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ABSTRACT

An efficient three-dimensional Euler analysis of unsteady flows
in turbomachinery is presented. The unsteady flow is modelled as
the sum of a steady or mean flow field plus a harmonically varying
small perturbation flow. The linearized Euler equations, which
describe the small perturbation unsteady flow, are found to be
linear, variable coefficient differential equations whose coefficients
depend on the mean flow. A pseudo-time time-marching finite-
volume Lax-Wendroff scheme is used to discretize and solve the
linearized equations for the unknown perturbation flow quantities.
Local time stepping and multiple-grid acceleration techniques are
used to speed convergence. For unsteady flow problems involv-

ing blade motion, a harmonically deforming computational grid
which conforms to the motion of the vibrating blades is used to
eliminate large error-producing extrapolation terms that would
otherwise appear in the airfoil surface boundary conditions and
in the evaluation of the unsteady surface pressure. Results are

presented for both linear and annular cascade geometries, and for
the latter, both rotating and nonrotating blade rows.

NOMENCLATURE

Al? = blade aspect ratio
dA = elemental area vector
dA, dA' = mean and perturbation elemental area vectors
D, OD = control volume and control surface

dV = elemental volume
dV, dV' = mean and perturbation elemental volume
e = internal energy
f, g, h = grid motion perturbation functions

f =	(f,g,h) T
F, G, H = flux vectors
F, G, H = mean flow flux vectors
F', G', H' =	perturbation flow flux vectors
G = linear blade-to-blade gap

I = rothalpy
M = Mach number
n = unit normal

n, n' = mean and perturbation unit normals
p =	static pressure

P, p = mean flow and perturbation flow static pressures

rH , rT = hub and tip radii
R = surface displacement vector

S = source term vector
S, S' = mean flow and perturbation flow source terms
t = time
u, v, w = Cartesian components of velocity
U, V, W = mean flow velocity components
u, v, w = perturbation flow velocity components
U =	vector of conservation variables
U, u = mean and perturbation conservation variables
V =	velocity vector
V, v = mean and perturbation velocity vectors

= aerodynamic work per cycle per unit span
WW = total aerodynamic work per cycle
x, y, z =	Cartesian coordinates
x, 0, r =	cylindrical coordinates

x =	(x, y, z)T

=	inflow angle relative toaxial direction

ry =	ratio of specific heats

O = stagger angle
O, = angular blade-to-blade gap
^,	y, ( = computational coordinates
p =	static density

p, p =	mean flow and perturbation flow static densities
or = interblade phase angle
T = time in computational coordinates
w, w = dimensional and reduced frequencies
SZ = rotation rate of machine

Subscripts
a	= axial direction
T	= total or stagnation quantity
x, y, z	= Cartesian directions
x	= due to grid motion
u	= due to perturbation in conservation variables
—oo, oo	= far upstream and downstream regions
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INTRODUCTION

The ability to predict the aeroelastic phenomena of flutter and
forced response is critical to the development of future generations
of turbomachinery components including traditional fans, com-
pressor and turbine stages, and unducted propfans. The aerome-
chanical behavior of these devices is strongly dependent on the un-
steady aerodynamic behavior of the blade rows. Furthermore, the
unsteady flow fields in these devices are inherently three-dimen-
sional. New blade designs are becoming more three-dimensional
with large amounts of twist and sweep. However, despite tremen-
dous improvements in unsteady aerodynamic analyses over the
past three decades, the accurate and efficient prediction of the un-
steady aerodynamic behavior of realistic three-dimensional turbo-
machinery blade rows and propellers remains largely an unsolved
problem.

Numerous two-dimensional analyses have been developed for
flat-plate two-dimensional cascades operating in the incompress-
ible (Whitehead, 1960 and 1962), subsonic (Smith, 1972; White-
head, 1987), and supersonic (Verdon and McCune, 1975; Adam-
czyk and Goldstein, 1978) regimes. In these models, the steady
flow field is assumed to be uniform. The equations that describe
the small disturbance unsteady flow field are linear constant co-
efficient equations which can be solved analytically. These two-
dimensional models are important since they are sometimes able
to qualitatively predict certain types of flutter, notably unstalled
supersonic torsional flutter in fans. However, because the models
do not include the effects of steady blade loading, other forms of
flutter, such as bending flutter, cannot be predicted.

Recently, three-dimensional semi-analytical methods have been
developed to model unsteady flows in ducted fans (Namba, 1977;
Chi, 1991). Like the classical two-dimensional flat plate methods,
these models assume the airfoils carry no steady load. Namba and
Toshimitsu (1987) included limited loading effects in their three-
dimensional double linearization method. These analyses demon-
strated that three-dimensional effects can significantly alter the
behavior of the unsteady flow field.

Despite the limited success of the classical two- and three-
dimensional models, they still do not provide a fully satisfactory
solution to the aeromechanics problem. When the classical models
are used, they must be used in conjunction with correlations based
on experience to compensate for effects not included in the basic
theories. This approach often works for relatively modest changes
in blade design, but cannot be used with confidence for signifi-
cantly new designs. Furthermore, the use of the two-dimensional
methods in three dimensions usually requires the questionable as-
sumption that they may be used in strip theory fashion.

