor (1976, 1982). 

t Present Address: Pulp and Paper Research Institute and Department of Mechanical 
Engineering, McGill University, 817 Sherbrooke St. West, Montreal, PQ, Canada H3A 2K6. 
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The need for comprehensiveness, together with the availability of modern compu- 
ters, influences our attitude toward numerical calculations. Our main consideration 
must be - aside from the fact that a complete tabulation of these functions of two 
variables would take many pages - that  the interaction functions are required for use 
as components in further sizeable calculations, which will inevitably also be performed 
on a computer. Therefore, rather than directing our efforts entirely towards a 
tabulation of the functions, we have chosen to establish efficient ways in which 
computer subroutines can be written to  evaluate them for any specified values of their 
arguments. We will produce tables of numbers, but the main aim of the investigation 
is the definition of efficient computational procedures. A review of the various 
methods for solving low-Reynolds-number flow around two spheres is given in $2. 

A precise definition of the interactions we shall be studying is as follows. Two rigid 
spheres, labelled sphere 1 and sphere 2, are immersed in infinite fluid whose velocity 
in the absence of the spheres would be the ambient velocity U(x) = U,, + L? A X .  It is 
thus a superposition of a uniform stream and a rigid-body rotation. Sphere a has 
radius a, and its centre is a t  xu;  it  has angular velocity 0, and its centre has 
translational velocity U,. The force Fa that  sphere a exerts on the fluid is given by 

Fa = - jAa a - n d A ,  

La = - j ( x - x u )  A a*ndA.  

(1.1) 

where A, is the surface of the sphere, n is the outward normal to the surface and a 
is the stress tensor. The couple exerted by the sphere on the fluid, calculated relative 
to the centre of the sphere, is 

(1.2) 
A ,  

This is the antisymmetric part of the first moment o i  the surface stress expressed as 
a vector. Brenner & O'Neill (1972) work with the forces exerted by the fluid on the 
spheres, so their definitions are minus ours. The relations between the quantities U,, 
a,, Fa, La, U,, and L? are the interactions we wish to study; they can be described 
using either a resistance matrix or a mobility matrix. 

1.1. Thp resistance matrix 

If the specified quantities are the velocities of the particles and the ambient flow, we 
can invoke the linearity of the Stokes equations to write 

4, 4 2  911 9 1 2  U1- U(XJ 

(1.3) 
($)=+; A21 A22 B21 ;;: B22 G)(+i U2- U(x2) 1. 

The square matrix is the resistance matrix, it contains second-rank tensors A,  B and 
C,  and it  is understood that, when multiplying out the matrix equation, the 
appropriate contractions between the various vectors and tensors will be made It 
might be noted that the tensors have different dimensions. 

The elements of the resistance matrix obey a number of symmetry conditions, some 
of which apply to particles of any shape and some of which are consequences of the 
geometry of the two-sphere system. These properties are expressed most easily by 
adopting suffix notation, in which we write an arbitrary tensor, Pap say, as %PI. The 
reciprocal theorem of Lorentz (1906) shows that the resistance matrix is symmetric 
(Brenner & O'Neill 1972); explicitly 

4 P l  = Ag4,  B(.A = Llca.1, CC"B1 = C'(P.1, (1.4a, b ,  c )  
83 3% (3 31. 
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Next come the properties that depend on the two-sphere geometry, which is 
specified entirely by the three quantities r = x2-x,, a,  and a2. We observe first that  
the sphere labels 1 and 2 can be interchanged, i.e. sphere a can be relabelled sphere 
3-a, without altering the physical situation, except for the definition of r .  This 
implies that  any tensor P of the resistance matrix obeys 

Each tensor in the matrix is axisymmetric about r and can be reduced to an 
expression containing a t  most two scalar functions (Brenner 1963, 1964). We relate 
each scalar function to the tensor with which it is associated through the following 
notation. For any tensor PaB, we denote the scalar functions upon which i t  depends 
by X:’ and Y:’, if both are needed; in addition the letter X is reserved for those 
functions that can be determined, when the time comes, by solving axisymmetric 
two-sphere problems. If, then, e = r / r  is the unit vector along the line of centres, we 
can write 

(1.6a) 

BtuP) 23 = Bp) = Yfppi jk  e,, ( 1 . 6 b )  

CgP) = XzB ei ej + YzB(Sij - ei ej). ( 1 . 6 ~ )  

Our final task is to non-dimensionalize the tensors (and thus the scalar functions) 
of the matrix, and then present the relations between the scalar functions that can 
be deduced by combining (1.4) with (1.5) and (1.6). The non-dimensionalization is 
an obvious generalization of the scheme used by Batchelor (1976) and is temporarily 
indicated by placing a circumflex over the non-dimensional quantity. We define 

c, 
c a p  = 

( 1 . 7 ~ )  

The numerical factor 3 appears in (1.7 a )  so that the scalar functions derived from 
A tend to  1 when the spheres are far apart ; by coincidence no similar factor is needed 
in (1.7 c). The non-dimensional functions depend on two non-dimensional variables 
derived from r ,  a, and a2. We follow Batchelor (1982) and choose these to be 

(1.8a, b )  2r a2 s=- , A = - .  
%+a2 a1 

From now on we shall use only the non-dimensionalized functions and therefore 
not persist with the circumflex notation. When (1 .a)-( 1.7) are combined, we can show 

(1.9a) 

(1.9b) 

(1.9c) 

that 
X$(S, 4 = X$s, 4 = XP3--a)(3-p) (8, Pi), 

y:pcs> 4 = - y;-,)(3-p) (S ,  A-1), 

Y$Sl A )  = Y&(% 4 = YP3-,)(3-p) (8, A - l ) ,  

X,CpP(S, 4 = XBC,(s, 4 = X&,)(3-B)) ( 8 ,  A-1), (1.9d) 

Y , C ( S >  4 = YpCa(s, A )  = Y;-a)(3-p) (8, A-1) .  (1.9e) 

Thus we have 10 independent non-dimensional scalar functions to  tabulate for 
2 < s ,< 00 and 0 < h < oc). Alternatively we could tabulate 16 scalar functions in 
t h e r a n g e 2 , < s < o o a n d O < h < l .  
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1.2. The  mobility matrix 
We now regard as the given quantities the forces and couples exerted by the 
particles on the fluid and write 

The reciprocal theorem shows that this matrix is also symmetric, i.e. 

a(?,) a3 = u p ) ,  &P) = b p ) ,  ct?,) a3 = c p ) .  (1.11 a ,  b ,  c) 

The axisymmetry allows us to use the same decompositions of the tensors into 
scalar functions. Note that the scalar functions for the mobility matrix are indicated 
by lower-case letters and superscripts, in contrast to the capital letters used for the 
resistance functions : 

(1.12a) 

(1.12 b )  

(1.12c) 

a$,) = xu a, e .  aej+~Zp(&ij-eiej), 

c&p) = x~~ ei ei + y:,( Sii - ei e j ) .  

b&B) = yb a,% E . .  ajk e IL> 

We non-dimensionalize the tensors in the mobility matrix as follows, again temporarily 
using circumflex notation : 

sap = 37c(a, + up) a,/, 6,) = q a ,  + b,,, (1.13a, b )  

cap = n(a,+a,)3 cup (1.134 

As before, the non-dimensional functions will be taken to  depend on s and A as defined 
in (1.8) and the circumflex will be taken as understood. Finally, relations between 
the scalar mobility functions that are analogous to (1.9) can be written down, 
showing that there are an additional 10 independent functions to be tabulated for 
2 < s < o o  a n d O < A < o o .  

