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A method for calculating thermodynamic properties of clusters from knowledge of a sample of
minima on the potential energy surface using a harmonic superposition approximation is extended
to incorporate anharmonicity using Morse correction terms to the density of states. Anharmonicity
parameters are found for different regions of the potential energy surface by fitting to simulation
results using the short-time averaged temperature as an order parameter. The resulting analytical
expression for the density of states can be used to calculate many thermodynamic properties in a
variety of ensembles, which accurately reproduce simulation results. This method is illustrated for
13-atom and 55-atom Lennard-Jones clusters. ©1995 American Institute of Physics.
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I. INTRODUCTION

Before Monte Carlo~MC! and molecular dynamics
~MD! simulations became computationally feasible, consi
erable attention was given to the calculation of thermod
namic properties of clusters from knowledge of the vibra
tional spectrum of a low energy structure using a harmon
approximation.1–5 McGinty and Burton realized that if their
results were to have relevance for more than low temperat
behavior other configurations needed to be included in th
partition function,2–4 but without the means to systematically
search the potential energy surface~PES! they were unable
to implement this extension of their approach. The objectiv
behind these studies was to get free energies in order to st
homogeneous nucleation.

Once MC and MD simulations became feasible, work o
the thermodynamics of clusters concentrated on obtaini
thermodynamic information from the simulations, as the in
formation gained is ‘‘exact’’ within the statistical errors of
the simulation. In particular, it includes the thermodynam
effects of anharmonicity. This approach has been most s
cessful. The multihistogram method6,7 used by Labastie and
Whetten extracts the configurational density of states fro
simulation.8 Convolution with the kinetic energy density of
states gives the total energy density of states,V(E), from
which many other thermodynamic functions can be calc
lated. Labastie and Whetten applied the method to the fi
three icosahedral Lennard-Jones~LJ! clusters,8 unequivo-
cally showing that there areS-bends ~or Van der Waals
loops! in the microcanonical caloric curves of LJ55 and
LJ147. This method has since been used to calculate the co
plete phase diagram9 for LJ55 and to investigate the melting
transition for LJ13 and~H2O!8.

10 The multihistogram method
obtainsV(E) to within an unknown multiplicative factor,
and this is sufficient for most applications. Weerasinghe a
Amar used an adiabatic switching method to fix the absolu
value of V(E), and subsequently usedV(E) to calculate
rates of evaporation of LJ clusters using phase spa
theory.11

Although numerically successful, the above approac
gives little physical insight into the processes being sim
lated. Stillinger and Weber in their studies of bulk meltin
introduced the idea of ‘‘inherent structures.’’12 Every con-
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figuration of a system can be mapped onto a minimum of
PES, an ‘‘inherent structure,’’ by a steepest-descent path
‘‘quench.’’ This mapping allows the partition function to b
separated into a term due to the energy spectrum of the
herent structures and a term due to thermal motion within
wells of the inherent structures. This approach can give mu
greater physical insight into a process such as melting,
cause the thermodynamics can be related to the structure
the minima on the PES. Similarly, an understanding of ho
the structure and topology of PES’s differ can be used
explain differences in thermodynamic properties.

The success of Berry and co-workers in elucidating t
melting of small Lennard-Jones clusters was partly based
their emphasis on understanding the thermodynamic and
namic properties in relation to the qualitative features of t
PES.13,14In particular they used systematic quenching to fin
the important low energy minima on the surface. This pr
cedure has now become a standard tool in understanding
thermodynamics and dynamics of clusters and has been
plied to LJ,15 argon,16 alkali halide,17,18metal,19 water,20 and
C60 clusters.21,22 Similarly, a knowledge of the transition
states on the PES can provide a greater insight into the
namics of a system.23 This information was first obtained by
the application of the eigenvector-following and ‘‘slowes
slides’’ methods,24 and has been used in combination wit
quenching to understand the melting dynamics of small LJ25

alkali halide,17 metal,19 water,26 and C60 clusters.
21,22

Bixon and Jortner27 considered the effect of model en
ergy spectra of the inherent structures on thermodynam
properties, in particular on the microcanonical and canoni
caloric curves. They showed that a large energy gap betw
the global minimum and a manifold consisting of a larg
number of higher energy minima was necessary to produc
significant feature in the caloric curves.

Subsequently, we have developed an approach in wh
V(E) is directly calculated from knowledge of the PES.28,29

A sample of minima is generated by systematic quench
from a high energy MD run.V(E) is then calculated by
summing the harmonic density of states for each minim
This approach has been called the harmonic superposi
method. It has been applied to LJ,20,28 water,20 and model
metal clusters19 to calculate the microcanonical calori
96599659/14/$6.00 © 1995 American Institute of Physics
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9660 J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
curve, the heat capacity, the Helmholtz free energy, the c
nonical total energy distribution function,19,20,28Landau free
energy barriers,30 and thermodynamic properties for differen
regions of the PES, defined by a suitable order paramete31

Frankeet al. have independently applied the same ideas
small LJ clusters.32

In Sec. II we briefly review the harmonic superpositio
method. In Sec. III we consider possible ways of includin
anharmonicity, and in Sec. IV we apply the resulting expre
sions for the density of states to calculate a variety of the
modynamic properties. LJ13 and LJ55 are used as examples to
evaluate the effectiveness of the method. These are the
smallest icosahedral clusters and have been much stud
theoretically because of their special stability.