Another approach which has been used to calculate unsteady
periodic flows in cascades is to discretize the nonlinear fluid dy-
namic equations of motion on a computational grid which spans
one or more blade passages. The discretized equations are then
time-accurately time marched until all initial transients have de-
cayed and a periodic state is reached. This approach has the

advantage that many of the effects not included in the analytical
models can be easily incorporated into the computational fluid dy-
namic (CFD) algorithm (e.g., arbitrary blade geometries, compli-
cated shock structures, and various flow models). In recent years,
a number of computational methods have been used to model un-
steady flows in cascades. Several investigators have demonstrated
the feasibility of time-accurately time marching the Euler equa-
tions (Fourmaux and Le Meur, 1987; Whitfield et al, 1987; Giles,
1988; Huff and Reddy, 1989) and Navier-Stokes equations (Huff,
1987; Rai, 1989a and 1989b) to analyze unsteady two- and three-
dimensional flows in turbomachinery. However, due to the large

number of grid points and the requirement than the analyses be
both time-accurate and stable, these calculations are extremely
expensive with supercomputer computational times measured in
hours, days, or even weeks.

An alternative to the time-accurate time-marching methods,
and the method used in this paper, is the linearized approach. In
the linearized approach, the flow is assumed to be composed of
a nonlinear mean or steady flow plus an unsteady perturbation
flow. The linearized equations which describe the unsteady per-
turbation are linear variable coefficient equations for the unknown
complex amplitude of the harmonic motion of the flow. A num-
ber of two-dimensional linearized harmonic potential (Whitehead
and Grant, 1981; Verdon and Caspar, 1984; Hall and Verdon,
1991; Hall, 1992) and linearized harmonic Euler codes (Ni and
Sisto, 1976; Hall and Crawley, 1989; Hall and Clark, 1991a and
1991b; Holmes and Chuang, 1991) have been developed to ana-
lyze the flutter and forced response of turbomachinery blade rows.
Work on two-dimensional linearized harmonic Euler solvers has
demonstrated the large computational time savings that can be
achieved using linearized techniques while still modelling the dom-
inant physics. For example, for a typical gust response problem,
the linearized Euler technique is nearly two orders of magnitude
faster than a time-marching Euler code and gives very similar
predictions of the unsteady flow (Hall and Crawley, 1989).

While providing some qualitative and quantitative insight into
the mechanisms of flutter and forced response, all of the linearized
potential and Euler solvers developed to date have been two-
dimensional. In this paper, we present a fully three-dimensional
linearized Euler analysis capable of predicting unsteady flows in
turbomachinery due to vibratory blade motion and incoming gusts
(only the blade motion problem is considered here). The three-
dimensional linearized Euler equations are derived for the general
case of a rotating frame of reference. To solve the linearized Euler
equations, we use the pseudo-time time-marching technique sug-
gested by Ni and Sisto (1976). One advantage of this approach
is that the equations become hyperbolic in pseudo time so that
existing time-marching algorithms can be employed to efficiently
solve the linearized Euler equations. In this paper, the linearized
equations are solved very efficiently using using a Lax-Wendroff
scheme with local time stepping and multiple-grid acceleration (Ni
and Bogoian, 1989).

Another important feature of the present analysis is the use of
a deforming computational grid. Although deforming computa-
tional grids have been used in nonlinear time-marching analyses
(Huff, 1987; Huff and Reddy, 1989; Batina, 1990), until recently,
most linearized analyses have used computational grids fixed in
space. For fixed-grid analyses of flutter problems, an additional
term must be added to the airfoil boundary conditions to extrapo-
late the flow variables from the boundary of the grid to the instan-
taneous location of the airfoil. This extrapolation term contains
the gradient of the mean flow velocity which is difficult to compute
accurately, especially around the leading and trailing edges of the
blade. One way to eliminate the extrapolation terms is to use a
grid which continuously deforms with the airfoil. Whitehead and
Grant (1981) used a transformed perturbation potential in their
linearized harmonic potential analysis. The transformation can be
viewed as equivalent to using a computational grid which under-
goes rigid body motion which conforms to the motion of plunging
and pitching airfoils. Recently, Hall (1992) developed a poten-
tial solver based on a linearized variational principle that includes
the effects of a deformable computational grid which conforms to
both rigid body and flexible blade motions. Hall and Clark (1991a,
1991b) and Holmes and Chuang (1991) have recently applied the
deforming grid technique to the two- dimensional linearized Euler
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technique. In this paper, we extend the deforming grid technique
to three dimensions.

Results are presented in this paper that demonstrate the ac-
curacy and efficiency of the method, and demonstrate the effects
of three-dimensionality on unsteady flows in turbomachinery. Re-
sults are presented for both stationary and rotating cascades. Pre-
liminary results indicate that three-dimensional effects are very
important, and that strip theory may, in some cases, seriously
overpredict the aerodynamic damping of vibrating blades.

