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Abstract

The wakefield of a single charge traversing a resonant cavity
can be calculated from an infinite sum over the loss factors
at all resonances. Since usually only a finite number of
modes is found by computation the wakefield may be quite
inadequate, in particular for very short distances behind the
exciting particle. An estimate of the wmissing terms 1is
obtained from the "optical resonator model"™ using the fields
in a laser cavity obtained by advanced diffraction theory.
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Introduction

An estimate of bunch lengthening and beam stability in high-energy
storage rings can be obtained by "tracking" a large number of (super)par-
ticles over many revolutions on a camputer. The charged particles in-
fluence each other, both directly and via coupling to the surroundings.
While the direct effect becomes negligible at ultra-relativistiec ener-
gies, the second effect may become very strong in the presence of high-Q,
high-frequency cavities required for acceleration and/or compensation of
energy loss, The interaction with the surroundings can be described by
the "wake field" - which should better be called "wake potential” as it
is the integrated effect on a particle following a certain distance be-
hind a bunch. If the particle distribution im the bunch is knawn, the
wake field can be obtained directly by numerical methods such as the pro-
gram BCI. However, the particle distribution itself is usually influen-
ced by the interaction with the surroundings, and one then needs the wake
Field of each (super)particle ("delta-function wake"), i.e. the Green's
function for the particular cavity. The wake field of a single particle
cannot be obtained with the program BCI, and can only be approximated in-
sufficiently by taking the wake field of a short bunch - in particular
because the computational effort becomes rapidly prohibitive when the

bunch length is small compared to the cavity dimensians.

In this report, we discuss the alternative method of obtaining the
delta-function wake by computation aof the resonances of a cavity, Since
this procedure is also limited to some maximum frequency, the missing
part of the infinite sum may be important - in particular for large, low-
frequency cavities as will be used for LEP, An estimate of this missing

part can be obtained with the "optical-resonator model”.
Discussion
1. The longitudinal wake field of a single charqge traversing a resonant

cavity can be obtained from the resonant frequencies w, and the loss

factors k, of all {longitudinal) modes by the expressiun1)
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where T is the distance (in units of time) behind the exciting charge.
In this report, we shall discuss only longitudinal {m = 0) effects caused
by particles on the axis of a cavity with revolution symmetry, although
similar expressions have been obtained for transverse wake fields in the
limit of small displacements from the axis. The factor 2 in equation
{1} is due to the fact that we consider only resonances with positive

frequencies w, > 0.

2. Except for the {unrealistic) case of a closed "pill-box" cavity, the
resonant frequencies and loss factors have to be found numerically with
computer programs such as SUPERFISH or KN7C. Thus only a finite number
of resonances will be known, and it is often impractical to extend the
calculations to frequencies where the loss-factors (actually their sum)
become negligible. Rather than simply truncating the infinite series,

it is preferable to replace the missing terms by an integral
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in which we have replaced the discrete loss-factors knp by a continuous
function k{w) multiplied by the density of modes dn/dw. This continuous
function can be approximated numerically by "binning", i.e. by averaging
the values of k, in frequency-bins of a certain width. Again this
technique is limited to the region for which the discrete resonances have
been computed. However, the high-frequency behaviour of this function

can be estimated by advanced diffraction theary.

3. The energy loss of a charged particle traversing a cavity (per unit
frequency interval} has been obtained by SesslerZ) and reported by
Keil3), based on results due to Vainshtein®) who calculated the
fields in a laser resonator - hence the name "optical resonator model".

1

Vainshtein solved the problem of two circular mirrors of radius a",



separated by a distance "Z&" aleng their common axis, by applying Wiener-
Hopf techniques. Sessler argued that this problem is equivalent to two
(parallel) infinite planes with circular holes, and hence also to a
cylindrical resonator with sideholes of radius a and a gap-length g = 2%
when the outer radius is assumed to be large. Vainshtein solved an in-
tegral equation for the current density in the mirrors and obtained an

approximation for the fractional decrease of energy (see Appendix A)
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A = 8w (3)

where vg, is the nth zero of the mth order Bessel-function (it is
gsufficient to limit the loss calculation to the lowest longitudinal mode
with m = 0, n = 1 and to take vgy = 2.405). o = -¢(1/) /W = 0.8237 is

a constant (% is Riemann's zeta-function), and

M = a/20/cl (4)
is proportional to the square root of the frequency.