II. THE HARMONIC SUPERPOSITION METHOD

The total energy density of states associated with
single minimum on the PES is, in the harmoni
approximation,13

V~E!5
~E2E0!k21

G~k!P j51
k hn j

u~E2E0!, ~1!

whereE0 is the potential energy of the minimum,u is the
Heaviside step function, andk, the number of vibrational
degrees of freedom, is 3N26. To calculate the density of
states for the whole system, all the minima on the PES ne
to be considered. We make a superposition approximati
and sum the density of states over all the minima low enou
in energy to contribute. This approximation is equivalent t
assuming that the phase space hyperellipsoids associa
with each minimum do not overlap. This gives

V~E!5 (
Es
0
,E

ns* ~E2Es
0!k21

G~k!P j51
k hn j

s , ~2!

where the sum is over all the geometrically distinct minim
on the surface;ns* , the number of permutational isomers o
minimums, is given byns* 5 2N!/hs , wherehs is the order
of the point group ofs.

The difficulty with Eq. ~2! is that for all but the very
smallest clusters this sum involves an impractically larg
number of minima. Hoare and McInnes,33 and more recently
Tsai and Jordan34 have enumerated lower bounds to the num
ber of geometric isomers for LJ clusters from 6 to 13 atom
This number rises exponentially withN. Extrapolating this
trend gives for LJ55 an estimate of 131021 geometric iso-
mers. In such a case, as it is not possible to obtain a comp
set of minima, a representative sample is needed. A large
of minima can be obtained by systematic quenching from
high energy MD trajectory. However, this gives a greate
proportion of the low energy minima than of the high energ
minima. Consequently, if the sample is used in Eq.~2! it is
likely to underestimate the density of states due to the hi
energy minima, and so be inaccurate at high energies.

A method is needed which corrects for the incomple
nature of the sample of minima. This correction can b
achieved by weighting the density of states for each know
minimum by gs , the number of minima of energyEs

0 for
which the minimums is representative. Hence,
J. Chem. Phys., Vol. 102
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V~E!5 (
Es
0
,E

gsns* ~E2Es
0!k21

G~k!P j51
k hn j

s , ~3!

where the sum is now over a representative sample
minima. The effect ofgs can be incorporated by using the
quench statistics.28 If the system is ergodic and the MD run
is performed at constant energy, the number of quenches t
minimum,g, is assumed to be proportional to the density o
states of the set ofgs minima, i.e., g(E8)s}gsV(E8)s .
Hence,

V~E!} (
Es
0
,E

g~E8!s
V~E!s
V~E8!s

~4!

} (
Es
0
,E

g~E8!sS E2Es
0

E82Es
0D k21

, ~5!

whereE8 is the energy of the MD run.
If all the low energy minima are known, then* formula

will be accurate at low energies. Therefore, the proportiona
ity constant in the above equation can be found by matchin
it to the low energy form of then* formula. For LJ13 and
LJ55, the term due to the icosahedron is dominant at lo
energies, and other terms in the sum can be neglected. Co
paring the first terms of Eqs.~2! and ~5! gives for the pro-
portionality constant,c,

c5
n0* ~E82E0

0!k21

g~E8!0G~k!P j51
k hn j

0 . ~6!

A critical test of these formulas forV(E) is the pre-
dicted microcanonical caloric curve, which for LJ55 has anS-
bend.8 Using the thermodynamic definition of the microca
nonical temperature,Tm ,

1

kTm
5S ] ln V

]E D
N,V

5
1

V S ]V

]E D
N,V

; ~7!

an expression forTm can be derived.28 For LJ55 we have two
samples of minima produced by systematic quenching,28 de-
tails of which are given in Table I. Sample A is from a MD
run at an energy in the upper end of the coexistence regio
and B at an energy just into the liquidlike region. The resul
for samples A and B using then* andg formulations28 are
given in Fig. 1. From this it can be seen then* formula fails
badly, predicting only an inflection in the caloric curve which
is too high in energy, because it underestimates the contrib
tion toV(E) from the higher energy minima. Theg formula
is much more successful, reproducing theS-bend at the ob-
served energy.35 That the harmonic superposition method
produces a caloric curve with the correct features shows,
Bixon and Jortner suggested,27 that the distribution of

TABLE I. Details of the two samples of minima used for LJ55. E8 is mea-
sured with respect to the global minimum icosahedron.

E8/e Number of minima

A 64.7485 989
B 70.2485 1153
, No. 24, 22 June 1995
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9661J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
minima is critical in determining the form of the calori
curve. However, theS-bend is too shallow and lies at too
high a temperature. The temperature difference is due to
harmonic approximation. The temperature rises linearly w
energy for a single harmonic well. The anharmonic wells
the cluster, however, are flatter than the harmonic case e
cially around the transition state regions. Consequently,
cluster spends more time in these high potential energy,
temperature regions of the PES, and so the true tempera
is lower than that given by the harmonic approximation.

For smaller clusters it was found that the performance
the n* formula improved.20 This improvement occurs be
cause there are fewer minima on the PES of a smaller clu
and so the set of minima obtained from quenching is mo
complete.

The harmonic superposition method has three main p
sible sources of error. The first is from the systema
quenching and the resulting sample of minima and quen
statistics. These errors can be mostly eliminated by havin
long enough quench run to ensure ergodicity and choos
an appropriate energy for the run so that the relevant regi
of phase space all have significant probabilities. When stu
ing the thermodynamics of melting it is most appropriate
chooseE8 to lie in the coexistence region, as in the case
sample A, so that quenches to solidlike, liquidlike, an
surface-melted states are frequent. The second poss
source of error is the assumption that the phase volumes
each minima can be summed independently, i.e., the hy
ellipsoids in phase space do not overlap. If they did the ov
lap would causeV(E) to be overestimated. Of course, abov
an energy threshold the true phase volumes of each m
mum are interconnected, but this interconnection is norma
due to the extension of the phase volumes due to anhar
nicity to form necks in phase space along the transition st
valleys. The third possible source of error is the harmo
approximation. Near the bottom of the well this is a reaso
able assumption, but as the energy is increased some par
the well become increasingly flat. Consequently the h
monic approximation causesV(E) to be underestimated

FIG. 1. Microcanonical caloric curves for LJ55. The solid lines were calcu-
lated from theg formula, the dashed lines were calculated from then*
formula, and the dashed line with diamonds shows the simulation poi
The sample of minima used in the calculations is marked on the graph.
details of the simulation see Ref. 31.
J. Chem. Phys., Vol. 102
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Comparison of the caloric curves from simulation and th
harmonic superposition method~Fig. 1! shows that the har-
monic superposition method does indeed underestim
V(E) and so the harmonic approximation is likely to be th
main source of error.