THEORETICAL APPROACH

Flow Field Description

For many flows of interest in turbomachinery aeroelasticity,
viscous effects are confined to thin boundary layers near the blade
and casing surfaces. Under these circumstances, the Euler equa-
tions — which represent the conservation of mass, momentum, and
energy for an inviscid, adiabatic flow — are a useful model of the
flow field. Consider a Cartesian coordinate system with its x axis
aligned with the axis of rotation of a blade row. The y and z axes
rotate about the x axis with speed 11, the rotational speed of the
blade row. The nonlinear Euler equations in the rotating frame
of reference are given by

at aF aG aH
at
— + —

 ax + a + Oz 
—S=O 
	 (1)y

where U is the vector of conservation variables, F, G, and H are
the so-called flux vectors, and S is a vector of source terms. These
vector quantities are given by

P	pU	pv

Pu	p^2 + P	puv

	

U= pv ,F'=	puv	, G= /3 2 +/3

pw	puw	pvw

e	Put	pvI

Pw	0

puw	 0

H =	pvw	s = p (0 1 y + 29,w)

	3 w2 + p	p (112z — 2W)

pwI	0

where p is the density, p is the pressure, v., v, and w are the x, y,
and z components of velocity, e is the internal energy, and I is the
rothalpy. The source terms that appear in the y and z momentum
equations represent centrifugal and Coriolis forces. In this form,
the effects of rotation appear explicitly in only the source terms.
However, the pressure, P, and the rothalpy, I, are also functions
of the rotation rate, i.e.,

P = ('Y — 1 ) ^e — 2 p (u 2 + v 2 + t02) + /H 2r 2 ]	(2)

and
I= e+p = ry p + (uz+ ^2+w2)— 1 H2r2	(3)

p	ry—lp 2	 2

Here r is the distance from the x axis (r = y + z2 ). Note that

the flux vectors and source terms depend not only on the conser-
vation variables and the rotation rate, but also on the position of
the fluid particle, that is, F = F(U, R) where z = (x, y, z)T.

For finite-volume calculations, the integral form of the Eu-
ler equations is more convenient. Integrating the nonlinear Euler
equations [Eq. (1)] over a deforming control volume, D, bounded
by the control surface, aD, gives after some manipulation

a-IffUdi+ JJ D[(F-U"t I dAx +(G-U) dA y

+IH-fTat I dA
] 

— 111 SdV=0	(4)

Here f, g, and h are the x, y, and z displacements in the posi-
tion of the control surface; and dA t , dA b , and dA z are the scalar

components of the elemental surface vector dA; and dV is the
elemental volume of the control volume.

The conventional method used to solve the unsteady nonlinear
Euler equations for the case of a temporally periodic disturbance

is to discretize the equations using finite-volume operators, and
to time-accurately time march the discretized equations until any
initial solution transients have disappeared leaving behind the de-
sired periodic solution. Because of the requirement that the un-
steady solution be both time-accurate and stable, however, the
computational time required to solve the three-dimensional Eu-
ler equations using this approach is prohibitively large for design
applications.

Fortunately, for many unsteady flows of interest in turboma-
chinery aeroelasticity applications, the unsteadiness in the flow is
small compared to the mean flow and the source of the unsteadi-
ness is harmonic or periodic. Hence, we will shortly make the
assumption that the conservation variables may be represented
as the sum of a mean flow plus a harmonic small perturbation
unsteady flow.

In the present analysis, the computational grid conforms to
the motion of the airfoils (for the flutter problem). Hence, the
grid is assumed to undergo small harmonic deformation about its
steady position, i.e.,

x(, rt,	 , r)	_	+ f(, i1, C)e'"'
(5)

y(,q,c,T)	=	rl+9(^,rl,()e"r
(6)

z(^,ri,C,T)	_	+h(^,rl,e"T
(7)

t(e,rl,(,T)	=	T (8)

where f, g, and h are the first-order amplitudes of grid motion
about the mean positions, , 77, and C.

Having defined the motion of the computational coordinate
system, the unsteady flow field is now represented by the first-
order perturbation series

U( , rl, (,T) = U(^, ^l, 0) + u(^, rl, 0)e' WT (9)

where U is the vector of mean or steady flow conservation vari-
ables, u is the vector of first-order perturbations in the conserva-
tion variables, and w is the frequency of excitation. The mean flow
and perturbation flow variables may be thought of as "attached"
to the harmonically deforming computational grid. Therefore, an
observer in the fixed coordinate system (x, y, z) sees unsteadiness
in the flow due to both the unsteady perturbation in the conser-
vation variables, u, and the deformation of the mean flow field,
U.

Substitution of the perturbation assumptions [Eqs. (5)-(9)]

into the expression for the flux vector F results in the first-order
perturbation series
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F = F + (F' + F.)	 (10)

where F is the mean flow flux vector, Fu is the first-order pertur-
bation in the flux vector due to the first-order perturbation in the
conservation variables, u, and FX is the perturbation in the flux
vector due to the grid motion, f. These perturbation fluxes are
given by

F' =u	 (11)

arid

F" ax f	 (12)

where

0 1 0 0 0

—U2 +'VT —(Y-3)U (1-7)V (1-7)W 7-1
8F _
aU —

—UV V U 0 0

—UW W 0 U 0

—U(I—	VT) I—(y-1)U 2 (1-7)UV (1—ry)UW yU

and

0 0 0

0 (7 — 1)P^ 2 i (-t — 1 )pQ 2(
OF

aX = I 0 0 0

0 0 0

0 (n'— 1)UQ2rj (n'— 1)UQ 2(

Here U, V, and W are the mean flow velocity components, VT is
the mean flow velocity magnitude, and I and p are the mean flow
rothalpy and density, respectively. Note that the perturbation flux
term FX is zero for the case of a non-rotating frame of reference
since the entries in the aF/ax matrix are proportional to the
rotation rate squared. Similar ^ perturbation series exist for the
remaining flux vectors, G and H, and the vector of source terms,
S.