Sessler multiplies equation (3) with the incident energy (per unit
frequency), for which he takesj) the Poynting vector at r = a multi-

plied with the cross-section na’
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which is obtainedS} from expressions for the Fourier components of the

fields of a charge 0 moving with velocity Bc.

The enerqgy loss (for a unit charge and per unit frequency interval)

can then be written

P = C__F(v)eG{¥) (6)
dw sV
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where (for B = 1)

2
2 vOl o
C = T = §£50 () (7)
gv wlalp
will be called the "Sessler-Vainshtein constant". The first Function
v o+ 1
F(\?) =
(v + 2/V + 2)2
(8)
th M2 Qazm
wil v = - =
a? ngc

describes the frequency variation of the energy~loss at intermediate to

high frequencies. The second function
(V) = VEKE(T)
(9)
— wa
with v =
Pyc

shows the reduction of the energy-loss at extremely high frequencies
since G(¥) > Veexp(-2V) » 0 for V » 1.  However, for LEP with a = 5 cm,
Y = 105, V remains smaller than unity up to 10'* Hz, and we may put

G(¥) = 1 for all practical purposes.

4. In reference 3), the gap length g = 20 is replaced by the period "d"
in the expression for M [equation (4)]. Indeed, in Vainshtein's case of
infinitely thin mirrors there is no distinction between these two quanti-
ties. We prefer to take the geometric mean Ygd, and we also find better
numerical agreement with computation by putting ¢ = 1 in the definition

of v [equation (B)], which we rewrite as
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where w
sV

is the "Sessler-Vainshtein" frequency.

We now identify the expression for the energy loss [equation (6)]

with the function in the integrand of equation (2)

C
dn SV w
k{w) d.w = 2 F(UJ ) {(11)

SV

The RHS has been divided by two since only positive frequencies are taken
under the integral [which therefore has been multiplied in equation (2)
by the factor 2 just as for the truncated series, in order to take ac-

count of the contribution of negative frequencies}.

The function F(v) is shown in Fig. 1 on a log-log scale. This
shows that it approaches y-3/2 for very large v while it is constant
(}/,) for very small v, In between it can be approximated by various
(negative) powers of v, and in particular in the region of 1 < v < 10 (a
few GHz for typical storage-tring parameters) it is approximated quite
well by v-0.7 (see Fig. 2b) close to the value found experimentally in
SPEARS ),

We also evaluate the "average impedance" iL which has been obtai-

ned’) by "binning" of the discrete resonances calculated for the LEP

cavity
7, (w) z ;2 k (12)
w =
L AF np N
where Af = Aw/2Zm is the width of a frequency bin centred on w. The loss

factors are summed over all modes whose resonant frequencies lie within



the bin (wy > w-Aw/2, wy < w + Aw/2). We can express this sum also as
the product of an average <k> and the number of modes in the bin

An = nz-m

n;
Y k= <k>An
n
ni
(13)
— 2 An
and thus Z, (w) = 2¢°<k> —
L Aw

We now identify the average <k> with the continuous function k(w) to

obtain with equation (11)

EL(w) = 1I2Cst (JE:] (14)

This function is compared with the (discrete) values obtained by

binning in Fig. Z. The agreement is excellent above a few GHz.
5. The wakefield of a cavity is obtained by combining equations (2) and
(1)
Aw(t) = Csv [ F(v) coswt dw {(15)
w

with v = m/msvand F(v) given by equation (8).