III. ANHARMONICITY

Most attempts to model anharmonicity have conce
trated on small systems. As the size of the system increa
the difficulty increases greatly. For example, it would be im
possible to do the necessary multidimensional phase sp
integrals in the definition ofV(E),

V~E!5
1

hk E E d~H2E!dqkdpk. ~8!

Most approaches either attempt to calculate the anharmo
element using known information from the PES, such as t
third and fourth derivatives of the potential at the minim
and the dissociation energies36 or assume the PES has a ce
tain topology for which the partition function is known.37–38

A normal mode approximation is often used because t
multidimensional partition function is then the product of th
one-dimensional normal mode partition functions. Howeve
to obtain the density of states the partition function must
inverse Laplace transformed. This problem does not nec
sarily have an analytic solution, but there are a number
numerical methods.39,40

The only attempt that we know of to evaluate analyt
cally the anharmonic density of states of clusters is due
Chekmarev and Umirzakov.38 Their expression contained a
number of unknown parameters, which they had to estima
This approximate approach was partly due to their lack
information about the PES of LJ13, the cluster they consid-
ered. They showed their form was able to produce the typ
of feature seen in the LJ13 caloric curve, if not to reproduce
it accurately. The approach we use here is similar. We a
looking for a relatively simple method that will provide an
analytical expression for the anharmonic contribution
V(E). We also want to examine how far it is possible to us
information extracted from the PES in this task. We wi
focus on LJ55 as a test of the methods developed. For LJ55 we
have a sample of 3481 transition states which were fou
from a random selection of 402 of the minima in sample
defined above.22 We have also calculated the analytical thir
derivatives for this potential.

A. The effect of transition state valleys

Transition states are crucial to the dynamics of a syste
but how much effect do they have on the thermodynamic
Associated with a transition state is a flat valley on the PE
which connects two minima. These transition state valle
will make a contribution toV(E). To consider their effect
we need an expression for the density of states of a transit
state valley.

We write the partition function for the transition state
valley as a product of a vibrational partition function for th

ts.
For
, No. 24, 22 June 1995
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9662 J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
~k21! modes orthogonal to the transition vector and a tra
lational partition function for motion along the transitio
state valley. This separation gives

Zts5
L

h
A2pm

b

e2bEts

P j51
k21bhn j

ts , ~9!

whereL is the length of the transition state valley. Invers
Laplace transforming this expression gives for the density
states of the transition state valley,

V~E! ts5
A2pmL~E2Ets!

k23/2

hkP j51
k21n j

tsG~k21/2!
u~E2Ets!. ~10!

Our expression for the total density of states is then
n

d
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V~E!5 (
Es
0
,E

ns*

hk F ~E2Es
0!k21

G~k!P j51
k n j

s1
A2pm

G~k21/2!

3 (
Es
0
1Ds,t,E

ss,tLs,t~E2Es
02Ds,t!

k23/2

P j51
k21n j

s,t G , ~11!

whereDs,t is the barrier height of transition statet from
minimums, and the reaction path degeneracyss,t5hs/ht or
2hs/ht for nondegenerate and degenerate rearrangem
mechanisms, respectively.41 A degenerate transition state
connects different permutational isomers of the same m
mum. In theg formulation we now have
V~E!5 (
Es
0
,E

g~E8!s

~E2Es
0!k21/G~k!P j51

k n j
s1A2pm/G~k21/2!(E

s
01Ds,t,Ess,tLs,t~E2Es

02Ds,t!
k23/2/P j51

k21n j
s,t

~E82Es
0!k21/G~k!P j51

k n j
s1A2pm/G~k21/2!(E

s
01Ds,t,E8ss,tLs,t~E82Es

02Ds,t!
k23/2/P j51

k21n j
s,t .

~12!
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Geometrically, the phase volume associated with the tra
tion state valley is an elliptical hypercylinder. There is also
term due to the phase space overlap of this hypercylin
with the hyperellipsoid associated with the minimum. It ca
be evaluated,42 however it is a small term and so we negle
it, especially as initially we are only trying to determine th
magnitude of the effect of the transition state valleys.

The set of transition states previously calculated is n
an exhaustive set for the sample of minima. Its incomple
ness could cause an underestimation of the density of st
arising from the transition state valleys. We therefore p
formed a more exhaustive search for transition states from
minima representing a wide range of energies. This sea
indicated that a reasonable estimate of the average numb
low energy transition states per minimum was 20~not count-
ing permutational isomers!. For each minimum the density o
states of the known transition state valleys was multiplied
20/nts

s , wherents
s is the number of known transition state

for minimum s. If the sample of transition states containe
none connected to a particular minimum, it was assigned
transition states with the average barrier height and aver
frequency. The length of the transition state valley was e
mated using

Ls,t5Ds,t2
1

2pns
A2D

m
, ~13!

whereDs,t is the displacement in configuration space b
tween minimums and transition statet, andns is the geo-
metric mean normal mode frequency ofs. The second term
is the geometric mean radius of the harmonic well in co
figuration space at an energyD above the minimum.