Substitution of the perturbation series for the conservation
variables, grid motion, flux vectors and source terms into the inte-
gral form of the nonlinear Euler equations and collection of zeroth-
and first-order terms gives the mean flow and linearized unsteady
Euler equations, respectively. The mean flow Euler equations are
given by

11, (F,G,H) •dA — III, SdV=0 (13)

where dA and dV are the elemental area vector and elemental
volume of the undeformed (mean) control volume. Similarly, the
integral form of the linearized Euler equations is

iwIll udV+JJDD(au
aFu,aGu, aH ul •dA—

JJJD aS udVo aU aU / aU

—iwfffD U dV' —'Jao
 (F, G, H) dA — lID  (F,G,H) •

JJJJJD JJJD SXdV (14)

where dA' and dV' are the first-order perturbations in the ele-
mental area vector and elemental volume of the deforming control
volume. Here we have grouped homogeneous terms in the un-
known perturbation u on the left-hand side and inhomogeneous
terms on the right-hand side. The terms on the right-hand side of
Eq. (14) arise from the motion of the grid and are identically zero
for the case of a fixed grid. Note that the linearized harmonic Eu-

ler equations are time invariant; time does not appear explicitly
since the equations have been cast in the frequency domain.

Near-Field Boundary Conditions

Having developed the governing equations of the unsteady per-
turbation flow, we next consider the near-field boundary condi-
tions. Because the linearized Euler equations are linear, modes of
blade motion or gusts may be superposed. Hence, without loss of
generality, we assume the unsteady flow to have a fixed interblade
phase angle, or, from blade to blade. The flow field may then be
solved in a single blade passage by applying complex periodicity
conditions along the upstream and downstream periodic bound-
aries. For linear cascades which extend in the y direction, the
complex periodicity condition takes the form

u(x,y + G,z) = u(x,y,z)e 3° (15)

where G is the blade-to-blade gap. For annular cascades, the

periodicity condition is expressed as

u(x, 0 + O G , r) = Tu(x, 0, r)e3° (16)

where O G is the angular distance between adjacent blades, and
T is a matrix which rotates the velocity vector in the y, z plane
through the angle O c .

On the airfoil surfaces, we must ensure that no mass flows
through the surface. The nonlinear solid wall boundary condition
is given by

aR
V•n— jt n=0 (17)

where R is the position vector that desribes the position of the air-
foil surface, and n is the surface unit normal. Expanding Eq. (17)
in a perturbation series and collecting terms of first-order gives
the linearized flow tangency condition

vii=—V•n'+jwr•n (18)

where V and v are the mean flow and perturbation flow velocities,
respectively, n and n' are the mean and perturbation unit normals,
and r is the perturbation in the position of the airfoil surface.
Since the grid motion conforms to the motion of the airfoil, the
perturbation in the blade position may be expressed as r = f.
The first term on the right-hand side of Eq. (18) is the upwash
due to blade rotation. The second term is the upwash due to the
translational velocity of the blade. Note that because a deforming
grid is used, the usual velocity extrapolation term found in fixed
grid analyses does not appear. Also, Eq. (18) applies to all solid
surfaces, not just airfoils. Hence, if the grid motion is such that
the grid slides across curved surfaces, such as the hub or tip casing,
then there will be an upwash required on these surfaces as well,
even though the casing surfaces do not vibrate.

NUMERICAL SOLUTION METHOD

The general solution procedure is as follows. First, a three-

dimensional H-grid is generated in a single blade passage of the

cascade. The mean flow field is computed using a conventional

steady Euler solver. Then, for each interblade phase angle, vi-
bratory mode shape, and reduced frequency of interest, the grid

motion is prescribed. The mean flow field and prescribed grid

motion are then used to form the variable coefficients and the in-

homogeneous part of the linearized Euler equations. Finally, the

linearized Euler equations are discretized and solved on the steady

computational grid.
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Grid Generation

The computational grids used in this investigation are body-
fitted H-grids. Although C and 0-type grids are commonly used in
steady flow calculations, these grids lack the resolution in the far-
field to adequately resolve acoustic, vortical, and entropic waves.
H-grids, on the other hand, provide good resolution throughout

the computational domain.
The mean flow (steady) computational grid is generated us-

ing a combination of algebraic and elliptic grid generation tech-
niques. The grid points on the airfoil surfaces are generated al-
gebraically. The grid points on the upstream and downstream
periodic boundaries and on the far-field boundaries are generated
using transfinite interpolation. Finally, the grid points on the hub
and tip casings and in the interior are generated using an elliptic
grid generation technique based on the work of Thompson et a]
(1974).

For unsteady flow problems involving blade motion, the grid
motion f must also be specified, subject to a number of con-
straints. The motion of the grid must conform to the motion
of the airfoils, and the motion of the grid at the periodic bound-
aries must satisfy complex periodicity. The grid may slide along
the casing surfaces, but must have no component of motion nor-
mal to the casing. Finally, to simplify the application of the far-
field boundary conditions, the motion of the grid in the far-field
of the computational domain should go to zero. In the interior,
the motion of the grid may be somewhat arbitrary, although for
computational accuracy, a smooth distribution of grid motion is
preferred. For this reason, Laplace's equation is used to describe
the motion of the interior of the grid, i.e.,

V 2f = 0 (19)

A finite element scheme is used to discretize Laplace's equation on
the steady computational grid, and the resulting system of linear
equations is solved using successive line over-relaxation (SLUR).
Note that since the grid motion is harmonic, the motion need only
be calculated once prior to the solution of the linearized Euler
equations.