Unfortunately, this integral cannot be evaluated analytically except

for T = 0 where one finds

/s
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il
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fven numerical evaluation of the integral in equation (15) is
difficult because the integrand has an infinite number of oscillations in

the integration interval. For large enough values of C, the function

F(v) can be approximated by Bev~1/2 (see Fig. 1) where the constant B

is determined in such a way that F(C) = Bev-3/2, Then the integral in

equation (15) can be evaluated analytically1)

2B . nx 2%
Aw(t) = —::msvcsv casx - ;— 1 - 25 P (17)

v

where x = 0t and S{x) is the Fresnel integral.

For a small SLAC cavity (S-band) over 400 modes have been compu-
ted!) up to © = 6+10''s-t, Since wgy < 10'%s! (see Table I} ¥ is
over 30 and F(v) is quite well approximated by 0.6v-3/%2 (see Fig. 1).
For the much bigger LEP cavities (353 MHz) 565 modes brought ® only to

7410'%-!.  Since wgy is still over 10'%s-!

_3/2

, Vv is well below 10 and

the approximation F(v) = 0.32v is not adequate (Fig. 1).

Numerical evaluation of the integral in equation (15) has become
possible after an analytic expression has been found for the integral

from zero to infinite (see Appendix B).

Fu(x) = T F(v)casvxedv = %(1 + 4x)e Xeerfe(YIx) —V:—x (18)

o)

where x = w_ t and erfc(z) is the complementary error-function.

With this integral one can express the required one by

~

w
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£r—B

w ~ w w
F(—) coswtedw = w__*F (x) - [ F(—) coswtesdw (19)
sV o© W



The number of oscillations of the integrand in the integral on the
RHS is now only of the order of Bt/ﬁ, and numerical evaluation is no

problem if the time delay Tt is not too large.

Some results of these calculations for a typical LEP cavity are
shown in Figs. 3a and b (for time delays up to 80 and 500 ps respective-
ly) based on n = 565 (2/2n = 11.75 GHz). For very small time delays

(wgyt € 1), one finds to a first approximation

Awl(t) = Awlo) - /21w = (20)

SV

where w(o) is given in equation {16). The wakefield falls initially
with infinite slope, and the large initial contribution is reduced by a
factor two in less than 1 ps. On a longer time scale {of several
100 ps), the strong fluctuations of the wakefield obtained by summing
over 565 modes caompletely vanish when the optical resonatar correction is
added. This is all the more gratifying as there is no adjustable para-
meter in this correction. A comparison of this wakefield with the one
obtained by adding the optical resonator correction to the sum over only
20 modes (Q/Zn = 2,3 GHz} is shown in Fig. 4. For very short times the
two curves agree to better than 14, and stay within 10% for times up to

several 100 ps.
Conclusions

The delta-function wake potential (i.e. the Green's function) of a
periodic sequence of cavities can be obtained by summing over a finite
number of resonances and correcting for the missing modes with an integ-
ral. The Sessler-Vainshtein "optical resanator model” yields an excel-
lent fit to the averaged impedance in that part of the frequency spectrum
for which resonances have been calculated for the LEP cavity (565 modes
up to 12 GHz). However, due to the large size of the cavity, the integ-
rand of the correction term cannot be approximated by a simple -3/2 power
law (which was quite acceptable for the much smaller SLAC cavities).
Because the integrand has an infinity of oscillations in the integration
interval, numerical integration is difficult. However, it has become
possible after the main part has been done analytically and yields a cor-

rection to the wake field which is initially bigger than the sum over 565
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modes. Furthermore it completely removes the wiggles which appear in
the truncated sum. Thus we have good reason For our confidence that
this wake field is a better approximation to reality and should be used
to study bunch lengthening and instabilities in LEP.
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Dimensions

a {em)

b n

g n

d 1
Fundamental mode

fo {GHz)

@ (10105'1)

kg {v/pC)
Higher modes

n

& (10'%5-1)

n
2y K, {v/pC)
n=0

Optical resonator model

W, (10'%s-1)
v o= t:)/wsV

F(v)

B = v3/2(3)

Awlo) (v/pC)

* SUPERFISH results
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TABLE I

Cavity Parameters

sLac’
(cavity no. 45)