From the expression forV(E) in Eq. ~12! the tempera-
ture can be calculated using Eq.~7!. It can be seen from the
microcanonical caloric curves given in Fig. 2~a! that the tran-
sition state valleys cause the caloric curve to bend away fr
si-
a
er
n
t

t
e-
tes
r-
13
ch
r of

y

20
ge
ti-

-

-

m

the harmonic curve and theS-bend to be displaced down-
wards, but these effects are small. Even if the number
transition states connected to a minimum is assumed to
greater than 20 the effects are only slightly increased. T
addition of the density of states of the transition state valle
only accounts for a small part of the difference between t
harmonic and the true caloric curves. This result occurs n
because the contribution of the transition state valleys to t
density of states is small compared to that of the minima—
fact the transition state valleys make a larger contributio
than the minima above about 55e. Rather it occurs because
the density of states for the transition state valleys is not ve
different from that of the minima; the valleys are modeled a
harmonic in all but one dimension. We therefore conclud
that a method of modeling the anharmonicity of the wells o
the PES is needed to obtain an accurateV(E). This agrees
with Stillinger and Stillinger’s conclusion that intrawell an
harmonicity is dominant for LJ55 because the caloric curve
significantly deviates from the harmonic form at energie
where the cluster always resides in the icosahedral well.16

B. The effect of well anharmonicity

Here we follow the method of Haarhoff37,39 to calculate
an anharmonic correction term to the density of states. T
energy levels for a Morse oscillator are given by

E5S n1
1

2Dhn2S n1
1

2D
2 ~hn!2

4De
. ~14!

This quadratic can be solved forn. The root corresponding to
a bound state is

n1
1

2
5
2De

hn S 12A12
E

De
D . ~15!

Assumingn is continuous and differentiating with respect t
E gives a classical density of states,
, No. 24, 22 June 1995
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V~E!5
dn

dE
5

1

hnA12E/De

5
1

hn F11
E

2De
1
3

8 S EDe
D 21••• G , ~16!

where the square root has been expanded binomially.
expansion is valid ifE/De is small. The first term in the
series is the harmonic term. The full series will diverge
E→De . This divergence is the correct behavior for th

FIG. 2. Microcanonical caloric curves for LJ55 using~a! theg formula with
~solid line! and without~dashed line! the contribution from transition state
valleys, and~b! using theg formula including anharmonic terms with
minima samples A~solid line! and B ~dashed line!. In both ~a! and ~b! the
calculated caloric curves are compared to simulation~dashed line with dia-
monds!.
J. Chem. Phys., Vol. 102
he

s
e

Morse oscillator, but for the case of a cluster isomerization
V(E) remains finite asE→D from below, whereD is the
barrier height. As we are seeking a correction term for well
anharmonicity, it seems reasonable to truncate Eq.~16! and
examine the effect of the first term in this series. Laplace
transformation then gives for the partition function

z5
1

hn S 1b 1
1

2Db2D . ~17!

The multidimensional partition function is then

Z5)
j51

k
1

bhn j
S 11

1

2D jb
D . ~18!

Making the approximation that an average value of 1/D can
be used then gives

Z5
1

P j51
k hn j

(
l50

k Cl
kal

bk1 l , ~19!

wherea5^1/2D& is an anharmonicity parameter andCl
k is a

binomial coefficient. Inverse Laplace transforming gives

V~E!5
1

P j51
k hn j

(
l50

k Cl
kalEk1 l21

G~k1 l !
. ~20!

The total density of states is found by summing over all the
minima, giving

V~E!5 (
Es
0
,E

ns*

P j51
k hn j

s (
l50

k Cl
kas

l ~E2Es
0!k1 l21

G~k1 l !
. ~21!

Converting the above equation to theg formulation using
Eq. ~4! gives

V~E!} (
Es
0
,E

g~E8!sF(
l50

k Cl
kas

l ~E2Es
0!k1 l21

G~k1 l ! Y
(
l50

k Cl
kas

l ~E82Es
0!k1 l21

G~k1 l ! G . ~22!

The temperature follows from Eq.~7!,
Tm5

(E
s
0,Eg~E8!sH ( l50

k @Cl
kas

l ~E2Es
0!k1 l21/G~k1 l !# Y( l50

k @Cl
kas

l ~E82Es
0!k1 l21/G~k1 l !#J

k(E
s
0,Eg~E8!sH ( l50

k @Cl
kas

l ~E2Es
0!k1 l22/G~k1 l21!# Y( l50

k @Cl
kas

l ~E82Es
0!k1 l21/G~k1 l !#J . ~23!
This anharmonic correction term has a similar form to tha
used by Chekmarev and Urmirzakov38 but has been derived
in a different way.

We consider two possible ways of calculatingas from
the potential energy surface of LJ55. First, we consider using
the third derivatives of the potential. The dissociation energ
t

y

of a 1D Morse oscillator can be found from the second and
third derivatives of the potential by

De5
~V9!3

~V-!2
. ~24!
, No. 24, 22 June 1995
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9664 J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
If off-diagonal elements in the multidimensional case are i
nored, the above equation can be used to calculate the ba
heights associated with each normal mode. Using analyti
third derivatives of the LJ potential, the Cartesian third de
rivatives for the LJ55 icosahedron were calculated and trans
formed to obtain the diagonal elements in the Hessian eige
vector basis. This scheme underestimates the anharmoni
and gives values which when substituted into Eq.~22! have
an insignificant effect onV(E), because the off-diagonal el-
ements, which far outnumber the diagonal elements, sho
not be neglected. However, there is no obvious way to c
culate the effect of the off-diagonal elements and for a sy
tem such as LJ55 the transformation of the third derivatives
into the Hessian eigenvector basis is too computationally e
pensive for the off-diagonal elements.