Pseudo-Time Time Marching

Having defined the computational grid, solved for the mean
flow field, and computed the unsteady grid motion, we next con-
sider the integration of the linearized Euler equations. Note that
because the linearized Euler equations [Eq. (14)] are solved in the
frequency domain for a single frequency, w, time derivatives are
replaced by the operator jw. Furthermore, the unsteady perturba-
tion u is time invariant. Hall and Crawley (1989) discretized the
two-dimensional linearized Euler equations using a finite volume
operator and solved the resulting large sparse linear system very
efficiently using Gaussian elimination. In three dimensions, this

approach would lead to a system of equations with an extremely

large bandwidth, and hence, would be too expensive to solve us-

ing a direct method. Instead, we solve the three-dimensional lin-

earized Euler equations using the pseudo-time technique originally

proposed by Ni and Sisto (1976). Using this method, the pertur-

bation conservation variables, u, are assumed to be functions of

both space and time so that Eq. (9) becomes

U(^,rl,C, 7) (20)

Substitution of Eq. (20) into the nonlinear Euler equations and
collection of first-order perturbation terms leads to the pseudo
time dependent linearized Euler equations

arJII1 dV+jwIl^DUdV

+11
( 8F '9G OH \ ffr 8S

8D \8U u ' 8U u' u1 
dA— JJJD aU ud dii d( = b (21)

where b is the right-hand side of Eq. (14). Note that Eq. (21) is

now hyperbolic in time. Furthermore, as time advances, u reaches

a steady-state value so that the first term of Eq. (21) goes to zero

and the solution to Eq. (14) is recovered. The advantage of this

approach is that any of a number of well developed time marching

algorithms can be used to solve the linearized Euler equations.

Furthermore, since only the steady-state solution is desired, local

time stepping and multiple-grid acceleration techniques can be

used to speed convergence. The result is that the linearized Euler

equations can be solved in a fraction of the time required to solve

the unsteady flow problem by time-accurately time marching the

nonlinear Euler equations.

We use a three-dimensional Lax-Wendroff scheme (Ni and Bo-

goian, 1989) to discretize and solve both the steady Euler and lin-

earized unsteady Euler equations. The scheme is a second-order

accurate, node-centered scheme that uses both local time step-

ping and multiple-grid acceleration. A combination of second and

fourth difference smoothing is used to eliminate sawtooth modes

and capture shocks. (For the subsonic cases reported in this pa-

per, only fourth difference smoothing was used.)

Nonreflecting Far-Field Boundary Conditions

In the present unsteady linearized analysis, we assume that the

blade row is isolated in an infinitely long annular duct. The com-

putational domain is, by necessity, finite in extent. At the far-field

computational boundaries, nonreflecting boundary conditions are

required to prevent spurious reflections of outgoing pressure, en-

tropy, and vorticity waves back into the computational domain.

For two-dimensional problems, the behavior of the linearized equa-

tions can be be described analytically (e.g., Verdon et al, 1975;

Hall and Crawley, 1989; Giles, 1990) and then matched to the nu-

merical solution at the far-field. For three-dimensional flow fields,

however, the wave propagation behavior is known analytically for

only a few special cases; no general analytical expression has been

derived for the three-dimensional problem.

In this investigation, we follow the approach of Saxer and Giles

(1990) and apply approximate nonreflecting boundary conditions

at the far-field. We in effect unroll each radial station on the

far-field computational boundary and treat it as if it were two-

dimensional. Furthermore, the source terms arising from rotation

are neglected. We then apply the "exact" nonreflecting bound-
ary conditions originally developed for two-dimensional linearized

Euler solvers. After each iteration, the solution at each radial sta-

tion is transformed into a sum of Fourier modes. (Fourier modes

are the eigenmodes of two-dimensional wave propagation.) Each

Fourier mode is further decomposed into characteristics represent-

ing two acoustic waves, two vorticity waves, and an entropy wave.

At this point, those characteristics which correspond to waves

entering from outside of the computational domain are set to

zero. The remaining modes are then inverse Fourier transformed

to obtain the desired solution at the far-field boundary. In two-

dimensions, this process produces exact nonreflecting boundary

conditions to within truncation error. In three-dimensions, how-

ever, some reflections will occur, especially if there are significant

radial variations in the solution.
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Figure 2: Mean pressure distribution on surface of airfoils of Stan-

dard Configuration No. 10 cascade. G = 1.0, 0 = 45 0 , AR= 2.0,

= 550 , M_. = 0.7.

the ability of the linearized Euler analysis to model accurately

unsteady flows due to three-dimensional vibratory mode shapes,

at least for the case of lightly loaded cascades.

3
0.0	0.2

Figure 1: Unsteady pressure distribution on surface of reference

airfoil of linear flat-plate cascade with airfoils pitching about lead-

ing edge. Pitching distribution is linear from hub to tip. 0 = 45 0 ,

AR=3.0,M=0.7,w=1.0,a=180°.