- 

1.3. Relations between the resistance and mobility functions 
It is obvious that the dimensional resistance and mobility matrices obey the equation 

Using the decompositions into scalar functions, we separate this tensor matrix 
equation into three scalar matrix equations. This is possible because axisymmetric 
motions are not coupled to non-axisymmetric ones and because axisymmetric 
translation is not coupled to axisymmetric rotation. Thus the non-dimensionalized 
scalar functions obey 
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Next, x:p and XFp obey a similar equation with f( 1 + A )  cubed. Finally 

2. The solution of two-sphere problems 
Several methods for solving the equations of low-Reynolds-number flow around 

two spheres have been developed over the years, and each has advantages and 
disadvantages. The methods include those using reflections (Happel & Brenner 1965), 
bispherical coordinates (O'Neill & Majumdar 1970a), tangent-sphere coordinates 
(Cooley & O'Neill 1969b), collocation methods (Ganatos, Pfeffer & Weinbaum 1978) 
and asymptotic methods (O'Neill & Stewartson 1967; Jeffrey 1982). For this paper, 
a development of the method of reflections is used; it is called twin multipole 
expansions and has been applied already to finding solutions of Laplace's equation 
(Jeffrey 1973). It is chosen because i t  is accurate, although not as inherently accurate 
as bispherical coordinates, and it produces results in a convenient form for further 
use in applications; also it can be combined easily with the results of the asymptotic 
methods. 

We shall describe the method of twin multipole expansions using a general set of 
boundary conditions that will encompass all the special cases that must be considered 
later in this paper and in subsequent papers. Following Happel & Brenner (1965, 
figure 6-3.1), we t'ake two sets of spherical polar coordinates (pa,0a,q5) with the 
difference that 6,  hcrc equals their 7 1 - 6 ) ;  let the unit vectors in the coordinate 
directions be a,, 8, and 4. Our choice has the advantage that the transformation rule 
for spherical harmonics becomes (Hobson 1931) 

where Ymn(6, q5) = (COB 0) exp (imq5) and r is the distance between the centres of 
the spheres. The factors of - 1 that are removed from (2.1) appear, to a lesser extent, 
elsewhere, because it is not possible for both coordinate systems to be right-handed; 
we choose paxaa = ( - 1 ) 3 - - a ~ .  (2.2) 

We use Lamb's general solution (Happel & Brenner 1965, $3.2) to write the 

p = +p' ( 2 . 3 ~ )  

pressure and velocity fields outside the spheres as 

where (2.3b) 
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where 

(2.46) 

The coefficients pkL,  qkL and U ~ L  are functions only of r ,  have the dimensions of 
velocity and must be calculated from the boundary conditions. 

We do not apply the boundary conditions directly to (2.4) but instead follow 
Happel & Brenner (1965, 53.2) in first constructing three scalar equations from the 
boundary conditions. We assume that the velocity on the surface of each sphere is 

(2.5) 
specified as 

u = U,(O,,$) on p, = a,. 

We construct the three scalar quantities and assumc that each can be expanded as 
a series of harmonics to obtain 

.*Pa = U;@, = C C x ~ L  ymn(@cz>C)> ( 2 . 6 ~ )  

(2.6b) 

m o o  

m = o n = m  

a m  a m  p,-u*p a = -  P,V*U, = I: I: ?%'n ymn(@,>C)> 
aP, m - o n - m  

m m  
( 2 . 6 ~ )  

The coefficients in (2.4) can now be calculated in terms of x, @ and w by using the 
following transformation rules. 

To transform the solutions p(") and u ( ~ )  to  the other coordinate system (which has 
the label 3--01), we use (2.1) together with 

p, = (p, ( 2 . 7 ~ )  

p: = r 2 + p ~ _ , - 2 r p 3 - n ~ ~ s @ 3 - - a .  (2.76) 

- r cos 0, -,) P ,  -, + r sin d3 -, 83-a, 

Doing this and equating coefficients of Ymn(O,, C),  we obtain, using the notation 

t, = a,/r, (2.8) 
the following equations linking the coefficients p m n ,  vmn and qmn with @ m n ,  xmn and 

2n + 1 ns(n + s - 2ns - 2) - m2(2ns - 4s - 4n  + 2 )  P:b a) + 1n (3 - a ) t2  

2n- 1 +- 2s(2s- 1) (n+s)  2 Pms a ]  

= @$',+(n+2)~k)n,  (2 .9b )  
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These equations will be solved for each special case in later sections. The final general 
results we need are for the forces and couples exerted by the spheres. 

We express the force and couple in a Cartesian system i ,  j ,  e, where e = r / r  was 
defined earlier and the i-axis is chosen in the plane 4 = 0. Then from Happel & 
Brenner (1965;  $ 3 . 2 )  we have 

F, = 47~,uV@g), p: (COS O)] 
= 4na,y[p&)( - 1)3-ue-pk)(i+ij)], (2 .10 )  

(2.11) 

The sign change from Happel & Brenner is the result of calculating the force on the 
fluid rather than the force on the sphere. 

3. The resistance functions X$s, A )  
I n  proceeding to individual cases, we find that it is convenient to consider two 

particular problems. In  the first problem, the velocities U, and U, of the spheres are 
along the line of centres and equal and opposite, i.e. 

(3 .1 )  U, = - U, = Ue. 

U, = U, = Ue. 

52, = n, = 0. 

For the second problem, the spheres follow each other with equal velocities, i.e. 

(3 .2 )  

I n  either case 

For the first problem, the quantities defined in (2 .6 )  become 

xgi = Us,06nl, $gA = ,(a) mn = 0. (3 .3a ,  b ,  c )  

It is obvious that, in (2.9), only the coefficients form = 0 will be non-zero. In  addition, 
all the coefficients qmn are zero. We expand the coefficientsp,, and won as power series 
in r - l ,  or, more correctly, double series in t ,  = a, / r :  

w o o  1 

( 3 . 5 )  

It is clear from the initial conditions (3 .3 )  and the form of the general recurrence 
relations that the coefficients will be the same for each sphere, allowing us to  drop 
the label a. The recurrence relations for the pure numbers Pnpq and VnpQ are 

Pnoo = Vnoo = 61n> ( 3 . 6 ) ,  ( 3 . 7 )  

and 
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Xf1 -t(  1 + A )  Xf2 = c, Plpq t f  tg, 
p = o q - 0  

(3.10) 

where the factor +( 1 + A )  appears because of the non-dimensionalization. We shall 
change to the variables s and h later. 

We now turn to the second problem. The quantities x, @ and w now become 

xg; = ( - 1 ),--a s,, snl, eg; = @g; = 0. ( 3 . l l a , b , c )  

By substituting these conditions into (2.9), we can show that the solutions of the 
recurrence relations thus obtained can be related to the solutions Pnpq and V,,, just 
defined in (3.6)-(3.9). I n  fact the coefficients solving the second problem can be 
written simply as ( -  l )n+p+‘J+a P and ( -  l)n+P+q+a I/ Thus we conclude that n p q  n p q .  

m m  

Xf1 +$( 1 + A )  Xf2 = c c, ( -  l)P+Q Plpq ty tg.  
p - o q = o  

(3.12) 

From (3.10) and (3.12) it is obvious that X& is a series only of terms in which p+q 
is even and Xf2 is a series only of terms in which p + q is odd. This remarkable result 
is implicit in Faxen’s law for a sphere, but it has not previously been pointed out. 
We are now in a position to give explicit results. 

3.1. Widely separated spheres 
We change to the preferred variables s and h and write our functions as 

k 
wherc 

Explicitly, 

f o  = 1, fl = 3 4  

f ,  = 9h, 

f 4  = -24h + 81h2 + 36h3, 

f, = -4h+27h2-4A3, 

f 5  = 72h2 + 243A3 + 72h4, 

f, = 16h+ 108h2+281h3+648h4+ 144h5, 

f ,  = 288h2 + 1620A3 + 1515h4 + 1620h5 + 288h6, 

f ,  = 576h2 + 4848h3 + 5409h4 + 4524h5 + 3888h6 + 576h7, 

f9 = 1 152h2 + 9072h3+ 14752h4+ 26163h5 + 14752h‘ + 9072h7 + 1 152hs, 

flo = 2304h’ + 20736h3 + 42804h4 + 1 15849h5 + 76176hfi + 39264h7 

+ 20736hs + 2304h9, 

fll = 4608h2 + 46656h3 + 108912h4 + 269100h5 + 319899h6 + 269100h’ 

+ 108912P + 46656h9 + 4608h1°. 
We note that f zk+l(h)  = h2”+2f,k+1(h-’) in accordance with (1.9). These expressions 
agree with Happel & Bronncr (1965, equations 6-3.51) and (G3.52)). 