1.163
4.134
2.915
3.499

2.84
1.785
0.683

416
60

1.77
34

0.003
0.60

Lep®)

5.00
32.50
34,49
42,42

0.353

. 0,22

0.112

565

7.5

2.25

1.15
6.6

0.019
0.32
3.44

(0,158)*

(20}
(1.45)%

(0.851)*
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APPENDIX A

The Optical Resonator Model

We give a short description of the results obtained by Vainshtein

which form the basis for the analytic extension of the truncated series

for

the wake function. Vainshtein considers several geometries and

introduces his results step by step:

a)

Diffraction at the open end of a planar wavequide

(semi-infinite plates z > 0 at y = ta).
The (spatial) Fourier-transform F(w) of the surface current density

f(z) in the upper plate is determined by the integral equations

J Fwe™dz = 0 <0

-
N

. (A1)
[ LwFwe™ dz = 0 ; z>0

Under the assumption |w| € k the kernel L can be approximated by

2
L{w) = 1 - exp[i(2np - a )] (A2)

The frequency is assumed to be high enough for the integer q to be

large compared to unity in the expression
ka = =n{g/2 + p) ) (A3)

where k = w/c, |p\ < 1/2.

(i.e. wavelength € distance between plates).

The approximate kernel vanishes for w = twj, where
W, = SJVk/Za with sj = J4an(p + j) {A4)

are the wave numbers of the modes E (or Hlg,q+2j {(j > 0 propa-

gating, j < 0 damped, j = 0 incident wave).
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In general, the Wiener-Hopf technique consists of finding a "facto-

rization" of the kernel
Llw) = Li(w) » Ly(w) (A5)

for which Lj is "holomorphic" (= analytic) in the upper half-plane
Imw > 0 {(and L; in the lower one), and tends to unity far |w| > @

in this half-plane, Usually, the factors can only be expressed as
infinite products. Without derivation, Vainshtein gives an expli-

cit expression

Ly(w) = exp[U(Y2a/k w, p)]
(A6)
Ly(w) = Ly (-w)
2
1 = an[1 - exp(Znip_t /2)]
where Uls,p} = omi i /4 dt (A7)
- t - s*e
With these factors, the solution of the inteqral equations is
A Ll(wo)
Flw) Zni Twew_) Ly () (A8)
and thus
Flz) = A[ 1woz f 1w z
) jeo 0§° al (A9)
i BXp[U(SO,p) + U(Sjyp)]
with R . = =
0] (s + s.)s,
o J J

A is the amplitude of the incident wave (with mode-number
W = s Vk/2a , s = Yanp).
) o 0

Roo is the ‘"reflection coefficient", while Rgy (j # 0) are



b)

c)
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"transformation coefficients". For small values of ‘p| the trans-
formation to modes with j # 0 is negligible and Rgg is dominant.

It is then claimed to be approximated by

R =~ —exp| id(‘|+i)so1

00

(A10)
with g o= -z (MW
where L(z) is Riemann's zeta-functiaon. Equation [A10) is exact
for p + 0, but remains qualitatively useful up to |p! =1/,

Diffraction at the open end of a semi-infinite circular waveguide

{radius a)

The frequency is now assumed to be given by

_ L
kg = Yoo TP {a11)

(1)

where Von is the nth zero of the (derivative of the) mth order
Bessel function. It is assumed that n » 1 and |p\ < 1/2. For

m+ 0 there will be an azimuthal component of the current density in
addition to the longitudinal one and the integral equations become
rather complicated. However, for m € ka and |w| € k the current
density is determined approximately by the relations derived for the

planar waveguide in the previous section.

Open cylindrical resonator (radius a, length 24&)

The wave-number k = w/c, given by equation (A11), is now complex for

q=1% 2, ... and p complex and small.

The waves are reflected at the apen ends of the resonator z = *2
practically without conversion. This leads to the '"characteristic

equations"

R - _(-)qg 2iwo? (A12)
Qo
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Since equation (A4) yields for j = D

2w £ = Ms
o 0
(A13)
2k ?
with M =
a
Equation (A12) with (A10) yields the solutions
/4 3 (A14)
= T = B
®o P M+ (1+i)o
from which one can determine p = p' - ip".