RESULTS

In this section, a number of test cases are presented to examine

the accuracy of the linearized Euler analysis and to demonstrate

the effects of three-dimensionality on unsteady flows. Unsteady

flows due to blade motion (the aerodynamic damping problem)

in both linear and annular cascade geometries are presented. The

aerodynamic damping is important for both the flutter and forced

response problems. Unless otherwise indicated, the results were

computed on 65 x 17 x 17 node computational grids using three

levels of multiple-grid acceleration.

Linear Flat-Plate Cascade

To test the accuracy of the present method, we first consider

the case of a linear cascade of flat-plate airfoils vibrating in torsion.

The stagger angle of the airfoils, 0, is 45°, the aspect ratio, AR, is

3.0 and the gap-to-chord ratio, G, is 1.0. The airfoils are aligned

with the mean flow. Hence, the mean flow through the cascade is

uniform. For the case considered here, the mean flow Mach num-

ber, M, is 0.7. The airfoils vibrate in torsion about their leading

edge with a reduced frequency, w, of 1.0, based on chord and up-

stream velocity, and an interblade phase angle, a, of 180°. The
distribution of pitching amplitude is linear from hub to tip. Fig-

ure 1 shows the computed unsteady pressure difference across the

airfoil surface. Also shown are the results of the semi-analytical

three-dimensional method developed by Namba (1987). Note the

extremely good agreement between the linearized Euler results

and Namba's method, even near the leading edge where there is a

square root singularity in the solution. These results demonstrate

Subsonic Linear Compressor

To verify that the present three-dimensional linearized Euler

analysis works properly in the limit of two-dimensional cascades

with steady loading, we consider a linear cascade of compressor

blades. The cascade considered here is the newly designated Stan-

dard Configuration No. 10, one in a series of standard turboma-

chinery aeroelastic test cases for validating unsteady aerodynamic

theories (Bolcs and Fransson, 1986; Fransson, 1991). The airfoils

of this cascade have a circular arc camber distribution with a

maximum height of 5 percent of the chord. The thickness distri-

bution is that of a NACA 0006 airfoil slightly modified so that

the trailing edge is wedged. The gap-to-chord ratio, G, is 1.0, and

the stagger, O, is 45°. For the present three-dimensional analysis,

we selected an aspect ratio, AR, of 2.0. The steady inflow Mach

number, Al_, is 0.7, and the inflow angle, /3_., measured from

the axial direction is 55°. Figure 2 shows the computed steady

pressure on the blade surface. Also shown for comparison is the

pressure computed using a two-dimensional full potential method

(Hall, 1992) on a 129 x 33 node computational grid. The two so-

lutions are seen to agree very well. The maximum Mach number

on the suction surface of the airfoil is about 0.92.

Having computed the mean flow solution, we now consider the

case of the cascade of airfoils vibrating in plunge normal to the

chord line with a reduced frequency, w, of 1.0, and an interblade

phase angle, a, of 180°. For the first case considered, the motion

is two-dimensional, that is, the motion is uniform from hub to

tip. Shown in Fig. 3 are the real and imaginary parts of the

computed unsteady pressure distribution on the surface of the

reference airfoil. Also shown is the unsteady pressure distribution

computed using the two-dimensional linearized potential method

due to Hall (1992). Note the good agreement between the two

theories indicating that the present analysis produces the proper

results, at least in the limit of two-dimensional flow. Also note

that the solution is well behaved in the vicinity of the leading and

trailing edges despite the use of a fairly coarse grid. This well-

behaved solution results from using a deforming computational
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Figure 3: Unsteady pressure distribution on reference airfoil of

Standard Configuration No. 10 cascade with airfoils undergoing

plunging motion. Plunging motion is uniform from hub to tip.
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grid. Such high quality solutions would be difficult to obtain on

a coarse fixed grid.

Next, we consider the same linear compressor cascade, but

now prescribe the blade motion to be three-dimensional. The

blades vibrate with the first-bending mode shape of a cantilevered

beam. The mode shape is normalized such that the displacement

at the tip is unity. Again, the reduced frequency, w, is 1.0 and

the interblade phase angle, o, is 180°. Shown in Fig. 4 are the

real and imaginary parts of the unsteady pressure distribution at

three spanwise stations. These results were computed using two

different computational grids of differing resolution to assess the

accuracy of the solution. The solution computed on the 65 x 17 x 17

node grid is seen to be nearly identical to that computed on the

129 x 33 x 33 node grid. For low reduced frequencies, the accuracy

of the solution is dominated by the accuracy of the solution around

the leading and trailing edges. On a length scale comparable

to the radius of the leading edge, the flow around the leading

edge appears quasi-steady. Hence, if a deforming grid is used,

the accuracy of the unsteady solution will be on a par with the

accuracy of the steady flow solution, at least for low to moderate

reduced frequencies. If a fixed grid were used, extrapolation terms

in the airfoil boundary conditions would reduce the accuracy of

the solution. At higher reduced frequencies, the resolution of the

grid must be sufficient throughout the computational domain to

resolve short wavelength disturbances.

Also shown for comparison in Fig. 4 is the unsteady pressure

distribution computed using Hall's two-dimensional linearized po-

Figure 4: Unsteady pressure distribution on surface of reference
airfoil of Standard Configuration No. 10 cascade with airfoils vi-
brating in first bending mode. w = 1.0, a = 180°.

tential analysis at the tip section. Note that the response at the

blade tip is larger than the response at the hub as would be ex-

pected from a strip theory analysis. However, the spanwise gradi-

ent in the pressure distribution is somewhat smaller than would

be predicted by strip theory. Namba (1987) shows that this re-

duction in the spanwise gradient is due to the trailing streamwise

vorticity. Also, comparing these results to Hall's, the shape of the

imaginary part of the pressure distribution — that is, the part in

phase with the upwash — is fairly well predicted by strip theory.