(3.13) 

(3.14) 

(3.15) 
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3.2. Nearly touching spheres 
We define a non-dimensional gap width by 

r-a,  -a2 
< =  = s-2. 

$(a1 +a,) 

269 

(3.16) 

(3.17) 

(3.18) 

g1 = 2 ~ 2 ( 1 + 4 - 3 ,  g2 = $ n ( i + 7 ~ + ~ 2 ) ( 1 + ~ ) - 3 ,  (3.19a, b )  

g3 = &( 1 + 18h - 29h2 + 18h3 +A4)  (1  + ( 3 . 1 9 ~ )  

Our aim now is tJo combine (3.17) and (3.18) with (3.13) and (3.14) to obtain 
alternative general expressions for the X $  and explicit expressions for the A$. 

The process is a simple one: we write the singular terms as functions of s in such 
a way that their behaviour near s = 2 is unchanged, but they tend to zero as s+ co 
and they are odd or even functions of s as required. Obviously, several equivalent 
choices are possible; we chose 

Xf, = gl( 1 - 4 ~ - ~ ) - ~ - g ~  In (1  - 4 4 ~ ~ ~ )  -g3( 1 -4.P) In ( 1  - 4 4 ~ ~ ~ )  + f,,(h) -gl 
2 "  a, + z {2-m(1 + h ) - m ~ m ( h ) - g , - 2 m ' g 2 + 4 ~ - 1 m ; 1 g 3 } ( ~ )  , (3.20) 

m - 2  
m even 

where rn, = -2&,,+(rn-2) ( 1  - & m 2 ) ;  

s + 2  s + 2  
s -2  s - 2  

- +( 1 + A )  X t 2  = 2s-lgl( 1 - 4 ~ - ~ ) - l +  g2 In -+ g3( 1 - 4s-2) In - + 4g3 s-1 

+ {2-m(l+h)~mfm(h)-g1-2m-1g2+4m-1m;1g3}(i) 2 m  . (3.21) 
m = 1  
m odd 

To obtain expressions for the functions A$, we expand the singular terms as series 
in < to  recover the expressions (3.17) and (3.18). Thus 

a, 

A:: = l-bl+ z [2-m(l fm-g1-2rn-1gz+4m-1m,1g3], (3.22) 
m - 2  

m even 

-f(l+A)A;YZ = &~~+2g, ln2+2g,  
a, 

+ z [2-m(l + A)-"fm -g, - 2m-lg2 + 4m-lm;lq3]. (3.23) 
m=1 
m odd 

The tabulation of these functions is described in 53.4. 

3.3. Arbitrary separations 
The equations (3.13), (3.14) and (3.20), (3.21) give us two expressions for each function 
and both are valid for all separations. However, for numerical evaluation of the 
functions near s = 2, i t  is obvious that (3.13) and (3.14) will be of little use because 
they represent the singular terms in an inefficient way, namely as an infinite series. 
This is true even if we consider a problem in which the singular terms appear to cancel 
out, such as the classical problem of the drag on two spheres followine: each other 
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Maximum A;Y,(1) A 3  1 )  
power 
of 8-1 First form Second form First form Second form 

50 0.9963 0.99524 -0.3515 - 0.35039 
100 0.9960 0.99542 -0.3507 - 0.35015 
150 0.9957 0.99538 - 0.3506 -0.35020 

Cooley & O’Neill 0.99536 - 0.35022 - - 

TABLE 1 ,  Rate of convergence of the series A$A) for A = 1. The series were written in two forms. 
The first form did not include the corrections for the known [In 5 singularity and the second form 
did. 

along their line of centres, first tackled by Smoluchowski (1911). This is because the 
convergence of the series is limited by a ‘non-physical’ pole a t  s = -2 .  We are able 
to extract this pole because of the fact that  the series for Xfl and Xf2 contain even 
and odd powers only. Thus the ‘physical’ pole a t  s = 2, which has been calculated 
using lubrication approximations, automatically implies the existence of the non- 
physical pole. Happel & Brenner (1965, p. 259) attempted to remove these same 
singularities from their power series, but, not having the lubrication results found 
only later, they did not know of the singular term in In (s+ 2) and estimated the 
strength of the pole a t  s = - 2  incorrectly. 

3.4. Numerical results 
We must first establish the rate of convergence of the series expressions derived above. 
Tabulations are available of Xfl + t(  1 + A )  X t 2  and Xfl -$( 1 + A )  Xf2 in Cooley & 
O’Neill (1969a, b)  and of AE-$(l + A )  A$+2g21n+(1 + A )  in Jeffrey (1982). It is clear, 
however, that, because the series expressions for X$ are least accurate in the 
neighbourhood of s = 2, i t  is unnecessary to compare them with other published data 
for values of s away from 2. Further, the singular terms mask the contribution of 
the infinite series to Xt l  - ;( 1 + A )  X t 2  nears = 2. Therefore, we have compared in table 
1 the present calculations of A: and A 5  with their values as deduced from Jeffrey 
(1982) and Cooley & O’Neill ( 1 9 6 9 ~ ) .  The series in (3.22) and (3.23) were summed 
to m = 50, 100 and 150, both before and after the terms which rely on the function 
g3(h)  were included. This was done because the terms in g3 are not essential to the 
definition of A$, but they do increase the rate of convergence, as table 1 shows. 
Similar tables were constructed for other values of A. I n  the limit h + 00, we can 
deduce from Cooley & O’Neill (1969a) that A<+-$lni(l +A)+0.97128, with a 
similar result for A$ as h+O. This singular behaviour causes the representations 
(3.22) and (3.23) to lose accuracy for extreme values of A ;  in practical terms A 5  is 
accurate to 4 significant figures for h < 100 (and 245 for h > 0.01). 

In  table 2 we have tabulated A$ for values of h between 0.1 and 1. In  table 3 we 
have tabulated the function 

W\(A) = L,,(A) + (1  + A )  L,, + hL,, 

The individual functions Lap are not given because only this combination is needed 
when calculating the asymptotic behaviour of the mobility functions in later sections. 
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h A:: A 5  A& 
1 .o 0.9954 -0.3502 0.9954 
0.5 1.0881 -0.2957 0.8083 
0.25 1.0836 -0.1880 0.6253 
0.2 1.0730 - 0.1556 0.5789 
0.125 1.0496 - 0.0993 0.5001 
0.1 1.0398 -0.0787 0.4692 

TABLE 2. The functions for 0.1 < h < 1 

1 1 h 1 2 3 t m 
W A 4  0.1163 0.0575 0.0146 0.0084 0.0022 0.001 1 

TABLE 3. Values of W, = LE + (1 + A )  Lz -k Ah& 

4. The resistance functions Y$s, A )  

problems. First, 
We now consider motion perpendicular to the line of centres, and again define 2 

(4.1) 

and secondly U, = U, = Ui, (4 .2)  

U,  = - U, = Ui, 

with in each case 51, = 51, = 0. 
Thus we have, for the first problem, 

x:; = ( -  l), 6,, a,,, $kg; = w g k  = 0. 

The expansions we use this time are 

a ! m  I 

(4 .3)  

(4 .4)  

(4.5) 

where again t, = aJr .  The recurrence relations for this set of coefficients are 

Pnoo = Vnoo = S1nj &la00 = 0, (4.6), (4 .7) ,  (4.8) 

(4.9) 

(4.10) 

(4.11) 
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The equation for the force now gives us 
m m  

(4.12) 

By considering the second problem, we obtain the same result as that obtained in 
93, namely that Yfl consists of the even powers of s and Yf2 of the odd powers of 
s. We can thus jump straight to the explicit results. 