The second method considered was to use the bar
heights of our transition state sample. An average barr
height was calculated for each minimum, but for som
minima it led to a gross overestimation of the anharmonici
and unphysical caloric curves. The barrier heights are no
i
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n

g
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good quantitative measure of the anharmonicity of an ind
vidual minimum. This method was therefore not considere
further.

Therefore, instead of trying to obtainas from the PES,
we considered how it could be obtained by comparison w
the simulation results. Ifas is taken to be independent of the
energy of the minimum, then a value ofas can be found
which reproduces theS-bend in the caloric curve at the ob-
served temperature and energy, but the temperature dif
ence between the two turning points is still too small. How
ever, one would expect the anharmonicity to depend up
the energy of the minimum; the higher energy minima a
likely to have a greater anharmonicity than the solidlik
minima.

In an accompanying paper31 we have shown how ther-
modynamic properties can be calculated for different regio
of the PES defined by a suitable order parameter by restr
ing the sum of Eq.~22! to minima in these regions. This
procedure gives forTi , the temperature of regioni ,
Ti5
(E
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In the other paper the short-time averaged~STA! temperature
is used as an order parameter to distinguish regions of
LJ55 PES, and it is shown that these regions are associa
with minima in the different potential energy ranges given
Table II. Region I corresponds to the solidlike state, regio
II and III to surface-melted states, and region VI to the li
uidlike state. Consequently, the temperatures associated
the minima in the energy ranges I, II, III, and VI are know
Different values of the anharmonicity parameter,ai , were
therefore assigned to minima in the six different ener
ranges. Values were chosen for regions I, II, III, and V
which reproduced the simulation results in Fig. 13 of Re
31. The caloric curves for each region accurately fitted
simulation curves showing that our anharmonic correcti
term has an appropriate form. Values ofai for regions IV and

TABLE II. Partition of the minima of LJ55 into energy ranges and values o
the anharmonicity parameter,ai , for each range. Values for I, II, III, and VI
were found by fitting the temperatures for these regions to the simula
results.

Region Lower energy bound/e Higher energy bound/e ai /e
21

I 2279.248 47 2279.248 47 0.50
II 2276.604 29 2276.199 35 0.51
III 2274.500 00 2273.000 00 0.53
IV 2273.000 00 2271.500 00 0.65
V 2271.500 00 2268.840 00 0.70
VI 2268.840 00 ••• 0.73
he
ted

s
-
ith
.

y
I
f.
e
n

V were chosen that were intermediate between the values f
regions III and VI, but as these regions only make a sma
contribution toV(E) the exact value chosen will only have a
very small effect on the overall caloric curve. The values o
ai are given in Table II. As would be expected the anharmo
nicity increases with the potential energy of the minima.

The microcanonical caloric curve was calculated usin
these values ofai . Figure 2~b! shows that for sample A the
calculated curve is in remarkable agreement with the simu
lation results. The calculatedS-bend now has the correct
depth, because the effect of the greater anharmonicity of th
liquidlike state is to increase the difference in temperatur
between the two branches of the caloric curve. The succe
of this method can be understood from the equation

1

T
5(

i

pi
Ti
, ~26!

wherepi is the probability that the cluster is in regioni . The
probabilities atE8, pi(E8), are fixed by the quench frequen-
cies,

pi~E8!5
(sP igs~E8!

(sgs~E8!
. ~27!

Furthermore, we show elsewhere thatpi calculated from
sample A are in excellent agreement with simulation over
wide range of energy.31 The values ofai have been chosen to
reproduce the simulation temperatures,Ti , and so the overall

n

, No. 24, 22 June 1995



r
t
e

a

l
m

i

i

e

s
c

im

r

f

tic

res
of
r

d

t-

9665J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
temperature,T, is bound to be very accurate. Sample B p
duces worse results because there are fewer quenches
solidlike and the surface-melted states, and so their qu
frequencies are subject to larger statistical errors than
sample A.

For LJ13, the STA temperature distribution is bimod
The high temperature peak corresponds to solidlike clus
associated with the icosahedral global minimum, and the
temperature peak to liquidlike clusters. The residence ti
in the solidlike and liquidlike states are much shorter than
LJ55 and so the information provided by short-time averag
for LJ13 is less well-resolved. We partitioned the minim
distribution into these two regions, and assigned values oai
to each. The values ofai were higher than for LJ55 and the
curvature of theTi curves differed from the simulation re
sults. The apparently greater anharmonicity can be expla
by the larger number of surface atoms for LJ13. The incorrect
curvature suggests that the energy dependence of the d
of states is inappropriate and so the second-order Morse
rection term to the density of states was included. The re
ing Ti curves fitted the simulation results much more ac
rately. The partition function for a single minimum includin
this term is

Z5)
j51

k
1

bhn j
F11

a

b
13S ab D 2Gk

5
1

P j51
k hn j

(
l50

k

(
m50

k2 l

Dl ,m
k 3mal12m

bk1 l12m , ~28!

where

Dl ,m
k 5

k!

l !m! ~k2 l2m!!
.

Inverse Laplace transforming and summing over all min
gives for the total density of states,

V~E!5 (
Es
0
,E

ns*

P j51
k hn j

s (
l50

k

(
m50

k2 l

3
Dl ,m

k 3mas
l12m~E2Es

0!k1 l12m21

G~k1 l12m!
. ~29!

In a MD simulation one calculates the kinetic tempe
ture, TK , from the kinetic energy,EK , via the generalized
equipartition theorem,
J. Chem. Phys., Vol. 10
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TK5
2^EK&
kk

. ~30!