The shape of the real part of the pressure distribution — the part

out of phase with the upwash — is somewhat different than that

predicted by strip theory.

Figure 5 shows convergence histories for the previous case

computed on the 65 x 17 x 17 node computational grid. With-

out multiple-grid acceleration, but with local time stepping, the

steady and unsteady solutions converge at approximately the same

rate. With multiple-grid acceleration, both the steady and un-

steady convergence rates are dramatically improved, although the

unsteady solution converges at about half the rate of the steady

solution. Although it is not yet clear why this difference occurs,

the computational savings are still quite substantial. Using three

levels of multiple-grid acceleration, the steady solution required
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Figure 5: Convergence histories for steady and unsteady solutions

shown in Figs. 2 and 4.

about 44 minutes of CPU time to converge on a Stardent 3000
workstation while the unsteady solution required about 294 min-
utes. It should be pointed out that these codes are not vectorized
nor optimized. Nevertheless, these computer times are consid-
erably shorter than would be required to time-accurately time
march the nonlinear Euler equations. The large computational
savings stem from the fact that only the steady state solution

to the linearized harmonic Euler equations is desired, and hence,
both local time stepping and multiple-grid acceleration techniques
may be used.

Low Speed Linear Compressor

The next cascade considered is a linear cascade of Joukowski-
like airfoils (Gostelow, 1984) operating in the low subsonic regime.
The gap-to-chord ratio, G, is 0.990, the stagger angle, 0, is 37.5°,
and the aspect ratio, AR, is 2. For this example, the inflow angle,
/3_o , is 53.5°, and the inflow Mach number, M__, is 0.25. The
airfoils vibrate in pitch about their midchords with a linear distri-
bution in amplitude from hub to tip. The reduced frequency, w, is
0.4 and the interblade phase angle, o, is 180°. Figure 6 shows the
computed unsteady pressure distribution at three radial stations
on the airfoil. Also shown for comparison is the unsteady pressure
distribution computed using Hall's two-dimensional linearized po-
tential analysis at the tip section. The shape of the real part of
the unsteady pressure distribution agrees quite well with the strip
theory results. The magnitude of the response increases from hub
to tip as one would expect, although the pressure is nonzero at
the hub and the magnitude at the tip is somewhat smaller than
predicted by strip theory. The imaginary pressure distribution, on
the other hand, is not well predicted by strip theory. The ampli-
tudes of the response are approximately equal at the three radial
stations. Furthermore, the shape of the distribution is somewhat
different from the strip theory results.

Figure 7 shows the unsteady aerodynamic work done per cycle
on the airfoil for a range of interblade phase angles (negative work
per cycle corresponds to positive aerodynamic damping ) . The
shape is nearly sinusoidal indicating that the airfoil is primarily
influenced by its own motion and that of its two neighbors. Fig-
ure 7 also shows the work per cycle obtained using a linearized po-
tential method applied in strip theory fashion. Note that the strip
theory solution has a shape similar to the linearized Euler results,
but the magnitude of the work is significantly overpredicted, es-

Figure 6: Unsteady pressure distribution on surface of reference

airfoil of Gostelow cascade with airfoils pitching about midchord.
Pitching distribution is linear from hub to tip. uj = 0.4, o = 180°.

a	o
ID	El
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Interblade Phase Angle, a (deg )

Figure 7: Total aerodynamic work per cycle on reference airfoil of

Gostelow cascade with airfoils pitching about midchord. Pitching

distribution is linear from hub to tip. w = 0.4.

pecially for large negative interblade phase angles typical of those

encountered in forced response problems.
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Figure 8: Aerodynamic work per cycle per unit span on reference

airfoil of Gostelow cascade with airfoils pitching about midchord.
Pitching distribution is linear from hub to tip. w = 0.4, or = 1800 .

Figure 8 shows the distribution of aerodynamic work along the
span of the blade for the case where the airfoils vibrate in pitch
with a reduced frequency, , of 0.4 and an interblade phase angle,
a, of —180°. Note that strip theory significantly overpredicts the
work done near the tip of the airfoil. This is not surprising since
the imaginary part of the pressure distribution at the tip of the
airfoil is overpredicted by strip theory.

High Speed Experimental Turbine

In this section, we compare our computational results to the
experimental data for the Fourth Standard Configuration, a high
speed turbine studied by Bolcs and Fransson (1986). Although the
geometry is that of a turbine, the annular blade row did not rotate
in their experiment. Instead, inlet guide vanes induced swirl in the
flow to produce the proper inflow angle. The stagger angle, 0, is

56.6°, the hub to tip ratio, rH/rT , is 0.8, the number of blades, N,

is 20, and the aspect ratio, AR, is 0.538. The blades have a uniform
shape from hub to tip. Bolcs and Fransson measured both mean
and unsteady surface pressures while the turbine blades vibrated
in a plunging motion with a fixed interblade phase angle. For the
case considered here (Fourth Standard Configuration, Case 2), the
reported inflow angle, at the midspan is 45° and the inflow
mach number, M_., is 0.26. The exit flow angle, /3_, is 72° and
the exit Mach number, MM , is 0.76. A number of investigators
have found that the mean flow computational results match the
experimental mean pressure distribution better if the inflow angle
is taken to be 50°, and we will use this inflow angle as well.