4.1. Widely separated spheres 
Switching to the variables s and A,  we again write 

(4.13) 

- 2  
and YA 1 2  -- - z f2k+l(h) (1  +A)-- s-2k--1. (4.14) 

Further, 
1 + A k Z 0  

f o  = 1 ,  f1 =$I, 

j 2  =:A, f 3  = z h + g 2 + 2 ~ 3 ,  
&ah2 + rnh3 + Yh4, 

f4 = 6h+Eh2+ H A 3 ,  f 5  = 32 

f 6  = 4h + 54h2 + * A 3  + 81h4 + 72h5, 

f = 1 44h2 + ?A3 + w h 4  + v h 5  + 1 44h6, 

f ,  = 279h2 + ?A3 + m h 4  256 - 7 h 5  + 648h6 + 288h7, 

fg = 576h2 + 1 1 34h3 + v h 4  + =A5 512 + m h 6  32 + 1 134h7 + 576hs, 

f 10 4 16 1024 = 1152h2 + W h 3  + W h 4  + 10548393h5 + W i U , 4 6  - 3Ah7 + 3888,48 + 1152h9, 
44505h7 ZZ071h8 f , ,  = 2304h2 + 7 128h3 + v h 4  + 2 7 ~ ~ ~ 0 5 h 5  + g 5 ~ ~ ~ ~ 3 5 h 6  + 27128 2 + 7128A9+2304h10. 

The minus signs inf, andf,, are not printing errors. 

4.2. Nearly touching spheres 
Jeffrey & Onishi (1984) have shown that, for < 4 1 and 6 6 A,  

y;: = g z ( h ) l n ~ - l + A ~ ( h ) + g , ( h )  < l n r l ,  (4.15) 

(4.16) and - +( 1 + A )  Yf2 = g2(h) In 6-l- i( 1 + A )  A1yz(h) + g3(h) < In <-l, 

where now 
g,(h) = &A(Z+h+2h2) (1  

g3(h)  = ,~(16-445h+58h2-45h3+16h4) ( l + A ) - 3 .  

The functions A& can be obtained by repeating the stteps of 5 3. The expressions are 

AE = 1 + I: L 2 - y  1 + h)-mfm(h) - 2m-’gz + 4m-lm;l g3], (4.17) 
m--2 

m even 
m 

-$(i  + h ) A g  = 2g21n2+2g3+ Z [gPm(l +h)-mfm(h)-2m-1g2+4m-1m,1g,]. 
m=1 

m odd (4.18) 
Here m, has the same definition as in (3.20). 
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h A,Y, A,Y, A,Y, 
1 .0 0.9983 -0.2737 0.9983 
0.5 1.0193 -0.2246 0.9009 
0.25 1.0073 -0.1181 0.6871 
0.2 1.0015 -0.0844 0.5930 
0.125 0.9907 -0.0268 0.3637 
0.1 0.9869 -0.0072 0.2438 

TARTX 4. The functions Afp(A) for 0.1 < h < 1 

4.3. Arbitrary separations 
Combining the results of the previous sections in the same manner as in $3,  we obtain 
expressions accurate for any separation : 

Yfl = - g2 In ( 1  - 4sP) - g3( 1 - 4sP) In ( 1 - 4 P )  +fo(h) 

+ Z 00 {2-m(l +h)-mfm(h)-2m-1g2+4mp1m;1g,}(a) 2 m  , (4.19) 

m=z 
m even 

s + 2  s + 2  
s-2 

-+( 1 + A )  Y;i, = g2 In=+ga( 1 - 4sp2) In-+4g3 s-I 

+ I: 00 {2-m(l +~)pmfm(h)-2mp1g2+4m-1nL;'g,}(a) 2 m  . (4.20) 

m=1 
m odd 

4.4. Numerical results 

O'Neill & Majumdar ( 1 9 7 0 ~ )  have tabulated Y i p  and O'Neill (1969) has calculated 
A;(l)+ Ac(1) .  For the last quantity, O'Neill gives 0.72426 whereas we calculate 
0.72462, suggesting a printing error in O'Neill's paper. It is interesting to note the 
g3( 1 )  = 0, so that for h = 1 ,  the [In [-l correction makes no impact on the accuracy 
obtained. In  table 4, Azp has been tabulated for 0.1 < h < 1 using terms up to 
m = 120, and as with the functions A$, there is singular behaviour as A + O ,  because 
A ~ + - & l n ~ ( l  + A ) .  

5. The resistance functions Y,BB(s, A )  
The recurrence relations (4.6)-(4.11) given in $4 can be used to find the coefficients 

in the series for Y,"p. This is becausc the problem specified in (4.1) and (4.2) requires 
a rouple to act on the spheres to prevent them rotating. Thus, recalling how YB is 
non-dimensionalized, 

L, = -447cpa3 Yfl-+(l +h)2Yf2) Uj. (5.1) 

Therefore, recalling (2.10), 
m m  

Yf1 -i( 1 + h)2Yf2 = 2 I: z & I p q  tP  t8. 
p = o q = o  

There is a difTerencc between this  scc3tion and §$3 and 4, however, which is that, when 
the secondary problem is considered, Y:, now consists of the odd powers of s and Y% 
thc even powers. 
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5.1.  Widely separated spheres 

Following the pattern above, we write 
a0 

Yf1 = ;r: f2&+'(h) ( 1  +A)-- s-Zk-1, 
k=O 

Thc explicit expressions for thcf,(h) are this time 

f = f l = O ,  f 2 = - 6 h ,  f 3 = - 9 A ,  f 4 = - y  27h2 , 

f, = - 1 2 h - ~ h 2 - 3 6 A 3 ,  

f ,  = - 1 8 9 A 2 - v h 3 - 2 4 3 h 4 -  144h5, 

f 8  = - 432h2 - 486h3 - v h 4  - 405h5 - 288h6, 

f = - 8fj4h2 -3159h3- 2tIXkUh4 

0 

f 6  = - 1 0 8 h 2 - ~ A 3 - 7 2 h 4 ,  

- 1620h6 - 576h7 4 64 4 

f lo  = - 1728h2- 3888h3--h4- 1 1 ~ ~ ~ 0 3 h s -  22002h6-2916A7 - 1152h8, 

fll = - 3456h2 - 6804h3 - v A 4  - W A S  - 536679 h6 - 73989h7 - 9072h8 - 2304h9 16 

where 
g,(h) = - $ h ( 4 + h ) ( l + A ) - 2 ,  

q,(h) = -&(32-33h+83h2+43h3) (1  

As with previous eases, the functions BG are given by summations, although the even 
and odd terms are interchanged from previous sections : 

B,Y, = C. [2-m(  1 + h ) - m f m ( A )  - 277-9, + 4 m - l ~ ~ ~ '  g3], (5 .7)  
m = 1  
m odd 03 

-+( 1 + A)2Bc = 29, In 2 + 29, + x [apm(  1 + A)-m f , , (h)  - 2m-lg2 + 4m-'m;'g3]. 

Again m, has the definition in (3.20). 

m = z  
m even (5.8) 

5.3 .  Arbitrary separations 

Y E  = g 2 ~ n ~ + g , ( i - 4 s - 2 ) 1 n ~ + 4 g 3 s ' +  c { 2 - m ( i + h ) - m f m ( h ) - 2 m - l g 2  

The series for use at arbitrary separations become 
S + 2  00 

s-2 m = 1  
m odd 

+4m-'m;' g3) (!J, (5 .9)  

-:( 1 + A)2  Yf2 = - g, In ( I  - 4 P )  - g3( 1 - 4sP2) In (1  - 4sP2) 
oc m + X {2-m( 1 + h)-mfm ( A )  - 2m-9, + 4mP1m;' g,} (5) . (5.10) 

m=z 
m even 
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h B,Y, B,Y, B2’, B,Y, 
1 .o 0.2390 -0.0017 0.0017 -0.2390 
0.5 0.1201 0.0817 0.0686 -0.4016 
0.25 0.0620 0.0592 0.0594 -0.5664 
0.2 0.0532 0.0320 0.0489 -0.6154 
0.125 0.0433 -0.0306 0.0288 -0.7124 
0.1 0.0408 -0.0560 0.0214 -0.7559 

TABLE 5. The functions B$h) for 0.1 < h < 1 

5.4. Numerical results 
The functions YEp have been tabulated by O’Neill & Majumdar (1970~) .  The function 
$[BE( 1) + B1yz(l)] has been calculated by O’Neill (1969). Table 5 gives the results for 
B$(A) obtained from (5.7) and (5.8). 