The fractional decrease of energy (during the time of traversal 2a/c) is

given by

(A15)

1

[ov]

E]
[
N

d) Open resonator formed by circular mirrors

(0 <r <a, z =)

T
where now k& = ; (q + 2p) ;3 q>»1, |p| < 1/2 (A16)
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The characteristic equation becomes

-ZiQm(woa)
R = -e (A17)

where Qm(x) is a "phase-function" for which

Q = .
m(vmn) nm

Expanding this function yields

Qm(x) = nm o+ Q'(vmn)(x - vmn) (A18)

Roo 1is still given by equation (10), but with s, replaced by

SDQ'(vmn). Thus the solution of the characteristic equation
becomes
L van
s, = fanp = ;—:-?I:;;;
(A19)

2ka?
with M =
2

The fractional decrease of energy becomes [reference 4), equa-
tion (80)]

8v? a(M+a)
mn

A = 4mp" = (A20)
° [(M+o)2 + 02]2

This expression is asymptotically valid [q » 1 in equation 16)] for
m>»>0, n>»1. The fields obtained with this theory are claimed to
agree quite well with those obtained by direct numerical solution of

the integral equationa).
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APPENDIX B

The optical resonator wake field

a) We want to evaluate the integral in equation (15) when F(v) is given

by equation (8). We introduce the dimensionless variables
. , R
v o= ;'-— , X o= ow T , v o= r (B81)
SV SV
to get
Aw(t) = CSV°wSV-F(x) (B2)
with
F(x) = [ F(v)cosvxedy
v
(B3)
1+ /v
where F(v) =
Yy 2
[(1+/v)° + 1]
The substitution v = u? removes the square roots in the integrand

and - with s = Vv - one finds

~ - ulu+1)cosxu?
Fix) = 2§ ; du (B4)
s [(u+1) + 1]2

b)  The integral (B4) can be evaluated analytically only for x = 0. In
this case we substitute u+1 = v and use partial fraction decomposi-

tion to get
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~ @ (y=1)vdv @ 1 v+1
F{g) = 2 [ ——— = 2 | [ - . ) dv
s+1 (vZ+1)2 s+1 Lvi+1 (ves1)

These terms can be integrated to yield

@

~ v-1 T 5
F(e) = Jatanv - =3 = = - atan(s+1) + 5w (BS)
vo+1 o+ 2 s +2s+2

For x # 0, however, the integral {B4) could not be done analyti-
cally, and even numerical integration is not possible because of the
infinite number of oscillations of the integrand in the integration

interval, It is then expedient to rewrite equation (B4) as

~ ~ S u(u+1)cosxu?
Fix) = F (x)-2] du (B6)
o o (u? + 2u + 232

with

u(u+1)cosxu?

Fo(x) = 2{) (B7)

u
(u2 + 2u + 2)2

The integral in (Bé) can be done numerically - at least for not too

large time delays - since the integrand has only a finite number of
oscillations (of the order of xs?/n = wt/n). For the definite
integral (B7) we attempt to find an analytic expression. First we

use again partial fraction decompositian

2ulu+1) 1 u u I u (88)
— % = — - = m T
(u?+2u+2)? 2j [(u+1-—j)2 (u+1+j)2] (u+1-3)2

to rewrite the integral as

ao

~ u*cos XU2
Fo0x) = Im i ——— du (B9)
o (u+s1-3)
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c) Next we use two definite integrals listed in GR?) 3.853.2

2
® coslau) T
ney = J T3 7 du = ¢ [c - (e-s)C - (c+s)s]
o U“+B g
and GR 3.722.3 (B10)
o 2
u*cos{au) 1
I,(B) = s, —du = - — [crei + se*si]
u”+p 2
where c,s = cos,sin(ap)? ;
»S = C,5(aB) are the Fresnel integrals
and si,ci = si,ci(a6)2 are the integral sine/cosine.