This expression is exact in the canonical ensemble, butTK
differs by O (N21) from the thermodynamic definition o
temperature, Eq.~7!, in the microcanonical ensemble.43 For
LJ55 the difference between the thermodynamic and kine
temperatures is negligible. For LJ13 it is still small but not
insignificant, and soTK rather thanTm is fitted to the simu-
lation results. Bixon and Jortner found both temperatu
produced very similar results in their model calculations
the microcanonical caloric curve.27 TK has been obtained fo
the superposition method by Frankeet al. using the equipar-
tition theorem,32 however this method cannot be applie
when anharmonicity is included. We obtainTK through a
different method. First, we note that

^EK&5E
0

E

p~EK!EK dEK

5
1

V~E!
E
0

E

EKVc~E2EK!VK~EK!dEK , ~31!

whereVK(EK) is the kinetic density of states,Vc(Ec) is the
configurational density of states, and the potential energyEc

is given byEc5E2EK . DeconvolutingVK(EK) fromV(E)
gives

Vc~Ec!5
1

~2pm!k/2P j51
k n j

3(
l50

k

(
m50

k2 l Dl ,m
k 3mas

l12m~E2Es
0!k/21 l12m21

G~k/21 l12m!
.

~32!

Integrating Eq.~31!, summing over all minima and substitu
ing into Eq.~30! gives

TABLE III. Details of the two samples of minima for LJ13. E8 is measured
with respect to the global minimum icosahedron.

E8/e Number of minima

C 13.7768 95
D 18.3268 295
TK5
(E

s
0,E ns* /P j51

k n j
s ( l50

k (m50
k2 l Dl ,m

k 3mas
l12m ~E2Es

0!k1 l12m/G~k1 l12m11!

k(E
s
0,E ns* /P j51
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k2 l Dl ,m

k 3mas
l12m ~E2Es

0!k1 l12m21/G~k1 l12m!
. ~33!
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Sample C~Table III! was used to calculate the caloric
curve of LJ13 for theg formulation because it was produced
from a MD run in the coexistence region and so should hav
more accurate quench statistics for the low energy minim
and sample D was used for then* formulation because it is
from the liquidlike region and so has a larger sample o
2

e
a,

f

minima. The values ofai assigned to solidlike and liquidlike
clusters are given in Table IV. From Fig. 3 it can be seen th
the caloric curve given by then* formulation agrees very
well with simulation, because it is possible to obtain a nea
complete set of minima for LJ13. The g formulation, how-
ever, has too high a transition temperature. This error aris
, No. 24, 22 June 1995



,

e

-

d
e
ial
r-

r-
-
to

s
f

s
ity

9666 J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
because the probability that the cluster is in the solidli
state derived from quenching is higher than the correspo
ing probability derived from the STA temperature distribu
tions. In theg formulation the probabilities,pi , at E8 are
fixed by the quench statistics@Eq. ~27!#, and so this con-
straint leads to the higher transition temperature. The diff
ence between the probabilities derived from quenching a
the STA temperature distributions may be because there
regions of the PES which are in the basin of attraction of t
icosahedron but which have thermodynamic properties si
lar to a liquidlike well, or because the short-time averagi
does not distinguish between the solidlike and liquidlik
states with the same resolution as for LJ55. This difference
does not stem from the quench method since we obtai
similar quench statistics with steepest-descent,44 conjugate
gradient,45 and eigenvector-following46 methods.

IV. THERMODYNAMIC PROPERTIES

The accurate expressions forV(E) developed in the pre-
vious section can be used to give a wide range of thermo
namic functions, in fact, all except those that depend on
rivatives of N or V. The exceptions arise because th
thermodynamic properties of small clusters are discontin
ously dependent onN and because the volume of a cluster
hard to define.9 The formulas for the functions illustrated in
this section are given in the Appendix. They have, for t
most part, been derived in previous work within the ha
monic approximation;28,30 the extension to incorporate an
harmonicity follows simply from the expressions given
Sec. III. The results are given for the most accurate partit
functions; the first-order correctedg formula for LJ55 and the
second-order correctedn* formula for LJ13.

FIG. 3. Microcanonical caloric curves for LJ13 using then* formula ~solid
line!, the g formula ~dashed line!, and from simulation~dashed line with
diamonds!. Both then* andg formula curves include anharmonic terms.

TABLE IV. Values of the anharmonicity parameter,ai , for the solidlike~I!
and liquidlike ~II ! regions of the PES. Region I is the potential well of th
icosahedron and region II consists of all other minima.

Region ai /e
21

I 0.470
II 0.625
J. Chem. Phys., Vol. 10
ke
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Harmonic and anharmonic results for the caloric curves
the heat capacityCv , the Helmholtz free energyA, the tran-
sition temperatureT1/2, and the latent heatLm are compared
in Figs. 4 and 5 and Table V. We defineT1/2 as the tempera-
ture for which the two states have an equal Landau fre
energy,F(Ec). Lm is the internal energy difference between
the two states atT1/2 and was obtained by extrapolating the
caloric curves for each state toT1/2 using Eq.~25!. For LJ13,
this procedure simply givesLm5U II2U I , whereUi is the
internal energy of regioni . For LJ55, we have used
Lm5UV–VI2U I–IV , whereU I–IV is the internal energy for
the region of the PES formed from the combination of re
gions I–IV, and soLm does not include the latent heat of
surface-melting. Just integratingCv over the transition re-
gion would overestimateLm because it would also include
the energy needed to raise the temperature of the cluster.

The anharmonic caloric curves are displaced downwar
and away from their harmonic equivalents because of th
increased densities of states associated with higher potent
energy, lower temperature regions of the PES. The anha
monic heat capacity curve of LJ55 is in very good agreement
with results from the multihistogram MC method.8 The peak
in the heat capacity curve is larger and sharper when anha
monicity is included. This change can be understood by con
sidering a two level system, which is a reasonable model
describe the equilibrium between solidlike and liquidlike
states of the cluster. The partition function can be written a
Z5( iZi , where the sum is over the two distinct regions o
phase space. It follows that

U52S ] ln Z

]b D
N,V

52
1

Z (
i

S ]Zi
]b D

N,V

5(
i

piUi ,

~34!

wherepi5Zi /Z andUi52~] ln Zi /]b)N,V . Hence,
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whereLm5U2(T1/2)2U1(T1/2) andCv,i5(]Ui /]T)N,V . As

S ]pi
]T D

N,V
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kT2F ZiZ2S ]Z
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N,V
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ZS ]Zi
]b D

N,V
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kT2
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N,V
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p1p2
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~U22U1!5
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4kT1/2
2 when p15p25

1

2
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~37!