6. The resistance functions X,cB(s, A )  
To obtain these functions, we must solve problems in which the spheres rotate 

about their line of centres. It turns out to be most convenient to  express the rotation 
in terms of a surface speed U :  

Now the velocities are zero: 
a,B,  = fa,f2, = Ue. 

u, = u, = 0. 

(6.1) 

( 6 4 ,  (6.3) 

The only non-zero coefficients in (2.9) are qri, which we expand as 
m o o  

assuming that the minus sign in (5.1) is taken, thus making QtAq = QFAq. The 
recurrence relat,ions are 

Qnoo = 81,s ( 6 . 5 ~ )  

From the couple on a sphere, we find 

6.1. Widely separated spheres 
I n  the standard notation 

XFI = I: f 2 k ( h )  (1 +A)-  s-2k, 
k=O 

where 

There appear to  be no published results with which these can be compared. 
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6.2. Nearly touching spheres 

It has been shown by Majumdar (1967) and Jeffrey & Onishi (1984) that 

where 
00 

5 ( z , a )  = X 
k - 0  

(6.10) 

(6.11) 

I n  this case, therefore, we have two expressions for each of the functions C$: the 
expressions above, derived using tangent-sphere coordinates, and the usual series 
expressions. 

6.3. Arbitrary separations 
Since the function Xzfl  are not infinite a t  s = 2 ,  we could use the forms (6.7) and (6.8) 
unchanged. Convergence is hastened, however, by removing the [In 5-l term : 

( 1  +h)-2"f .-22k+'k-'(2k-l)-'- h2 } s - ~ ~ ,  (6.12) 
23 4 ( l + h )  k = l  

s-l In (1 - 4sP2) x,c, = ~ ln-+--- 
4h2 s+2 8h2 

( 1 + 4 4  8-2 ( 1 + 4 4  

-~ 
l + h  

6.4. Numerical results 
Tables of Xzp were given by Jeffery (1915) and Majumdar (1967) has tabulated C& 

7. The resistance functions Y,CP(s, A )  

using surface velocities to specify a rate of rotation : 
The final resistance functions are obtained from problems which are also defined 

Again 

a, 52, = + a2 52, = Ui. 

u, = u2 = 0. 

The expansions (4.3)-(4.5) can be used again, as can the recurrence relations 
(4.9)-(4.11). The only change is in the initial conditions in that (4.6)-(4.8) are replaced 

c o o  = vnoo = 0, &,a0 = 81n. (7.3), (7.41, (7.5) by 

Having solved the recurrence relations, we can find the force exerted by a sphere on 
the fluid and reproduce the results of 94, as predicted by the reciprocal theorem. From 
the couple exerted on the fluid we find 
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7.1. Widely separated spheres 
We have m 

yF1 = x f z k ( h )  ( 1  + h)-2kss-2k 
k = O  

(7.7) 

8 “  
and YF2 = - x f21c+l(h) ( 1  + h)-2”-ls-2”-1. (7.8) ( 1  k - O  
We have 

f o  = 1 ,  f ,  = f 2  = 0, f3 = 4h3, f4 = 1 2 4  

f 5  = 18h4, f 6  = 27h2+256h3, f, = 72h4+yh5+72h6, 

f s  = 2 16h2 + 33h3 + 216h4 + 2496h5, 

f s  = 288h4 + 486h5 -?A6 + 486h’ + 288hs, 

flo = 864A2 + 972A3 + v h 4  + 972h5 + 1296A6 + 18432h7, 

f l l  = 1 1 5 2 h 4 + 3 2 4 0 h 5 - ~ h 6 + m h 7 - ~ h s + 3 2 4 0 h 9 +  32 1152h”. 

7 ’2. Nearly touching sph,eres 
O’Neill & Majumdar (1970b) and Jcffrey & Onishi (1984) have shown that 

Yfl = g2 In E-’ + CE(A) +g3 Eln E - l ,  (7.9) 
Yf2 = 9, In t-l+ Cg(h)  + 9, 6 In 6- l ,  (7.10) 

where g2 = %h(l+h)-‘, g, = &8+6h+33h2)(1+h)- l ,  

g, = $h2(l+h)-4, g5 = &h(43-24h+43h2) ( 1  +A)-,. 

The functions Czp are expressed as 
m 

C,Y, = 1 +  Z [2-m(l+h)-mfm-2m-1g2+4m-lm~1g3], (7.11) 

C g  = 2g,1n2+2g5+ X [23-m(l +h)3-m fm-2m-1g4+4m-1m;1g5]. (7.12) 

m = z  
m even m 

m - 1  
m odd 

7.3. Arbitrary separations 
The interesting special feature of the function Y:p is that the simple rolling motion 
52, = -hO, does not lead to a finite couple as t+ 0. The force and couple remain finite, 
however, for the rigid-body motion 52, = 02, U2 = U, + 52, r .  From this we conclude 
the easily verified results 

3( 1 + A )  gi4’(h) + 2gp’(h) + 2h2gp)(h-l) = 0, ( 7 . 1 3 ~ )  

8g$”(h)+(1+h)3g~)+4(1  +h)g f )  = 0, (7.13b) 
where the function gi4) was defined in (4.15), the function gf)  in (5.5) and the functions 
g(’) in (7.9) and (7.10). For arbitrary separations, 

Yfl = -g2 In ( 1  -44~-~)-9,(1-4s-~)  In ( 1  -44s-’) + fo(h) 
+ {2 -m( l+h) -” f , (h ) -2w-1g2+4m-1m;1g3} (~)  2 m  , (7.14) 

m = 2  
m even 

s+2 s+2 Q(i+A)3Y5 = g41n-+g5(l-4s-2)In- 
s-2 s-2 

m = 1  
m odd 
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h CK c5 CE 
1 .o 0.7028 -0.0274 0.7028 
0.5 0.8489 -0.0349 0.4839 
0.25 0.9280 -0.0349 0.2097 
0.2 0.9427 -0.0312 0.1144 
0.125 0.9625 -0.0210 -0.0918 
0.1 0.9683 -0.0165 -0,1909 

TABLE 6. The functions Cz(A)  for 0.1 < A < 1 

7.4. Numerical results 
A tabulation of the functions Yz' has been given by O'Neill & Majumdar ( 1 9 7 0 ~ )  
and Cz-CK-&ln2 has been calculated by O'Neill (1969). The results differ only 
in the fourth decimal place. The functions C,'p are tabulated in table 6. 

8. The mobility functions Z;~(S, A )  

spheres given by 
We now turn to the mobility functions and consider external forces acting on the 

(6npa,)-l Fl = - (6npaJl  F, = Ue, (8.1) 

where U is the velocity that either sphere would have in the absence of the other. 
In  addition, we specify L, = L, = 0. ( 8 4 ,  (8.3) 

We wish to calculate the motion of each sphere, which by symmetry is given by 

u, = TJ(l)e, u, = - u(2)e (8.4), (8 .5)  

and a, = a, = 0. (8.6) 
From (2.10) we obtain 

From the fact that  the spheres move in rigid-body motion according to (8.4)-(8.6), 
we obtain X K L  = U(a)aOom sl,, ~ : L  = C?Jg& = 0. (8.9), (8.10) 

I n  view of these results and the symmetry in the equations, we expand p'"), q@) 

ppJ = #u X E Pnpqt$t$-,, (8.11) 
and Ua) as m o o  

p - o q - 0  

m m  4 

where t ,  = aa/r  as in previous parts. From (8.7) we known 

G p q  = aopao , .  