Figure 9 shows the computed mean flow solution at three radial
stations along the blade. Also shown is the experimental data
taken at the midspan station. The computational results of the
present steady Euler solver are seen to be in good agreement with
the experimental data. Also note the variation in loading from
hub to tip. The swirl induced in the flow by the inlet guide vanes
and subsequent turning of the inlet duct from the radial to axial
direction produces a free vortex flow. Hence, the inflow angle is
greater at the hub than at the tip.

Having calculated the steady flow, we computed the unsteady
flow due to a plunging motion of the airfoils in a direction nearly
perpendicular to the chord line with an interblade phase angle, a,
of 90 0 and a reduced frequency, w, of 0.13 based on chord and nom-
inal exit velocity. The blade in the experimental setup is hinged
well below the hub. Hence, the motion at the hub is nonzero. We
took the displacement to be unity at the midspan, 0.703 at the
hub, and 1.307 at the tip. Shown in Fig. 10 are the magnitude

v7

0.0	0.2	0.4	0.6	0.8	1.0

Distance Along Chord, L/c

Figure 9: Mean pressure distribution on surface of airfoils of
Fourth Standard Configuration turbine cascade. N = 20,

rH /rT = 0.8, O = 56.6°, AR= 0.538, ^3 = 50°, M_5), = 0.26,

)3—= 72° ,Mo,= 0 . 76 .
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Figure 10: Unsteady pressure distribution on surface of airfoils of

Fourth Standard Configuration turbine cascade undergoing plung-

ing motion (Case 2). w = 0.13, a = 90°.
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Figure 11: Unsteady pressure distribution on surface of reference

airfoil of helical fan blade with airfoils vibrating in torsion about

blade midchord. Pitching distribution is linear from hub to tip.

N = 18, AR,, = 2.0, c° = 1.0, rT = 4.0, rH = 2.0, M°, = 0.5,

w=0.4,a=180°.

and phase of the computed unsteady pressure distribution. The
agreement between the present theory and the experimental re-
sults, while not exact, certainly shows the correct trends. Note
that the three-dimensional effects for this case are fairly small.
This should not be too surprising as the experiment was designed
to produce essentially two-dimensional results.

Subsonic Helical Fan

In this section, we consider an idealized fan geometry. The
airfoils are helical surfaces and the advance ratio is such that the
airfoils have zero steady pressure loading. The case considered
here is of an 18-bladed rotor with a hub-to-tip ratio of 0.5. The
axial chord of the blade, c ° , is 1.0, and the tip radius, rT is 4.0.
The mean flow axial Mach number, M°,, is 0.5. The rotational
speed of the fan is such that the relative inflow angle, /^ at the
midspan is 45°. For the unsteady case considered here, the blades
pitch about their midchords with a reduced frequency, w, of 0.4
based on axial chord and axial velocity, and the distribution of
pitching amplitude is linear from hub to tip. Shown in Fig. 11
is the computed unsteady pressure difference across the airfoil
surface. Also shown for comparison is the unsteady pressure dif-
ference predicted using Whitehead's LINSUB code (Whitehead,
1987) in a stripwise fashion. Note the generally poor agreement

between the three-dimensional results and strip theory. Strip the-
ory predicts that the response will be much larger at the tip than

at the midspan or hub for two reasons. First, the dynamic pres-
sure, which is proportional to the square of the relative velocity,
is considerably larger at the tip. Second, the vibratory motion
of the blade is largest at the tip. The unsteady pressure distri-
butions found using the three-dimensional linearized Euler solver
do not exhibit the strong spanwise variation in unsteady pressure
predicted by strip theory. In fact, the imaginary part of the solu-
tion - the part which contributes to the aerodynamic damping -
shows the opposite trend. These results have important implica-
tions on the prediction of flutter and forced response. For highly
three-dimensional cascades, strip theory can be a poor predictor
of aerodynamic damping.

CONCLUDING REMARKS

In this paper, we have presented a new three-dimensional lin-
earized Euler solver that is capable of accurately and efficiently
predicting unsteady small disturbance flows in turbomachinery
blade rows. By using the pseudo-time time marching approach,
well developed finite-volume schemes can be adapted to solve the
linearized Euler equations in a fraction of the time required to
compute the unsteady flow field using conventional time-accurate
time marching algorithms. An important feature of the present
analysis is the use of a deforming computational grid. The de-
formable grid eliminates the need to include large extrapolation
terms in the moving blade boundary conditions and improves the
accuracy of the method, especially for thin airfoils typical of those
found in modern compressors and fans. For engineering applica-
tions, good results can be obtained using fairly coarse grids. Fur-
thermore, for low to moderate reduced frequencies, the accuracy
of the unsteady solution is on a par with the accuracy of the steady
flow solution.

Computational results were compared to experimental results
and other unsteady aerodynamic analyses. Preliminary results
of the present analysis indicate that three-dimensional effects are
significant for both linear and annular cascades. For example, it
was found that strip theory can be a poor predictor of aerody-
namic damping. Furthermore, three-dimensional effects change
the character of the component of the unsteady pressure distribu-
tion which is out-of-phase with the upwash.
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