Substituting this result into Eq.~35! gives

Cv5
1

2
~Cv,11Cv,2!1

Lm
2

4kT1/2
2 . ~38!

The greater anharmonicity of liquidlike minima causesLm to
be larger when anharmonicity is included. This change ha
two effects; it increases the area under the heat capac

e
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FIG. 4. Comparison of harmonic and anharmonic thermodynamic functions of LJ55; ~a! the microcanonical~solid line! and canonical~dashed line! caloric
curves;~b! the isopotential caloric curve;~c! Cv(T); and ~d! A(T). In all except~a! the anharmonic curve is denoted by a solid line and the harmonic by
dashed line. Energies are measured with respect to the global minimum icosahedron.
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peak, and causes the cluster to change between the two s
more rapidly with temperature, decreasing the width of th
peak.

From Fig. 6 it can be seen that the probability of LJ55
being in a surface-melted state is lowest in the canonic
ensemble and highest in the isopotential ensemble. This
sult is due to the dependence of the partition function on t
independent variables,T, E, andEc , of the three ensembles.
In the canonical ensemble,Z is exponentially dependent on
T, and is the most steeply varying of the three partition fun
tions. In the microcanonical and isopotential ensembles,V
andVc are dependent on powers ofE andEc , respectively.
As the exponent ofEc is lower than that forE, Vc is the
slowest varying of the partition functions. For LJ55
nl /nsm@nsm/ns ~Table VI!, wherens , nsm, and nl are the
number of minima in the solidlike, surface-melted, and liq
uidlike states. Consequently, as the partition function b
comes more steeply varying, the surface-melted state is s

TABLE V. Transition temperatures and latent heats for LJ13 and LJ55.

LJ13 LJ55

T1/2/ek
21 ~anharmonic! 0.2869 0.2985

T1/2/ek
21 ~harmonic! 0.3512 0.3427

Lm/e ~anharmonic! 3.696 15.821
Lm/e ~harmonic! 2.887 12.837
J. Chem. Phys., Vol. 102
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for a narrower range of the independent variable, i.e., th
contribution of the liquidlike states overtakes the surface
melted states at an earlier stage in the surface-melting tra
sition.

The Landau free energy,F(Q), is the free energy of a
system for a particular value of an order parameterQ. It is
defined by

F~Q!5Ac2kT ln pQ~Q!, ~39!

wherepQ(Q) is the canonical probability distribution of the
order parameter. The presence of two minima inF(Q) indi-
cates that there are two thermodynamically stable states
this temperature. WhenEc is used as an order parameter,
simulations have shown that LJ55 has two Landau free en-
ergy minima which correspond to the solidlike and liquidlike
states.30 Bimodality in the canonical energy distribution
function, f (E), implies that there are two Landau free energy
minima as a function of the order parameter,E. Figures 7
and 8 show that both LJ13 and LJ55 have a range of tempera-
ture for which two Landau free energy minima are observed
The predicted free energy curves for LJ55 are in very good
agreement with simulation.30 The solidlike and surface-
melted states both contribute to the low energy minimum i
, No. 24, 22 June 1995
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FIG. 5. Comparison of harmonic and anharmonic thermodynamic functions of LJ13; ~a! the microcanonical~solid line! and canonical~dashed line! caloric
curves;~b! the isopotential caloric curve;~c! Cv(T); and ~d! A(T). In all except~a! the anharmonic curve is denoted by a solid line and the harmonic by
dashed line. Energies are measured with respect to the global minimum icosahedron.
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F(Ec). For LJ13 the free energy barrier is much smaller a
has not been observed in simulations. This may be bec
only three temperatures were tested in the simulations,
barrier is too small to be detected by simulation or the bar
is an artifact of inaccuracies in our analytical partition fun
tion.

The turning points inF(Ec) and f (E) correspond to
points on the isopotential and the microcanonical calo
curves, respectively. This can be demonstrated forF(Ec) by
solving the equation (]F/]Ec)N,V50. The solution is
1/kT5~] ln Vc/]Ec)N,V , which is simply the definition of
the isopotential temperature. The maxima inF(Ec) corre-
spond to the segment of the caloric curve with negat
slope, and the minima to segments with positive slo
Therefore the temperature range for whichF(Ec) has two
minima is the same as the depth of theS-bend in the isopo-
tential caloric curve, as can be seen from Figs. 4~b! and 7~c!,
and 5~b! and 8~b!.

Comparing the results for LJ13 and LJ55 we see that the
effects of size are apparent. For LJ55 the melting transition is
much more pronounced; it has a sharper peak inCv , more
pronouncedS-bends in the microcanonical and isopotent
caloric curves, a larger Landau Free energy barrier, a la
temperature range for which solidlike and liquidlike cluste
coexist, a larger latent heat per atom, and a higher mel
temperature. This behavior is closer to the first-order ph
transition of bulk matter.

Estimates of the number of minima in different regio
J. Chem. Phys., Vol. 10
d
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the
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of the PES can be obtained from the quench frequencies
Using Eqs.~3!, ~4!, and ~6! an expression forgs can be
derived,

gs5
g~E8!shsP j51

k n j
s

g~E8!0h0P j51
k n j

0 (
l50

k Cl
ka0

l ~E82E0
0!k1 l21

G~k1 l ! Y
(
l50

k Cl
kas

l ~E82Es
0!k1 l21

G~k1 l !
. ~40!