The relation (2.9a) remains valid for all n >, 1, giving us 

(8.12) 

(8.13) 

(8.14) 

(8.15) 
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The equation (2.9b) takes on different roles for n = 1 and n > 1 .  For n = 1 it  is  an 
equation for Up, : 

For n > 1 the equation is a recurrence relation for Pnp4: 

n+s  n(2n+ 1 )  (2ns-n-s+2) 
Ps(4-s) (p-n+l) prim= s-1 ( )[ 2(n+ 1 )  (2s- 1 )  (n+s )  

These equations form a complete set from which we can solve for Up4.  These 
coefficients are then related to the mobility functions by 

A/\ I: I: U p 4 t f t ~ .  
p - 0 4 - 0  

We now consider the problem in which the forces are given by 

(6npa1)-' Fl = (6npa,)-' F, = Ue. (8.18) 

We find that if the velocities U@) in the first problem are described by coefficients 
Up4,  then the velocities in the second problem are described by coefficients 
( -  l)p+QUpp. Thus, as before, the mobility functions are given by a series either of 
even combinations of p and q (even powers of s-l), or odd combinations. 

8.1. Widely separated spheres 
The mobility functions xfl and x& are given by 

where 

(8.19) 

(8.20) 

Explicitly 
f o  = 1 ,  fl = -3 ,  f, = 0,  f 3  = 4+4h2, 

f4 = -60h3, f 5  = 0, f6 = 480A3- 128h5, 

f 7  = - 2400h3, 

f e  = 1920h3+ 1920h5, 

f e  = - 960A3 + 4224h5 - 576h7, 

flo = - 17920h5 - 96000h6 + 30720A7 - 2304he, 

fll = - 15360h3 + 231936h5 - 15360h7. 

8.2. Nearly touching spheres 
When the spheres touch, the mobility functions do not diverge in the way the 
resistance functions do, but the apparently smooth behaviour hides singularities in 
their derivatives. This is reflected in the fact that the series (8.19) and (8.20) lose 
accuracy near s = 2. To obtain alternative expressions for xEfl near s = 2,  we turn to 
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( 2 . 2 )  relating the xfb to the X$. We remark in passing that the widely separated 
forms given above and in $3.1 have been checked against each other using this 
equation. We have given, in 53.2, asymptotic forms for X $  with lj‘ = s-2 4 1, and 
now, substituting those forms into (1.15) we obtain the following expressions for the 
x f p .  We introduce the notation 

w, = A;Y,+(l+h)A<+hA$,  (8 .21 )  

w, = L f i + ( l + h ) L E + h L $ .  (8.22) 
The physical interpretation of these quantities is that  t$e total non-dimensional force 
exerted by two nearly touching spheres following each other with the same velocity 
along their line of centres is W, + $W, + O(c2). Then 

(8.23) xfb = d$ ( A )  + d$j (+ d$ e2 In c+ d$ + 0(c3 (In el2).  
F o r a = l , p = l ,  

d# = w;1, 

Rather than calculating d$) in terms of resistance functions, i t  was found simply by 
matching (8.23) to (8.19) in the region where both forms were accurate (see 58.4 
below). 

F o r a =  l , P = 2 ,  

d!” = f( 1 + A )  w;1, 

di;) = - & ~ - 3 ( 1 + 7 ~ + ~ 2 ) ( 1 + 4 4  W ; ~ [ ~ ( I + A ) A $ ( A : : + A A ~  

+f( 1 + A )  AE)  + hA:: A$] .  

As with d$:), d$t) was found by matching to (8.20). 
From the above results, it  is easy to deduce the properties 

2 1 
XF1(2, A )  = __ +hx:z(2,h)  = - x & ( 2 , A ) ,  h 

and 

quoted by Batchelor (1982). Tables 7 and 8 tabulate the values of the constants. 

8.3. Arbitrary separations 
It might be expected that we should now follow the procedure used for resistance 
functions and combine the widely separated and nearly touching forms to  obtain more 
convergent series. This step, however, has little effect on the convergence of the series. 
The singularities which limit the convergence of the series are thus not ones that can 
be found from asymptotic analysis of physically significant limits. The only way 
forward in this direction would thus be to attempt to locate the singularities using 
one of the battery of numerical techniques available (Van Dyke 1975) ; however, the 
good overlap between the two expressions derived above made this unnecessary. 
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A 

1.125 
0.25 
0.5 
1 
2 
4 
8 

d f i )  

0.9997 
0.9951 
0.9537 
0.7750 
0.4768 
0.2488 
0.1250 

d g )  

-0.002 
0.009 
0.152 
0.930 
2.277 
3.610 
5.620 

di;) 

0.003 
0.026 
0.194 
0.900 
2.188 
4.061 
8.500 

d g )  

0 
0 

-0.3 
-2.0 
-4.5 
-6.4 
-9.2 

TABLE 7. The functions d l l ( A )  appearing in the asymptotic expression for &(s, A )  

A d# d g )  d# di;) 

1 .o 0.7750 - 1.070 -0.900 2.0 
0.5 0.7152 -0.766 -0.691 1 .o 
0.25 0.6219 -0.372 -0.408 0.2 
0.125 0.5623 -0.170 -0.256 -0.2 

TABLE 8. The functions d,,(A) appearing in the asymptotic form for z&(s, A )  

1 s\A 1 2 + Q 
2.00 0.7750 0.9537 0.9951 0.9997 
2.02 0.7914 0.9563 0.9952 0.9997 
2.1 0.8356 0.9634 0.9956 0.9996 
2.5 0.9234 0.9791 0.9964 0.9995 
3.0 0.9613 0.9880 0.9976 0.9996 

Asymptote (0.9614) (0.9880) (0.9976) (0.9996) 

TABLE 9. The function z y l ( s ,  A ) .  The asymptotic value for s = 3.0 was obtained 
using the terms up to s-ll quoted in $8. 

s\A 1 i 4 Q 
2 .oo 0.7750 0.7152 0.6219 0.5623 
2.02 0.7558 0.7014 0.6152 0.5592 
2.1 0.7007 0.6606 0.5940 0.5487 
2.5 0.5627 0.5479 0.5204 0.4992 
3.0 0.4708 0.4644 0.4518 0.441 1 

Asymptote (0.4706) (0.4643) (0.45 18) (0.4411) 

TABLE 10. The function &(s, A ) .  The asymptotic value for s = 3.0 was obtained 
using terms up to s-ll quoted in $8. 

8.4. Numerical results 
The numerical results were obtained by summing the series (8.19) and (8.20) to terms 
O(s-150). Comparison of the results obtained from these summations with results 
obtained from other sources, such as Batchelor (1976) and Adler (1981), showed that 
the series were accurate to 4 decimal places for s 2 2.02. For 2 < s < 2.02, the nearly 
touching forms (8.23) were used. The coefficients d$, dpd and dpd were Calculated from 
the formulae given above and the coefficient d$ was calculated from the requirement 
that  the two forms agree at s = 2.02. The choice ofs  = 2.02 was not critical, however, 
and the results changed little for other choices between 2.015 and 2.02. Tables 9, 10 
and 11 tabulate xzB for h 6 1 .  
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s\h 1 4 i Q 
2.00 0.7750 0.4768 0.2488 0.1250 
2.02 0.7915 0.5171 0.3121 0.2204 
2.1 0.8356 0.6266 0.4810 0.4527 
2.5 0.9234 0.9413 0.7980 0.8178 
3.0 0.9613 0.9261 0.9121 0.9263 

Asymptote (0.9614) (0.9265) (0.91 24) (0.9269) 

TABLE 11, The function z&. The asymptotic value for s = 3.0 was obtained 
using the terms up to s-ll quoted in $8.  