Both integrals (B10) are valid for a real and Re § < 0. With these

we can calculate

* cos(au)2
I3() = [ ———du = JjBIp + 1Ip =
0 u-jB
s 1
= ] E [c - (c-s)C - {c+s)5] - E [ceci + s+si] (B11)
or, if we put B = jy and use ci(-x) = ci{x) + jmn, si(-x) = -sil(x)-=m
and C(jx) = jC{x), S(jx) = =jS(x)
@ 2 1
Iy(y) = [ coslau)” du = — f(c+s)C - (c-8)S - 5] - — [crei + sesi]
u+y 2 2
0 (B12)

which is valid for o real, Imy < 0,
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d) By taking the limit
u Y+E
—— = lim - (B13)
{u+y) es>n | UHY+HE u+y
we obtain the integral
* ucos(au)2 aly
Is(y) = [ —=—dv = IL{y) +v — (B14)
o Cu+y) DY
Using the derivati a(CS) \E( )
sing e derivatives o Sy = « ¥, (c,s
and
3 o 2
g; (01,51)(GY)2 ; (e,s)
one then obtains
Ty T2
/____/\__,_.——-N\ ’____________/\.__——-—.\
T 2.2
Ig(y) = 7 [(c+s)C - (c-5)S - s| + na“y [(c-s)C + (c+s)5 - ¢l +
(B135)
1 . i 2 2 . n
- 7 [c-c1 + sesi] + a“y [s-c1 - c'si] +ay ¥3 - 1
e S ——
Ty Ty
e) In order to evaluate (BY) we need Is for y = 1-j. for the Fresnel

integrals of complex argument we find (GR 8.256)

{C +

(c -

jS)Z = /j/2 erf(z/Vj)
(B16)
i$), = erf (/30723
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From these one obtains

. _22
(c,s) lii [erf(ay2) 7 & . D(av'2)] (B17)

(1-j)a

where D(z) is 2/¥7n times the "Dawson integral" (As10)7.1.17).
For the first two terms in equation (B15) we get, with b = a®> = 2¢2

2Ty - D(a)e-b - j(eberf a - 2sinh b)
(B18)

27, (eberf a - 2cosh b) + jD(a)e_b

Actually, we need only Im(Is) for {(B9), i.e.

[eberf a - 2 sinh b]

=) A

Im(Ty) = -
(819)

Th

Im(azYzTg) = -5

a

[eberf a - 2cosh b]

F) Similarly, we use AS 5.22/24 to derive (for x > 0)

si(-30) = -7 - T[Ei(x) - Ei(-x)]
(820)

cei(-jx)

1
5 [Eilx) + Ei(-x)] - jn

where Ei(z) is the exponential integral.

With these we get for the next two terms in (B9)

b

214 ® Ei(b) + e Ei(-b) - jnaP

(B21)

2Ty xeal o j[éb Ei(b) - eb-Ei(—b}]
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~

For the calculation of Fo(x) we need only

b (B22)

1 T
7 Im (T3) 5 ©

and

nbh _p

"
I
]}

Im(a®vy?Ty)

Combining all these expressions then leads to the final result (with
2
b = 2a° = 2x)

F(x) = Z(1+ ax)e?® erfe(VZx) -‘/1‘1 (B23)
o 4 2

where erfc(z) = 1 - erf(z) is the complementary error-function.
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Fig 4a: Comparison of correcied
wake field in LEPcavily
* for 565 and 20 modes

(0 to 80 ps)

565 modes {sum)

e

20 modes

565 modes
L+opt.res’

+optical resonator

20modes(sum)

P —




(zHO €' o) dn)

(sd 00§ -0S)
sepow(Z pup 599 lo}
A11AD2 37 Uil pI3Yy DM
pa3}22.110d jJo uosiipdwo) :qy By

Jojpuosay |paijdo
+ Sapow G99

(Ajuo wns)
sapow (Z \

- 10

-€0

-G0

- 90