Fromgs , the sum [Gm(E)] and associated energy density of
states [Vm(E)] of geometrically distinct minima can be cal-
culated using

Gm~E!5 (
Es
0
,E

gs and Vm~E!5
dGm

dE
. ~41!

This approach has been applied to LJ55. From Fig. 9 it can be
seen that the number of minima for LJ55 rises exponentially
with the energy. The total number of minima in the energy
range probed by the MD quenching~potential energies up to
2259e! is 8.331011. This is much less than the total number
of minima predicted by extrapolating Tsai and Jordan’s re-
sults and so suggests that the number of minima will con-
tinue to rise exponentially above2259e. The present method
2, No. 24, 22 June 1995
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9669J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
FIG. 6. Probabilities of LJ55 being in regions I, II, III, IV, and VI of the PES
for ~a! canonical,~b! microcanonical, and~c! isopotential ensembles.

TABLE VI. Estimated numbers of geometrically distinct minima of LJ55 in
the six energy ranges given in Table II calculated from the quench frequ
cies for sample A.

Region

Number of minima

anharmonic harmonic

I 1 1
II 11.3 6.3
III 994.6 457.9
IV 81.5 2871.2
V 1.263105 1.223106

VI 8.3031011 3.1131012
J. Chem. Phys., Vol. 102
can also be used to estimate the number of minima in t
energy ranges I–VI~Table VI!. The number of minima in
range II is known16 to be 11. The results from the quench
frequencies agree well with this figure.

V. CONCLUSIONS

Accurate analytic expressions for the density of state
that include anharmonicity have been produced for LJ13 and
LJ55, which primarily use information obtained from the po-
tential energy surface. From these expressions, many th
modynamic properties can be calculated. The analytical r
sults accurately reproduce values obtained from simulatio

FIG. 7. Plots for LJ55 of ~a! f (E) at T50.2985,~b! F(Ec) at T50.2985,
and ~c! the free energy barrier heights~solid lines! and the free energy
difference between solidlike and liquidlike states~dashed line! for F(Ec). In
~a! and ~b! the contributions of the different regions of the PES are als
indicated.

n-
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9670 J. P. K. Doye and D. J. Wales: Thermodynamic properties of clusters
and give greater physical insight into the thermodynamics
allowing the roles of different parts of the PES to be an
lyzed. An alternative approach in which the partition fun
tion was corrected by allowing for transition state valle
showed little improvement from the original harmonic supe
position approximation. The methods developed here sho
be applicable to other types of clusters, although, as in
examples, the form of the anharmonic terms would proba
depend on the type and size of cluster considered. T

FIG. 8. Plots for LJ13 of ~a! F(Ec) at T50.2869, and~b! the free energy
barrier heights~solid lines! and the free energy difference between solidlik
and liquidlike states~dashed line! for F(Ec). In ~a! the contributions of
liquidlike and solidlike states are shown.

FIG. 9. Plot ofGm(E) for LJ55 as a function of the potential energy of th
minimum calculated from the quench frequencies of sample A.
J. Chem. Phys., Vol. 102
y
-
-
s
-
ld
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ey

could also, in principle, be applied to periodic models of
bulk matter. However, there would then be the added diffi-
culty that the PES, and consequently the minima on the PES
will depend on the pressure. The expressions for the densit
of states could also be used to calculate accurate rate co
stants using RRKM theory,17,39and so aid quantitative eluci-
dation of dynamic properties from a knowledge of the tran-
sition states on the PES.
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APPENDIX

In this Appendix, the formulas for some of the thermo-
dynamic quantities that can be calculated by the superpos
tion method are given. The thermodynamic functions are de
rived from the following definitions.

In the isopotential ensemble,

pi~Ec!5
Vc,i~Ec!

Vc~Ec!
,

1

kTc~Ec!
5S ] ln Vc

]Ec
D
N,V

. ~A1!

In the microcanonical ensemble,

pi~E!5
V i~E!

V~E!
. ~A2!

In the canonical ensemble,

pi~T!5
Zi
Z
,

U~T!52S ] ln Z

]b D
N,V

5
1

Z0,0
~Z1,01Z0,1!,

Cv~T!5S ]U

]T D
N,V

,

5
1

kT2 F 1

Z0,0
~Z2,012Z1,11Z0,2!2S Z1,01Z0,1

Z0,0
D 2G ,

~A3!

A~T!5E0
02kT ln Z,

f ~E!5V~E!exp~2bE!,

F~Ec!5Ec2kT ln Vc~Ec!,

where inZa,d the derivative of the exponential function of
b in Z has been takena times and the derivative of the
inverse power ofb in Z d times. Therefore,Z5Z0,0.

Below, we give the thermodynamic functions for theg
formulation with a first-order anharmonic correction which
was used for LJ55,
, No. 24, 22 June 1995
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The harmonic forms can be recovered by taking thel50 term. We obtain then* formulation by replacing

cg~E8!s Y(
l50

k Cl
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l ~E82Es
0!k1 l21

G~k1 l !
with

ns*

P j51
k hn j

s . ~A5!

Below, we give the thermodynamic functions for then* formulation with second-order anharmonic corrections which was
used for LJ13,
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k2 l Dl ,m
k 3mas

l12m~Ec2Es
0!k/21 l12m21

G~k/21 l12m!
.

The harmonic forms can be recovered by taking thel50, m50 term, and the first order correction forms by taking the
m50 terms. We obtain theg formulation by replacing

ns*

P j51
k hn j

s with cg~E8!s Y(
l50

k

(
m50

k2 l Dl ,m
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,

where
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