9. The mobility functions y;&s, A )  

the problem of motion under the conditions 
If i is a unit vector in a direction perpendicular to the line of centres, we consider 

(67cpaJl Fl = - (6npaJ' F, = Ui, 

L, = L, = 0. 
(9.1) 

(9% (9.3) 

By symmetry, we expect to  find velocities and rotations 

Ul = u(l)i, U, = - [ ~ ( 2 ) i ,  (9.4), (9.5) 

0 = -QOy 0, = -QWj.  (9.61, (9.7) 

p ~ )  = ( -  1)3--"iu, qg) = 0. (9.8), (9.9) 

xg; = ( -  1)3-au(-")~,~ s,,, ~ g ;  = 0, (9.10), (9.11) 

wg; = 252(")a, S,, dnl. (9.12) 

From (2.6) we obtain 

From the rigid-body motion of the spheres we obtain 

We now expand the quantities ppd, qpd, vfd, Ua) and Q@) in ways similar to those 

0 0 0 0  

p = o q - 0  

of $ 8 :  

ppd = (-1)3--"ju z z P n p q t p - , ,  

c o r n  

qpd = u Z Z Q n p q t E t f - a ,  
p - o q = o  

c o r n  

We have the initial conditions that 

All Vnpq are calculated from the relation 

(9.13) 
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For n 2 2, the recurrence relations for Pnpq and Qnpq are 

ps(q-s )  ( p - n + l )  

+ n(2n- 1) n(4n2- 1) 
q n  + 1) % - S )  (P-n-1) + qn + 1) (2s + 1) K(,-s-2) ( p - n + l )  

3(n+ 1) Qs(q-s-1) ( P - n f l )  ’ 1 2(4n2- 1) - 

3 

283 

(9.14) 

(9.15) 

Substituting n = 1 into (2.9b,c) gives expressions for Upq and Q P q :  

(9.17) 

Taking the values for Up, from (9.16) and observing that, as in previous cases, the 
even and odd powers in the series go to the functions yfl  and yf2 respectively, we arrive 
a t  our series expressions for y& 

9.1. Widely separated spheres 

(9.18) 

(9.19) 

where 
f o  = 1, f ,  = i, f ,  = 0, f, = 2+2h2, 

f4 = f 5  = 0, fa = -68h5, f7 = 0, 

f 8  = - 320A3 + 288h5 - 288h7, fg = 0, 

f l o  = - 6720h5 + 3456h7 - 1 152h9, 

fll = 8960h3 - 8848h5 + 8960h7. 
9.2. Nearly touching spheres 

The singular behaviour of y t  when 6 = s-2 < 1 requires even more elaborate 
formulae than those of the previous section. We must invert the 4 x 4 matrix given 
in (1.16) when the resistance functions are given by their asymptotic representations 
for 6 + 1. The inversion was carried out using the CAMAL language for algebraic 
manipulation by computer. It was found that the general form for yzp is 

(9.20) 

The fact that In 6 - l  appears only to the second power is a result of the relation (7.13). 
This might not seem to be a natural form in which to write the result, but i t  is 

10 B L M  139 
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10.891 

h 

0.125 
0.25 
0.5 
1 
2 
4 
8 

ac)  a(a) 11 U f i )  

0,994 1.53 - 1.55 
0.973 3.84 0.34 
0.927 5.61 4.40 
0.891 5.77 7.07 
0.764 5.02 5.60 
0.473 3.71 1.89 
0.238 2.70 -0.85 

&) 12 U l y  

0.553 0.46 
0.571 1.53 
0.535 2.50 
0.489 2.81 
0.535 2.50 
0.571 1.53 
0.553 0.46 

u(3) 

-0.65 
-0.06 

12 

1.24 
1.98 
1.24 

-0.06 
-0.65 

e(l) 

1.52 
3.79 
5.60 
6.04 
5.60 
3.79 
1.52 

TABLE 12. The functions uap(h) and e(h)  appearing in the asymptotic 
expression for yz&s, A )  near s = 2 

,(2) 

-1.54 
0.32 
4.18 
6.33 
4.18 
0.32 

- 1.54 

0.91 

0.851 I I I 

5 10 I S  20 

x 103 

FIQURE 1. Various representations of the function &(s, 1) in the neighbourhood of s = 2 plotted 
against 5 = 8-2. The broken curves labelled (1)-(3) correspond to the series form summed to (1) 
terms to O(s-*O), (2) terms to 0(s-l2O), and (3) terms to O ( S - ~ ~ O ) .  The solid lines correspond to 
asymptotic expressions : (4) simplified expression, and (5) full expression. The solid circles are 
numerical data taken from Batchelor (1976). 

chosen because the error term is multiplied by 6 ;  other, simpler, forms such as 
(9.21) below are obviously possible, but the error associated with them is 0 ((ln &2) 

which is much larger. Each coefficient uor and e is a function of h and can be written 
out explicitly in terms of the functions A!, BY and C'. When, however, these explicit 
expressions are derived using a computer, they turn out to be too lengthy to re- 
produce here. They may be obtained from the authors either as algebraic expressions 
printed by the computer, or as Fortran function subprograms. Table 12 tabulates 
numerical values for the factors. 

9.3. Numerical results 
The series expressions were extended to terms 0(s-l2O) and in thc special case h = 1 
to terms O ( S - ~ ~ O ) .  Comparisons between the various representations of the functions 
yEF(s, 1 )  near s = 2 are given in figures 1 and 2. Two asymptotic forms are given, the 
full form (9.20) and the simpler form 

(9.21) 
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0.Sr 

0.490 t 

t x 103 

FIGURE 2. Various representations of the function y&(s, 1)  in the neighbourhood of s = 2, plotted 
against = 5-2. The broken curves labelled (1)-(3) correspond to the series form summed to (1) 
terms to O(S-~O), (2) terms to O(S-'~O), and (3)  terms to O ( S - ~ ~ ~ ) .  The solid line corresponds to both 
asymptotic expressions because the simplified and full expressions are indistinguishable on this plot. 
The solid circles are numerical data taken from Batchelor (1976). 

~ 1 s\h 1 B 4 B 
2.00 0.891 0.927 0.973 0.994 
2.015 0.953 0.978 0.992 0.998 
2.1 0.974 0.989 0.996 0.999 
2.5 0.994 0.998 0.999 1 ,000 
3.0 0.998 0.999 1.000 1.000 

Asymptote (0.998) (0,999) (1  .OoO) (1.000) 

TABLE 13. The function yt(s,  A ) .  For s > 2.015, the series form was used. At s = 2.015 the average 
of the nearly touching asymptotic form and the series form was used. At s = 3, the widely separated 
asymptotic form is given. 

three series forms are given, corresponding to 80, 120 and 220 terms; finally some 
data points calculated for h = 1 by Batchelor (1976) and by Nir & Acrivos (1973) 
are plotted. We see that there is a smooth transition between the full asymptotic 
form and the series forms for yyl, but for yf2 the asymptotic curves and the series curves 
do not intersect. Since, for general values of A,  the series are known only to  terms 
O(S-'~O) the point 2.015 was chosen for the transition from the series form to the 
asymptotic form, this point being one where both forms are of comparable accuracy. 
For the tabulations in tables 13, 14 and 15, the average of the two values a t  s = 2.015 
is given. 

10. The mobility functions &(s, A )  
The calculations of $9  yield, from (9.17), the coefficients Q p q  in a series expansion 

for Q("), the rate of rotation of a sphere translating under an applied force. The 
functions y$ are deduced from these in the now standard way with the difference 
that odd powers of s-l go to yT1 and even powers to yT2. 

10-2 
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s\A 1 4 i Q 
2.00 0.490 0.535 0.571 0.553 
2.015 0.452 0.464 0.482 0.488 
2.1 0.418 0.426 0.440 0.450 
2.5 0.333 0.336 0.344 0.352 
3.0 0.269 0.271 0.275 0.280 

Asymptote (0.269) (0.271) (0.275) (0.280) 

TABLE 14. The function y&(s, A ) .  For s > 2.015, the series form was used. At s = 2.015 the average 
of the series form and the nearly touching asymptotic form was used. A t  s = 3, the widely separated 
asymptotic form is given. 

s\A 1 8 4 t 
2.00 0.891 0.764 0.473 0.238 
2.015 0.953 0.889 0.768 0.663 
2.1 0.974 0.934 0.868 0.820 
2.5 0.994 0.983 0.970 0.965 
3.0 0.998 0.995 0.992 0.991 

TABLE 15. The function y$Js, A ) .  For s > 2.015, the series form was used. For s = 2.015, the average 
of the nearly touching asymptotic form and the series form was used. For s = 3, the widely separated 
asymptotic form is given. 

Asymptote (0.998) (0.995) (0.992) (0,991) 

10.1. Widely separated spheres 
We have 

where 

00 

y:l = z f2k+l (h)  (1 +A)-- s-2k-1, 
k=O 

f o  = f 1  = 0, f 2  = -2,  f 3  =f4 = f 5  = f 6  = 0, 

f, = 160h3+48h5, f s  = 0, f 9  = 2240h5+192h7, 

fl0 = -4480h3 + 3200h5, fll = 21504h7+ 768h’. 

(10.1) 

(10.2) 

The coefficients do not have the symmetry of the other cases, because 

10.2. Nearly touching spheres 
The same matrix inversion that gave the asymptotic expression for y$ also gives an 
expression for y$. We write 

y&(s, * Y?2(S, A-1 ) .  

(10.3) 

The fact that  two touching spheres move as a rigid body gives us some conditions 
between the bc j  and the a$,  and the c$ defined below in 8 11.2. First, the two spheres 
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a 
0.032 

-0.056 
-0.018 
-0.204 
-0.317 

0.077 
0.887 
3.991 
0.371 
0.217 

0.785 
- 1.097 

a 
0.095 

-0.039 
-0.239 
-0.204 
-0.681 
-0.101 

0.610 
5.804 
4.983 
0.257 

0.450 
- 1.096 

1 

0.134 
0.200 

-0.792 
-0.134 
-0.927 
-0.188 

0.267 
5.609 
9.281 
0.267 

0.300 
- 1.058 

2 

0.091 
0.527 

- 1.451 
-0.054 
-0.992 

0.045 
0.076 
4.625 
9.875 
0.257 

- 1.091 
0.428 

4 

0.033 
0.618 

-1.748 
-0.012 
-0.872 

0.469 
0.014 
3.756 
6.513 
0.217 

0.750 
- 1.087 

TABLE 16. The functions ba8 and cap appearing in the asymptotic expressions for y$ and y& 

s\h a t 1 2 4 

2.00 0.032 0.095 0.134 0.091 0.033 
2.015 0.009 0.027 0.047 0.051 0.043 
2.1 0.005 0.014 0.025 0.027 0.022 
2.5 0.001 0.003 0.005 0.005 0.003 

TABLE 17. The function &(s ,A) .  The value a t  s = 2.015 is the average of the nearly touching 
asymptotic and series values. Widely separated asymptotic forms are not given because the values 
are so small. 

s\h a t 1 2 4 

2.00 -0.204 -0.204 -0.134 -0.054 -0.012 
2.015 -0.142 - 0.144 -0.130 -0.112 -0.102 
2.1 -0.121 -0.121 -0.116 -0.109 -0.105 
2.5 -0.081 -0.081 -0.080 -0.079 -0.079 

(Asymptote) (-0.080) ( - 0.080) (-0.080) (-0.080) (-0.080) 

TABLE 18. The function &(s,h). The value at s = 2.015 is the average of the nearly touching 
asymptotic and series values. The asymptotic value a t  s = 2.5 uses the widely separated form. 

move with the same angular velocity 0, = 0, = Qj. If we imagine, therefore, that  
forces F, = F, i, F, = F, i and couples L, = L,j, L, = L, j act on the spheres, then 

( 4 ~ 4 - l  y!1 F1+ (x(al+ Y:Z F, + (8xa:)-'yt1 L, + ( ~ ( a l  L,  

= (z(a1 + a,)'))-' &F,+ ( 4 7 ~ ~ 3 - ~  y; ,  F, + (x(al + 
Thus, since F,, F,, L, and L, are arbitrary, we obtain 

y4, L, + ( 8 ~ 4 - l  YE, L,. 

y?, = 4 ( 1 + A ) - 2 y i 1 ,  4 ( 1 + A ) - 2 y ! z  = y;,  a t  s = 2 .  

Therefore bii) = 4(1  +A) - 'b$ ,  4 ( 1  +A)-'b$\) = b$. 

Similarly, from u, = u2 -I- 0 A (a, + a,) e, 

a!:) = 2( 1 +A)- '  a!:) +I( 1 + A )  b$i). 

Table 16 gives values of the bap for various A. 
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10.3. Numerical results 
The terms in the series were calculated to terms 0(s-l2O) and numerical results for 
summing these are given in tables 17 and 18. 

11. The mobility functions y&(s, A )  
The recurrence relations used to calculate ya and y b  can be used with only the initial 

conditions changed to find yb and yc. The results for yb reproduce those given in 0 10. 
The new initial conditions are 

Q1pp = s o p  sop,  P1pp = 0 (=  T p q b  

As usual, 

where 

11.1 .  Widely separated spheres 

a, 

yfl = x f 2 k ( A )  ( 1  + A)-2”s-2”, 

YE2 = t( 1 + 4 3  z f Z k + ] ( A )  (1 +A)-- s-2k-1, 

k - 0  

00 

k=O 

f o  = 1,  f ,  = f 2  = 0, f3 = -4, f ,  = f 5  = 0, 

f ,  = -240A3, f 7  = 0, f s  = -2496A5, 

f g  = 4800h3, flo = - 18432A7, fll = 30720(A3+h5). 

11.2. Nearly touching spheres 
Using the same matrix inversion that gave ya and y b ,  we obtain 

(11.1) 

(11.2) 

(11.3) 

From the fact that  touching spheres move as a rigid body, we obtain the relations 

c!;) = 8(1 + A ) - 3 @  = A - 3  (1) c22 

bi;) = 4 ( 1 + h ) - 2 b l l , ) + ~ ( 1 + h ) ~ ~ ~ ) ,  hF2b!jl,) = 4 ( 1 + h ) - 2 b ! j ~ ) - 4 ( 1 + h ) - Z ~ ~ ~ ) .  

Numerical values for the cap are given in table 10. 

11.3. Numerical results 
The series was summed to terms 0 ( s - l 2 O )  and the results are tabulated in tables 19 
and 20. 

The change in sign of yf2 with decreasing s shows that, when the two spheres are 
far apart, the application of a couple to one sphere results in a motion of the other 
sphere that is reminiscent of one sphere rolling on the other, but when the spheres 
are very close together, the lubricating layer of fluid between the spheres prevents 
this motion and forces the second sphere into a rigid-body motion as part ofa  doublet 
with the first sphere. 
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1 s\h 4 2 1 2 4 
2.00 0.887 0.610 0.267 0.076 0.014 
2.015 0.968 0.888 0.768 0.684 0.670 
2.1 0.983 0.941 0.879 0.844 0.859 
2.5 0.996 0.986 0.974 0.973 0.983 

(Asymptote) (0.996) (0.987) (0.976) (0.977) (0.988) 

TABLE 19. The function yf,(s,h). The value a t  s = 2.015 is the average of the nearly touching 
asymptotic and series values. The value a t  s = 2.5 of the widely separated asymptotic form is given. 

TABLE 

s\h 
2.00 
2.015 
2.1 
2.5 

(Asymptote) 

4 4 1 

0.217 0.257 0.267 
-0.002 0.004 0.007 
- 0.032 -0.026 -0.023 
-0.030 -0.029 -0.028 

(-0.031) (-0.029) (-0.028) 

D. The function y?%(s, ). The value a t  s = 2.015 is the average of the nearly touching 
asymptotic and series values. The value a t  s = 2.5 of the widely separated asymptotic form is given. 

12. The mobility functions z&(s, A )  
The coefficients for this function are obtained from the relations 

Qnoo = 81nj 

We have 

where 

12.1. Widely separated spheres 

fo(h) = 1,  fl = f 2  = 0, 

f, = 1 ,  f ,  = f ,  = f ,  = f ,  = 0, f 8 = -3h5, 

(12.1) 

(12.2) 

(12.3) 

(12.4) 

(12.5) 

f g  = 0, flo = -6hi,  fi, = 0. 

We shall not proceed further with this function, because there is little scope for 
applications. 

During this work, one of us (DJJ) was supported by the Natural Environment 
Research Council of Great Britain, while the other (YO) was supported by the British 
Council. 
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